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ABSTRACT

A multiple-scale model for compressible turbulent flows is proposed in this

paper. It is assumed that turbulent eddy shocklets are formed primarily by the

"collisions" of large energetic eddies. The extra straining of the large eddy, due

to their interactions with shocklets, enhances the energy cascade to smaller eddies.

Model transport equations are developed for the turbulent kinetic energies and

the energy transfer rates of the different scale. The turbulent eddy viscosity is

determined by the total turbulent kinetic energy and the rate of energy transfer

from the large scale to the small scale, which is dit]_erent from the energy dissipation

rate. The model coefficients in the modeled turbulent transport equations depend

on the ratio of the turbulent kinetic energy of the large scale to that of the small

scale, which renders the model more adaptive to the characteristics of individual

flow. The model is tested against compressible free shear layers. The results agree

satisfactorily with measurements.



1. INTRODUCTION

Turbulent fluctuationsgenerally cover a broad spectrum of length scalesand

time scales. Turbulence in the differentpart of the spectrum-reacts differentlyto

changes in the environment. The production of the turbulent kinetic energy due

to the deformation of the mean flow isgoverned by the low wavenumber, or large-

scale,fluctuations.Energy cascades to smaller eddies through the vortex stretching

mechanism. The dissipationof turbulent kinetic energy is mostly associated with

the high wavenumber, or small-scale,fluctuations. Launder and SchiestelI and

Hanjalic et al._ (denoted by HLS hereafter) fn-stproposed to use the concept of

multiple-time-scalein turbulence model development. The HLS model was devised

to characterize the rate of progress of differentturbulent interactionsand spectral

non-equilibrium. The derivation of the model equations was based on a rational

extension ofsingle-scalemodels. They successfullypredicted severalthin shear flows

and flows with large pressure variation. Using the same rational,Kim and Chen 3

(denoted by KC hereafter) developed another multiple-time-scale model. In this

model, the source terms in the modeled transport equations for the energy transfer

rate and the energy dissipationrate were derived from dimensional analyses. This

model has been applied successfullyto several differentcases4,s.For compressible

turbulent flows, the energy cascade scenario can play a more significantrole than

itdoes in incompressible turbulence.

Compressible turbulence modeling is an essentialelement of many problems

of practical interest,such as external aerodynamic calculations,the design of en-

gine component and jet noise reduction. Initially,based on Morkovin's hypothesis e,

models developed for incompressible flows were applied in compressible turbulent

flows calculations.This practice was fairlysuccessfulin the prediction of bounded

shear layers.The same approach, however, failedto predict adequately the reduced

growth rate of compressible free shear layers,which was observed in experiments.

Oh 7, Rubesin s and VanDromme °, among others, added compressibilitycorrections

to baseline incompressible models. The correctionswere mostly deduced from the

assumption that the thermodynamic properties of turbulent fluctuations were re-

lated according to certain thermodynamic processes such as the isentropic and the

isothermal processes. Models with the various modifications have achieved limited

success in compressible turbulent flow predictions. It shows, however, that there

are physical characteristicsof compressible turbulent flows that are not properly

accounted for by most of the models.

Liou and Shih I° performed a preliminary analysis on the equation for the

solenoidal part of the dissipationrate for compressible turbulence. They suggested

that the thermodynamic properties of the flow system may be important in the

transport of the solenoidal dissipation. Numerical simulations of two-dimensional



(2D) and three-dimensional (3D) compressible turbulence also indicated a similar

trend. Passot and Pouquet n performed a direct numerical simulation (DNS) of 2D

decaying turbulence with the initial rms turbulent Mach number up to 2. They

showed that, for cases with high levels of the initial turbulent Maeh number, con-

centrated regions of large density gradient are formed intermittently in space and

time. Regions of large gradients of turbulent quantities similar to those described

in Passot and Pouquet 11 were also observed in a DNS of 3D decaying compress-

ible turbulence 1_ and of compressible homogeneous turbulence is. These shocklet

structures interact rather strongly with the turbulence that provide the favorable

environment for the formation of shocklets. It was also shown 11,12 that this in-

teraction caused the raising of the high wavenumber end of the turbulent energy

spectrum. Similar phenomena have also been observed in a DNS study of turbu-

lence passing through a shock wave 14. Therefore, it may be argued that the locally

non-equilibrium spectrum is characteristic of compressible turbulence and must be

considered in model development.

Another distinguishing feature of compressible turbulence is the energy ex-

change mechanism between the turbulent kinetic energy and the thermal energy

through the action of pressure. In the compressible turbulent kinetic energy equa-

tion, pressure-dilatation terms appear explicitly. On the other hand, these pressure-

dilatation terms have no effect on the evolution of total turbulent kinetic energy in

incompressible turbulence. Kida and Orszag 15 investigated the role that the pres-

sure work played in coupling the turbulent kinetic energy and the internal energy.

They found that the coupling effects were intensified with increasing density fluctu-

ations. The magnitude and the direction of the energy exchange were found to be

dependent on the flow parameters, such as the Reynolds number and the Mach num-

ber. Passot and Pouquet 11 also suggested that the plateaux in the time-evolution of

turbulence Mach number seen in their simulations reflected the replenishment of the

turbulent kinetic energy at the expense of the internal energy. These observations

evidently suggest that the pressure-dilatation terms are important in compressible

turbulent flows and have to be modeled.

With the observations from the numerical experiments described above, it

seems plausible to us that the formation of shocklet structures and the energy

exchange between the turbulent kinetic energy and the thermal energy are two im-

portant mechanisms that are associated with compressibility effects. Consequently,

they should both be taken into account in the development of models for compress-

ible turbulent flows. Recently, a rather new interpretation of the dilatation dissipa-

tion was proposed by Sarkar et al. is and Zeman 17. They argue that the dilatational

part of the dissipation rate contributes significantly to the total dissipation of the

turbulent kinetic energy. Sarkar et al. 16 performed an asymptotic analysis for the

low Mach number Navier-Stokes equations and constructed a dilatation dissipation
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model. The model shows that the ratio of the dilatation dissipation to the tradi-

tional solenoidal dissipation is proportional to the square of the turbulent Mach

number. Zeman's 17 analysis is built upon the existence of eddy shocklets embed-

ded within energetic turbulent eddies. Taulbee and VanOsdol is proposed a model

for the sum of the dilatation dissipation and the pressure-dilatation terms. The

model involves the solution of a transport equation for the density variance. Sarkar

et al. 19 developed a pressure-dilatation model through scaling arguments and vali-

dated the model for homogeneous shear flows and isotropic turbulence. Predictions

of compressible free shear layers with these compressibility corrections have shown

the observed reduction of growth rates as the convective Mach number increases.

Turbulent dissipation occurs mainly at high-frequency, less energetic, small-

scale fluctuations, which are less influenced by the mean flow. The compressible

mean flow interacts directly with the large eddies which govern the production of

the turbulent kinetic energy and the energy supply to the small-scale eddies. This

is especially true for highly dynamically unstable free shear layers which are known

to be very susceptible of compressibility effects.

In this paper, a new multiple-scale model is adopted for compressible turbulent

flows. The effects of compressibility on the large-scale and the small-scale eddies

axe considered in a separate manner. The model in its current form is developed

in terms of, but not limited to, mass-weighted average quantities. This allows us

to simpfify the governing equations and facilitate the model development process.

In the following, the governing equations for the mean flow are first outlined. The

present multiple-scale model is then described. The results of model calculations of

compressible free shear layers are presented in the section that follows.

2. ANALYSIS

2.1 Mean flow equations

The flow properties (say, ¢) axe decomposed into two parts: a mean value and

a fluctuation with respect to the mean value. That is,

p = _A-p" (1.a)

- ' (1.b)u i -" tt i "4- tt i

v = + p" (1.c)

T = T+T' (1.d)

g = H+H' (1.e)
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= + ," (1.f)
I#

where p, ui, p, T, H, _, i¢ and Cp denote density, velocity, pressure, temperature, total

enthalpy, molecular viscosity, thermal conductivity, and specific heat. To simplify

the final form of the governing mean flow equations, it is customary to use both

the Reynolds average (¢) and the Favre average (¢) in the decomposition process.

The governing equations for the mean flow may be obtained by substitution of flow

properties in the form (1) into the Navier-Stokes equations followed by a Reynolds

average of the equations. In the present study, the following assumptions have

been applied to simplify the equations for the mean flow: (a) the fluctuations of

the molecular diffusivities and the thermodynamic coefficients are negligible, i.e.,

p" = 0, to" = 0, and C_ s = 0, (b) the boundary-layer approximation is applicable to

the mean flow with no pressure gradient in the main stream direction. Thus, the

governing equations for the mean flow become,

0_.. 0
+ = 0 (2)

(3)

(4)

where DDt -- _00_ + __.a0_. The first assumption is usually used in the modeling of
compressible flows. The type of flow that fits the second approximation includes

turbulent thin shear flows, which are commonly used for model development and

validation. The multiple-scale model described in this paper provides a closure

link between the mean flow field and the turbulent momentum transfer, -_utv t,

via turbulent edd...y.yviscosity. A constant turbulent Prandtl number is used in the

modeling of -'_H_v _. This model is described in the next section.

2.2 The multiple-scale model

In compressible flows, regions of significant gradients of turbulent quantities

may exist. As the compressibility effect increases, turbulent eddy shocklets are

likely to form. The intermittent eddy shocklets are formed by the "collision" of

large, energetic eddies. The small eddies contain much less energy and are less

efficient in the formation of eddy shocklet structures when they collide with other

eddies. Thus, the eddy shocklets scale with the energy containing eddies and have

more direct influence on the evolution of the large eddies than on the smaller eddies.
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The large-scale vortical structures are intensified as they pass through the shocklet.

This process enhances the vortex stretching mechanism and increases the spectral

energy transfer. The passage of the vortical structures through shock waves may also

generate small eddies bypassing the usual route of the vortex stretching mechanism

that has already been enhanced. These processes may then cause the spectrum to

depart locally from equilibrium. Another mechanism that may also contribute to

the non-equilibrium spectrum or the creation of vorticity is strongly related to the

pressure fluctuation. It has been shown 12'14 that substantial vorticity is created by

the barocliuic terms. The creation of vorticity, however, occurs mainly at the shock

wave.

A sketch of the turbulent energy spectrum is shown in Figure 1. As was de-

scribed above, flow compressibility was assumed to have a direct impact on the

energy containing turbulent large eddies or the low wavenumber fluctuations. The

turbulent kinetic energy associated with this region is denoted by kp. The large

eddies respond more readily to the deformation of the compressible mean flow. The

straining of the large eddies due to the compressibility effects increases the spectral

energy transfer, e_, to the small scale through the mechanism of vortex stretching.

The energy contained in the small scales, kt, in the high wavenumber part of the

energy spectrum is increased as more energy is pumped in from the large eddies.

Small-scale eddies may also be generated at the intermittent eddy shocklets. The

turbulent kinetic energy is then dissipated at the rate _. To model the compress-

ible turbulent field associated with these two distinct regimes in the kinetic energy

spectrum the model transport equations for the turbulent kinetic energy of the large

eddy, 1% and of the small eddy, kt, the rate of energy transfer from the large eddy

to the small eddy, _, and the rate of energy dissipation, e'_, are solved.

The modeled transport equations for _ and _ are,

P'-_-= _y[(#+ ag "_"y] + #T(_y) -- Pe'_ + fct

= C'p,_-_p#T(_y) " '-ev + fc2o'_ / Oy _P2P kp

(5)

(6)

The model equations reflect the idea that the rate of change of a turbulent quantity,

say _, following a fluid element is the sum of the effects of diffusion, source and sink

of kv. fcl represents the energy exchange between the turbulent kinetic energy and

internal energy due to compressibility, fcu denotes the additional spectral energy

transfer caused by the compressibility effects. In this study, we have adopted Sarkar

et al.'s is model for the pressure-dilatation terms to model the thermal-turbulent

kinetic energy exchange. That is,

fct = --ot2Mt/_r(O_u) 2 q- ot3_M2_ (7)
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where as = 0.15, aa = 0.2 and Mt is a turbulent Mach number defined by

M, = [2(f + g)]½ (8)

where E is the local mean speed of sound. By using a scaling argument, they propose

that the pressure-dilatation contributed by the rapid part of the pressure depends

on the production while that by the slow part depends on the dissipation. The

partially source and partially sink nature of the model conforms to the thermal-

kinetic energy exchange hypothesis assumed here.

To model the effects of the increased spectral energy transfer represented by

fc2, a simple model has been constructed through dimensional reasoning, fc2 rep-

resents a functional of the physical variables that may be used to characterized the

compressibility related terms in the turbulent kinetic energy equation. That is,

= (9)

By using the Buckingham II theorem, three nondimensional parameters can be

found. They axe

--_ 1 fc2
1 #eP _ I"I3- (10)II_= p _- 112= ---_ R-_et' --_

At high turbulent Reynolds numbers, the dependence of II3 on II2 may be

dismissed 2°. 113 may then be expanded in terms of M_ at the incompressible limit.

That is,

113 = b, +b2M 2 +O(M:) (11)

A simple expression for fc2 may be obtained as the high order terms are neglected.
N

The model equations for kp and gp in the present model become,

gk; o 0F)og]
P--_-= _yy[(_+----ag Oy + (1--a2Mt)pT(_y) -- (1-a3M_)_

(12)

_2

- G .0_)2 =_ep
-D_Pw = _y[(_0 + a_ "#T_O_] +OyCp, g#T(-ff_y -- (Cp2 - Cp3MI )P'-_p

(13)

Note that Zeman iv and Sarkar e¢ al. is used M] as a parameter to relate the dilata-

tional dissipation in compressible flows to the solenoidal dissipation.
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Since the small scale is affected by compressibility effects mainly through the

increased energy transfer from the large scale, e_, the modeled transport equations

for _ and _ take the following forms,

o ,r. a;, (14)

= ct2p-=- (15)

where the rate of energy transfer out of the large scale, ee, serves as a source term

in the equation for the small-scale turbulent kinetic energy.

The turbulent eddy viscosity can then be expressed as

YT _ _u l _ _(_ + _)½(_ +_ k_)a2 (16)
_p

where the turbulent velocity scale, u, is estimated by the square-root of the total

turbulent kinetic energy. The length scale is expressed _° in terms of (_ + kt)_/ep.

The Favre-averaged turbulent momentum flux is given by

c,z( + (17)
-_'v' = ,r _ = ,_ 0y

The turbulent heat flux is modeled through _T by a constant turbulent Prandtl

number, a_. That is,

YT (18)

a_

The model coefficients Cpl, Cp2, Ctl, and Ct2 can be determined by applying

the model to simple incompressible flows, including homogeneous and decaying

turbulence 21. The coet_icients are,

_ (19)Cpl = (1-_) + Cp2

C/>z - n+l (20)
r_

1 Ct2 (21)cry=l--z+-- z

Ct2 = _ - 1 +_ Cp2_8_k-_ (22)

_+_-1
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where n is the decay rate of grid turbulence, a denotes the ratio of the production

rate of the turbulent kinetic energy to the rate of energy transfer from the large

scale to the small scale and ]3 denotes the ratio of the rate of energy transfer to the

dissipation rate in homogeneous shear flow. The model parameters are summarized

in Table 1.

Table 1. Model parameters

a N _ O_ p
_t

1.3 1.2 2.2 1.05

The validity of the model coefficients was tested against incompressible free-

mixing layers, plane jets, and axisymmetric jets. The results were reported in
Duncan et al. 21. The details of the derivation of the model coefficients can also be

found in Duncan et al. 21. The value of the model coefficient, Cps, in the model

for the increased energy transfer from the large scale to the small scale will be

determined laterbycalculations. Note that the model coefficients, Ctl and Ct2,

are functions of kt/kp. As a result, the model is adaptable to the individual flow

conditions and may have a broad range of applicability. The present multiple-scale

model was tested in compressible free shear layers of air. The flow geometry is

shown in Figure 2. The compressible free shear layer has been known to spread at

a slower rate than an equivalent incompressible free shear layer of the same density

and velocity ratios. It is generally recognized that the reduced spreading rate is

largely due to the effect of compressibility and that the compressible free shear

layers are appropriate test cases for compressible turbulence models. The present

model has been applied successfully to study compressible plane free shear layers.

Some of the results of the calculations are presented in the next section.

3. RESULTS AND DISCUSSIONS

As was noted earlier, the present multiple-scale model, less the compressibility

correction terms, has been validated in incompressible turbulent free shear flows

using a separate boundary layer code 21 . The model predictions have shown good

agreement with measurements. This is true not only for the flow quantity profiles,

but also for the growth rate. The results 21 showed that the model predicted correctly

the growth rates of both plane jets and axisymmetric jets without using any of the

so called "axisymmetric correction" terms. In the present study, the governing

equations are solved by using the STAN5 code. The code solves the boundary

layer equations by using the Patankar and Spalding 22 procedure. The boundary

conditions for the mean turbulent quantities are that the normal gradients are zero
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at the boundaries of the computational domain. These zero-gradient boundary

conditions have been enforced in all of the calculation performed in this study.

For validation purposes the current multiple-scale model, without including the

compressibility effects, is first applied to an incompressible plane free shear layer.

The ratio of the speeds of the free stream r(= _2/_1) is 0.01. Results obtained

by using the HLS and the KC multiple-time-scale models, and the standard high

Reynolds number k - e model 2s (denoted by ske) are also included for comparison.

Figure 3 shows the nondimensionalized mean velocity profile, U*, in a serf-similar

coordinate, (p- y0.5)/_, where

- (2a)
-

stands for the distance between y0.1 and y0.9 across the shear layer. Y0.1, Y0.5

and Y0.9 denote the transverse locations where the values of U* are 0.1, 0.5, and

0.9, respectively. The model predictions agree well with the experiment. All the

calculations were performed with the same initial and boundary conditions. It was

assumed that a free shear layer had become serf-similar if the profile shapes of the

mean velocity and the mean turbulent quantities were independent of the location

in the streamwise direction. This criteria of serf-similarity was also applied in the

calculations of compressible free shear layers in this study. The Reynolds shear

stress distributions are shown in Figure 4. The current model predictions agree

well with the measurement except at the low speed portion of the layer. The total

t,_rbulent kinetic energy profiles are given in Figure 5. Overall, the present model,

the HLS model, and the ske model predict satisfactorily the profiles of the turbulent

kinetic energy and the Reynolds shear stress. However, it was found that the HLS

model often produced negative values for the turbulent kinetic energy at the high-

speed edge of the layer. This may be the cause for the relatively sharp approach

of the local mean velocity toward the free stream velocity in that region. It is also

found that the turbulent kinetic energy obtained by using the HLS model oscillates

at the outer edges of the shear layer while the flow is developing. Therefore, the

HLS model predicts that the flow becomes self-similar farther downstream when

compared to the rest of models tested. Similar phenomenon was also observed in

Duncan eI al. 21 , where a different boundary layer code was used. They found that

the HLS model was relatively more sensitive to the initial conditions compared to

the current model, the KC model, and the ske model. The oscillatory behavior of the

turbulent quantities calculated by using the HLS model becomes more of a problem

when the HLS model is extended directly to the calculations of compressible free

shear layers.

A possible remedy is to assume the turbulent eddy viscosity is constant at

the outer edges 25. That is, in the region where U* > 0.9, the turbulent eddy
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viscosity assumes its value at the location y = y0.9 and, similarly, in the region

where U* < 0.1, the turbulent eddy viscosity is set equal to its value at y = y0.1.

This procedure predicted a slight reduction of the growth rate with increasing Mach

number. However, it was found that this technique could lead to distorted profiles

of the turbulent and mean quantities in the constant eddy viscosity regions and,

subsequently, affected the evaluation of the growth rate of a shear layer at high

Mach numbers. In the following, the HLS model predictions of compressible free

shear layers are not included.

To further verify the implementation of the various models in the code, the

growth rate parameter, a, of free mixing layers for Mach number ranging from one

to five were calculated. The results were compared with Launderer al. 23, which also

used the same ske model (denoted by kel in Launder et ai.23). The growth rate

parameter was defined as26,

1.855
a -- (24)

£

where 6' = d$/dz. The results are shown in Figure 6. The values of a predicted

by the current implementation of the ske model agree well with those of Launder

e_ al. 23. The predictions obtained by using the current multiple-scale model, less

the compressibility correction terms fcxand fc_, follow closely the results of the

ske model. The growth rate, 6', predicted by both of the models decrease only

slightly with increasing Mach numbers. The agreement of the results of the current

implementation of the ske model and that by Launder et al. 2a provides additional

support to the results of the present calculations. In the following calculations,

the compressibility corrections terms, fcl and fez, are included. The results are

compared with measurements.

Figure 7 shows the calculated variation of the vorticity thickness growth rate of

compressible free shear layers, g_, as a function of a convective Mach number. The

compressible growth rate was normalized by the incompressible growth rate (for

the same density and velocity ratios), which was obtained by using the following

relation 27 ,

_5_(Mc = O,r,s) = C6_ (1 - r)(1 + s½) (25)
1 +rs_

where s = P2/Pl denoted the ratio of the density of the free streams. The value of the

constant of proportionality, C6_, was obtained based on present model calculations

performed at the limit of Mc --* 0. The vorticity thickness, 6_, was defined by,

_w ---- _1 -__2 (26)

(_'_)max.
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The convective Mach number was defined by the ratio of the average convective

velocity of the dominant large-scale structures, relative to the free stream, to the

free stream speeds of sound 27. That is,

Mc - _1 -_2 (27)

The convective Mach number has been shown to be an appropriate parameter to

correlate experimental data. In the present study the convective Mach number of

the shear layer is increased by increasing the Mach number of the high-speed stream.

Measured data are denoted by open symbols in Figure 7. The current model

predictions are denoted by solid circles. The predictions are for conditions in the

range, 0.01 < r < 0.36 and 0.05 < s < 1.0. The value of Cps is set equal to 3.8.

With the inclusion of the compressibility effects, the present compressible multiple-

scale model predicts the observed reduction of the vorticity thickness growth rate

as the convective Mach number increases. The calculated growth rate curve tends

to level off at high convective Mach numbers. According to the definition of the

convective Mach number, there exists a maximum convective Mach number for a

plane mixing layer of the same fluid with matched total temperature. That is,

1-r
lim Mc = (28)

where 7 denotes the ratio of the specific heats of the fluid. For example, for a value

of r=0.1, the limiting convective Mach number for a compressible free shear layer

of air is about 2.0.

Figure 7 also shows that, without compressibility correction terms, the nor-

realized growth rates predicted by all of the models tested increase with increasing

convective Mach numbers, despite of the fact that their absolute values decrease

slightly. Note that the calculated growth rate of the vorticity thickness of a com-

pressible free shear layer is normalized by that of the equivalent incompressible free

shear layer of the same velocity and density ratios. According to Eq. (27), for

r = 0.1, the value of growth rate of the equivalent incompressible shear layer de-

creases by as much as thirty percent, as the convective Mach number increases from

0 to 1.58. Consequently, the normalized growth rate predictions increase with in-

creasing M_. It should also be noted that this normalization procedure is in accord

with experimental observations.

Also included in Figure 7 is the ske model prediction with the Sarkar et al. 16

dilatation dissipation model. The results are represented by solid triangles. The

dilatation dissipation model can be written as,

= _ + Q = (I+M_)_ (29)
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where _ and _ denote the solenoidal and dilatation part of the dissipation rate.

The model predictions of the growth rate, normalized by the equivalent incom-

pressible values, are higher than the measurements in the high Mc regime. This

trend is consistent with the results of Viegas and RubesinSS,_in which the dilata-

tion dissipation model is included in the ske calculations of compressible free shear

layers.

Since the Reynolds shear stress appears in the mean momentum equations and

directly influences the development of the mean flow, it is interesting to see how

its peak value varies as a function of Me. In Figure 8, the peak Reynolds shear

stresses predicted by the present compressible multiple-scale model are compared

with measured data s4. The predictions show a decrease of the peak Reynolds shear

stresses as the convective Mach number increases. This is consistent with experi-

mental observations. The model also suggests that the peak Reynolds shear stresses

are nearly independent of the velocity and density ratios of the free streams. The

convective Mach number appears to be an appropriate parameter to correlate the

peak Reynolds shear stress of compressible free shear layer. It has been shown s4

that the decreasing trend of the level of the Reynolds shear stress, as the convective

Mach number is increased, is due mainly to the decrease of momentum thickness

growth rate. Therefore, it is not surprising to see the good correlation of the peak

Reynolds shear stresses with the convective Mach number in the present model

predictions.

To further validate the present compressible multiple-scale model, the model

is applied to compute the compressible free shear layer corresponding to the Case 1

in Samimy and Elliott 29. In this case, a fully expanded free shear layer of air with

Mc = 0.51 and r = 0.36 is examined. The calculated self-similar mean velocity

profile shown in Figure 9 agrees well with the measurement. The predicted and the

measured peak Reynolds shear stresses for this case have already been included in

Figure 8.

4. SUMMARY

The model for compressible turbulent shear flows proposed here is based on the

assumed discrimination of turbulent eddies by compressibility. The large eddies are

affected significantly by compressibility. On the other hand, the small eddies are less

influenced. It is assumed that, as a direct consequence of compressibility, the process

of spectral energy transfer from the large eddies to the small eddies is enhanced and

the spectrum is locally non-equilibrium. In the present study, the characteristics

of turbulence associated with these two regimes of distinct compressibility effects is

modeled by an eddy viscosity model. Together with the proposed compressibility

models, the present multiple-scale model performed quite well in the prediction of
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compressible free shear layers. This agreement provides further supports to the

multiple-scale approach in the modeling of compressible turbulent shear flows.

The present multiple-scale model is being tested for other bounded and un-

bounded turbulent shear flows, such as boundary layers and jets. Unlike free-mixing

layers tested here, the characteristic scales of jet vary as the flow evolves down-

stream. Therefore, it is possible that the e_ect of compressibility on turbulence

also changes in some fashion. Compressible boundary layers are also challenging

cases due to the wall heat transfer constraints.
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