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Abstract

A new approach for global path planning of redundant manipulators is proposed. It
poses the path planning problem as a finite time nonlinear control problem. The solution is
found by a Newton-Raphson type algorithm. This technique is capable of handling various
goal task descriptions as well as incorporating both joint and task space constraints. The
algorithm has shown promising preliminary results in planning joint path sequences for 3R
and 4R planar robots to meet Cartesian tip tracking and goal endpoint planning. It is
robust with respect to local path planning problems such as singularity considerations and
local minimum problems. Repetitive joint path solutions for cyclic end-effector tasks are
also generated. Eventual goals of this work include implementation on full spatial robots,
as well as provision of an interface for supervisory input to aid in path planning for more

complex problems.
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1. Introduction

Robotic manipulators are extensively used today for industrial applications which benefit
from their repeatability, accuracy and ability to perform well-defined tasks over long pe-
riods unattended. Typically, robot mechanisms are designed to function with a minimum
complexity of structure. Industrial robots which can position an end-effector or tool arbi-
trarily within a Cartesian workspace use six joints. If the task is not dependent upon a
rotation about the tool approach axis, such as with welding or spray—painting robots, then
a five actuator/link mechanism suffices. Robots which are used for pick-and-place opera-
tions in which the workpiece needs to be rotated in a horizontal plane only, such as surface
component assembly, make do with four degree-of-freedom mechanisms. All of these sce-
narios require well-arranged, artificial environments. The complete task is laid out so that
the robot remains comfortably within its operational workspace. Additionally, the motion
is pre-planned to be collision free by the task engineers. Such artificial settings have so far

limited the usefulness of robots to controlled industrial environments.

In contrast, current research in the field of intelligent robotic systems seeks to develop
systems of a more flexible, general-purpose nature. Applications such as space assembly
and maintenance, or hazardous environment tasks do not meet the well-structuredness re-
quirements present in industrial robots. The ultimate goal is to produce autonomous robotic
systems of significantly greater dextrous capabilities than currently used. Autonomous sys-
tems are able to complete tasks with little or no human supervision. Dexterity can be
defined as the mechanical ability to perform certain tasks under varying situations; for in-
stance, being able to complete an insertion or recovery task even when an object obstructs
the direct path. An important stepping stone toward this goal of completely autonomous

robotic systems is that of supervised autonomy. There is a growing need for systems which
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can operate with varying levels of operator supervision. This stems from the recognition
that present research in autonomous systems is still a long way from being able to replace

human intelligence for the most flexible general-purpose tasks.

Robotic arms are defined as kinematically redundant when the number of links is greater
than the number of degrees of freedom needed to describe a specific task. Traditionally, non—
redundant manipulators, such as the PUMA 560, admit only a finite (usually small) number
of joint vector solutions to the problem of positioning the end-effector in Cartesian space.
While this makes the inverse kinematics problem (IKP) tractable, it severely restricts the
usefulness of the arm to perform tasks in which joint limits or workspace obstacles hinder
its progress. Additionally, there are certain joint configurations, called singular positions, at
which the arm loses the ability to move in any arbitrary direction. Kinematic redundancy
provides the system with the ability to alter its internal link configuration without affecting
the end—effector’s position and orientation. This property significantly increases the arm’s
dexterity. The most common example of a redundant system is the human arm, which has
seven degrees of freedom from the shoulder to the wrist. Kinematic redundancy allows one
to move the elbow while grasping a fixed object with the hand. Recently, there has been
considerable interest in such mechanisms because the increase in manipulator dexterity can
be used to avoid joint limits, arm singularities and workspace obstacles, as well as to minimize
energy consumption. In general, however, redundant robots possess an infinite number of
joint solutions which can satisfy Cartesian tip positions (except at the boundaries of the
workspace). The problem of choosing a particular solution, termed redundancy resolution,

is not as straightforward as in the non-redundant case.

In order to execute a task, a robotic manipulator must be provided with a sequence
of joint positions which take the end—effector and/or its load from the starting to the goal
positions. Typical robotic tasks include moving the end-effector to a specified Cartesian
position, or along a Cartesian path. Practical limitations on the manipulator require that

the joint vector sequence remain within the physical joint ranges, and that the entire sequence
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remain collision free — both internally among the links and externally with any workspace
obstacles. The process of computing such a feasible joint vector sequence is referred to as

the path planning problem.

Because of the goals of increased dexterity and autonomy for robot motion, path plan-
ning and redundancy resolution become interrelated when one is faced with computing a
joint vector sequence from a high level task description. When this work was begun, it
was recognized that current research in path planning for autonomous systems has pro-
duced several schemes, each of which shows varying promise for solving problems related
to robotic applications. However, the complexity of this problem highlights the need for
more extensive study, perhaps broadening the focus of existing methods where appropriate

in order to address the current shortcomings. Also in this context, there is an increasing

 demand for planning systems which can be interfaced in some way with human supervisory

input. While not requiring the intense concentration and skill of the operator present in
teleoperated robotics, teleautonomous systems have the capability for supervisory input to
guide their progress in solving complicated problems. This research is aimed at providing
one solution to this problem. While the approach is based upon an iterative procedure for
producing an overall solution to the IKP, it also takes into account joint and task space
limits. The iterative nature of the proposed algorithm is designed to be consistent with the
needs of supervised autonomy, wherein the progress of the algorithm can be influenced by

an external input if necessary.

1.1 Geometric Path Planning

Path planning as a distinct field has traditionally relied upon geometric approaches.
(See [1] and [2] for a survey of previous work in this area.) The majority of these use the
configuration space (C-space) representation of the manipulator as popularized by Lozano-

Pérez [3]. Configuration space refers to the space of parameters which uniquely specify the



i

Il

‘l

L

ne

position of every part of a system. For a robotic manipulator with n link/actuators, C-space
corresponds to an n-dimensional space. In this way the path of a robot is reduced to the
motion of a single point moving in an n-dimensional space. The collection of configurations
which characterize sets of joint angles which yield collisions with any obstacles, workspace
boundaries or joint limits is termed Configuration space obstacles (C-obstacles). Path plan-
ning using C-space representation usually involves the construction of the configuration space
for the particular robot and its environment, and searching the resulting space for a collision
free path between the starting and goal configurations. Various tools from Geometry, Topol-
ogy and Algebra can be utilized, and provide the theoretical basis for this type of motion
planning. The various methods used can largely be grouped into three classes: Roadmap,
Cell Decomposition and Potential Field methods. Later researchers have also proposed hy-
brid schemes which exhibit certain conceptual and implementation advantages over the basic

methods.

Roadmap methods develop a network of one-dimensional curves in C-space as a set of
standard paths. Paths are then found between start and goal configurations by searching this
network for the ‘best’ path. Roadmap methods include visibility graphs, Voronoi diagrams,

freeway nets and silhouette methods.

Cell decomposition methods use a recursive splitting of C-space into elemental volumes
which are labeled as free or not—free depending upon coincidence with C-obstacles. The
resulting decomposition is represented in terms of the adjacency relations among the cells.
This is then searched to find a continuous sequence of cells (called a channel) which contains
a free path between the start and goal configurations. Cell decomposition methods are
further classified as ezact or approzimate according to whether the cell boundaries provide
an accurate representation of C-space geometry. While exact methods can be guaranteed
to find a path if one exists, the representation becomes extremely complicated for relatively
small dimensions of C-space with multiple or non-trivially shaped obstacles. Approximate

methods are generally easier to implement and computationally less burdensome. They can
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also be refined to a desired level of accuracy. The quadiree and octree methods are two of

the more widely used approximation schemes.

Potential field methods (first used by Khatib [4]) use a gradient approach for locally
guiding the robot (point in C-space) among the obstacles toward the goal. Essentially, the
goal is modeled by an ‘attractive’ potential, and the C-obstacles by ‘repulsive’ potentials.
The negative gradient of the summed potential is taken as the direction of motion of the
robot. Unfortunately, potential field methods suffer from a major drawback — the robot
can become stuck in local minima of the combined potential field of C-obstacles and goal.
Several researchers have tried to alleviate this difficulty. Kim and Khosla [5] proposed an
artificial potential field formulation which uses harmonic potential functions to completely
eliminate local minima, even for a cluttered environment. While there has been some success
with mobile robots (two translational and one rotational degrees of freedom) the extension
to full spatial robots (more than six degrees of freedom operating in Cartesian space) is not
trivial. Other approaches try to augment the basic potential field method with heuristics
designed to avoid being trapped. Barraquand and Latombe [6] used a Monte-Carlo technique
to escape local minima by executing a bounded series of random motions. By applying this
principle successively, the algorithm constructs a graph whose nodes are the local minima of

the C-space. This is then searched to find a free path between the start and goal points.

While the above methods have offered varying degrees of success in generating feasible
path sequences, they all suffer from the curse of dimensionality. Configuration space becomes
high dimensional for manipulators with several joints, and the computation time grows
exponentially in n. In addition to being computationally expensive, mapping o.ut the C-
space for a redundant arm in a cluttered environment produces extremely large nets to
be searched. Recently, attention has focussed on developing techniques which minimize this
growth in computation. In [7], Lozano-Pérez et al. have implemented a non-redundant task-
level robotic assembly platform (PUMA 560 arm) which adopts several heuristic methods to

address the drawbacks of basic C-space methods. Local planning in the vicinity of workspace
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obstacles is directed by artificial potential fields, while long range motion within relatively
open space uses a C-space search limited to the three large joints to reduce the computation
time. Obstacles are approximated by polyhedra of constant cross-section that simplifies the
computation of the low-resolution C-obstacles. Weaver and Derby [8] use a vector-based
approach to find a C-space path which traverses from the start to goal configurations by
recursively constructing search directions which progress toward the goal while avoiding C-
obstacles. Computation time is minimized by discretely mapping C-space only along certain
directions as needed. The algorithm shows considerable promise for solving cooperating arm

problems with two 9-dof robots.

1.2 Redundancy Resolution and Optimization Methods

In general, redundant manipulators possess an infinite number of joint solutions which
can meet a desired Cartesian space specification. The highly nonlinear inverse kinematic
problem does not, in general, have a closed-form solution. In 1969, Whitney [9] introduced
the use of differential kinematics. By taking the differential relationship between the task
space and joint space variables, a linear relationship can be written between joint and task

space motion. Given the forward kinematics of the manipulator

z(t) = £(6(2)) (1.1)

where z(t) € R™ is the task coordinate and 6(¢) € R" is the joint coordinate, the time
derivative is
2(t) = J(0(1))6(t) (1)
The coefficient matrix J(8(t)) : R® — R™ is called the Jacobian matrix, and is a nonlinear
function of the joint angles.
a 0f(6(2))

J(0(1)) = ~o0(t)

It can be noted that differential kinematics are a natural form of manipulator characteri-

zation, particularly when arm dynamics need to be considered. Differential kinematics can
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be written at the acceleration level, when rigid-body dynamics are taken into account. This
method forms the basis for the Resolved Motion Rate Control and Resolved Acceleration Con-
trol [10]. The fundamental properties of a manipulator can be analyzed using differential

kinematics and the techniques of matrix theory.

Kinematic redundancy means that n > m and (1.2) cannot be inverted simply by
taking the matrix inverse of J(6(t)). If the arm is at a nonsingular configuration J(6(%)) is

full rank. For a specified z(t), the required joint motion must satisfy
o) =Jte(t)+Jn (1.3)

where J! is a generalized inverse (e.g., Moore-Penrose pseudoinverse), the columns of J span
the null space of J, and n € R"™™ is arbitrary. This formulation provides a decoupled
solution; the first term provides the desired task space tracking while the second yields

motion in joint space only, i.e. self-motion of the manipulator.

Specific solutions to (1.2) are chosen usually either by a task augmentation or an op-
timization approach. In the task augmentation approach, additional degrees of freedom
are defined for the task until the relationship between joint and task spaces becomes non-
redundant. Originally investigated by Baillieul [11] (1985) and later by Chang [12] (1987),
this includes the eztended Jacobian technique. Specifically, a functional constraint task on

the joint variables of the form
zc(t) = f(8(2))
is added, where z. € R", r < (n — m). Similarly to (1.2), we can write
Z.(t) = J(8(1))6(t)
where

J.(6(t)) & %‘?S))
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Then the augmented or extended kinematic equations become

z(t) J(6(2))

zc(t) Je(0(1))
As pointed out by Baillieul, however, care must be exercised in the construction of such
constraints — while the end-effector and constraint task Jacobian matrices themselves may
be full row-rank, there is no guarantee that the augmented Jacobian matrix is full rank.

Such algorithmic singularities are not restricted to the extended Jacobian technique only.

Optimization methods strive to use the redundant degrees of freedom to optimize some
performance criterion. Typically, they involve collision avoidance, singularity avoidance,
torque optimization, etc. or some combination of these. As originally proposed by Whitney
[9], the use of the pseudoinverse of the Jacobian matrix J(6(t)) seeks to instantaneously
minimize the measure 7 § among all possible solutions to (1.2). Others have proposed similar
strategies for finding joint speeds to minimize kinetic energy by appropriately weighting the
pseudoinverse of the Jacobian with the inertia matrix [13]. Vukobratovic and Kircanski
[14] minimized the total energy consumption of hydraulic and electric D.C. motors by using
a weighted generalized pseudoinverse. Yoshikawa [15] proposed the maximization of the
manipulability measure [det(J JT)]% as a way of keeping the arm away from degenerate
configurations. In 1985, Hollerbach and Suh [16] first minimized the actuator driving torques
by resolving redundancy at the acceleration level. However, later researchers have shown
(Baillieul et al. [17]) that the pseudoinverse approach yields joint sequences which may
approach arm singularities. Besides the large joint velocities which result, the procedure
becomes numerically ill-conditioned as J becomes singular. Additionally (see Hollerbach et

al. [18]), these optimization methods are not immune to having algorithmic singularities.

A significant amount of work has been done to alleviate these problems; most use the
second term of (1.3) to modify the solution to keep the manipulator away from singularities,
joint limits, etc. In 1977, Liégeois [19] introduced the active utilization of redundancy. He

proposed using a gradient vector to influence the joint solution. This approach relies upon



1 1 ' M ””l ] |\' I I !l
t f i r U

8

the local optimization of (1.3), typically implemented as

8(t) = Jtx(t) + (I — JTI)(=Vh(8)) (1.4)

where ~(8) is a potential function designed to drive the manipulator away from undesirable
configurations. Some particular examples of measures used to compute the gradient term
Vh(6) include: obstacle avoidance [4] [20] , minimization of joint torques [16], maximization
of manipulability measures [21], dexterity measures [22], and task compatibility indices [23].
Unfortunately, redundancy resolution schemes which use artificial potential fields can become
stuck in local minima. Also, the possibility for non-conservative motion exists [24], i.e. a
closed path in task space does not produce a closed path in joint space , sometimes leading
to unpredictable joint trajectories. In [16], it was found that using a resolved acceleration

solution to locally optimize the joint torques resulted in instability over long trajectories.

The foregoing discussion focussed on methods which can be termed ezact, in that a
solution is desired which satisfies the kinematic equality constraints. A conceptually different
strategy is to treat the inverse kinematic problem under an ineract context. Wampler [25]
formulated the IKP as a damped least-squares problem based upon the proper perturbation
of the symmetric matrix JJT by the addition of a kI term. k is the damping factor. This
amounts to finding the joint velocities §(t) which minimize (|| — J8]| + ||6]]), which is given
by § = Jiz, where J! £ JT[JJT + kI]"!. The damping factor, k, induces robustness in
the matrix J,, thereby improving the numerical properties of the algorithm. Related work
by Nakamura and Hanafusa [26], Chan and Lawrence [27], Kelmar and Khosla [28] and
Mayorga et al. [29] considered the selection and adjustment of the damping factor k for

desirable manipulator behavior.

Another important classification scheme for redundant manipulators is based on the
time extent of the solution method. Local methods, such as those described above, consider
the present position (velocity, acceleration, torque) of the joints together with the desired

task velocity to compute a joint vector increment through a pointwise-in-time optimization of
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an objective function. Global methods consider the entire time evolution of the trajectory as
a complete function. The majority of work in redundancy resolution to date has concentrated
on local techniques. The formulation is relatively simple and can be implemented in real
time — an important consideration for control schemes which incorporate sensory data driven
aJgorithms. However, it has been shown [30] that motion planning or control under local

optimization has several drawbacks, as described above.

Disadvantages of local optimization can be addressed by the appropriate use of global
techniques wherein knowledge of the complete task is used to derive the joint path sequence
subject to various manipulator and task space constraints. In practice, local techniques only
yield feasible solutions when the range of motion is small. It would be very difficult to find
solutions to a gross motion task for a manipulator operating in a cluttered environment.
Also, for certain applications (such as space-based assembly tasks) it is necessary to have
globally efficient solutions in order to conserve energy. In [31], Nakamura discusses a basis for
global optimization of kinematic redundancy by minimizing an integral performance index
of the type

/ Y (k p(6) + 676) dt
0
where k is a non-negative scalar. Various constraints are handled by appropriate choice
of p(): for instance, as a potential function which becomes large in the neighborhood of
obstacles, or as a measure of manipulability to plan singularity-free trajectories. The solution
is found by applying Pontryagin’s Maximum Principle to the resulting nonlinear optimal
control problem. This requires the solution of 4n first-order ordinary differential equations.
Other formulations proposed by Hollerbach and Suh [32] (minimization of f,i’ 1rTr dt, where
T represents the joint actuator torques) and Kazerounian et al. [33] [34] (both kinematic
and dynamic performance indices) have used calculus of variations to find globally optimal
solutions. Recently, Kazerounian and Wang [35] suggested the more general performance

index

t
/ f g(0(2),t) + p2T (I = J'J)z dt
to
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where z is the Jacobian null space vector. The first term g(-) is chosen to prevent structural
singularities and the second term prevents the instability associated with excessive null
space motion (algorithmic singularities). For instance, g(-) may be used to maximize the
manipulability index, the smallest singular value of the Jacobian matrix or to minimize the
condition number of the Jacobian matrix «(JJT). The second term represents a weighted

Euclidean norm of null space velocity, and g > 0 is a weighting constant.

Mathematically, the two techniques are very similar. However, Pontryagin’s Maximum
Principle is applicable even when the input variable is an entry of a closed set, whereas
calculus of variations requires open-set variables. This becomes significant when limits on
joint ranges and torques need to be considered. On the other hand, it is stated in [32] that
the variational method produces fewer (higher-order) ordinary differential equations to be
solved. While addressing the problem of instability, as well as providing globally optimal
solutions, these methods are extremely computationally intensive, due to the intractability of
the two point boundary value problems created. Typical algorithms used for the solution of
these include the shooting method and the relazation method [36], both of which can become
very time-consuming. Consequently, global methods have so far been restricted to off-line
applications. A conceptually interesting approach is that of a local solution which exhibits
global characteristics with respect to joint torque optimization (Kazerounian and Nedungadi
[37]). These researchers utilized a local optimization of the inertia inverse weighted dynamic
torque (T H=17) instead of (777). H is the n xn manipulator inertia matrix. It is shown that
this corresponds to the global kinetic energy minimization problem [34]. Another novel global
technique has been to parameterize the joint trajectories as a Fourier series superimposed
on a straight line in joint space between the start and goal configurations (Zhou and Cook
[38]). A performance index is used which expresses in some sense the effort required to
accomplish the motion while simultaneously avoiding obstacles. A nonlinear optimization
problem is thus formed in the Fourier coefficients. Several algorithms were tested for solving

the optimization, and a modified Newton algorithm yielded the best results.
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While greater emphasis has been placed on addressing the issues of singularity avoid-
ance and joint variable optimization above, relatively little has been done to incorporate
fixed hardware constraints (such as joint limits) into the mathematical formulation other
than via potential functions. Recently, Cheng et.al. [39] presented one such method incor-
porating joint space limits into a Compact Quadratic Programming procedure. However,
their method does not extend to include task space inequality constraints. Another sig-
nificant difficulty experienced by the majority of local methods has been the generation of
conservative joint trajectories for repetitive Cartesian end-effector tasks. In an extensive
analysis, Baker and Wampler [40] (1988) showed that there is no continuous local tracking
(inversion) function defined over the whole operational space which guarantees conservative
motion. This leads researchers to the development of global methods (so-called “path in-
version methods”) which do not rely on finding such continuous functions. Even if global
methods may be implementable only as off-line pre-planners, there are numerous industrial
applications with repetitive tasks which stand to benefit. In the last few years, there has
been a shift in emphasis of redundancy resolution schemes to address the problem of path
cyclicity. One approach used by previous researchers has been to modify the present local
optimization approaches to yield convergence to a cyclic solution. Kang and Freeman [41]
(1992) formulated a joint torque optimization via a null space damping method which ex-
hibits improved global stability, and after an initial transient stage, becomes conservative for
cyclic end-effector trajectories. De Luca, Lanari and Oriolo [42] (1992) presented an analysis
of ways to achieve such asymptotic cyclicity. However, the general consensus for producing
cyclic motion has been to reformulate the global optimization problem to include the peri-
odic boundary conditions. Cheng et al. [39] (1992), Choi et al. [43] (1992) and Roberts and

Maciejewski [44] (1992) have all reported success using this method.
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1.3 Features of the Proposed Global Technique

The preceding discussion presented an overview of the techniques currently used for
path planning for redundant manipulators. They are divided broadly into two classes, based
on the underlying philosophy: Search-based methods which use geometric representations,
and Model-based methods which use the manipulator’s kinematic relationships. Search-based
methods are general in nature, and have the advantage of being a global technique. How-
ever, with larger numbers of joints, the search space grows exponentially, along with the
computation time. Model-based methods formulate the path planning problem as an an-
alytic one subject to the kinematic constraints, effectively utilizing model information to
derive a solution. These methods have been formulated both on a local as well as a global
scale. While local methods show promise for reasonably fast execution, they lack the global
stability or effectiveness in generating solutions for certain problems. On the other hand,

current analytic global methods are computationally expensive.

This report presents a new model-based global path planning algorithm which addresses

" some of the problems related to the local and global optimization approaches mentioned

above. The main goal is to find a feasible path which satisfies a set of joint space and task
space equality and inequality constraints. Optimality is incorporated as a secondary consid-
eration. This approach is consistent with the observations of Mayorga and Wong [30] (1990).
It is their opinion that the problems associated with the majority of existing optimization
methods stem from the problem statement being that of an Optimal Trajectory Planning
Problem (OTPP). This is inherently a complicated procedure which includes optimal point
to point trajectory planning. Consequently, it necessitates redundancy resolution at the
acceleration or torque level, which becomes extremely expensive. Instead, they separated
the problem into the sub-problems of Optimal Path Planning Problem (OPPP) and point to
point trajectory generation. Even if the OPPP is constructed to provide a sequence of joint

space configurations, several researchers have examined the sub-problem of time-optimal
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trajectory generation for the manipulator along this path [45] [46] [47]. It can be noted that
this philosophy is also consistent with that of heirarchical path planning for autonomous
intelligent systems. Such a division allows the OPPP formulation to incorporate as many
practical aspects of the path planning problem as necessary to provide globally feasible path

solutions within a reasonable computation time.

The path planning problem with equality constraint is posed as a finite-time nonlinear
control problem, which is converted into a static nonlinear root-finding problem with a large
search space and a comparatively small constraint space. An iterative Newton-Raphson type
algorithm can then be applied which guarantees convergence under fairly mild assumptions.
Inequality constraints, both in joint space and task space, are handled by one or both of two
methods — a quadratic programming procedure is developed which considers affine constraints
which can arise out of polyhedral obstacles, and a global penalty function method which can
utilize more general constraints of the form g(z) < 0. A discrete approximation of (1.2)
is used for computational efficiency. With the emphasis placed on finding a feasible path
rather than an optimal one, the convergence problem in the global optimization approach is
largely avoided. Additionally, our global penalty function approach is able to largely avoid
the local minimum problems inherent in several potential field based algorithms. Because it
uses an interior penalty function approach (most artificial potential field formulations use an
ezternal penalty function) within an iterative procedure, the proposed algorithm is able to
modify infeasible joint path sequences to meet the constraints. This relaxes the requirement
of other optimization schemes which use numerical techniques of providing a feasible initial

guess which is close in some sense to the desired solution [38].

This approach has been applied to both redundant arms and nonholonomic path plan-
ning in vehicle maneuvers [48] with very promising results. Based on the various examples

that we have tried, we can state the following desirable features of our algorithm:

1. The planner can generate cyclic joint space motion for a specified cyclic task space
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motion.

. The global nature of the planner avoids the Jacobian singularity problem inherent in

local methods. While the controllability about a configuration is lost at the singularity,
the algorithm can proceed as long as controllability about the planned path, which is

a much looser condition to satisfy, is retained.

. Optimality can be incorporated in the quadratic programming which is used to handle

constraints.

. Both joint space and task space constraints can be included. Constraints on points

in task space are handled by incorporating these points in the parameter space (as
redundant variables). As a result, task space and joint space constraints are treated in

the same way.

. Non-convex polyhedral constraints in joint and task spaces are converted into convex

constraints by sequentially enforcing them in time within a quadratic programming
procedure. Otherwise, more general constraints can be handled by a global penalty

function approach.

These features will be highlighted through examples involving planar three-link and four-link

arms in Chapter 3.



2. Main Approach

In this chapter the theory behind the current development is presented. It is organized into

the following sections:

¢ Problem Statement

Iterative Solution Technique

Gradient Term for the Discretized System

Inequality Constraints I - Quadratic Programming Method

Inequality Constraints I — Global Penalty Function Method

The mathematical description of the global path planning problem using a purely
kinematic model is given in Section 2.1. Section 2.2 develops the Newton-Raphson technique
being proposed to plan out a global path for the specified task. The derivation of the required
gradient term for a redundant manipulator is shown in Section 2.3. The discretization
technique used is presented, along with some additional notation convention used by the
algorithm. The subsequent sections present two methods of handling inequality constraints,
such as joint limits and task space restrictions. Section 2.4 describes the use of quadratic
programming for constraint satisfaction, while Section 2.5 presents a global penalty function

approach.

2.1 Problem Statement

In this work, we consider the problem of finding a continuous joint path which meets

a specified task space trajectory. The desired solution can also be chosen to incorporate

16
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optimality considerations. The mathematical model used is purely kinematic, in order to
achieve reasonable computational requirements. It is assumed that the joint path sequence
determined can be fed to an appropriate trajectory generator which handles the dynamic
restrictions on the manipulator. The manipulator is represented in Cartesian space by a set
of characteristic points {P;, j € {1,...,n,}} located along its links (and load, if present).

The selection of these points depends upon the desired sophistication of the model.

By treating 0(t) as the control variable (set u(t) = §(t)), the problem can be stated as

follows:

Given the system described by

£(t) = J(O()u() (2.1)

find u & {u(t),t€[0,1]}, suchthatz = zy,
subject to 0(t)e ©, zjt)eX forallje{l,...,n,}, andt € [0,1].

Here, 7 € T C [0,1], £ £ {(r),7 € T} is the actual tip path, and z; 2 {z4(7),7 € T}
represents the desired task, which may be specified on some subset 7 of the entire path
traversal time, as in the case of path planning to a specified Cartesian goal location. In-
equality constraints are placed on the joint vectors being within the set © of allowable joint
ranges, and on the set of all points {P;} having task space trajectories £;(¢) remaining within
feasible task space X'. Additionally, constraints on joint velocities (in terms of the control
input u(¢)), and Cartesian space velocities can be specified. While, in general, joint space
constraints may be adequately modelled by linear inequalities of the form Az 6 < by, the
same cannot be held for task space constraints. At best, the feasible workspace can be ap-
proximated by a (possibly disjoint) set of convex sub-regions. To accommodate relatively
realistic workspace representations, the method being proposed has been developed to utilize
Cartesian space inequality constraints of the form ¢(Z;(t)) < 0 with mild assumptions on

g(-) (see Section 2.5.2).
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The problem stated above is written to accommodate the following types of goal task

specification:

—

. Joint path sequence to a desired final joint vector.
2. Joint path sequence to a desired Cartesian endpoint.
3. Cartesian path following (with no restriction on any joint vectors therein).

4. Cartesian path following with fixed selected joint vectors (e.g. fixed final joint angle).

The initial position of the manipulator is specified as a joint vector 8(to), with Cartesian
space coordinates z(tg). The cases chosen above provide a broad representation of robotic
manipulator free motion planning. Case 4 is especially interesting because it yields a solu-
tion to the problem of generating cyclic Cartesian paths which have repeatable joint vector

sequences.

2.2 TIterative Solution Technique

The following illustrates the development of the Newton~Raphson iterative technique.
For simplicity, only the equality constraint (meeting the goal task) is considered in this
section. Therefore, all instances of task space trajectories z here refer to the specified task

— typically the tip path of the end-effector.

Equation (2.1) can be written as a nonlinear algebraic equation:
z=F(u) (2.2)

The analytic form of F(-) is in general difficult to find, and will not be explicitly required.
Note that in this form, the system is globally controllable if and only if the nonlinear map
F(.) is onto, whereas the system is locally controllable around u(®, where u = u(® + 6u,

if and only if the gradient of F(-) with respect to u, V,F(u?), is a linear onto map (i.e.
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full rank). Also note that in this context the terms local and global refer to neighborhood
regions of the nominal trajectory u(®). While global controllability cannot be asserted since
the analytic form of F(-) is not known, the local controllability can be readily checked by
considering the rank of V,F(-). Note that a locally controllable path may contain singular
configurations, since a control function rather than a control value at a single time instant

can be used to move the configuration.

The stated problem is written as a nonlinear zero crossing problem:
A
y=F(u)—z4=0. (2.3)

Here y represents the error between the nominal and desired paths.

The solution is found iteratively by considering the differentiation of (2.3) with respect

to the iteration variable 7:
dy _
dr

In order to achieve convergence to the desired path, a Newton-Raphson type of iterative

VP ()2 (2.4)

algorithm can be applied. Assume, for each iteration, the system is locally controllable

around u, i.e., V,F(u) is full rank. Then choose u to satisfy

B o oVPW)(FW) —2) + VP , a>0 (23)

where VI F(u) denotes the pseudo-inverse of VyF(u). If V,F(u) is full rank, Vi F(u) =
VuF(u)(V F(w)V,F(u)T)™ . The following assumes that this is satisfied for simplicity.
However, in practice, it is possible to relax this requirement. Vy:_ﬁr(y_) is a full-rank ma-

trix whose range coincides with the null space of V,F(u). Then
dy

which implies that the norm of the error, ||y||, decreases monotonically in 7.

For practical implementation, (2.5) is discretized in 7, so u can be iteratively updated:

u = u® - BVIFO)FWY) - ) + ATTFOE® @)
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Figure 2.1: Error Behavior in Each Iteration

where A7 is the discretization interval and 8y = a;Ar. Since for A7 sufficiently small, the
approximation is arbitrarily close to (2.5), |ly|| = "F(y(k"“)) - ;c_d” as a function of B must be
strictly decreasing for S sufficiently small (as shown in Figure 2.1). Therefore, a line search
can be used to determine the best (B to use. Another interesting aspect of this approach
is that in (2.5), the term ATVEﬁq(k))ﬁ(k) does not affect the guaranteed convergence rate
(specified by «), though it does affect the way u(*) converges. Since the dimension of u is
much larger than y, there is much freedom in ¢ to affect the eventual convergent solution.

For example, { may be chosen so additional constraints in ¥ may be satisfied.

2.3 Gradient Term for the Discretized System

The continuous-time description of the problem given above is converted into a discrete—
time form for implementation. This corresponds to a discretization of the path into N seg-
ments between initial and final positions. The terms u and z are now defined by the stacked

vector forms:
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<

where £ and z are stacked vectors of Cartesian positions, with £ = G Z representing the
selected task. The indices 7 through 7, are a subset of {1... N} and allow a variable
definition of a Cartesian task. For instance, for the case of joint path planning to a specified

Cartesian destination, the selection matrix is
G =1[0--0I,].

Then, for a closely spaced discretization, we can write

8="00+Tu (2.9)
g=zZo+ Tz (2.10)

where and 8, and % are stacked vectors of 8y and z, respectively, and T, and T, are lower

block triangular matrices of the following form:

(1 o 0]
Tq=T,=% I 1

0

-I I.

At the jth discretized time, Z; = J(#;) u;. The variation of z; can be obtained by taking

the variation with respect to u; and 6;:

. aJ
65 = J(05)6u; + 3 5-(05) (69,)eu (2.11)
i=1 4
Rewriting
527._,' = J(Gj)éuj+P(6’j,u,-) 50] . (212)
where

oJ aJ
P(6,u;) = B—ql(ej)uj E(gj)uj
Collecting equations for j = 1... N and writing in stacked form,

62 =[3+PT,)6u S (213)
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Using (2.10),
bz=GT,[J+PT,)éu (2.14)

where J = diag(J(0;)) and P = diag(P(6;,u;)).

From the original nonlinear expression (2.2) and (2.14), we can write the gradient term

as

VuF(u) =GT; [J+PT, (2.15)
Now we can summarize the path planning algorithm for the equality constraint case:

Algorithm 1
Given the desired configuration vector z,, the initial guess of the control vector
u(®, convergence parameter ¢, and maximum number of iterations M
1. lterate u(*) using the update:
sl = —VEP@O)(FWY) - 2,) (216)
w1 = B 4 gy (2.17)
where ;. is found by a line search to locally minimize ”F(g(k“)(ﬁk)) - gd”

2. Continue until

|F®) -z, < € or k> M.

As written above, the goal task is specified by z, defined over some subset 7 € 7. In
the discrete implementation, this is described by the task selection matrix G. If an additional
joint vector restriction is desired, then the control vector update must be found which lies

within the subspace defined by this restriction.

Suppose the final joint vector is fixed, i.e. 85 = 8. Then we can write:

v = 6o + Byu = b5
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where By = [I ... I]is a joint vector selection matrix specifying the fixed final joint vector.
Byu = (0; — bp) (2.18)

The control vector update 6ut*) is projected onto the subspace By, whose range coincides
with the null space of By. Expressed in R™, the control vector update to be used instead
of 6u'® in Equation 2.17 above is:

§¢ = By ( By B%) BT 6u® (2.19)

where 6u(%) is computed to satisfy the goal task as given by Equation 2.16.

2.4 Inequality Constraints I — Quadratic Programming

One method used to incorporate constraints is via an optimization with respect to
the free vector ¢ by quadratic programming (QP). The objective function chosen is that of
the weighted control input uT Q u, where Q is a specified diagonal weighting matrix. This
achieves the desired effect of minimizing the control effort (i.e. joint displacements) over the
path. Alternatively one may choose the objective function to penalize large joint excursions
from some nominal position. The constraints imposed on QP include the joint limits and
other task space polyhedral constraints. Non-convex constraints are decomposed as the
union of convex constraints which are enforced over various subsets of path segments. While
QP requires convex constraints in general, this flexibility allows its application to a wider

variety of problems.

From the procedure given in Section 2.2, an initial (typically infeasible) path sequence
is optimized by QP as follows. Given the intermediate result #¥) found by the line search,

a path parameterization is formed:

G VI (O R vgﬁ@(k))g(k) (2.20)
0%+ = gy + Tulk+V ' (2.21)
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Task space constraints are represented by parameterizing the Cartesian path via an affine

function of ¢ similar to (2.20) by using (2.10):
g6 = 20 + T I = 2 + T,Ia® + TIV, F(u®)e® (2.22)

Given convex polyhedral constraints in the joint space, Ag8 < by, and task space, A, % < b,,

the inequality constraints can now be written in the form A ¢ < b as required by QP.

The path planning algorithm that includes both equality and inequality constraints via

the QP method is summarized below:

Algorithm 2

Given the desired configuration vector z,, the initial guess of the control vector
u(®), constraint parameters Ag, by, Az, bs, optimization weighting @ > 0, conver-

gence parameter ¢, and maximum number of iterations M.

1. Perform an intermediate update based on the consideration of equality con-

straints:

i = y® — gV PP (F(u®) - z,) (2.23)
where 3 is found by a line search to locally minimize “F(_q(k“)(ﬂk)) - Li"

2. Perform the final update based on the consideration of inequality constraints:
w1 = 3B Vg}?('{_‘(k))f(k) (2.24)

where ¢() is selected based on the solution of the following QP problem:

Minimize ¢7 R¢ + 2sT¢ subject to A¢ < b, where

R = (V F®) Q(V,F(uM)) (2.25)
s = (Vi F®)TQu® (2.26)
Flu(®)
Ao | ATFE) ] (227
AT IV, F(u®) ,
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by — Ag(8y + T,a®
b _ () 9(_0 q ) (2.28)

be — Aty + TeJu®

3. Continue until

”F(g(k)) - gd” <e or k>M

2.5 Inequality Constraints IT — Global Penalty Function Method

One of the limitations of the QP method of inequality constraint satisfaction is that
the control vector update is performed in two stages at each iteration. Since Equation 2.7
is a local approximation (in the sense of control functions), the an update requiring a large
modification term ¢(F) leads to a potential increase in the task error ||yx41|| above the previous
iteration minimum found for 8. In this case, the modification term ¢(*) trades off goal task
error for constraint satisfaction. Under relatively tight constraints, this may result in an

unacceptably large number of iterations for adequate convergence.

An alternative approach used to avoid this potential difficulty is to incorporate the
inequality constraints into the Newton-Raphson procedure, thereby converging to the goal
task while simultaneously meeting the constraints. This amounts to embedding a global
penalty function (GPF) approach within the single stage algorithm. By enforcing penalty
weights on inequality constraint violations (or indeed, near-violations) the line search step
is performed which progresses adequately toward goal task convergence V&;hile meeting the
inequality constraints. Like the QP method, these inequality constraints can be either joint

space (joint limits, velocities) or task space (obstacles, workspace).

The augmented problem can now be stated. From Equation 2.2, £ = F(u), we have
previously defined a goal task error term, y & F (v) — z4 which was to be reduced by the
Newton-Raphson algorithm. The following development illustrates how a similar procedure

can be adopted to incorporate inequality constraints. The general procedure is to define a
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penalty term which is zero if the particular constraint is met, and strictly positive, mono-
tonically increasing if violated. Additionally this penalty function should be at least once
differentiable. It is used to provide a gradient step direction for the subsequent iteration to

reduce the corresponding constraint violation.

2.5.1 Joint Limits

From the stacked vector description of the path we can define a global joint limit

penalty function based upon the individual elements of the the stacked joint vector.

Let ¢;, j € {1,...,nN} be an element (single joint angle) of § which has upper and
lower limits (¢zp, qug). Define a global penalty function for the complete path 8 as follows:
A nN
Zg = Z hg(qj) (2.29)

=1
where hy(q;) € C{qup,00) for ¢; > qum, he(g;) € C(—o0,qrB) for ¢; < qrp and zero other-
wise. In order to facilitate selective constraint application, hs(g;) incorporates a weighting
coefficient. The term Z; represents a cumulative penalty term for the entire path with

respect to the joint limits. This expression is differentiated to give:

dz, WX dh & dho(g;) dg
oY () = ST 2.
& = 2z ,; ig;  dr (2.30)
Writing in terms of the row vector:
v, & [ dhs(g5) J
dg;
Using Equation 2.9 the differential can be expressed as:
dZy S/ R— du
- = he o= Vhe T, e (2.31)

Equation 2.31 gives the incremental change of the penalty term with respect to the iteration

variable 7. This equation is then augmented to the expression for the change in the task
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error term (Equation 2.4) to yield an augmented system equation for the Newton-Raphson

procedure, as outlined in Section 2.5.3 below.

Joint velocity limits can be treated in the same way, by defining an appropriate penalty
term for each element of the stacked joint control vector u. As above, let u; be a single

element of u, and define a cumulative penalty term on joint inputs:

Z, 2 Y h(w) (2.32)

dZ, = du
dr dr (2.33)
or & [ dhu(w)
¢ d’u_,'

2.5.2 Task Space Constraints

The proposed formulation utilizes task space limits of the form g(z) < 0 where g(z) is
assumed to be piecewise continuous over its regions of definition. This is not as restrictive as
it seems, since reasonably accurate workspace descriptions can be built up through the use
of simple primitives defining the boundaries of the feasible space. For instance, the linear
inequality Az < b defined over a region can be used as a face description of a task space

obstacle or workspace envelope. The derivation below uses this methodology.

For each characteristic point P;, j € {1,...,n,}, with task space coordinates z} at the
’th discretized time, 7 € {1,..., N}, a cumulative penalty term is defined over the complete
path as:
A & i
Z:; = ) ho(z)) (2.34)
=1

where hz(x;) is the penalty function for the characteristic point P;, chosen as specified in

the previous section. Then:

dZ,,J de ; dz;
= Z (V,Jh,(x _T) = [ Vo, ho(zl) - d_TJ

1=1
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Here, z; is the stacked vector form of the Cartesian path of P; over the entire path. Using
a gradient term analagous to that derived for the Cartesian path of the manipulator tip in
Section 2.3, i.e.

z; = Fj(u)
VuFi(u) = T; [Jj+Pj Tq]

with the subscripted Jacobian and Jacobian derivative terms refering to the appropriate
evaluations with respect to the point P;, the change in penalty term can be recast in terms

of the joint control input vector as:

V.F(w) (2.35)

where, as previously:

Cartesian space velocity limits can be treated in a similar manner. Defining the global

penalty term for P; as:
N
A i
Z,;, = D h(v}) (2.36)
i=1
The corresponding gradient equation is:

dZ,, = dy
= = Vh, [1,4+ P, T,] (2.37)

2.5.3 Augmented System

Once the global penalty terms and their gradients have been defined for both joint and

task space inequality constraints, they can be appended to the gradient term for the goal
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task error to yield the overall system:

2 Vu F(u) -

4z, Vhe T,
4z, | = Vh, — (2.38)

53

dz; 55 (Vhe, VuFi(uw))
2 | | ¥ (Vh, 13,4 P;T)) |

Here the summations on the task space coeflicients represent the contributions of all the
characteristic points P;, j € {1,...,n,}. Redefining the overall task error/penalty term to

be

- , -
Zg
§ & |z (2.39)
Z;
| Zv |
then we can rewrite Equation 2.38 as:
B (2.40)

which is of the same form as Equation 2.4. Hence, assuming that G(u) is full rank, we can

choose u to satisfy

du .
d—: =-aGlu)g , a>0 (2.41)
Then, as previously, % = —aj, and the norm of the error/penalty term, ||7||, decreases

monotonically in §. This leads to an iterative update for u, utilizing the line search to find
Bi:
w1 = 4 _ g, Gf(g(k)) ¥ (2.42)

While Equation 2.38 does not explicitly show the influence of selective weighting between
the various task error/penalty terms, this feature is inherent to the system by virtue of being

incorporated into the various penalty functions, A(-), chosen. These weights can then be used
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to emphasize certain constraints within the complete algorithm, or during specific iterations.
This feature becomes useful as a heuristic tool for influencing the actual convergence of the

algorithm.

2.5.4 Sample Global Penalty Function Procedure

The preceding development is exemplified here by a particular choice of penalty func-

tions which satisfy the requirements of Section 2.5.

For joint space constraints of the form described in Section 2.5.1, define:

ere(ai-avn)? ¢; > quB
ho(g;) 2 { edolon-a)’ g; < QLB (2.43)
0 otherwise

For Cartesian space limits described by the set of linear inequalities {Aia:j < b, x; EX; C
X,ie{l,...,N},j€{1,...,n,}}, define:
re(Aiz) b)) Azt > b;

ho(z) £ . (2.44)
0 otherwise

In Equations 2.43 and 2.44, A¢ and A, are weighting terms which allow selective application
of the respective constraints. (Similiar functions can be defined for velocity constraints.)

The corresponding derivative terms are:

2 (QJ' - QUB) erele;~aus)’ q; > quB
dhalg;) _
qu‘J = -2 Ag (QLB — qJ) (3/\8(111.8—‘11)2 q; < qrLB (240)
0 otherwise
. Az A? CA’(A'x;_b‘) A,I; > bg
VzJ hx(x;) = (?. 46)

0 otherwise
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Algorithm 3

Given the desired configuration vector z;, the initial guess of the control vector
u(®), the joint space constraint set O, the Cartesian constraint set X', penalty func-
tions (he(+), hz(+), etc.), convergence parameter € and maximum number of iterations
M:

1. Compute §(® and G(u*)) according to Equations 2.38 through 2.40, and iterate
u(F) by
uF D) = () _ mgf(g(k))ﬁ(k) (2.47)

2. Continue until ”gj(k)” <e 6r k=M.

31



3. Preliminary Results

This chapter presents some preliminary results obtained by simulations to demonstrate the

validity of the proposed approach. The following uses planar 3R and 4R manipulators to

illustrate various features of the algorithms developed in Chapter 2. The arm is configured

as in Figure 3.1. Joint limits are (nominally) —180deg < 6; < 180deg. For the planar

link L g,

hﬂzé
link 1

Figure 3.1: Planar Manipulator

revolute manipulator with joint angles 8;, i € {1,...,L}, and link lengths [; as shown, the

Jacobian corresponding to the tip of link L is given by:

Jll J12 JlL

-

J(g) = Ju J2 o Jop
1 1 1
where
L f]
Jl, = —Z Ij sin(ZOk)
Jj=i k=1
32

(3.1)
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L J
Ja = Z l; cos( Z 6k )
j=t k=1

Simulations were performed using MATLAB, with discretization levels of up to N = 32.
The discrete approximation (2.10) is used during planning, but the output sequence of joint

vectors is generated using the correct kinematics in (2.9). The pseudoinverse, null space and

QP operations used the built-in MATLAB functions.

The following cases are demonstrated:

o Cyclicity: The end effector of the arm is commanded to follow the boundary of a square

and returns to the initial joint configuration. This is shown in Section 3.1.
o Constraints: There are several different scenarios considered:
— The final end effector location is specified and the end effector path is to avoid a

non-convex obstacle (this is the case (c) in Section 3.3).

— The arm is commanded to follow a prescribed end effector path and avoids internal

link collision with the environment (this is the case (d) in Figure 3.3).

— The end effector is commanded to follow a closed path while avoiding internal
links colliding with the environment (this is the case (b) in Figure 3.4).

— A very tight joint limit (essentially disabling the joint) is specified while the end
effector is commanded to follow a prescribed path (this is the case (b) in Figure

3.5).

¢ Optimality: The final end effector configuration is specified and the planned path

should minimize the total joint displacement. This is the case (b) in Figure 3.3).
¢ Singularity: The following scenarios are considered:

— The joint limits are specified so that when the end effector is commanded to follow

a specified path, the arm either reaches a singular configuration (as in case (b) in
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Figure 3.5) or goes through a singularity, resulting in a pose change (as in case
(c) in Figure 3.5).
— The arm starts from a singular configuration and the end effector follows a path

which is initially infeasible (this is the case (d) in Figure 3.5)
¢ Global Penalty Function Method: The following features are shown:

— The approach proposed in Section 2.5 has a global effect on the joint path se-

quence.

— Selection of constraint sets (obstacles) can be used to influence the convergence

of the path in relatively tight workspaces.

— Joint path sequence optimization via velocity constraints.

3.1 Cyclic Cartesian Path

This simulation defines the desired end effector path as the perimeter of a square. The
end effector is required to track the desired path, returning to the same joint configuration
at the end. Inherently, this is ensured because the final joint configuration is added as an

equality constraint to the optimization stage,i.e. [0 ... 0I]) 8 = 8; = 6.

Figures 3(a)—(d) illustrate the convergence of the nominal path to the specified Carte-
sian path. We choose the stationary initial joint vector as the initial guess (nominal path).
While this is clearly far from the desired path, as the diagrams show, the progress of the
algorithm in the first iteration is quite good. Within three iterations the joint path sequence
matches the desired path quite closely, and the algorithm may be continued until some speci-
fied tolerance is attained. As indicated, the value of the line search parameter 8 approaches
1 as the method continues, although there are cases when Sy is larger than 1. For all of the
examples of Sections 3.1 to 3.3, the error measure used to guide the line search is selected

as ||z~ z4] -
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Figure 3.2: Cyclic Cartesian path showing convergence of algorithm
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3.2 Effect of Constraints

In this simulation the effect of adding constraints is demonstrated. The first path
(Figure 3.3(a)) is to follow a straight line between (0,1) and (2,2). No constraints other than
the nominal joint limits are used. The QP minimization therefore returns the least cost (in

the sense of u? Q u) joint sequence which is consistent with the desired path.

\ M .

(a) Strwight line parh. Joiox Timic conamints, Cout = 0,191 (b) Canesim endpain with joiot Emios. Cost = 0.139
E
| !
i ol
i i
[ S gy 14 i A
i
= |
! i
i
i
-
{c) Joint path with cestemion goal (2.7). QP with task space lenits {d) Tauk space constraints for tips of links 2, 3

Figure 3.3: Effects of various constraints

Figure 3.3(b) shows the result of relaxing the requirement that the tip remain on the
straight line. This is produced by a subsequent QP optimization of the path in Figure 3.3(a)
with the definition of desired task changed to be a Cartesian goal endpoint only. Thus
QP returns the joint path solution which minimizes the joint excursions while meeting the

Cartesian endpoint. Note that the final joint vector is not specified in this case, and the
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algorithm is free to choose this based upon the problem statement. This significant freedom
allows the arm to reorient itself to conform to the constraints posed on it. This is further
illustrated by Figure 3.3(c) which is the result of the previous path having further task space
constraints imposed as shown. The feasible region is specified as the union of two intersecting

convex regions. As before, the task remains that of reaching the Cartesian goal (2,2).

The present algorithm allows independent definition of the manipulator goal task and
manipulator constraints. Figure 3.3(d) shows the effect of adding task space constraints to
the tip of link 2 also, with the manipulator goal being that of having the tip of link 3 follow
the straight line segments (0,1) — (1,1) — (2,2). This example highlights an important
result - one feature of this planner is the ability to track a Cartesian path while smoothly
executing a pose change necessitated by the task space constraints. Pose changes occur across
arm singularities, which typically present difficulties for Cartesian path planners based on

inverse kinematic methods.

\\

(a) Joirs Yiits ouly. (b) Task space conseraines added

Figure 3.4: Cyclic Cartesian path with restricted task space

Figures 3.4(a) and 3.4(b) illustrate another application of task space constraints affect-

ing the path sequence generated for a cyclic Cartesian path.



3.3 Effect of Singularities

The following situations present joint paths which go through arm singularities:

it
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(a) QP uxing norminal joint Limits oaly. Mixism tip errar = 0,005 (5) QP with joins 1 >= 0 deg.

{c) QF with endpt construint - theta N = (0,90,-90) dog. (@) Afcr 7 iterations. Maxizom tip cerar = 0.04

Figure 3.5: Effects of singularities on path

In the first case the task is defined as a straight line from (0,1) to (2,1) for the tip.
Figure 3.5(a) shows the joint sequence computed by the planner with nominal joint limits
only. In Figure 3.5 (b), the lower limit for link 1 is changed to 0deg, which has the effect of
immobilizing that link. The arm degenerates into two link motion over the majority of the
path, which causes the arm Jacobian to lose rank toward the end as links 1 and 2 become
aligned. This does not present any problems for the planner, however. In Figure 3.5(c), the
original path (Figure 3.5(a)) is now subject to the additional endpoint joint vector specifica-

tion of (0,90, —90) deg. This represents a pose change of the arm over the desired path. The
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present algorithm generates the solution shown, executing the pose switch smoothly while
tracking the desired straight line. Again, it is noticed that there is a point in the sequence
where two links (links 2 and 3) align themselves, which results in the Jacobian losing rank

instantaneously in ¢.

The second case (Figure 3.5(d)) begins with the arm fully outstretched at (90,0, 0) deg.
Since the current algorithm picks the initial position as the first guess, this means that the
entire nominal joint sequence occurs at the arm singularity. The specified task is for the
tip to follow a straight line from (0,3) to (2,1). Clearly, the arm cannot track this path
exactly, since the singular configuration only allows the arm tip to move horizontally at
t = 0. However, our algorithm still reduces [|y|| to its minimum and the convergence does
not encounter any numerical difficulties. Figure 3.5(d) shows the joint path sequence after
7 iterations. The important contribution here is the ability to plan a global path starting

from (or indeed, passing through or ending on) an arm singularity.

3.4 Application of the Global Penalty Function Approach

The efficacy of the global penalty function method to satisfy both joint and task space
inequality constraints is demonstrated by the obstacle avoidance problem shown (Figure 3.6).
A 4R manipulator is used, starting at the joint angles of (0, 90, 90, —90) deg, and required to
traverse to the Cartesian goal of (3,1). Only translations are specified yielding a redundancy
of two degrees of freedom.. For the simulations, polyhedral obstacles are used, specified
as linear inequalities defined over certain subsets of R%2. Exponential penalty functions are
used as defined in Section 2.5.4. Collision checking is performed for the link tips only. This

scenario is typical of a pick-and-place task within a cluttered workspace.
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Figure 3.6: Global Penalty Function Applied to 4R Manipulator

Additionally, the obstacles are chosen to provide a relatively narrow opening through
which the arm must pass. It should be noted that this cannot be accomplished without
switching the pose along the way. Typically, this type of scenario is very challenging for
planners based on purely local potential field formulations. Referring to Figure 3.6(a), it can
be expected that based upon such a method, links 3 and 4 may become ‘jammed’ between
obstacles 1 and 2. This is due to the local minimum formed in the potential field when the

arm is in this region.

Figure 3.6(a) shows the nominal joint path obtained without consideration of any ob-

stacles. This violates the inequality constraints describing obstacles 1 and 2. Figure 3.6(b)



shows the joint path sequence produced with obstacle 1 only. By using the proposed ap-
proach, it is seen that the gradient term due to the obstacle affects the entire sequence. Since
this simulation uses obstacle 1 only, it is not necessary for the arm pose to change. The im-
portance of this global effect is readily seen when the path is generated for obstacles 1, 2 and
3 shown (Figure 3.6(c)). By moving initially away from the goal, the manipulator is able
to reconfigure its pose in order to extend link tip 4 to the desired Cartesian goal. The last
simulation, (Figure 3.6(c)), shows the effect of reducing the Cartesian velocity constraints.
This refines the joint path sequence by applying a global tightening on the Cartesian paths
of the link tips.

An important observation about the global penalty function method is that it can be
greatly influenced by the way the obstacle avoidance is implemented. The previous example
illustrates this by solving the path planning problem by sequentially introducing the obsta-
cles. This capitalizes upon the iterative nature of this solution technique to effectively guide
the planner through closely spaced obstacles. Although this depends somewhat heuristically
upon an intelligent choice of obstacle sequencing and penalty weights, the procedure does
show promise for solving problems which have remained out of reach of local potential field
methods. The basic distinction of being able to effectively massage infeasible path sequences

to conform to the obstacle/workspace layout is central to this ability.

The second example illustrates the use of a hybrid QP/GPF approach to solve a re-
stricted task space path planning problem (Figure 3.7). Starting from the joint angles
(0, 90, 90, —90) deg, the 4R manipulator is required to go to a Cartesian tip goal of (3,0).
As in the previous example, only translations are considered, yielding two redundaﬁt degrees
of freedom. Task space is restricted to be (x € R*: [11]z < 3,[0-1]z < 0). These boundaries
present a challenge to the planner by tightening as the goal is approached. By using the
GPF method only, the initial iterations converge to the path shown in Figure 3.7(a). Link 3
eventually reaches a position where reduction of its collision violation on one end increases

the violation of the other boundary. Subsequent iterations with the penalty weights altered
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(a) Path in which link 3 can be stuck due to a local minimum. (b) After using QP to provide update direction.

Figure 3.7: Hybrid Quadratic Programming / Global Penalty Function Approach

along the links as well as along the discretized time samples produces the desired result of
increasing the displacement of link 1 in order to reduce the collisions. In this case, conver-
gence is unacceptably slow, however. A much faster solution is found by taking the joint
path sequence of Figure 3.7(a) as the starting point of a QP iteration as described previously
(Section 2.4). In this case, QP provides an update direction which retracts link 1 to allow
the subsequent links to meet the constraints. The output of Figure 3.7(b) is then produced

using 3 further iterations of the global penalty function method.
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4. Conclusion and Future Work

4.1 Preliminary Conclusions

The present research focusses on developing a mathematical technique for path plan-
ning for redundant robots which is consistent with its kinematic constraints. In doing so,
it utilizes techniques from Linear Algebra which have traditionally been used at the lower
levels of robot trajectory planning. However, in order to mitigate the computational burden
of solving global planning from a high level task description to the actuator level, the method
is used to compute a joint path sequence with no timing information attached. Instead, the
global approach is formulated to take advantage of any global knowledge which is crucial to
finding a feasible path sequence. The aims of this development also include the ability for
supervisory input to be used to influence the solution — an important consideration for the
eventual development of teleautonomous systems. To this end, the algorithm is designed to

be iterative with the possibility for higher level monitoring and adjustment if necessary.

From the results obtained in Chapter 3, it can be claimed that the proposed tech-
nique shows sufficient promise to warrant further development. These experiments were
performed to demonstrate the validity of the underlying approach of solving the path plan-
ning/redundancy resolution problem as a static non-linear root finding problem. Several
scenarios were considered, each addressing a specific issue which has proven to be difficult
for existing techniques. Specifically, the problems of path cyclicity, incorporation of joint
and task space constraints, avoidance of local minimum problems and singularity robustness
have all been addressed. Even though these issues are all considered separately elsewhere,
and with varying degrees of success, to the best of the author’s knowledge, no researchers

have combined them all into one algorithm. While no specific computational analysis has
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been performed to date, it is believed that this technique will also avoid the intractability
associated with existing global optimization approaches. The actual solution method used
can be likened to that of the relazation method of solution of ordinary differential equations.
An initial path (possibly infeasible) is stretched/distorted into shape to comply with the

constraints of joint and task space limits.

In conducting these simulations, it was recognized that there is still a need for a super-
visory layer, possibly based on Artificial Intelligence (possibly heuristic) techniques and/or
human input. This is indeed one of the original goals of this project. For instance, during
the obstacle avoidance problem (Figure 3.6) described in Section 3.4, the solution obtained
in Figure 3.6(c) was influenced by the sequencing of the obstacles. Previous simulations in
which the obstacles were all present at the start of the algorithm resulted in an intermediate
link sequence in which link 3 violated both Obstacles 2 and 3. This situation is similar to that
illustrated in the second example (Figure 3.7(a)), and resembles the problems experienced
by local planners which use potential field methods. Although this is subsequently reduced
by further iterations, typically, this situation slows the algorithm down considerably. How-
ever, by staggering the introduction of the obstacle descriptions to the algorithm, a feasible
path sequence is found within a few iterations. In the second example, a similar problem is

alleviated by switching between the GPF and QP methods of constraint satisfaction.

As outlined previously, preliminary investigation has concentrated on the validity of
the proposed approach for producing solutions to the path planning problem. Simulations to
date have been carried out on planar robots in order to test the validity of the concepts, and to
facilitate easy implementation while the ideas are being developed. The prelimin;ry results
given in Chapter 3 were obtained by using the MATLAB package for efficient programming
and display of results. In testing these ideas, however, no effort was placed on developing
a coherent workspace/obstacle representation. Typically, the simulations were run in an
interactive mode, where intermediate results were periodically checked, and weights modified

if necessary. This facilitated an understanding of how the algorithm progressed, especially
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in the more difficult cases involving possible collisions within restricted spaces.

4.2 Future Work

Based upon these results, several areas of continuing development have been identified.
These are also motivated by the goal of implementing the algorithm for spatial robots (ma-
nipulators which operate in Cartesian space). The intended platform for this research is that
of the redundant arms of the robotic testbed at the Center for Intelligent Robotic Systems

for Space Exploration. (Figure 4.1. See [49] for details.) These arms comprise each a six

Figure 4.1: CIRSSE Dual Arm Robotic Testbed

degree of freedom PUMA 560 manipulator mounted on a three degree of freedom pedestal.
Each platform provides additional linear, rotate and tilt capabilities for the base of each

PUMA arm. For an end-effector task specified in both position and orientation, this yields
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three redundant degrees of freedom.

The areas that have been identified for continuing work during the rest of the present

investigation are:

1. Implementation of the algorithm for the nine degree of freedom platform.

{

g
AL L

The present simluations were coded as m-files in the MATLAB programming language.
One recognized drawback to this environment is that of speed. Typically, MATLAB
simulations run at least an order of magnitude slower than a comparable program coded
in C or FORTRAN. A significant increase in computations is anticipated to implement
this algorithm for a nine degree of freedom manipulator with a practical representation
of links and obstacles. The links will be modelled each by a set of representative points.
The workspace and obstacles can be modelled within the framework of sequenced
sets of linear inequalities or as polyhedra, depending upon the method of constraint

satisfaction used.

. Investigation of further mathematical techniques for solution of the constrained opti-

mization procedure.

One method which has been suggested recently is that of using a more sophisticated
method of picking the stacked control input to satisfy the desired error convergence.
The method of Section 2.2 solves the nonlinear root finding problem by a Newton-
Raphson technique in which  is chosen to provide a certain error performance (Equa-
tion 2.6). A better way of solving for u is to solve Equation 2.5 directly by using one
of the established techniques used for ordinary differential equations. For instance, it
is conjectured that a fourth order Runge-Kutta method (see [36] for details) applied

to the ordinary differential equation

&

Y~ —aVIF(W)(F(w) - 2,) (4.1)

may yield faster convergence. This approach has already shown promise in the case of

nonholonomic motion planning [48].
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3. Development of a standard input specification.

Once the algorithm is being extended to the spatial robot scenario, a coherent input
specification will be used to model the workspace and obstacles. This will allow high
level users access to the package similar to the other path planners being developed
at CIRSSE. It will utilize the standard representational model being used (Geometric
State Manager) both as an input specification and as a display device in order to

provide graphic input capabilities for supervisory interaction.

. Customization of the code for efficiency.

Presently, the algorithm is coded in MATLAB to closely resemble the mathematical
equations being simulated. This is a standard method of algorithmic development.
Once the method has been suffficiently tested for its final application to spatial robots
the code can then be tailored for speed of execution. Typically, the use of general
matrix manipulation routines exacts a penalty on computation time — for instance, in
the multiplication of sparsely populated matrices. There is sufficient scope within the

formulae used to effect significant savings by careful tailoring of the actual code.

. Computational analysis of algorithm.

As a measure of the actual performance of the algorithm in relation to other approaches,

a complete analysis of the algorithm will be done.
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