NAS8-37143
MMC-NLS-SR. 001
January 1992 NLS Trade Studies and Analyses Report

Book II - Part 2
 Propulsion

 Marshall Space Flight CenterCycle Ø(CY1991)

FOREWORD

This document is Book II, Part 2 of the Cycle 0 Study Report containing trade studies and analyses performed by MMC in support of the Propulsion Working Group. The work was performed under NASA Contract NAS8-37143 between May 1991 and January 1992. This study was performed by Manned Space Systems, Martin Marietta Corporation, New Orleans, Louisiana for the NASA/Marshall Space Flight Center.

INTRODUCTION

This report documents the propulsion system tasks performed in support of the NLS Cycle 0 preliminary design activities. The report includes trades and analyses covering the following subjects: 1) Maximum Tank Stretch Study; 2) No LOX Bleed Performance Analysis; 3) LOX Bleed Trade Study; 4) LO2 Tank Pressure Limits; 5) LOX Tank Pressurization System Using Helium; 6) STME Heat Exchanger Performance; 7) LH2 Passive Recirculation Performance Analysis; 8) LH2 Bleed/Recirculation Study; 9) LH2 Tank Pressure Limits; 10) LH2 Pressurization System. For each trade study an executive summary and a detailed trade study are provided. For the convenience of the reader, a separate section containing a compilation of only the executive summaries is also provided.

Table of Contents
Section 1--Executive Summaries
3-P-001 Maximum Tank Stretch Study
3-P-018 No LOX Bleed Performance Analysis
3-P-019 LOX Bleed Trade Study
3-P-025 LO2 Tank Pressure Limits
3-P-026 LOX Tank Pressurization Using Helium
3-P-027 STME Heat Exchanger Performance
3-P-033 LH2 Passive Recirculation Performance Analysis
3-P-034 LH2 Bleed/Recirculation Study
3-P-038 LH2 Tank Pressure Limits
3-P-039 LH2 Pressurization System
Section 2-Complete Trade Studies and Analyses

3-P-001 Maximum Tank Stretch Study
3-P-018 No LOX Bleed Performance Analysis
3-P-019 LOX Bleed Trade Study
3-P-025 LO2 Tank Pressure Limits
3-P-026 LOX Tank Pressurization Using Helium
3-P-027 STME Heat Exchanger Performance
3-P-033 LH2 Passive Recirculation Performance Analysis
3-P-034 LH2 Bleed/Recirculation Study
3-P-038 LH2 Tank Pressure Limits
3-P-039 LH2 Pressurization System

Propulsion Study Reports
 Section 1

 Executive Summaries

 Executive Summaries}

Maximum Tank Stretch Study

3-P-001

Martin Marietta Manned Space Systems

January, 1992

Prepared By:
R. Cronin

TABLE OF CONTENTS

Page No.
1.0 SUMMARY 1
2.0 OBJECTIVE 1
3.0 APPROACH 1
4.0 RESULTS 2
4.1 GROUND RULES AND ASSUMPTIONS 2
4.2 MINIMUM LENGTH MPS 2
4.3 TANK LENGTH VS FACLITY IMPACTS 2
4.4 SENSITIVITY ANALYSES 3
4.5 PAYLOAD PERFORMANCE 3
5.0 TECHNICAL ISSUES 3
6.0 CONCLUSIONS AND RECOMMENDATIONS 4
APPENDIX A - DETAILED RESULTS

1.0 SUMMARY

The Maximum Tank Stretch Study, 3-P-001, was performed to investigate how much an LH2 tank can realistically be stretched to achieve more performance for the $1 / 2$ stage NLS vehicle. The areas examined were minimum length propulsion module (PM) concepts, manufacturing facilities impacts associated with LH 2 tank stretch and potential payload performance improvements associated with a stretched tank $11 / 2$ stage vehicle.
It was found that relaxation of some feedline geomery and routine constraints and utilization of different feedline flex concepts could save about 69 inches in PM length and allow a total of 11.9 ft t tank stretch (LO 2 and LH 2). This includes a $10.8 \mathrm{ft} \mathrm{LH2} \mathrm{tank}$ stretch aft. This can be accommodated by the MAF manufacturing facilities without major modifications. This can also provide a potenial payioad improvement of about 3000 lb for the NLS $11 / 2$ stage vehicle.
Performance and configuration issues arising from this study addressed engine size and mixture ratio, PM structural arrangement, packaging, staging feedline gimballing and PM length weight sensitivities. It was concluded and recommended that these issues should be addressed in Cycle 1 studies before the benefits of a streched tank option could be fully evaluated.

2.0 OBJECTIVE

The objectives of the maximum tanks stretch study, 3-P-001, are twofold.
One of the study objectives is to determine the realistic limits on how much the LH2 tank can be stretched to achieve more performance for the $11 / 2$ stage NLS vehicle. It must be deternined how much the Main Propulsion System (MPS) can be shorened. This translates into how much the LH2 tank can be strecthed while retaining a propulsion module design concept similar to the NLS reference. The manufacturing and facilities impacts associated with stretching the LH 2 tank must also be determined to define realistic stretch limits.
The second study objective is to determine the $11 / 2$ stage vehicle performance impacts associated with a stretched LH2 tank. These performance impacts should assume that the LO2 tank is stretched slightly to hold engine mixture constant as the LH2 tank is stretched.

3.0 APPROACH

The approach taken in this study consisted of a three parallel path task flow as shown in Figure 1. One set of tasks consisted of development of a minimum length MPS concept and from that calculating parameric vehicle performance and analyzing the tank stretch potential. A second set-of tasks were performed under another related contract study (3-S008 A) and consisted of development of the MAF manufacturing and facilities impacts associated with LH2 tank strech. A third set of tasks consisted of development of a list of technical issues associated with tank stretch and sensitivity analyses of parameters such as vehicle weight and payload performance affected by these issues. The results of all three
sets of tasks were coordinated to develop conclusions relative to tank stretch and a set of recommendations for Cycle 1 were developed.

4.0 RESULTS

4.1 GROUND RULES AND ASSUMPTIONS

Certain constraints imposed by the NLS reference configuration were ground ruled for this study. These included such items as engine location, a 4/2 PM, feedline geometry and routing, prevalves and feedline disconnects similar to those baselined in the NLS reference configuration.

Assumptions were developed to minimize the MPS length given the above constraints and consistent with a Propulsion Module (PM) design similar to the NLS reference. These assumptions included that the LH2 feedline to the boosters controls minimum length MPS, minimum length contoured feedline outlets are used, 0° slope is minimum for all lines, 1.5 R / D is minimum for pipe bends and lengthy scissors ducts would not be used in feedlines to accommodate engine gimballing.

4.2 MINIMUM LENGTH MPS

All effort to shorten the MPS was concentrated in shorening the length (Z axis) of the LH 2 booster feedline. This length controls the minimum length routing of the MPS. The baseline configuration uses scissors ducts at the engine inlets with pipe bends of R/D $=2.5$ and minimum line slopes of 15°. By changing the line slopes to 0° and pipe bends to $\mathrm{R} / \mathrm{D}=$ 1.5 , the MPS was shomened by 37 inches relative to the baseline. This reduction translares into 37 inches of potential LH2 tank stretch. Replacement of the scissors ducts with 3 pipe gimbal joints plus the 1.5 R/D bends and 0° slopes allows the MPS to be shortened 69 inches. This is the preferred concept provided motion analysis shows that adequate clearance between lines is maintained during engine gimballing.

The use of Pressure Volume Compensated (PVC) ducts was also examined for potential to shorten the MPS. PVC length is controlled by engine gimbal requirements with longer PVC ducts required for larger gimbal angles. Use of PVC ducts can reduce the MPS length by 39 to 72 inches depending on length of the PVC.

4.3 TANK LENGTH VS FACILITY IMPACTS

An examination of MAF manufacturing processes and facilities in study 3-S-008A revealed several facility impacts relaive to the ability to stretch the LH2 tank. It was found that modifications necessary to stretch the LH2 tank up to 5 feet (NSL baseline) are minor. Facility modifications necessary to stretch the LH2 tank from 5-11 feet are considered significant but not major. To stretch a LH2 longer than 11 feet would require major modifications to existing production facilities and some new facilities. It was found that modification of certain one-of-a-kind facilities to accommodate LH2 tank sterch would be critical facility impacts. Cell A (core tank stacking) and Cell E (internal LH2 clean/iridite) are critical facilities. Cell A and Cell E have modification for tank stretch limits of 12 and 17 feet respectively. Tank stretch beyond these limits would require a new cell.

The MAF cost impacts associated with these facility impacts were studied under a company funded project. This cost study developed a cost impact vs LH 2 tank stretch length that
increases in unique steps as various facilities are modified to accommodate increasing tank length.
This cost trend reflects the facility modification break points at 11 ft and 17 feet of stretch discussed above.

4.4 SENSITIVITY ANALYSES

Using the preferred concept to shorten the propulsion module, preliminary vehicle weight trends were developed to show the vehicle weight sensitivity to tank stretch. Tank weight increased with stretch while propulsion module weight decreased with an overall result of vehicle weight decreasing about $1134 \mathrm{lb} /$ foot of tank stretch up to a stretch slightly less than 12 feet.

The payload performance of the $11 / 2$ stage vehicle was examined as a function of tank stretch and was found to increase in a non-linear fashion as the tanks are stretched. It was also found. that increasing the engine thrust from the NLS baseline (580 KSL) to 640 K (SL) improved performance and better utilized the stretch tank capabilities.

4.5 PAYLOAD PERFORMANCE

Payload performance of the $11 / 2$ stage vehicle was calculated using the assumed vehicle weight trends for three LH2 tank lengths, STD ET, NLS refr (+5 ft) and +10 ft . The length of the LO2 tank was adjusted to maintain an engine mixture ratio 6.0. Both the NLS refr STME (580 K) and a 640 K engine thrust level were assumed. It was found that the NLS $11 / 2$ stage vehicle payload requirement of 50 Klb could be met by either a 10 ft stretched vehicle with 580 K engines or a 5 ft stretched vehicle (NLS ref.) with 640 K engines. Liftoff thrust/weight is marginal (1.2) for the $10 \mathrm{ft} / 580 \mathrm{~K}$ vehicle. It appears that the NLS ref., length (5 ft stetch) with 640 K engines is the better option.

5.0 TECHNICAL ISSUES

Technical issues that evolved from the 3-P-001 configuration and sensitivity studies can begrouped into performance issues and configuration issues.
Performance issues include: 1) Engine mixture ratio (can stretching only the LH2 tank and allowing engine mixture ratio to decrease improve stretched vehicle performance?); 2) Engine out capabilility (Can engine out requirements be lessened to eliminate the need for tank stretch?); 3) Increased engine thrust (should larger and more costly engines be used to eliminate the need for tank stretch?); 4) PM Weight vs Length is not well defined (should these analyses be refined?); and 5) $11 / 2$ stage vehicle performance is extremely sensitive to PM vs length assumptions, ie, small changes in structure weight assumptions could negate an potential performance gains from increased propellant load (should structure weight assumptions be refined by more detailed design?)
Configuration issues include: 1) Boattail structural design (more detail is needed) 2) How are feedlines structure, TVC and other systems packaged in a shortened PM?; 3) Should extemal routing of LO2 feedlines be considered?; 4) Does the preferred 3 gimbal joint feedline concept exceed current gimbal joint technology limits?; and 5) Can the rail system used for the reference staging concept be used with a shortened boattail?

6.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions associated with tank stretch potential are: 1) The LH2 tank can be stretched 10-11 feet without major facility impacts; 2) The LH2 tank can be stretched 10-11 feet without a major change in the feedline concept; 3) An LH2 tank stretch of 10 feet can potentially provide a payload increase of about 3000 lb over the NASA $11 / 2$ stage reference vehicle; and 4) Issues associated with shortened boattail structural design and packaging must be resolved to verify stretched tank performance improvements.

These conclusions do not address the issue of, "Is tank stretch the best performance improvement option for the $11 / 2$ stage vehicle or are other options such as increased engine thrust worthy of consideration?"
The following recommendations relevant to stretched tanks were developed from the results of this study. Recommendations for cycle 1 study are:

1) Analyze and develop a minimum length PM concept taking into account structural arrangement, packaging, staging, MPS arrangement, and feedline gimballing limits.
2) Calculate minimum length PM mass properties and payload performance of a stretched tank/minimum length PM vehicle.

THIS PAGE INTENTIONALLY LEFT BLANK

Task Number 3-P-018
No LOX Bleed Performance Analysis
Prepared By:
G. Platt
20 Dec, 1991

Executive Summary

 Task 3-P-018, "No LOX Bleed Performance Analysis" of the National Launch System
Phase B study done by MMMSS under the Shuttle C Contract reads as follows, "Analysis
and testing if required to assess the feasibility of no engine and/or vehicle LOX bleeds
considering probable engine start condition requirements, as well as antigeyser system
design." This report is based upon the Marshall Space Flight Center study plan dated August 5, 1991, and presented at the Technical Interchange Meeting at Marshall Space

- Upper loop performance is satisfactory - Temperature rise less than 5 F. for
- 20 inch main feedlines.
- 1 inch SOFI on downcomer.
- Jes!l uo lJOS youl Z/L 이 OəəZ •
6 to 12 inch crossover duct diameter.
- Zero to $35 \mathrm{lb} /$ sec topping and replenish at 163 to 180 deg R at local pressure.
- Engine feedlines likely to saturate at engine - Ambient helium bubbling will mitigate geysering effects, but will not cool LOX locally. - Most vapor will pass through screen unless screen is flat and horizontal.
 3700 lb . tank weight impact estimated (25 psi higher tank pressure than with cold LOX).

Task Number 3-P-018
No LOX Bleed Performance Analysis

3.0 Objective

2.0 Problem

 Analysis and testing if required to assess the feasibility of no engine and/or vehicle LOXbleeds considering probable engine start condition requirements as well as antigeyser system design. ing probable engine start condion require
5.0 Results
The results of this study are attached. The primary results are listed below.
6.0 Conclusions and Recommendations

- Upper loop performance is satisfactory. Temperature rise less than 5 F . - Engine feedlines likely to saturate at engine. Geysering may occur. Most vapor will pass through screen if screen is not flat and horizontal. - Local pressure above saturation for engine start must be established by prepressurization. A 3700 lb . tank weight impact is estimated.
- It is recommended that a prechill system be incorporated. See Task 3-P-019.
7.0 Supporting Data
- NASA-CR-64-3, "Mechanics of Geysering of Cryogenics," Martin-Marietta Aerospace Corp., 1964.

system be incorporated. See Task 3-P-019.

[^0]
Executive Summary
Task 3-P-019 "LOX Bleed Trade Study" of the National Launch System Phase B study
done by MMMSS under the Shuttle C Contract reads as follows, "Trade study to consider
bleed vs. no bleed LOX system considering, at a minimum, operability, complexity, start
sequence restrictions with no bleed, available propulsion module space, and tank stretch
limits." This report is based upon the Marshall Space Flight Center study plan dated
August 5, 1991, and presented at the Technical Interchange Meeting at Marshall Space
Flight Center on August 28,30,1991, by Danny Davis, the cognizant Panel Chairman.
> subsequent subsystem concepts.

[^1]
Effect on LOX tank design pressure

- Repeatability, engine test to vehicle Precedence
Impact on engine design
Impact on engine test
- Potential for required future change
- Operational efficiency
- Hazard introduced
- Hardware complexity
The evaluation of candidate subsystems is summarized as follows.
Task Number 3-P-019
LOX Bleed Trade Study

3.0 Objective

4.0 Approach

To identify and evaluate alternate LOX bleed systems vs. the reference no bleed system.
Specific
To identify and evaluate alternate LOX bleed systems and determine their potential performance
advantages as compared to a reference no bleed system considering the important attributes of each.
To identify and evaluate alternate LOX bleed systems vs. the reference no bleed system.
Specific
To identify and evaluate alternate LOX bleed systems and determine their potential performance
advantages as compared to a reference no bleed system considering the important attributes of

General

$$
\begin{aligned}
& \text { 1.0 Summary } \\
& \text { The reference "No Bleed" system was compared with four alternative LOX Bleed Systems. } \\
& \text { All would require an engine bleed valve, and all would allow a reduction in LOX tank } \\
& \text { prepressurization pressure and the associated } 3700 \mathrm{lb} \text {. payload improvement compared to } \\
& \text { the "No Bleed" case. } \\
& \text { 2.0 Problem } \\
& \text { "Made study to consider bleed vs. no bleed LOX system considering, at minimum, operability, } \\
& \text { complexity, start sequence restrictions with no bleed, available propulsion module space, and } \\
& \text { tank stretch limits." }
\end{aligned}
$$

5．0 Results

 6．0 Conclusions and Recommendations

Reference No Bleed System cannot be expected to have subcooled propellant at engine
－Reference No prepressurization． －Reference No Bleed System causes tank prepre 3700 lb ．tank weight impact．
－prepressurization increase to 50 psig results in a 3700 （vapor pressure increase）after prepressurization is very slow－ －approximately $0.4 \mathrm{psi} / \mathrm{min}$ ．
－The Onboard
requirements．
－Overboard Bleed to the facility provides good performance but at the cost of
－The Onboard
requirements．
－The Overboard Bleed to the facility provides good performance but at the cost of
－The Overboard Bleed Through the Engine to the atmosphere provides good conditions
increase complexity． －The Overboard Bleed Through the Engine to the atmosze exit are required． and is simple，only a bleed to unduly burden the engine development program unless －The LOX dump appears engine is desig
7．0 Supporting Data
Task Number 3－P－018＂No LOX Bleed Peformance Analysis．＂
8．0 Attachments
Task Number 3－P－019＂LOX Bleed Trade Study．＂

THIS PAGE INTENTIONALLY LEFT BLANK
Approved By:
Z. Kirkland

Prepared By:
Tom Winstead
20 Dec, 1991
NASA Statement of Work: "Establish LO2 tank pressure limits vs. flight time considering engine start,
shutdown and NPSP requirements, potential pressure stabilization of tank during.
max airloads, structural weight considering proof test requirements and performance." - With no-bleed LO2 system, prepressurization will determine tank structural requirements. Current estimate of tank impact $\sim 4500 \mathrm{lbm}$. For no impact on tank, prepress needs to be reduced to $<30 \mathrm{psig}$. - Vent valve for baseline will be sized by prelaunch operations and will have no - Optimum NPSP at MECO is 30.8 psi at an ullage pressure of 20.0 psig . - Proposed system would have a prepressurization band of $30-32$ psig with relief set at 34 psig. Structural impact of $\sim 500 \mathrm{lbm}$ is largely offset by a reduction in residuals

1.0 Summary

2.0 Problem

Determine LO2 tank pressure limits for the reference configuration.
Determine tank and system impacts for the reference configuration.
4.0 Approach
The approach to performing this study was:

- Determine tank pressure vs. time for base inputs from 3-P-018, 3-P-019, 3-P-017 and 3-S-010A to determine system impacts.
5.0 Results
The results of this study are attached. The primary results of the study are listed below.

6.0 Conclusions and Recommendations

The upper limit will be sized for pre-launch operations.
 Insulated LOX Iank.
Helium Inject.
Recommend 30-32 Recommend 30-32 prepress band with minimum relief at 34 psig.
Study "Task Number 3-P-025, LO2 Tank Pressure Limits," dated 12/20/91.
) •
Task Number 3-P-026
LOX Tank Pressurization System Using Helium
Approved By:
Z. Kirkland
Executive Summary

1.5 Stage - Mmbient storage helium is the next best with fixed orifice autogenous being better at higher HEX temperatures.
HLLV - Minimum pressurization system weigormance is better at higher HEX temperatures. - Ambient helium system assumes no bottle staging and consequently will result in significant weight impact.

1.0 Summary

A trade study was performed to evaluate LOX tank pressurization with ambient and
cryogenic helium systems. A rough order of magnitude study for the autogenous
pressurization system was done for comparison. Both ambient and cryogenic helium
pressurization systems are lighter than an autogenous system, with the difference
reducing as heat-exchanger outlet temperature is increased. The subsystem costs
are significantly higher for the helium pressurization system.

3.0 Objective

The NASA statement of work is to "Select optimum LO2 tank helium pressurization system based on tank pressure limits and specified reference including residuals system based on tank reliability, operability, simplicity, weight, including residuals and cost."
4．0 Approach
The approach was to perform an analysis of the baseline（autogenous）system
varying heat exchanger outlet temperature to obtain the residual weight sensitivity．
A similar analysis was performed for helium pressurization system，and design
features were selected for systems at ambient and cryogenic storage．Cost and
weight estimates were performed for all three systems and comparisons made．

5．0 Results

> The system weight impact was compared by summing component and ullage weight. The payload weight impact is identical to the weight carried to orbit insertion, and increases as pressurant residuals are reduced. The autogenous system impacts payload by 4250 lbs. at the baseline conditions. The cryogenic helium storage system has a payload impact of only 3180 lbs., but at a cost increase of $\$ 1.2 \mathrm{M} / f l i g h t ~ w h e n ~ c o m p a r e d ~ t o ~ a u t o g e n o u s ~ p r e s s u r i z a t i o n . ~ A n ~$ ambient helium system impacts payload by 5500 lbs., but this value can be reduced to about 4100 lbs. by staging bottles with booster engines. This system costs about $\$ 1.8 \mathrm{M} / f l i g h t ~ m o r e ~ t h a n ~ a u t o g e n o u s . ~$
6．0 Conclusions and Recommendations
Minimum weight is achieved using cryogenic stored helium．Ambient stored helium is the next lightest，with fixed orifice autogenous being bests for the helium MAR

7.0 Supporting Data

.025 and Task Number 3-P-017, "STME LO2 NPSP Requirements" and Task Numb
"LO2 Tank Pressure Limits." Nein, M. E. and J. F. Thompson, "Experimenta
Analytical Studies of Cryogenic Propellant Tank Pressurant Requirements,
" NASA TN D3177, February 1966. 8.0 Attachments
Task Number 3-P-026, "LOX Tank Pressurization System Using Helium."

THIS PAGE INTENTIONALLY LEFT BLANK

The above work was based on a $11 / 2$ stage vehicle. The overall effect is expected
The above work was based on a $11 / 2$ stage vehicle. The overall effect is expected
Executive Summmary

to be similar for the HLLV.
Task Number 3-P-027
STME Heat Exchanger Performance
1.0 Summary
To assess the value of increasing the STME heat exchanger outlet temperature.

3.0 Objective

2.0 Problem

Calculate the tank wall temperature for the $900^{\circ} \mathrm{R}$ tank inlet temperature to assure
tank material integrity at the higher temperature.

5.0 Results

6.0 Conclusions and Recommendations

The results of this study are attached. The primary results of the study are listed below.

7.0 Supporting Data
STPT fax NMO-086-20 "STME Heat Exchanger Parametrics" dated 10/04/91.
2/20/91.
MART

Conclusions and recommendations were:

- Simple System.

 - Screens make geysering correlation ume vapor-bound. - Non-horizontal screens will not become vapor-bound. Saturated liquid hydrog.
Executive Summary

- May force tank design pressure to be increased. May complicate operations by forcing very shor engine

Task Number 3-P-033 LH2 Passive Recirculation Performance Analysis

1.0 Summary

1.0 Summary . . The LH2 "passive recirculation" system appears to be capable of furnishing saturated, mostly liquid, hydrogen at the turbopump inlet at lhe stand time with tanks pressurized

5.0 Results

The results of this study are attached. The primary results are listed below.

6.0 Conclusions and Recommendations

- Simple Systes geysering correlation uncertain. - Non-horizontal screens will not become vapor-bound. - Saturated liquid hydrogen with 23 cubic inches/second of vapor being produced in pump expected after prepress.
Rapid warmup after start of prepress reduces NPSP 5 psi/minute.
Rapid warmup after start of prepress reduces depressurization-repressurization required. - May force tank design pressure to be increased. - May complicate operatins by

7.0 Supporting Data

 NASA-CR-64-3, Contract NAS8-5418, Summary Report for the Period 1 July 1963 through 30 June 1964, "Mechanics of Geysering of Cryogenics," dated June 1964.STPT CM No. NMO-089-17, "STME Start and Shutdown Requirements," dated 10/25/91.
"STME Turbopump Heat Leaks," dated 8/29/91.
STPT CM No. NMO-076-05,
8.0 Attachments

$$
\begin{gathered}
\text { Task Number 3-P-034 } \\
\text { LH2 Bleed/Recirculation Study }
\end{gathered}
$$

Executive Summary
The NASA Statement of Work for this study reads as follows: Assess a no-bleed vs. bleed or recirculation system for the LH 2 feed system considering at
a minimum operability, reliability, propulsion module layout and tank stretch, weight, and cost. meference No-Bleed System will result in saturated LH2 in feedline and engine pump with
vapor in engine pump and dry lines downstream of engine pump.
Convection path complicated by screen.
Analytical model and test program to anchor analytical model required.
Warm-up after prepressurization increases saturation pressure 5 psi/minute. Would require depressurization of tank, repressurization for very short hold. (Engill be poor (80% vapor Warm-up after prepressurization increases saturation presold. (Engine start pressure not yet defined.) - On-Board Bleed has low flowrate, hydrogen quality in to Warm-up alter preprank repressurization for very short hold. (Engine start pressure not yet defined.) by volume).

Test program required.

Slight improvement in performance compared to no bleed.
Overboard bleed has $\mathrm{lb} / \mathrm{sec}$ per engine.
Hardware complexity a disadvantage.
SSME manufacturer uses this system, in principle, for single engine tests.
Should be retained for further study.
Backward recirculation did not appear advantageous.
Provides good engine/pump chill.
Introduces large volume of vapor into feedlines.
Hardware complexity a disadvantage.
Task Number 3-P-034
LH2 Bleed/Recirculation Study

2.0 Problem

Assess a no-bleed vs. bleed or recirculation system for the LH2 feed system considering

3.0 Objective

General

 ToTo compare candidate bleed systems with the no-bleed system for the LH2 feed system.
Compare performance, predictability, repeatability, precedence, engine impact, feed
system impact, engine test impact, potential future change, operational efficiency, potential. hazard, and hardware complexity of candidate bleed system concepts against the reference'
no-bleed system.
4.0 Approach
First, the candidate systems were identified and the performance of each was predicted.
5.0 Results
The results of this study are attached. The primary results are listed below.

6.0 Conclusions and Recommendations

.0 - Reference No-Bleed System will result in saturated LHe of engine pump. with vapor in eng complicated by screen. Would rapor

- Forward recirculation:

7.0 Supporting Data

3-P-033, "LH2 Passive Recirculation Performance Analysis."

8.0 Attachments

Task Number 3-P-034, LH2 Bleed/Recirculation Study "LH2 Passive Recirculation

[^2]Approved By:
Z. Kirkland
MARTIN MARIETTA
MANNED SPACE SYSTEMS

Task Number 3-P-038
LH2 Tank Pressure Limits
Prepared By:
D. Vaughan
20 Dec, 1991
Executive Summary

NASA Statement of Work:

"Establish LH2 tank pressure limits vs. flight time considering engine start "Estab NPSP requirements, potential pressure stabilization of tank during max airloads, structural weight considering proof test requirements and performance. Also consider ascent venting criteria."

[^3]Task Number 3-P-038
LH2 Tank Pressure Limits
1.0 Summary Baseline system results in very high tank pressure during ascent. Tank impact is $\sim 7000 \mathrm{lbm}$. This can be reduced by selecting is flowrates of $1.0 \mathrm{ibm} / \mathrm{sec}$. The lank impact is
NPSP requirements set the lower pressure requirement at ~ 31 psia.

2.0 Problem

Assess LH2 tank pressure limits.

3.0 Objective

Determine tank and system impacts for the reference configuration.
4.0 Approach
4.0 Approach
The approach to performing this study was: - To generate ullage pressure vs. time for the reference configuration and and and - Develop system to minimize impacts to the

$$
0
$$

retop sy
5.0 Results
6.0 Conclusions and Recommendations
The baseline autogenous flowrate of $1.4 \mathrm{lbm} / \mathrm{sec}$ results in high tank pressures that Rention the tank structure by $\sim 7000 \mathrm{lbm}$ a of the autogenous flowrate to $1.0 \mathrm{lbm} / \mathrm{sec}$ reduces
and provides adequate NPSP. and provides adequato

7.0 Supporting Data

8.0 Attachments
Study "Task Number 3-P-025, LO2 Tank Pressure Limits," dated 12/20/91.
Task Number 3-P-039 LH2 Pressurization System
Executive Summary
NASA Statement of Work:
"Select opilimum LH2 tank pressurization system based on tank pressure limits
and specified reference trajectories and considering saiety, reliability,operability,
simplicity, weight, including residuals, and cost."
Approach:
Generate baseline pressure profiles for HLLV and 1.5 Stage
Generate issues and concerns to reference
Evaluate reference with structural and NPSP requirements

Generate alternate approaches

Results:

1) Baseline fixed orifice system results in high ullage pressures during flight that which results in too much margin. 2) Structural weight impact can be reduced by reduch impact due to the high ullage ~1.0 $\mathrm{lbm} / \mathrm{sec}$ engine. Thisg the first portion of the flight. pressure that exists during the limined to reduce the initial tank pressure without 3) Two approaches have been examined are a flow control system anid a step
mpacing
pressurization system.
2) Assisted customer in set-up

System

Background

THIS PAGE INTENTIONALLY LEFT BLANK

Propulsion Study Reports

 Section 2

 Section 2}

Complete Trade Studies and Analyses

Maximum Tank Stretch Study

3-P-001

Martin Marietta Manned Space Systems

January, 1992

Prepared By:
Approved By:
R. Cronin

Contributors:
M. Werner
S. Bonson
R. Spring
R. Houston

TABLE OF CONTENTS

Page No.
1.0 SUMMARY 1
2.0 OBJECTIVE 1
3.0 APPROACH 2
4.0 RESULTS 2
4.1 GROUND RULES AND ASSUMPTIONS 2
4.2 MINIMUM LENGTH MPS 2
4.3 TANK LENGTH VS FACILTY IMPACTS 3
4.4 SENSITIVITY ANALYSES 3
4.5 PAYLOAD PERFORMANCE 3
5.0 TECHNICAL ISSUES 4
6.0 CONCLUSIONS AND RECOMMENDATIONS
APPENDIX A - DETALLED RESULTS

1.0 SUMMARY

The Maximum Tank Stretch Study, 3-P-001, was performed to investigate how much an LH2 tank can realistically be stretched to achieve more performance for the $11 / 2$ stage NLS vehicle. The areas examined were minimum length propulsion module (PM) concepts, manufacturing facilities impacts associated with LH2 tank stretch and potential payload performance improvements associated with a streiched tank $11 / 2$ stage vehicle.
It was found that relaxation of some feedline geometry and routine constraints and utilization of different feedline flex concepts could save about 69 inches in PM length and allow a total of 11.9 ft . tank stretch (LO2 and LH2). This includes a 10.8 ft LH 2 tank stretch aft. This can be accommodated by the MAF manufacturing facilities without major modifications. This can also provide a potenial payload improvement of about 3000 lb for the NLS $11 / 2$ stage vehicle.
Performance and configuration issues arising from this study addressed engine size and mixture ratio, PM structural arrangement, packaging, staging feedline gimballing and PM length weight sensitivities. It was concluded and recommended that these issues should be addressed in Cycle 1 studies before the benefits of a stretched tank option could be fully evaluated.

2.0 OBJECTIVE

The objectives of the maximum tanks stretch study, 3-P-001, are twofold.
One of the study objectives is to determine the realistic limits on how much the LH2 tank can be stretched to achieve more performance for the $11 / 2$ stage NLS vehicle. It nust be determined how much the Main Propulsion System (MPS) can be shorened. This translates into how much the LH2 tank can be stretched while retaining a propulsion module design concept similar to the NLS reference. The manufacturing and facilities impacts associated with stretching the LH2 tank must also be determined to define realistic stretch limits.
The second study objective is to determine the $11 / 2$ stage vehicle performance impacts associated with a stretched LH2 rank. These performance impacts should assume that the LO2 tank is stretched slightly to hold engine mixture constant as the LH2 tank is stretched.

3.0 APPROACH

The approach taken in this study consisted of a three parallel path task flow as shown in Figure 1. One set of tasks consisted of development of a minimum length MPS concept and from that calculating parametric vehicle performance and analyzing the tank stretch potential. A second set of tasks were performed under another related contract study (3-S008 A) and consisted of development of the MAF manufacturing and facilities impacts associated with LH2 tank stretch. A third set of tasks consisted of development of a list of technical issues associated with tank stretch and sensitivity analyses of parameters such as vehicle weight and payload performance affected by these issues. The results of all three
sets of tasks were coordinated to develop conclusions relative to tank stretch and a set of recommendations for Cycle 1 were developed.

4.0 RESULTS

4.1 GROUND RULES AND ASSUMPTIONS

Certain constraints imposed by the NLS reference configuration were ground ruled for this study. These included such items as engine location, a $4 / 2 \mathrm{PM}$, feedline geometry and routing, prevalves and feedline disconnects similar to those baselined in the NLS reference configuration.
Assumptions were developed to minimize the MPS length given the above constraints and consistent with a Propulsion Module (PM) design similar to the NLS reference. These assumptions included that the LH2 feedline to the boosters controls minimum length MPS, minimum length contoured feedline outlets are used, 0° slope is minimum for all lines, 1.5 R/D is minimum for pipe bends and lengthy scissors ducts would not be used in feedlines to accommodate engine gimballing.

4.2 MINIMUM LENGTH MPS

All effort to shorten the MPS was concentrated in shorening the length (Z axis) of the LH 2 booster feedline. This length controls the minimum length routing of the MPS. The baseline configuration uses scissors ducts at the engine inlets with pipe bends of $R / D=2.5$ and minimum line slopes of 15°. By changing the line slopes to 0° and pipe bends to $\mathrm{RD}=$ 1.5 , the MPS was shortened by 37 inches relative to the baseline. This reduction translates into 37 inches of potential LH2 tank strecch. Replacement of the scissors ducts with 3 pipe gimbal joints plus the 1.5 R/D bends and 0° slopes allows the MPS to be shortened 69 inches. This is the preferred concept provided motion analysis shows that adequate clearance between lines is maintained during engine gimballing.
The use of Pressure Volume Compensated (PVC) ducts was also examined for potential to shorten the MPS. PVC length is controlled by engine gimbal requirements with longer PVC ducts required for larger gimbal angles. Use of PVC ducts can reduce the MPS length by 39 to 72 inches depending on length of the PVC.

4.3 TANK LENGTH VS FACILITY IMPACTS

An examination of MAF manufacturing processes and facilities in study 3-S-008A revealed several facility impacts relative to the ability to stretch the LH2 tank. It was found that modifications necessary to stretch the LH2 tank up to 5 feet (NSL baseline) are minor. Facility modifications necessary to stretch the LH2 tank from 5-11 feet are considered significant but not major. To stretch a LH2 longer than 11 feet would require major modifications to existing production facilities and some new facilities. It was found that modification of certain one-of-a-kind facilities to accommodate LH2 tank stretch would be critical facility impacts. Cell A (core tank stacking) and Cell E (internal LH2 clean/iridite) are critical facilities. Cell A and Cell E have modification for tank suetch limits of 12 and 17 feet respectively. Tank stretch beyond these limits would require a new cell.
The MAF cost impacts associated with these facility impacts were studied under a company funded project. This cost study developed a cost impact vs LH2 tank stretch length that
increases in unique steps as various faciliies are modified to accommodate increasing tank length.
This cost trend reflects the facility modification break points at 11 ft and 17 feet of stretch discussed above.

4.4 SENSITIVITY ANALYSES

Using the preferred concept to shorten the propulsion module, preliminary vehicle weight trends were developed to show the vehicle weight sensitivity to tank stretch. Tank weight increased with stretch while propulsion module weight decreased with an overall result of vehicle weight decreasing about $1134 \mathrm{lb} /$ foot of tank stretch up to a stretch slightly less than 12 feet.
The payload performance of the $11 / 2$ stage vehicle was examined as a function of tank stretch and was found to increase in a non-linear fashion as the tanks are stretched. It was also found that increasing the engine thrust from the NLS baseline (580 KSL) to 640 K (SL) improved performance and better utilized the stretch tank capabilities.

4.5 PAYLOAD PERFORMANCE

Payload performance of the $11 / 2$ stage vehicle was calculated using the assumed vehicle weight trends for three LH2 tank lengths, STD ET, NLS refr (+5 ft) and +10 ft . The length of the LO2 tank was adjusted to maintain an engine mixture ratio 6.0. Both the NLS refr STME (580 K) and a 640 K engine thrust level were assumed. It was found that the NLS $11 / 2$ stage vehicle payload requirement of 50 Klb could be met by either a 10 ft stretched vehicle with 580 K engines or a 5 ft stretched vehicle (NLS ref.) with 640 K engines. Liftoff thrust/weight is marginal (1.2) for the $10 \mathrm{ft} / 580 \mathrm{~K}$ vehicle. It appears that the NLS ref., length (5 ft stretch) with 640 K engines is the better option.

5.0 TECHNICAL ISSUES

Technical issues that evolved from the 3-P-001 configuration and sensitivity studies can begrouped into performance issues and configuration issues.
Performance issues include: 1) Engine mixture ratio (can stretching only the LH2 tank and allowing engine mixture ratio to decrease improve stretched vehicle performance?); 2) Engine out capabilility (Can engine out requirements be lessened to eliminate the need for tank stretch?); 3) Increased engine thrust (should larger and more costly engines be used to eliminate the need for tank suretch?); 4) PM Weight vs Length is not well defined (should these analyses be refined?); and 5) $11 / 2$ stage vehicle performance is extremely sensitive to PM vs length assumptions, ie, small changes in structure weight assumptions could negate an potential performance gains from increased propellant load (should structure weight assumptions be refined by more detailed design?)
Configuration issues include: 1) Boattail structural design (more detail is needed) 2) How are feedlines structure, TVC and other systems packaged in a shortened PM?; 3) Should extemal routing of LO2 feedlines be considered?; 4) Does the preferred 3 gimbal joint feedline concept exceed current gimbal joint technology limits?; and 5) Can the rail system used for the reference staging concept be used with a shortened boattail?

6.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions associated with tank stretch potential are: 1) The LH2 tank can be stretched 10-11 feet without major facility impacts; 2) The LH2 tank can be stretched 10-11 feet without a major change in the feedline concept; 3) An LH2 tank stretch of 10 feet can potentially provide a payload increase of about 3000 lb over the NASA $11 / 2$ stage reference vehicle; and 4) Issues associated with shortened boattail structural design and packaging must be resolved to verify suetched tank performance improvements.

These conclusions do not address the issue of, "Is tank stretch the best performance improvement option for the $11 / 2$ stage vehicle or are other options such as increased engine thrust worthy of consideration?"
The following recommendarions relevant to stretched tanks were developed from the results of this study. Recommendations for cycle 1 study are:

1) Analyze and develop a minimum length PM concept taking into account structural arrangement, packaging, staging, MPS arrangement, and feedline gimballing limits.
2) Calculate minimum length PM mass properties and payload performance of a stretched tank/minimum length PM vehicle.
3-P-001 MAXIMUM TANK STRETCH STUDY

Maximum Tank Stretch Study

Reference Configuration Constraints - 3-P-001

- 4/2 Engine Configuration
- 1 Line Diameter Straight Length Before Engine Inlets
- 1 Line Diameter Prevalve
- Prevalve At Each Engine
- Vertical Disconnects
- Engine Mounting At Xt $=4383.28$
- PM Feedline Routing Internal

[^4]1
Minimum Length MPS Using Scissors Joints

$$
\forall \gg \rho /
$$

- 1.5 R/D Bends
Stretch

$$
4+0 x+010
$$

LH2 F/L Comparison - Booster

- Baseline with Scissors \& Minimum Routing
Minimum Length MPS Using Gimbal Joints
slopes shortens the LH2
 Replacement of the scissors ducts with three pipe gimbal joints plus $1.5 \mathrm{R} / \mathrm{D}$ be
feedline routing length by 69 inches. This translates to a potential tank stretch of
Feedline movement during engine gimballing must be verified for this concept.
LH2 F/L Comparison - Booster LH2 F/L Comparison - Booster $*>\infty /$ Scissors
Minimum Length MPS Using PVC Ducts
Use of Pressure Volume Compensated（PVC）ducts can reduce the LH2 feedline routing length by 39 to 72 inches
depending on length of the PVC．A 50 inch PVC and bends with $1.5 \mathrm{R} / D$ can shorten the feedlines and hence allow
a LH2 tank stretch of 72 inches．
PVC length is controlled by engine gimbal requirements．Larger gimbal angles would mandate longer PVC ducts．

MPW. 911206
Minimum Length MPS Feedline Clearance Critical
The close proximity of lines in a shortened MPS dictates the need for a feedline motion during engine gimballing
analysis.

THIS PAGE INTENTIONALLY LEFT BLANK

－Tank Stretch up to 11 ft is Possible with Facility Modifications：
－Cell E～Internal LH2 Clean \＆Iridite
－Cell A～Core Tankage Vertical Stack
－Cell P～External Clean \＆Prime
－LH2 Major Weld Assy
－LH2 Proof Test（Bldg 451）
－New Facilities／Major Mods are Required above 11 ft
－New Proof Test Facility＠11 ft
－New VAB Cell A＠12 ft
－New VAB Cell E＠17 ft
Critical Faclity Impacts, LH2 Tank Stretch
Modification to accomodate LH2 tank stretch of certain one-of-a-kind facilities are considered critical facility impacts
The internal LH2 clean and iridite, Cell E., can be modified to accomodate tank stretch from 5 to 17 feet. A stretch of
over 17 feet would require a new cell.
For core tankage stacking, Cell A, stretch up to 12 feet can be accomodated with varying degrees of modification. A
stretch of over 12 feet would require a new cell.
Critical Facility Impacts - One-of-a-Kind Cells 3-S-008A

- HOISTNLS 910916
- Delta Costs Are For Core Stage Vehicle
- Tankage
- Skirts
- Propulsion Module
- Avionics
- IACO
- 5' Stretch Common Core Tankage Is Baseline
- Current ET Processes And Technology
- Delta Costs Are For Core Stage Vehicle
- Tankage
- Skirts
- Propulsion Module
- Avionics
- IACO
- 5' Stretch Common Core Tankage Is Baseline
- Current ET Processes And Technology

NLS Core Tankage Stretch Summary

15 Stage $M=6.0$
1.5 Stage Vehicle Impacts, LH2 Tank Stretch
Payload capability of a $11 / 2$ stage launch vehicle increases in a non-linear fashion as the tanks are stretched to
accomodate more propellant.
A LH2 tank stretch of 5 feet (NLS baseline) is insufficient to meet the NLS $50 \mathrm{KIb}, 11 / 2$ stage payload requirement
for this vehicle when using the baseline 580 K (SL) STME and assuming one engine out. An 8 ft. stretch will meet
the P/L requirement.
Increasing STME thrust to $640 \mathrm{~K}(S L)$ will allow the NLS vehicle to meet the payload requirement (50 K lb) with the
baselined tank size (5 ft . stretch).
1.5 Stage Vehicle Performance Impacts

Objective : Impact to Payload Performance due to Engine Thrust
and Tank Stretch for Sustainer Out at Liftoff

1.5 Stage Vehicle Sustainer Engine Out at Liftoff Performance
Can exceed 50 Kib Rqm with

THIS PAGE INTENTIONALLY LEFT BLANK

Payload Performance
1.5 Stage Vehicle-Stretch Tank Performance
The propulsion module (boattail) was assumed to decrease in weight as its length decreased. This decrease
outweighs the increase in propellant tank weight as the tanks are stretched. This overall decrease in inert weight
coupled with more useable propellant produces a payload gain for a stretched vehicle.
The magnitude of the propulsion module weight vs. length characteristic must be verified by detailed structural
design and analysis to ensure the payload vs stretch gains shown in this preliminary performance statement.

$(+10)$
$2,049,298$
1.208

$1,773,245$
205,772
79,033
43,233
58,658

123,819
20,433
4,358

148,610
57,162
5,716
51,446

5		웅	NE K
－${ }^{-1}$	－N N	10^{-1}	5
	\％8\％ 8 \％	둥	＋
－	\cdots		
わ			

STME vacuum Thrust
LH2 Tank Length
Gross Lit Off Welght
LIft Oft Thrust／weight
Used Impulse Propellant
MECO Weight
Tank welght
Boattall Welght retained（1）
Boattall welght staged（2）
Total Inert Weight at MECO
Reserves and residuals
Transhlon Sectlon
Total non payload Weight
Gross Payload
Performance Margin
Note：
Maximum Tank Stretch - Issues
Performance Issues

- Engine Mixture Ratio
- Engine Out Capability
- Increased Engine Thrust
- PM Weight vs. Length Not Well Defined
oad
Configuration Issues
- Packaging In PM - Feedlines, Structure, TVC, Other Subsystems
- External Routing Of Feedlines
- Feedline Gimbal Joint Technology Limits
Staging

$$
1
$$

$$
\begin{aligned}
& \text { A LH2 Tank Stretch Of } 10 \text { Ft. Can Potentially Provide A Payload Increase } \\
& \text { Of About } 3000 \text { Lb. Over The NASA 1.5 Stage Reference Vehicle } \\
& \text { - Issues Associated With Shortened Boattail Structural Design And } \\
& \text { Packaging Must Be Resolved To Verify Stretched Tank Performance } \\
& \text { Improvements }
\end{aligned}
$$

L00-d-E

Tanks
S

THIS PAGE INTENTIONALLY LEFT BLANK

By:
Z. Kirkland
Executive Summary
Task 3-P-018, "No LOX Bleed Performance Analysis" of the National Launch System
Phase B study done by MMMSS under the Shuttle C Contract reads as follows, "Analysis
and testing if required to assess the feasibility of no engine and/or vehicle LOX bleeds
considering probable engine start condition requirements, as well as antigeyser system
design." This report is based upon the Marshall Space Flight Center study plan dated
Augut 5, 1991, and presented at the Technical Interchange Meeting at Marshall Space
Flight Center on August 28, 30, 1991, by Danny Davis, the cognizant Panel Chairman.
The NASA Plan presented at the August 28, 1991, TIM does not require testing.

Upper loop performance is satisfactory - Temperature rise less than 5 F . for

 20 inch main feedlines.- 1 inch SOFI on downcomer.
- Zero to $1 / 2$ inch SOFI on riser.

Engine feedlines likely to saturate at engine.
Geysering may occur.
Most vapor will pass through screen ungis start must be established by prepressurization.

And testing if required to assess the feasibility of no engine and/or antigeyser system design. bleeds considering probable engine start condition requ .
$: \square$
ealline design and determine its thermal performance.
әsイə !oll sumajə

-6u!uas

reference
geysering, heat up mance.
5.0 Results
The results of this study are attached. The primary results are listed below.
6.0 Conclusions and Recommendations

- Upper loop performance is satisfactory. Temperature rise less than 5 F .
- Engine feedlines likely to saturate at engine. Geysering may occur. Most vapor will pass
through screen if screen is not flat and horizontal.
- Local pressure above saturation for engine start must be established by prepressurization.
A 3700 lb. tank weight impact is estimated.
- It is recommended that a prechill system be incorporated. See Task 3-P-019.

7.0 Supporting Data

- NASA-CR-64-3, "Mechanics of Geysering of Cryogenics," Martin-Marietta Aerospace
Corp., 1964.
8.0 Attachments
Study 3-P-018 "No LOX Bleed Performance Analysis."

$$
\begin{gathered}
\text { Task Number 3-P-018 } \\
\text { No LOX Bleed Performance Analysis } \\
\text { Attachment-Detailed Data }
\end{gathered}
$$

adoption.
NASA Reference Configuration

Upper Loop

 - Crossover Flowrate $85-100 \mathrm{lb} / \mathrm{sec}$

- Flow Loop Temperature Rise $<5 \mathrm{~F}$

soupu! OZ dələut! des!y uo you! Z/L ol əuon Riser and Downcomer Diametechengine Engine Heat Leak Flowrate - Variables: - Feedline Insulation
1 inch on Downcomer - Engine Heat Leak 2 to 10 btu/sec/engine Topping/Replenish Flowrale

3-P-018

1
0
0
0
0
0
0

Feedline Conditioning

Feedlines Reference No Bleed

3－P－018
Page 5

\[

\]

Assumptions
> $=165$ Deg R
> IJOS

> No Flow in Engine Feedlines
Discussion of Math Model Predictions

NLS Engine Inlet Temperature With No Engine Bleed

THIS PAGE INTENTIONALLY LEFT BLANK
Approved By:
Z. Kirkland

Executive Summary
Task 3－P－019＂LOX Bleed Trade Study＂of the National Launch System Phase B study
done by MMMSS under the Shuttle C Contract reads as follows，＂Trade study to consider
bleed vs．no bleed LOX system considering，at a minimum，operability，complexity，start
sequence restrictions with no bleed，available propulsion module space，and tank stretch
limits．＂This report is based upon the Marshall Space Flight Center study plan dated
August 5，1991，and presented at the Technical Interchange Meeting at Marshall Space
Flight Center on August 28，30，1991，by Danny Davis，the cognizant Panel Chairman．
Because of the difficulty in modeling the liquid heating，it was necessary to consider the
total subcooling of the liquid necessary to start the engine to come from the subcooling
accomplished by the prepressurization of the tank．This was estimated to be 50 psig in
an analysis submitted to NASA by MMMSS and an analysis presented to the Chief Engineer
by the Propulsion Team．Therefore，this value was used as a basis of comparison for
subsequent subsystem concepts．
Some

The evaluation of candidate subsystems is summarized as follows．
Effect on LOX tank design pressure
－Predictability
－Repeatability，engine test to vehicle
Precedence
－Impact on engine design
－Impact on engine test fure change
Porational efficiency
－Hazard introduced
－Hardware complexity

1.0 Summary

5.0 Results

The results of the study are attached. The primary results are listed below.
6.0 Conclusions and Recommendations

- Reference No Bleed System cannot be expected to have subcooled propellant at engine
inlets at start of prepressurization. - Reference No Bleed System causes tank prepressurization tank weight impact
 - Warm up (vapor pressure increase) alter pow approximately $0.4 \mathrm{psi} / \mathrm{min}$.
elt requirements.
increased complexity.
- The Overboard Bleed Through the Engine to the nozzle exit are required.
and is simple, only a bleed valve and a line to the nozzle exit apment program unless the - The LOX dump appears to unduly burt. engine is designed for LOX lead start.
7.0 Supporting Data
Task Number 3-P-018 "No LOX Bleed Peformance Analysis."
Task Number 3-P-019 "LOX Bleed Trade Study."

THIS PAGE INTENTIONALLY LEFT BLANK

Task Number 3-P-019
LOX Bleed Trade Study
Attachment-Detailed Data
The reference No-Bleed system is evaluated in Task Number 3-P-018.
 potential of having saturated liquid at the pump inlet at the time of prepressurization, was necessary to consider the total subcooling the prepressurization of the tank. This to come from the subcooling accomplished bymitted to NASA by MMMSS and an was estimated to be 50 psig in an analysis subi Propulsion Team. Therefore, this value analysis presented to the Chier Engineer by 50 psig prepressurization would result in a tank design pressure increase, compared to the reference tank design, of 20 psi. This would result in a 3700 lb . tank weight penalty.
Feedlines Reference No Bleed

The evaluation of candidate subsystems against these attributes is summarized later.
Attributes Considered in Evaluating Systems

The On-Board Bleed
The first concept considered was the On-Board Bleed, which has no ground interface
and does not vent to the atmosphere. A LOX flowrate of $0.85 \mathrm{lb} / \mathrm{sec}$. in the return line
was calculated for a 2 Btu/sec engine heat leak. This would allow the "hot" LOX to be
carried up the return line and the LOX flowing down the feedline would be heated to
171 deg R at the pump inlet and 180 deg R in the pump. This would provide a net positive
pressure of 72 psi at the pump inlet and 50 psi in the pump for engine start. This concept
would eliminate prepressurization as a LOX tank design factor, because the maximum
tank bottom pressure in flight is only 14 psig lower than during prelaunch with a 50 psig
prepressurization ullage pressure. The bleed was assumed to originate in the gas
generator supply line downstream of the LOX pump.
The predictability of the On-Board Bleed was considered "fair" because it has not been used recently, and it does not have a mechanical pump. Tood, because the configuration The repeatability, engine test to vehicle was lB precedent was virtually identical to this
The impact on engine design and test is expected to be moderate. An engine bleed
valve would be required.
The potential that a future change would be required is considered low, however the available bleed flow rate is limited by the head available for natura bleed line. Also, if the Therefore, the only way to increase the flow rate is to ntank, the bleed line head would vehicle boattail is shortened to allow alow rate. be reduced, reducing the bleed line now rat.
 MARTIN MARIETTA MANNED SPACE SYSTEMS
The hazard introduced would only be that one of the small lines might fail and create a
LOX leak. The hardware required for this scheme is not complex, only a bleed valve and set of small
lines and brackets for each engine is required.

MANNED SPACE SYSTEMS

THIS PAGE INTENTIONALLY LEFT BLANK
Onboard LOX Bleed
-Onboard Bleed Flows $0.9 \mathrm{lb} / \mathrm{sec}$
-Eliminates Stagnation in Feedline and STME
-Provides Subcooled LOX at STME Inlet
and in LOX Pump
$171^{\circ} \mathrm{R}$ at Inlet 72 psi above Vapor Pressure
$180^{\circ} \mathrm{R}$ in pump 59 psi above Vapor Pressure
-Provides Repeatable Engine Operation Conditions
from test Stand to Vehicle
-Simple Design (Similar to S-1 Stage)
Bleed Valve (Similar to SSME) Near GG Inlet
One Inch ID LIne with 12 ft . Head

- No Ground Interfaces
-No Separation Interfaces

The overboard bleed to the facility is quite similar to the on－board bleed in its performance
except that the total head of the LOX above the engines can be used to drive the flow，
rather than only the convective loop created by the eeedline and the warmer return line．
The flow was calculated for a system comprising $1 / 2$ inch lines manifolded to a $1-1 / 2$ inch
line which carries the flow to a ground disconnect，thus overboard to the facility．This is
very similar to the Shuttle LOX bleed and is predictable，repeatable，easy to duplicate on
a single engine test stand，and robust from the standpoint that even with small lines a high
flow rate（ 2.2 lb／sec）can be obtained．The predicted engine inlet temperatures are actually
three degrees F lower than with the on－board bleed，even with the $1 / 2$ inch lines which are
half the diameter of the lines considered for the on－board bleed．For these reasons，the
potential for a required future change was considered low．The operational efficiency was
considered only fair because of the necessity of the ground interface and separate system
to dispose of the oxygen bled to the ground．The hazard introduced was the same as the
on－board bleed with the addition of the potential failure of the ground disconnect and potential
leakage or failure of the on－board disconnect which is provided for booster separation．The
hardware is more complex than the on－board bleed because of the in－flight disconnect，and
because of the ground disconnect．Also，the $1-1 / 2$ inch collector line and the ground
disconnect add to the complexity．

Overboard LOX Bleed

Eliminates Stagnation In Feedline and STME In LOX Pump $168^{\circ} \mathrm{R}$ at Inlet
$171^{\circ} \mathrm{R}$ In Pump $\quad 171^{\circ} \mathrm{R}$ In Pump
－Provides Repeatable Engine Operating
Conditions From Test Stand To Vehicle －Bleed Valve Required Similar To SSME $1 / 2^{\prime \prime}$ Disconnect Separation －Adds Ground Interface（ $11 / 2$ Inch Separation Disconnect） $1 / 2$ Inch Inflight Disconnects

3－P－019
The overboard bleed to the atmosphere，is suggested by the performance of the on－board
bleed and the fact that the SSME discharges 0.5 to $2 \mathrm{lb} / \mathrm{sec}$ through its LOX bleed line to
the atmosphere during prelaunch．This indicates that a flowrate equal to that of the on－board
bleed（ 0.85 lb／sec）could sately be discharged to the atmosphere at the engine exit plane
which is the location at which the SSME LOX pump seal bleed is discharged．If the gas
generator LOX supply line is not the critical location for engine chill，it is possible that the
engine labyrinth seal leak（if a labyrinth seal is used）would be all the bleed that is necessary．
The performance would be identical to the on－board bleed to the level of detail the analysis
has been done，and an engine thermal model would be necessary to tell the difference．
This would give an engine inlet steady state LOX temperature of 171 deg R．Like the other
bleed concepts，this would remove the high prepressurization requirement that would be
required if the feedline is saturated．The concept is predictable since the flow is steady．
The repeatability，engine test to vehicle，would be excellent if the feedlines had similar
heat leaks．If they did not，a means would have to be found to establish the same kind
of a temperature gradient in the feedline，as expected for the flight vehicle．This method，
except for the Shuttle experience cited above，has no known precedent．Again this method
would require an engine bleed valve．There would be virtually no impact on engine test．
This concept appears to be robust，and the possibility of requiring a future change appears
to be low．The operational efficiency appears to be good．The hazard introduced by this
concept is considered to be minimal．Hardware complexity is not a problem，since the
concept requires only a bleed valve and a small drain line．If the engine pump seal leak
can satisfy the need for the bleed，only the drain line would be needed．

$$
\begin{aligned}
& \text { Overboard Bleed to Atmosphere } \\
& \text {-LOX Bleed Overboard to Atmosphere at Engine: } \\
& \text {-Performance same as Onboard LOX Bleed for } \\
& 0.9 \mathrm{lb} / \mathrm{sec} \text { Bleed from GG LOX Supply Line } \\
& \text {-SSME LOX Pump Intermediate Seal Currently } \\
& \text { Leaks } 0.5 \text { to } 2 \mathrm{lb} / \mathrm{sec} \text { of LOX with no known } \\
& \text { III Effects } \\
& \text {-Bleed Valve (similar to SSME) Required } \\
& \text {-May require adding Bleed Line to Engine Exit } \\
& \text {-No Interfaces, no Disconnects }
\end{aligned}
$$

3-P-019
Page 5
Start With LOX Lead

3-P-019
Page 6
Start with LOX Lead -Engine Start with LOX Lead: -Potential Increase in Engine Testing Required
as Compared to Bleed
Summary
The upper flow loop is considered to be a viable anti-geyser and propellant conditioning maturated
The reference No-Bleed system is not predictable, so far, and may result in saturated LOX in the engine inlet and in the engine. Any attempt to make such a prediction is complicated by the assumed requirement for a screen in the feedline. To predice needed. No-Bleed system performance, an analytical model and test data to veriy Since this is the case, the tank must be designed to ach requirement, which is expected to cause a higher tank bors that the engine test program would in flight. Also, because of this unpredictability, tape of inlet conditions and hold time. Also, be complicated by the need to evaluate a wide rangluation may come out of such an engine thermal cons test program. Of the bleed systems, the bleed to the atmosphere is the simplest, and the pump seal leakage may provide all or most of the necessary flowrate. The On-Board Bleed and may with an addition of complexity. The Overboard Bleed to the facilit it does add operational even be considered standard, since it is used on the Shuttle, but it does add operationa and hardware complexity. The idea was brought up to start with a LOX lead to expel any hot LOX. Since this would impose an additional development requirement on the is not recommended.
this page intentionally left blank
Evaluation Matrices
The two evaluation matrices on the following pages summarize the above discussion of the candidate subsystems.
LOX FEEDLINE CONDITIONING

LOX FEEDLINE CONDITIONING					
Attributes	Reference No Bleed	On-Board Bleed	Overboard Bleed To Facility	Overboard Bleed to Atmosphere	Start after LOX dump thru MOX
- Elfect on LOX Tank Design Pressure	-Prepress to 50 psi in creases Tank Design Press. 3700 lb weight	-Deletes Prepress Reqt. Penally	-Deletes Prepress Reqt. Penally	-Deletes Prepress Reqt. Penalty	- Prepress to 50 psig. Increases Ullage \& Tank Bottom Design Pressure
	Impact		-Excellent	-Good	-Excellent
-Predictability -Repeatability Eng. Test to Vehicle	- Poor	\cdot F		-Good	- Very Good
	-Poor	-Poor	- Very Good		
-Precedence	- None	-Saturn 1B S -1 Stage	-Shutlle	-Shuttle Shows Safety, Not Performance	- None
-Impact on Engine Design	- None	-Adds LOX BV	- Adds LOX BV	-Adds LOX BV and small line	Causes MR Traverse from High to Normal
			-Very Little	- Low	-Potentially Large
-Impact on Eng Test	- None	-Low	- Very Low (High		-Large
- Potential for Req'd Future Change	-Large	-Low (Limited Bleed Rate)	-Very Low (High Bleed Rate)	-Low (Limited Bleed Rate)	Large
	-Good		- Fair	-Good (Pending Test)	-Unknown
- Operational Efficiency		-Good (Pending Test)	- Fair		
- Hazard Introduced	-None -Low	-Low	-Low	-Low	-Potentially Sever
			-LOX BV's Small	-LOX BV's and	-Low
- Hardware Complexity		-LOX BV's \& Small Lines Req'd	Lines \& Onbd \& Grd Disconnects Req'd	Drainlines Req'd	

3-P-019
Page 8
LOX FEEDLINE
CONDITIONING
EVALUATION MATRIX

$$
\text { Grades }=A=A, B=3, C=2, D=1 F=0
$$

3-P-019
Page 9

$$
\begin{aligned}
& \text { Grades = A AA, B =3, , =2, } \\
& \text { Score }=\text { Grade - Weight }
\end{aligned}
$$

THIS PAGE INTENTIONALLY LEFT BLANK
Cost Estimates
LO2 Options

Option A-1 - On-Board LO2 Bleed

Option C－1－Overboard LO2 Bleed

Option C－1－Overboard LO2 Bleed				
Item	Description	Qty／PM	Cost／Uni	Cost／PM
Engine Bleed Valve	Similar to SSME（1 Per Engine）	6	81，613	489，678
Engine Bleed Valve Line	$0.5^{\prime \prime}$ ID X 9．5＇Line W／3＇Flex	6	119	713 300
Tee	0．5＂ID	6	50 26.000	360 26,000
Disconnect		6	26，000	26，00
Elbow	0.5^{n} ID $90^{\circ}, \mathrm{R} / \mathrm{d}>=2.5$	6	－ 2	13
Line	$0.5^{\prime \prime}$ ID X 1^{\prime} $0.5^{\prime \prime}$ ID 30° R／d $>=2.5$	6	1	4
Elbow	$0.5^{\prime \prime}$ ID $30^{\circ}, \mathrm{R} / \mathrm{d}>=2.5$ $0.5^{\prime \prime}$ ID 12^{\prime}	6	26	155
Line		1	10，000	10，000
Manifold	$0.5^{\prime \prime}$ To $1.5^{\prime \prime}$ ID $1.5^{\prime \prime}$ ID 12	1	， 234	234
Line		1	57	57
Elbow		1	$\begin{array}{r}39 \\ 2600\end{array}$	39 26,000
Disconnect	$1.5^{\prime \prime} \mathrm{ID}$	1	26，000	26，000
				553，206
Total				

Summary \＆Conclusions
－Reference No Bleed System cannot be expected to have subcooled propellant
at engine inlets at start of prepressurization．
－Reference No Bleed System causes tank prepressurization pressure increase．
A 20 psi prepressurization increase to 50 psig results in a 3700 lb ．tank weight impact．
－Warm up（vapor pressure increase）after prepressurization is very slow－
approximately $0.4 \mathrm{psi/min}$ ．
－The Onboard Bleed looks viable and eliminates the penalty due to prepressurization
requirements．
－The Overboard Bleed to the facility provides good performance but at the cost
of increased complexity．
－The Overboard Bleed Through the Engine to the atmosphere provides good
conditions and is simple，only a bleed valve and a line to the nozzle exit are required．
－The LOX dump appears to unduly burden the engine development program unless
the engine is designed for LOX lead start．

THIS PAGE INTENTIONALLY LEFT BLANK
Approved By:
Z. Kirkland

Task Number 3-P-025
LO2 Tank Pressure Limits

Executive Summary
NASA Statement of Work: "Establish LO2 tank pressure limits vs. flight time considering engine start,
shutdown and NPSP requirements, potential pressure stabilization of tank during
max airloads, structural weight considering proof test requirements and performance."

- With no-bleed LO2 system, prepressurization will determine tank structural
- With no-bleed LO2 system, prepressurization will de0 lbm. For no impact on tank, prepress needs to be reduced to <30 psig.
prepress needs to be reduced to <30 sig.
influence on flight.
- Optimum NPSP at MECO is 30.8 psi at an ulization band of 30-32 psig with relief
- Proposed system would have a prepressm is largely offset by a reduction in residuals
set at 34 psig. Structural impact of ~ 500 lom is largely

Task Number 3-P-025
LO2 Tank Pressure Limits 1.0 Summary
The study has shown that the upper pressure limit will be determined by prelaunch
operations. This results in a 4500 lbm increase in structural weight. This impact can
be eliminated by using a bleed conditioning system and reducing the pre-pressurization
level to less than 30 psig. Lower limit is determined by the saturation pressure of the
liquid up to terminal drain when the engine NPSP requirement of 30.8 psi becomes
important. The optimum tank pressure is ~ 20 psig which allows the autogenous
pressurization flowrate to be reduced from the reference $3.0 \mathrm{lbm} / \mathrm{sec}$ to $2.5 \mathrm{lbm} / \mathrm{sec}$.
2.0 Problem
2.0 Problem
Determine LO2 tank pressure limits for the reference configuration.

3.0 Objective

The approach to peressure vs. time for baseline trajectories.
The approach to performing this study was.

- Determine tank pressure vs. time for baseline and 3-S-010A to determine system impacts.

$$
\text { - Use inputs from 3-P-018, 3-r-urs, } 0-1
$$

5.0 Results
The results of this study are attached. The primary results of the study are listed below.

6.0 Conclusions and Recommendations

Current autogenous flowrate can be reduced to lower tank pressure at MECO.

Insulated LOX tank.

Helium Inject.
Recommend 30-32 prepress band with minimum relief at 34 psig.
Study "Task Number 3-P-025, LO2 Tank Pressure Limits," dated 12/20/91.

THIS PAGE INTENTIONALLY LEFT BLANK

Assumptions

The raw material cost differential is estimated at about $\$ 350 / \mathrm{lb}$.

A typical LOX tank ullage pressure profile is shown for selected $1-1 / 2$ stage and
HLLV trajectories for the cycle-0 baseline pressurization system (700 deg R
autogenous, fixed orifice flow control, and no engine bleed). Note that the pressure near booster
separation is about 8 psig higher than at cutoff. While the NPSP requirement is
approached only as the feedline is drained, the tank pressure at cutoff will generally
have a minimal effect on structural design; the structure is more than likely designed
by tank bottom pressure near booster cutoff when this pressure and other loads are
converted to tank proof pressure requirements. If the no-engine-bleed option was retained, prepressurization and liftoff loads would probably design the tank. The weight impacts are unacceptable and retention of this option is not recommended.
Baseline Ullage Pressure

[^5] "baseline" NPSP of the

Extending the analysis to parametric NPSP requirements shows that the baseline

As tank pressure at MECO is increased, the structural weight increases, but residuals
for an engine out are decreased so that the net payload impact is small. Elements considered here are residuals at a vapor pressure of 20.2 psig, ullage weight at MECO, and structural weights corresponding to conditions nea corresponding to the NPSP and cutoff from 70% power level.

throughout flight．

> The 20.2 psia condition corresponds to an uninsulated LOX tank without helium injection with the tank pressurized above 22 psia．
SWヨISAS 3OVdS OBNNYW

[^6]MANNED SPACE SvのTEMS

3-P-025
Page 8
oritice autogenous press.
near 20 psig @ MECO.
The nominal predictions on tank pressure are oversimplified by ground rules, and will experience The nominal predictions on tank pressure are overs pine ination are further defined.
some additional variations as components and STME
If a flow control system were incorporated,
would provide performance improvements.
Proposed Ullage Pressure
When system payload impacts are evaluated:

- The tank pressure effect on weight is evaluated at BECO ($\Delta \mathrm{P}=8 \mathrm{psig}$
higher than at MECO)
- Liquid residuals are evaluated at the time when NPSP is no longer
satisfied
- Gas residuals are those required for tank pressurization
Elements which would further increase payload are:

[^7]

3-P-025
Page 10
Summary \& Conclusions
3-P-025
Page 11

Approved By:
Z. Kirkland MARTIN MARIETTA
MANNED SPACE SYSTEMS
NASA Statement of Work:
Executive Summary
"Select optimum LO2 tank helium pressurization system based on tank pressure
limits and specified reference trajectories and considering safety, reliability, operability,
simplicity, weight, including residuals and cost."
1.5 Stage

- Minimum pressurization system wer - Ambient storage helium
higher HEX temperatures.
HLLV - Fixed orifice autogenous weight performance - Aignificant weight impact.

2．0 Problem

> A design concern for autogenous pressurization is that particulate igstrophic vehicle heat－exchanger discharge（pressurization supply）proportion to the selected heat failure mode．The potential for failure．
> exchanger discharge temperature．

3．0 Objective

3．0 Objective $O 2$ tank helium pressurization
The NASA statement of work is to＂Select opicified reference trajectories and system based on tank pressure limits and specifity，weight，including residuals considering safety，reliability，operability，simple
4.0 Approach varying heat exchanger outlet temperature to obtain the residual weight sensitivity.

A similar analysis was performed for helium pressurization system, and design features were selected for systems at ambient and cryogenic storage. Cost and eaight estimates were performed for all three systems and comparisons made.

5.0 Results

The system weight impact was compared by summing component and ullage

 weight. The payload weight impact is identical to the welghed. The autogenous insertion, and increases as pressurant residuals ale conditions. The cryogenic system impacts payload by 4250 lbs . al the bas only 3180 lbs ., but at a cost helium storage system has a payload impact of only 3180 ibs., bization. An increase of $\$ 1.2 \mathrm{M} /$ flight when compared to autogenous pressur value can be ambient helium system impacts payload bottles with booster engines. This system costs about $\$ 1.8 \mathrm{M} /$ flight more than autogenous.
6.0 Conclusions and Recommendations

 helium is the next lightest, with fixed orifice autogenous being bests for the helium HEX temperatures. There are more compo is traded with equally catastrophic bottle-failure issues.
Task Number 3-P-026, "LOX Tank Pressurization System Using Helium.
Approach

$$
\text { Approach }
$$

Perform baseline pressurization system analysis and vary heat exchanger outlet
temperature to obtain residual weight sensitivity.
Generate pro/con's of system.
Perform helium pressurization system analysis to obtain similar pressure profiles.
Generate residual weight sensitivity.
Generate cost trade between baseline and helium alternatives.
Baseline Fixed Orifice Pressurization System

> u! passnos!̣ se sןjedu No Bleed cycle-0 baseline resulted in severe system impacts No Bleed cycle-o baseline resulted in sever
the appropriate trade study reports.
> the No Bleed cycle-0 baseline resulted in sever the appropriate trade study reports.
This analysis of autogenous fixed orifice performance was done to establish a This analysis the helium system(s) studies presented later
Cyme shown for a nominal HLLV and 1-1/2 stage
 Cycle- 0 baseline parat (iftoff) system response.
including engine-out (at Page 4
Cycle Zero Baseline Ullage Pressure Profiles

THIS PAGE INTENTIONALLY LEFT BLANK

The hardware cost was estimated to be $\$ 254 \mathrm{~K} / f l i g h t$. The hardware weight was assumed to be approximately that for the Shuttle ET, or
about $450 \mathrm{lbs} .$, and not a variable with heat exchanger outlet temperature. he pressurization system weight is the sum of hardware and ullage residuais at MECO increase in payload capability. increase in payload capability A decrease in this weight for an otherwise fixed launch system allows a correspondi increase in payload capability.

3-P- 026
Page 5
Cryo Helium Pressurization System

- Pro's
- Low pressurization system weight
-Con's (H 2 tank needed (approximately 1.5 inch) - Tank weight impact $\sim 110 \mathrm{lbm}$.
- Uncertaintly in LOX evapetrations for access and feedthrough
- Requires engine heat exchanger
- Additional components decrease reliability
- System cost
Typical performance profiles are shown for constant flowrates at $700^{\circ} \mathrm{R} \mathrm{HEX}$ supply temperature
for the HLLV and $1-1 / 2$ stage．Note that differential orificing was selected between Booster and
Sustainer pressurant flowrates to minimize the difference in peak pressure（near BECO）and final
pressure（at MECO）．
An equivalent to the autogenous fixed orifice system was used for comparison purposes．
A companion analysis for engine－out performance is shown on the next page．
LOX Tank Ullage Pressure vs Time
Helium Pressurization System

LOX Tank Ullage Pressure vs Time Helium Pressurization System

 components have performed adequately. However, one appitle ruptured.
S-IVB stage during ground test operations when a helium bottl
Cryogenic Storage Helium Pressurization System Weight

- Con's
- Uncertainty in LOX evaporation during mainstage
- Packaging of system for staging
- Propulsion module length
- Requires engine heat exchanger
- Additional components decrease reliability
- Helium cost
- Pro's
- Low system weight if helium bottles can be staged with engines
- No additional LH2 tank penetrations

MANNED SPACE SYCTEMS

THIS PAGE INTENTIONALLY LEFT BLANK

An ambient helium storage system was evaluated to determine cost and performance
differences with cryo-helium storage. The system shows a cost advantage over differences with cryo-heluu operating with cryo helium stored in the LH2 staged with booster engines. stage appear to be competitive if bottles are staged with booster engines. Other discussion items are identical to the cryo-helium pressurization system, except for the need to regulate the helium flow heat exchanger as the bottles blow continuously variable inlet temperature to the heate this stage, since the results down. A performance analysis is not app design assumptions.
> individual shut-off valves and check valves Manifolding the Booster accommodates engine-out operations.
The layout accommodates staging the bottles with the booster module. There are a large number of possible schematic layouts, each of which has a different component count/cost/etc. The layout selected should considerations is failure considerations. A
required for this approach.
The motorized regulator is required to accommodate changing heat exchanger The motorizedures as the bottles are blown down. However, a liow conison. inlet temperatures as the bouivalent to the autogenous fixed-orifice system was used for comparison.
\qquad

[^8] The pressurization system weight is the sum of hardware and ullage residuals at The pressur with an "effective" payload impact associated with
MECO with an efective
booster engines. A knock-down factor of 0.43 was used, considering booster
module separation at 193 seconds of 465 second flight.
The pressurant line and associated hardware weight was assumed to be

3940 lbs . and the hardware The helium storage system weight
cost estimated to be $\$ 2.07 \mathrm{M} /$ flight.

3-P-026
Page 13
Summary \& Conclusions

1.5 Stage

HLLV . - Minimum pressurization system weigh act storage helium. Fixed otures. temperatures. Ambient helium system assumes no bottle staging and consequently will result in significant weight impact.

[^9]In was shown that for the Autogenous (GOX) pressurization system, the system
Executive Summmary

NASA Statement of Work:

1.0 Summary
It was shown that for the autogenous (GOX) pressurization system or the helium
system the heat exchanger discharge temperature should be increased above the
reference $700^{\circ} R$ to at least $900^{\circ} \mathrm{R}$. This would improve the payload capability of
the vehicle by $600-1000 \mathrm{lbs}$.

$\frac{\text { Task Number 3-P-027 }}{}$ STME Heat Exchanger Performance

2.0 Problem
 2.0 Problem

m
To assess the value of increasing the STME heat exchanger outlet temperature

3.0 Objective

General
To evaluate the desirability of ind
Specific To assess, for three candidate LOX tank presture from the reference $700^{\circ} \mathrm{R}$. To assess, for three candidate outlet temperature from the reference 700 R

4.0 Approach
The approach to performing this study was: outlet temperatures, for each of three castem.
Autogenous (GOX) pressurization system.
Helium system with helium stored in ambient temperature botles.
Helium system with helium stored in botles submerged in the liquid
The approach to performing ther 500,700 and $900^{\circ} \mathrm{R}$ heat exchanger

- To calculate a pressurization system weight, for 500,700 and $900^{\circ} R$ neat excman as follows:
MART
Mank.
MANNED
Calculate the tank wall temperature for the $900^{\circ} \mathrm{R}$ tank inlet temperature to assure tank material integrity at the higher temperature.

5.0 Results

The results of this study are attached. The primary results of the study are listed below.

6.0 Conclusions and Recommendations

 > 7.0 Supporting Data
 \subsection*{7.0 Supporting Data}
 \subsection*{7.0 Supporting Data}
STPT fax NMO-086-20 "STME Heat Exchanger Parametrics" dated 10/04/91.
Study "Task Number 3-P-027, STME Heat Exchanger Performance" dated 12/20/91.
8.0 Attachments

THIS PAGE INTENTIONALLY LEFT BLANK
Guidelines and Assumptions

- Did not differentiate between heat exchanger pressurant discharge temperature
- Heat Exchanger Parametrics" dated 10/04/91.
Heat Exchangen
- Practical upper limit for heat exchanger outlet/ank inlet mean temperature taken
as $900^{\circ} \mathrm{R}$ based on Shuttle experience.
- Pressurization system hardware weight excluding high pressure bottles taken
as 450 lb .
- Pressurization gas bottles are assumed to be available in any size required.
The facing page shows the heat exchanger location in the engine system.

From the data supplied by STPT, the graph on the facing page was derived. The heat
exchanger weight is translated into payload weight penalty. The factor used for booster
weight per pound of payload weight was 0.43 .

$$
\begin{aligned}
& \text { The facing page shows the results of an analysis to gain insight into the performance } \\
& \text { of the heat exchanger at two different power levels and a range of GOX flowrates. } \\
& \text { The curves were calculated for a particular heat exchanger configuration within the } \\
& \text { range supplied by the STPT. Several problems are evident from these calculations; } \\
& \text { first, the heat exchanger outlet temperature is a very strong function of power level. } \\
& \text { Therefore, the outlet temperature at } 100 \% \text { will have to be } 25-30 \text { degrees higher than } \\
& \text { nominal to yield a mean as high as the nominal. Secondly, at the low gas temperatures } \\
& \text { characteristic of the } 70 \% \text { power level, icing of the duct may occur. }
\end{aligned}
$$

i; Heat Exchanger Outlet Temperature vs.
LOX-GOX Flowrate

$\stackrel{\text { ®ㅇ }}{8}$
[

Summary \& Conclusions

$$
\begin{aligned}
& \text { Heat exchanger performance is a strong function of the engine power level. } \\
& \text { achieve an average outlet temperature as shown will require a higher outlet } \\
& \text { temperature at full thrust. }
\end{aligned}
$$

- Additional work is recommended to establish the maximum practical heat
To

THIS PAGE INTENTIONALLY LEFT BLANK

Helium System

		Ambient Storage
	Cryo Storage	
Initial Pressure (psia)	4500	4500
Final Pressure (psia)	1000	1000
Initial Temperature $\left({ }^{\circ} \mathrm{R}\right)$	580	40
Final Temperature ($\left.{ }^{\circ} \mathrm{R}\right)$	400 (calculated)	30 (calculated)

Tank Pressure ($\mu \mathrm{sia}$) 24 at cutoff

(al) 74610M
outlet temperature and resulting payload weight penally and system control scheme. and cost.
The heat exchanger cost and weight are not significant compared to the ullage gas weight and storage bottle weight saved by increasing heat exchanger outlet temperatures in the range considered (500-900 R). - Improvements in payload capability appear possible by further increases in exchanger outlet temperature. exchanger outlet temperature. - Additional work is required to establish the maximum practical heat exchanger - Further work is required to define the helium pressurization system control scheme.
Task Number 3-P-033
Recirculation Performance Analysis

Executive Summary

Task 3－P－033，＂LH2 Passive Recirculation Performance Analysis＂of the National Launch
System Phase B study done by MMMSS under the Shutte C contact reads as follows：
＂Analysis of LH2 feed system with passive recirculation system to assess feasibility，margins
and performance including an assessment of engine prestart restrictions if any．＂This is a
report of this study and is based upon the Marshall Space Flight Center study plan dated
August 5，1991，and presented at the Technical Interchange Meeting at Marshall Space Flight
Center on August 28，30，1991，by Danny Davis，the cognizant Panel Chairman．
Conclusions and recommendations were： －May complicate operations by forcing very short engine start window before recycle required． －Reevaluation required when engine start pressure requirement is estabished．
LH2sk Number 3－P－033
LH2 Passive Recirculation Performance Analysis
1．0 Summary
1．0 Summary
The LH2＂passive recirculation＂system appears to be capable of furnishing saturated， mostly liquid，hydrogen at the turbopump inlet at the start of time with tanks pressurized up rate after prepressurization of $5 \mathrm{psi} /$ minute will
to 2－3 minutes．
2．0 Problem
To study and predict the periormance of the reference hydrogen no bleed system．
3．0 Objective
General
Determine the performance of the LH2 Passive Recirculation（no－bleed）system．
Specific
Gain an understanding of the performance characteristics of the LH2 passive recirculation
system．Assess geysering situation，feedline screens，and hold time．

4．0 Approach

5.0 Results

6.0 Conclusions and Recommendations

Attachment-Detailed Data

Task Number 3-P-033
LH2 Passive Recirculation Performance

LH2
The Reference Configuration
NASA reference feedline configuration shown on the facing page.
NASA Sketch of Reference LH2 Passive Recirculation System

- POSSIBLE SOLUTIONS: - ON BOARD BLEED - RECIRC SYSTEM

3-P-033
Page 3

facing Page 4

\[

\]

Summary \& Conclusions

Simple System.

Screens make geysering correlation unceraino-bound.
Saturated liquid hydrogen with
pump expected after prepress.
> engine start window before recycle required. May complicate operations by forcing very sressure requirement is established. - Makes for short available hold time before depred

- May force tank design pressure to be increased.
- May complicate operations by forcing very short
- Reevaluation required when engine start pressur
SWヨISAS $30 \forall d S$ OヨNNVW

Executive Summary
The NASA Statement of Work for this study reads as follows: Assess a no-bleed vs. bleed or recirculation system for the LH2 feed system considering at - Reference No-Bleed System will result in saturated
Analytical model and test program to anchor analytical model required. Warm-up after prepressurization inization for very short hold. (Engine start pressure not yet depressurization of tank, repressurization for velity in turbopump will be poor (80% vapor On-Board Bleed has low flowrate, hydrogen quality in by volume). If this is satisfactory, would allow improvement
no-bleed system.
Test program required.
Hold time limited due

2.0 Problem Assess a no-bleed vs. bleed or recirculation system for the LH2 feed system considering
at a minimum operability, reliability, propulsion module layout and tank stretch, weight, and cost.
3.0 Objective
General
To compare candidate bleed systems with the no-bleed system for the LH2 feed system.
Specific
Compare performance, predictability, repeatability, precedence, engine impact, feed
Change, operational efficiency, potential
General
To compare candidate bleed systems with the no-bleed system for the LH2 feed system.
Specific
Compare performance, predictability, repeatability, precedence, engine impact, feed
Change, operational efficiency, potential
 hazard, and hardware complexity of candidate bleed system no-bleed system.

4.0 Approach

5.0 Results
The results of this study are attached. The primary results are listed below.

6.0 Conclusions and Recommendations

 Would Warm-up after prepressurization increases saturaion pressurt hold.require depressurization of tank, repressurization for very shor (80% vapor
On-Board Bleed has low flowrate, hydrogen quality in turbopump will be poor
by volume). If this is satisfactory, would allow improvement in hold after prepress relative
to no-bleed system.
Test program required.
Slight improvement in performance compared to no bleed. Convection path complicated by screen. Reference No-Bleed System will result in saturated LH in engine pump.
Hardware complexity a disadvantage. in principle, for single engine tests. Overboard bleed has adequale penine.
to loss of LH2 at $1.2 \mathrm{lb} / \mathrm{sec}$ per engine.
SSME manulactured for further study.
Should be reainculation did not appear advantageous. - Backward reod engine/pump chill.
Provides good engine/pu of vapor into feedlines. Hardware complexity a disadvantage.

$$
\begin{gathered}
\text { Task Number 3-P-034 } \\
\text { LH2 Bleed/Recirculation Study } \\
\text { Attachment-Detailed Data }
\end{gathered}
$$

Feedlines Reference No Bleed

－Rule of Thumb
LD＜ 10 Convection OK
LD＞ 20 Convection Not Enough（Geyser Region）
－Probable Design Between 10 and 20 or LID＞ 20
－Screen In Line Will Inhibit Convection
－Pores in Shuttle－Type Screen Will Be＂Stable＂
－Most Vapor Will Pass Through and Rise Through
Screen if Screen is Not Flat，Horizontal
－Feedline Will Be Saturated．Boiloff Rate 46 In $3 /$ Sec
Before Prepress 23 In Cu／Sec after Prepress
－There is No Valid Analytical Model of the Feedline
With Screen
－Possible Solutions
－On Board Bleed
－Overboard Bleed
－Recirc System

ATTRIBUTES CONSIDERED IN EVALUATING SYSTEMS
The On-Board Hydrogen Bleed

The on-board hydrogen bleed was evaluated because of its simplicity. It has no layout shown on the next figure, the available head wod to be one inch in diameter or a maximum of 0.36 psi . The return line was assum calculated flowrate would be and reenter the feedline just below the disconnect. . less than $0.12 \mathrm{lb} / \mathrm{sec}$ per engine at the calculated heat load. quality in the pump would heat load, the flowrate would be less the and the return line greater than 0.13 , or 85% vapolumetric quality would be approximately flow capacity and the calculated heat leak, the volume 0.6. This large volume of vapor would enter the eedline at the 17 inch line into the tank. The vapor would tend to feedlines split, and would flow up the 17 inch ine the temperature difference to drive the condense at the time the tank is prepressurized, condensation would be 8 deg R. With this sysed to the reference system.

The on-board bleed scheme is considered poor from a predictability standpoint. This
 system. Similarly, the system performance is not expected in the two cases including test to vehicle uniess the leed syd thermal response rates.
(20
 and feedline would be required. This might present a maintenance problem. would be a high potential that a future change would work. The system has no ground interface and introduces . Similarly the system is leak, so it would not be expected to ind valves and small lines. simple, involving only hydrogen bleed valves and small lines.

facing

3-P-034
Jage 3
On Board Hydrogen Bleed
-Requires No Disconnects

-Available Head is Approx. 12 Feet or a Maximum
of 0.36 psi -Flowrate is Less than $0.12 \mathrm{lb} / \mathrm{sec}$ Per Engine at
 0.05 (70% Vapor by Volume) $0.075 \mathrm{lb} / \mathrm{sec}$ With Load, Flowrate is Less Tha 13 . 85% Vapor by
 -With Shortened Aft Compartment (Stretched
Hydrogen Tank) Performance Would Be
Reduced
The Overboard Bleed to the Facility
 bleed because the full head of the hydrogen on board as well as the vent valve and vent line pressure drop are available to drive the flow, which must overcome only vent line pressure drop are drop. Because of this higher head, the system performance the vent system pres the on-board bleed, and more repeatable from engine test is more predictable than the on-board bleed. Also, the to flight vehicle configuration than the no-bleed a available hold time after prepressurization would be bulk of the hydrogen in the tank. of propellant lost overboard and the reatively high flowrate au!buə Ol-7y aul Sem pәәן pıeoqua that could be obtained. The precedence for the overs S-IV). It was bled in flight during which was used for the second stage application (the S-IV). .liwas to the aft end of first stage burn through long vent stacks which carred flll tank pressure plus the head the first stage (the S-I). In this case the system had ture change was considered
 fairly large because of the lack of recent experience wommodate the larger hydrogen facility hydrogen disposal syst vent rather than the tank vent alone.
flowrate of the bleed plus
This system would require an engine bleed valve. It is felt that the impact on engine test would be small, since this kind of a bleed has been used in the past for engine development tests. The system would introduce a moderate hazard, since the added disconnects would The system would introduce a moderate hazard, since the depend on the design, but
add leak sources. The number of added disconnects would depen would be engine bleed
at least two would be required. The hard
Hydrogen Overboard Bleed

-Can be Manifolded to Minimize Number of Inflight

 Disconnects -Approx. 2.8 psi Available to Drive Flow (Assumes1 psi Ground Disposal System Pressure Drop) - Provides Approx $0.1 \mathrm{lb} / \mathrm{sec}$ Flow to Chill Each -Provides Approx Engine at Exit Quality of 0.1 (80% Vapor by Volume) with Calculated Heat Load -Provides High Flowrate ($1.2 \mathrm{lb} / \mathrm{sec}$) After Prepress. Limited by -Allows Extended Hold After Prepress. (Li
Allowable Propellant Loss)
Backward Recirculation
Backward recirculation was considered for the Saturn S-II and Saturn S-IVB stages.
Performance calculations were run utilizing a computer program that was developed
tor Saturn and verified on Saturn and on the Shuttle program.
The backward recirculation system is simpler than forward recirculation as used on
Shutle in that prevalves are not required. The system was calculated for one inch
lines, since they would not require gimbals, but could utilize the simpler flex lines.
The allowable hold after prepressurization would be increased compared to the baseline.
The major disadvantage was that large amounts of vapor were introduced into the feedline.
This is not necessarily a problem, but relies on the vapor recondensing during
prepressurization. This recondensation is nearly unpredictable, and tests would be required
to assess its acceptability.
this page intentionally left blank
The backward recirculation system was judged to have fair to good predictability, because of the vapor in the feedline. The performance of the flow in the pump and lines was thought to be highly predictable and repeatable, the pump and bleed valve would perform the same on engine tests and on the ve of $1 \mathrm{lb} / \mathrm{sec}$ would be assured, would be required. Since the relatively large insulation performance would be only moderate feedline and engine turbopump insulate
required. The impact on engine test would be moderate, but to allow correct
me assessment of engine performance as it would be on the vehicle, the rect facility. pump and recirculation line would have to be installed on the engine test facility. The potential for future change would be fairly large because of the large volume of vapor in the feedline. As to operational efficiency, the system is complicated by the addition of recirculation pumps. These pumps he the Shuttle. It is reasonable to that a connector problem suracew been corrected. Also, as on any chilldown assume that this problem has now been corlocks will be required. The hazard system, it is assumed that temperature interlocks wources have been introduced, introduced is considisconnects have been added.
BACKWARD HYDROGEN RECIRCULATION

- STANDARD SHUTTLE RECIRC. PUMP PUMPING BACKWARDS THROUGH THE ENGINE SYSTEM AND FEEDLINE.
-REQUIRES ENGINE BLEED VALVE ON GAS
GENERATOR SUPPLY LINE.
-REQUIRES DISCONNECTS IN RECIRCULATION
LINES. LINES.
-OPERATES WITH PREVALVES OPEN, RETURN HYDROGEN FLOW NEIRANLATION PUMP AS SHUTTLE. INCH RECIRCULATION SYSTEM LINES.
-DISCONNECTS REQUIRED FOR OUTBOARD
LINES.
-INSENSITIVE TO HEAT LOAD.
-LARGE VOLUME OF GASEOUS HYDROGEN
INTRODUCED INTO MAIN FEED LINES.

3-P-034
Page 6

$$
\begin{aligned}
& \text { The following figures show the backward recirculation performance characteristics. } \\
& \text { With saturated liquid at the pump discharge the flowrate at the point where the } \\
& \text { pressure drop versus flowrate curve intersects the pump performance curve is } \\
& \text { between } 0.9 \text { and } 1.0 \text { lb/sec. This is the point at which the system will operate, and } \\
& \text { at this point the vapor fraction of the volume flowing at the recirculation line exit is } \\
& 0.7 \text {. Similarly, with greater subcoling, the flowrate increases to approximately } \\
& 1.2 \text { lb/sec and the vapor volume decreases to } 30 \% \text { at } 3 \text { deg } \mathrm{F} \text { of subcooling. Since } \\
& \text { the head is only approximately } 3 \text { psi at the tank bottom, we can expect no more than } \\
& 1 \text { deg of subcooling. The pump work will add less than } 1 \text { psi to the vapor pressure, } \\
& \text { or about } 0.2 \text { deg F. From this, the system performance will be between the saturated } \\
& \text { and the } 1 \text { deg subcooled curves, depending on the liquid level in the tank. When } \\
& \text { the system heat load is doubled and the turbopump is left uninsulated, the system } \\
& \text { performance changes only slightly. This shows that the system is not sensitive to } \\
& \text { the insulation. The turbopump would have } 4.36 \text { Btu/sec heat leak for the uninsulated } \\
& \text { case and } 0.74 \text { Btu/sec for the insulated case. These data were supplied by Pratt and } \\
& \text { Whitney to DeWitt Westrope on August } 29,1991 \text { (CM No. NMO-077-05). }
\end{aligned}
$$

3-P-034
Page 7

The Forward Recirculation System
 The Forward Recirculation System

and S-IVB Stages as well as the Shuttle. It is very preaictavie experience, its performance is shown on turbopump, doubled heat load. The heat and the following figure for the uninsulated It is seen that this system is more loads were calculated as described earlier. Hs syion system, however, this system sensitive to heat load than the backward recirculano sensed later during tank does not put vapor into the feedline which must be condensed la insulated turbopump, prepressurization. For the one degree subcoolume in the exiting flow is 60% of the the flowrate is one lb/sec. While the vapor voluper is reentering the main propellant total volume, this is not critical because the heat leak, unlike reverse recirculation.
We have a great deal of experience with it. We have system, and the feedlines have ol 1 sel ou!
 xperience with this system. The system The system is considered very predictable. tank.

3－P－034
Page 10

THIS PAGE INTENTIONALLY LEFT BLANK
HYDROGEN FEEDLINE／ENGINE CONDITIONING

Attributes	HYDROGEN FEEDLINE／ENGIN	GEN FEEDLIN	－		Forwar
	No Bleed	On－Board Bleed	Overboard Bleed to Facility	Recirculation	Recirculation
			－Poor	－Fair／Good	－Excellent
－Predictability－	－Excellent	－Poor	－Poor	－Fair／Good－G	－Good
	－Poor	－Fair	－Excellent	－FairlGood	
Test to Vehicle				－None	－S－II，S－IVB，Shutlle
－Precedence	－None	－Used on LOX on S－1	－RL－10 On S－IV Single Engine Tests	－None	
－Impacl on Engine Design	－None	－Adds LH2 BV	－Adds LH2 BV Pot－ ential for Turbo－ pump Windmilling	－Adds LH2 BV－	－Adds LH2 BV
－Impact on Feed System／Eng．Insulla－ tion	－Polentially Severe TP \＆FL Insulation Per－ formance Reqt．	－Potentially High TP \＆ FL Insulation Perform－ ance Reqt．	－Insensitive to TP \＆ FL Insulation Perform－ ance	－Moderate TP \＆FL	－More Sensitive Than
				Insulation Perform－	Backward Recirc．
				ance Reqt．	
	－Potentially Large			－Moderate	－Small
－Impact on Eng．Test		－Potentially Large	－None		
		－Large	－Fairly Small	－Fairly Large	－Small
－Potential for Req＇d Future Change	－Large				
	－Very Simple			－Requires Recirc．	－Requires Recirc． Pump
－Operational Eliciency		Hold After Prepress．	H2 Disposal System	Pumps	
	d－None		－Adds most leak	－Moderate－adds	－Moderate－adds leak sources
－Harzard Introduced		－Low	Sources	leak Sources －H2 BV＇s，Small Lines，	－H2 BV＇s，Small Lines，
	－Low	－H2 BV＇s \＆Small Lines Req＇d	－ On 2 BV ＇s \＆Smal Dis－	Recirc．Pumps，On－Bd	d Recirc Pumps，Onbd
－Hardware Com－ plexity			connects Req＇d	Disconnects Req＇d	Disconnects Reqd

3－P－034
Page 12

3-P-034
ve 13

THIS PAGE INTENTIONALLY LEFT BLANK
LH2 Options

Option C - LH2 Overboard Bleed
ost/IPM
68,342
372
61
124
41
372
248
372
619
600
124
26,000
124

$\stackrel{-}{2}$
 N 8
 630,578
Summary \& Conclusions
Reference No-Bleed System will result in saturated LH 2 in feedline and engine pump with vapor in englicated by screen: Convect model and test program to anchor analytical model required. 5 psi/minute. Analytical moderes Warm-up after prepressurization ink repressurization for very short hold. Would require depressurizalion ofined.)
(Engine start pressure not yet defined.) - On-Board Bleed has low flowrate, hydrogen quald would allow improvement in hold Test program Test program required.
Slight improvement in performance compared to no bleed. - Overboard bleed has adequate pertormancengine. Hardware complexity a disadvantage.
Should be retained for further study. - Backward recirengine/pump chill.
Provides good engine/pump chili. Introduces large volume of vadvantage. Hardware complexity

- Forward recirculation.
Hardware complexity a disadvantage.

[^10]Approved By：
Z．Kirkland

Task Number 3－P－038
LH2 Tank Pressure Limits
Prepared By：
D．Vaughan
20 Dec， 1991
Executive Summary
NASA Statement of Work: "Establish LH2 tank pressure limits vs. flight time considering engine start and NPSP requirements, potential pressure stabilization of tank during max airloads, structural weig cer ascent venting criteria." - Current autogenous flowrate results in high tank pressures that will set the vent valve relief setting at ~ - Structural impact of ~ 7000 lbm due onous flowrate. Proposed flowrates can be reduced with decreased $\mathrm{lm} / \mathrm{sec} / \mathrm{sustainer}$ still results in $\sim 1500 \mathrm{lbm}$

$$
\text { of } 1.1 \mathrm{lbm} / \mathrm{sec} / \mathrm{booster} \text { allu } 0.5 \mathrm{~s} \text {. }
$$

payload impact. - NPSP consideration indicate that the minimum MECO. satisfy NPSP requirements will be ~ 31 psig @ MeCO. - To reduce further the structural impact alves, step orifice control. system will be required,

1.0 Summary
1.0 Sult Tank impact Baseline system results in very high tank pressure during ascent. Tank impact is $\sim 7000 \mathrm{lbm}$. This can be reduced by sect is then reduced to $\sim 1500 \mathrm{lbm}$. flowrates of $1.0 \mathrm{lbm} / \mathrm{sec}$

Assess LH2 tank pressure limits.

2.0 Problem

NPSP requirements set the lower pressure requirement at ~ 31 psia
6.0 Conclusions and Recommendations
The baseline autogenous flowrate of $1.4 \mathrm{lbm} / \mathrm{sec}$ results in high tank pressures that impact The baseline autogenous flowrate of maintain ample margin for NPSP requirements. Reduction of the autogenous flowrate to $1.0 \mathrm{lbm} / \mathrm{sec}$ reduces the impact to the tank struct and provides adequate NPSP.

7.0 Supporting Data

Study "Task Number 3-P-025, LO2 Tank Pressure Limits," dated 12/20/91.
LH2 Tank Pressure Limits
Attachment-Detailed Data

Approach
Trade residuals with engine NPSP requirements and engine cost sensitivities
RESULTS

$3-P-038$
Page 2

in a payload

- NPSP results generated by RI indicated a minimum ullage pressure of $\sim 36 \mathrm{psig}$.
This analysis did not take into consideration the benefit of throttling on NPSP requirement.
This reduces the NPSP requirement from 13.1 to 7.6 psi. This effect lowers the minimum
ullage pressure to ~ 31 psig.
- To reduce the structural impact the autogenous flowrate can be orificed to minimize this ine and $0.9 \mathrm{lbm} / \mathrm{sec} /$ sustainer engine. $1.1 \mathrm{lbm} / \mathrm{sec} / \mathrm{booster}$
impact of $\sim 1500 \mathrm{lbm}$
Proposed Ullage Pressure

Summary \& Conclusions
Current autogenous flowrate results in high tank pressures that will set the vent valve
relief setting at $\sim 60 \mathrm{psig}$. Pressure can be reduced - Structural impact of $\sim 7000 \mathrm{lbm}$ due to high tank pressure with decreased autogen
$0.9 \mathrm{lbm} / \mathrm{sec} / \mathrm{sustainer}$ stll results in $\sim 1500 \mathrm{lbm}$ payload impact.
- NPSP consideration indicate that the minimum ullage pressure to satisfy NPSP requirements
will be ~ 31 psig @ MECO.
- To reduce further the structural impact an alternate pressurization system will be required,
i.e., flow control valves, step orifice control.

THIS PAGE INTENTIONALLY LEFT BLANK

Task Number 3-P-039
LH2 Pressurization System
Executive Summary

> NASA Statement of Work:
 'Kı! simplicity, weight, including residuals, and cost."

Approach:

Generate baseline pressure profiles for HLLV and 1.5 Stage

Generate issues and concerns to reference

Evaluate reference with structural and NPSP requirements

Generate alternate approaches

Resulis:

[^11]3-P-039 LH2 Pressurization System
Background
Martin Marietta Manned Space Systems was initially assigned performance of the
subject contract task at the beginning of cycle 0. Early task planning was completed
and preliminary analysis was done, after which the Propulsion Working Group made
the decision to complete this task in-house. Martin Marietta continued to participate in
the task in a review and advisory role.
This report documents the planning and analysis work performed by Martin
Marietta and includes a summary of the results provided to MSFC for their completion
of this task.

[^12]

3.P-039

LH2 Tank Pressurization_system

Select LH2 tank pressurization system (based on pressure limits from 3-P-038) Seled reference trajectorles, and considering safety, reliablity, operability, simplicity, possible integration with the core RCS system, welght including residuals, and cost."

Work Sistement

The unquestionable advantages of using warm hydrogen gas to pressurize the LH2 tank and the potential use of hydrogen gas as a roll control propellant reduce this study to one of evaluating the advantages of warmer hydrogen as a pressurant, the possibllity of obtainlng warmer hydrogen from the STME, a control system evaluation, and evaluation of the pressurant diftuser for this system. The study should consider the flow within the pressurant lines and diffuser for both $11 / 2$ stage and HLLV, and the manifolding configuration to allow use of hydrogen for roll control.

Compute tank wall temperatures and pressurant weights for pressurant temperatures of 0,100 , and $200^{\circ} \mathrm{F}$. In task $3-\mathrm{P}-038$, evaluate tank pressure capabillty for increased tank wall temperature. With the STME project, evaluate the feasibillty of obtaining higher temperature pressurant from the STME. Obtain COnto fequise requirements from vehicle dynamics studies 3-FM-028 "Generate FCS Requirements." Compare required impulse with impulse available from hydrogen bis control system pressurization system. Evaluate pellability effects or tin ines and pressurant diffuser and complexity. Compute flow parametars of pressest and compare with independent attitude control manifolds. Compute

Ingut_Data

Control impulse requirements from 3-FM-028 "Generate FCS Requirements."
Engine characteristics regarding bleed flow temperatures available.
LH2 tank pressure limits data from task 3-P. 038.
Tank wall temperature model from MMC-Operations (D. Vaughn).
Tank wall heat fluxes trom task 3-FM-005.

Products

Study results showing advantages/disadvantages of pressurant tamperatures form $0-200^{\circ} \mathrm{F}$.

Evaluation of use of H 2 for attitude control ys. separate RCS with regard to advantages/disadvantages, raliabillty, operability, cost.

Une size and manifoiding requirements for pressurlzation/RCS system.

This figure (LH2 Tank Ullage Pressure vs. Time from Liftoff) is a preliminary
analysis of LH2 Tank pressure profile for the reference trajectory.

[^0]: 8.0 Attachments
 8.0 Attachments

[^1]: Several subsystem concepts were considered for feedline and pump conditioning. Some of the concepts have characteristics that are obviously more desirable than others.

[^2]: Performance Analysis."

[^3]: can be reduced with decreased $\mathrm{lm} / \mathrm{sec} / \mathrm{sustainer}$ still results in $\sim 1500 \mathrm{lbm}$ payload impact. payload impact.

 - NPSP consideration indicate that the minimum ullage pressure to
 satisfy NPSP requirements will be ~ 31 psig @ MECO.
 - Current valve relief setting at $\sim 60 \mathrm{psig}$.
 the vent \sim Structural impact of $\sim 7000 \mathrm{lbm}$ due to high tank pressures. Pressure
 can be reduced with decreased autogenous flowrate. Proposed flowrates of $1.1 \mathrm{lbm} / \mathrm{sec} / \mathrm{booster}$ and $0.9 \mathrm{lbm} / \mathrm{sec} /$ sustainer still results in $\sim 1500 \mathrm{lbm}$ - To reduce further the structural impact an alternate pressurization system will be required, i.e., flow control valves, step orifice control.

[^4]: LH2 Feedline To Booster Controls Minimum Length Routing

 - Mimimum Length Contoured Feedline Outlets
 - 0° Slope Minimum On All Lines
 - 1.5 R/D Minimum For Pipe Bends
 - No Scissors Ducts

[^5]: preliminary, this trend will apply While the feed system layout and perte values will vary.

[^6]: and the resulting
 engine start. The ure and minimum tank pressure reduce the tank weight penally, at Shuttle ET pressure, from 4500 to 500 lbs.).

[^7]: - Vapor pressure less than 20.2 (page 7)
 - Tank pressurant flow-control ($\Delta \mathrm{P}<8 \mathrm{psig}$)

[^8]: Preliminary packaging of helium bottles appears feasible. Dependent on final thrust structure, feedline arrangement and propulsion module length.

[^9]:
 flow control system; a time potential paylonefits.

[^10]: 3-P-034

 - 3 ge 19

[^11]: pressure that exists during the first portion of the flight. 3) Two approaches have been examined to diow control system anid a step
 which results in too much margin. 2) Structural weight impact can be in $\sim 1500 \mathrm{lbm}$ impact due to the high ullage 1) Baseline fixed orifice system results in high ullage pressures during flight that
 pressurization system.
 4) Assisted customer in set-up and analysis of pressurization systems.

[^12]: Presseffort for the LH2 planning urization System Study.

