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FOREWORD 

The papers presented here have been derived primarily from 
speakers' summaries of talks presented at the Flight 
Mechanics/Estimation theory Symposium held May 5-7, 1992 at 
Goddard Space flight Center. For completeness, abstracts are 
included of thEse talks for which summaries were unavailable at 
press time. Papers included in this document are presented as 
received from the authors with little or no editing. 
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MOMENTUM ACCUMULATION DUE TO SOLAR RADIATION TORQUE, AND REACTION WHEEL SIZING, 

WITH CONFIGURATION OPTIMIZATION - - .  

Hari B. Hablanit N 9 3 - 2'4 6 9 5 
Rockwell International, Space Sysiem Division. Seal Beach, CA 90740 

Abstract 
This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, 
and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by 
the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the d a ~ l y  momentum 
accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the 
spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other 
off-normal to different extent at different times to the sun rays . The paper therefore first develops commands for the 
arrays for tracking the sun, the arrays articulated to &-pointing spacecraft with two rotational degrees of freedom 
and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both 
arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus. momentum accumulation over an 
orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel 
configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum 
requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, 
their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are 
compared and contrasted. 

1. Introduction 
This paper is concerned with: a) determination of 

momentum accumulation due to solar radiation torque acting on 
an earth-observing spacecraft with sun-pointing solar arrays, and 
b) reaction wheel sizing and its pyramid configuration 
optimization for maximum momentum storage and minimum 
power consumption. These topics are classical; yet it seems 
there is no single reference in the published literature that treats 
this subject with sufficient comprehensiveness so that a control 
engineer, confronting this task, could accurately size the 
reaction wheels, select a wheel configuration, and estimate 
yearly propellant consumption for momentum dumping, all 
without extensive or expensive computer simulation. This 
paper, hopefully, fulfills that need. The contents of the paper 
and related previous contributions known to this author are 
summarized below. 

Solar arrays' influence on spacecraft configuration, attitude 
control system, and mission operation is so far-reaching that a 
brief elaboration of this topic appears in order. For an earth- 
pointing three-axis stabilized spacecraft rotating once per orbit 
about the orbit normal, an attached solar array must at least 
have one relative rotational degree of freedom about the orbit 
normal so that the array can be held inertially fixed and sun- 
pointing. Although economical, this arrangement becomes 
inadequate if the spacecraft's life span is more than several (say, 
six) months, because in this duration the earth moves around 
the sun in the ecliptic plane so much that the sun-rays deviate 
significantly away from the array normal and therefore a 
considerable power loss begins to occur. Consequently, for 
spacecraft with one year or longer life span, the solar array is 
accorded a second degree of freedom in the form of spacecraft 
yaw rotation. If the spacecraft at hand has only one solar array, 
this yaw rotation is of 180 degrees and may take place once in 
six months when the off-normality between the sun-rays and the 
array on one side of the orbit plane exceeds limits. The 180- 
degree rotation takes the solar array to the other side of the orbit 

fSenior Member AIM, Senior Engineering Specialist; 
Guidance, Conrrol, and Navigation Group 

3 

plane where the off-normality in the following six months will 
be smaller. Although to minimize cost and to gain simplicity, 
there are many spacecraft with one solar array (TOPEX for 
example), this configuration is asymmetric and might generate 
significant disturbance torques on the spacecraft arising from 
solar radiation pressure, gravity gradient, atmospheric drag, and 
thermal shocks at each sun-rise and sun-set; savings are 
therefore somewhat offset by stronger control torque 
requirements. To eliminate this asymmetry and/or to generate 
enough power for on-orbit needs, two solar arrays, one on each 
side of the orbit normal, are sometimes employed. Then, instead 
of once in six months, a yaw rotation from zero to 2x or from 
4 2  to +x/2 takes place as continuously as one about the orbit 
normal. The corresponding sun-nacking commands were derived 
by McElvain (1961)' and Kalweit (1983)2. GPS satellites have 
opted for this approach, Although TOPEX satellite has one 
solar array, it also employs continuous yaw rotation instead of 
180' yaw rotation. Some missions are not interfered with by 
these persistent yaw rotations, but others are. For these latter 
situations, Kalweit2 has determined best-fit minimum-power- 
loss, average yaw angles, constant over each half orbit. 
Nonetheless, persistent yaw rotation of a spacecraft is 
cumbersome because the torque and momentum capacity of the 
reaction wheels, usually employed for attitude control, must 
now accommodate the yaw rotation. A superior alternative 
appears to be, at least on the basis of technical merits if not 
cost, to bestow each m a y  with two rotational degrees of 
freedom relative to the spacecraft, one about the orbit normal 
and the other about an axis in  the orbit plane. Such is the 
spacecraft configuration considered i n  this paper; that is. a 
spacecraft with two solar anays, arranged symmetrically on each 
side of the orbit normal and each array having two articulation 
degrees of freedom. Section 2 of the paper furnishes sun- 
tracking commands about the two just-mentioned axes. Explicit 
relationship is furnished between the so-called beta angle (also 
called flap angle) of the array and parameters such as earth's 
position in the ecliptic plane, the angle between the ecliptic and 
the equator planes, inclination of the spacecraft orbit, and its 
ascending node angle. 

HH / VT-032 



Turning our attention to solar radiation torque on a space 
vehicle, this arises From arrays as well as the vehicle bus. 
Moreover, of the two Fays ,  one may be normal to the sun 
while the other may be'off-normal (thermd requirements may 
dictate so), and the bus and the arrays may cast shadow on each 
other at different times. changmg the lit area, center of pressure, 
and moment arm from the vehicle mass center to the ressure 

complex effects are formulated and illustrated in Section 3. For 
typical spacecraft however, the torque contribution of the bus 
and the shadow effects are secondary; so by ignoring them, 
simple radiation torque expressions for arrays normal as well as 
off-normal to the sun are obtained which are used in Section 4 
to determine secular and cyclic momentum accumulation in the 
roll-yaw plane and about the pitch axis. Because of significant 
variation in the array's flap angle over a year, the corresponding 
momentum accumulation over each orbit changes considerably, 
particularly if the array is positioned off-normal to the sun. A 
simple expression of annual, secular momentum accumulation 
is therefore developed and illustrated in Section 4, and its 
dependence on the orbit inclination is investigated. From this 
result, yearly propellant consumption for momentum dumping 
is determined easily. DeBra and Cannon (1961)4 have also 
performed preliminary analysis along these lines. 

Section 5 of the paper is concerned with sizing reaction 
wheels and optimizing their pyramid configuration, keeping 
cost and redundancy in mind. Four-, six-, and three-wheel 
configurations with and without one wheel failure are 
considered. Optimum cant angles for these pyramid 
configurations for minimum power consumption and for given 
ratios between the roll, pitch, and yaw torque requirements are 
determined. Simple relationships are developed relating 
momentum or torque requirements about spacecraft axes to 
those about the wheel axes for all configurations with and 
without one wheel failure. These relationships then provide the 
required momentum and torque capacities of the wheels. The 
paper is finally concluded in Section 6. 

center; see an example of shadowing in Evans (1964) s . These 

2. Commands for Sun-Tracking 
Coordinate Transformations 

In order to express sun-ray direction from the sun to the 
Earth in terms of solar arrays' frames, and to develop pointing 
commands for the arrays for tracking the sun,the following 
angles, all anticlockwise positive unless stated otherwise, are 
introduced. The angle v. measured from the the first day of 
auilunn (September 23). denotes the earth's rotation around the 
sun in the ecliptic plane. The clockwise positive angle h ( = 
23.44 degrees) about the Vernal Equinox is the angle between 
the ecliptic and the equatorial plane. The angle RN and i are, 
respectively, the usual ascending node angle of the spacecraft 
orbit in the equatorial plane and the orbit inclination angle from 
the equatorial plane. In this paper we will be concerned 
exclusively with circular spacecraft orbit. The local-vertical- 
local-horizontal (LVLH) frame FC: X, Y, Z, at any point in 
the orbit locates the spacecraft mass center with X, along the 
velocity vector of the spacecraft, Z, along the local vertical 
from spacecraft to the earth, and Y, opposite to the orbit 
normal. To maintain the earth-pointing attitude, the spacecraft 
rotates clockwise about Y,-axis at the rate -00 (00 thus is a 
positive quantity and it equals the orbit rate of the spacecraft). 

[ $ ] = 

,ely celz  -ce l y  se l z  sei  

-selycelz sely S e l z  c e l y  
,eIz 0 - 1  $ 1  S e l z  
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+e, 4ek 0 I[;] (2) 
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Fig. 1. A Spacecraft with +Y and -Y Arrays, [heir Frames, and 
Articulation Degrees of Freedom 

+Y-Array Commands 
Because the first rotation e ly  about the longitudinal axis 

y10 annuls the once-per-orbit rotation of the earth-pointing 
spacecraft, it may be clear that, ideally, 

e1y 0)  = m o t  + 010 (4) 

where 010 is Oly(t=O). Note that Bly(t) is anticlockwise 
positive, whereas the negative sign of coot has already been 
accounted for in (3). so mot in Eq. (4) is positive: WOW. To 
determine 810 and the second rotation el,, we observe that 
when the array is normal to the sun, the incoming sun vector S 
is opposite to the outgoing array normal Xi: 

where the superscript T means the transpose of the column 
vector. Substituting Eq. (5) in Eq. (1) the sun-ray vector S in 
the LVLH frame is found to be 

The unknown initial angle 810 is determined by substituting 
Eq. (4) in Eq. (6), yielding: 

Eq. (8 )  indicates that, as the earth rotates around the sun (0 5 v 
S 2n). the angle 81, varies sinusoidally with a certain 
amplitude; this is illustrated below in three examples. 

ExMlple 1 :  a,= 0. v =  ~ / 2  
The correctness of Eq. (7) and Eq. ( 8 )  can be illustrated by 
considering v = x/2 and RN = 0" for which 

el0=tan-1 o / i - c ( i - i ) i  = x (W 
8 1 , = i - i  (9b) 

I f  we further assume that the satellite orbit lies in h e  ecliptic 
plane, which means the orbit inclination i equals h, we will 
have 012 = 0. In Eq. (9a), the choice el,, = x and not zero is 
selected to ensure that the solar cell face of the array, not i t s  
back side, is towards the sun. Moreover, Eq. (9a) and elz = 0 
together imply that in order to be normal 1~ the sun rays at t = 
0, the array must be in  the plane Y, Z,. Physically, the 
conclusion O l 0  = and el, = 0 is seen to be valid in Fig. 2 for 
the parameters v = ~ t 2 ,  RN = 0. and i = A at t = 0. 

&maple 2: 0, = 0, and nrbifrory v 
For i 2 ~  = 0, Eq. (7) and Eq. (8) yield 

-CV e Iz  = sin-1 [ sinv sin (X-i) 1 el0 = tan-1 -c (X-i) sv ' 
(10a.b) 

Eq. (lob) states that, inasmuch as (A-i) is fixed, the angle 81, 
will change periodically as the earth moves around the sun in 
one year, 0 5 v 5 2 x ;  the extremes of 81, will be (h-i) when v 
= ~ / 2 ,  and (i-h) when v = 37t/2. This is illustrated in Fig. 3 for 
i = 28.5" and 43.5". Now considering the satellite orbit in the 
ecliptic plane (h=i), Eqs. (10) simplify and, consistent with 
Example 1, furnish 

e l0  = 4 2  - v (1 la) 
ely(t) = W0t - ( ~ / 2  + V) (1 1b) 

For v=O. +y array's rotation 810 = 4 2  about the axis Y,, 
measured from its datum orientation in the YcZ, plane, is 
illustrated in Fig. 2 .  Also, for QN = 0 and i = 28.5" the linear 
relationship (1 la) is seen to be true in Fig. 3. 

SPACECRAFT ORBIT 
PARAMETERS: 

-[ CRN CV + SRN C)c SV] el0 = tan-1 -[ ci (-sRN cv + C R N  ch sv) + si sh sv ] 
0) 

where the negative signs in the numerator and denominator are 
rerained so as to arrive at a unique value of within the range 
-IC I el0 5 a; this will ensure that the solar cell face of the 
array looks at the sun. The array's inclination angle e,, is 
obtained from the second components of Eqs. ( 3 )  and (6): 

01z = sin-I (si (SQN cv - CRN ch sv) + ci SA svl 

SArrLL ud-0 

Fig. 2 .  +y Solar Array Orientations ai r=O for Examples I and 2 
(8) (VE = VermI Equnox) 
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Fig.  3. Initial Angle 010 about the pitch axis yo and inclination angle 01, about the short edge Zl-axis of +y array versus angle v 

tarth's Position Ascending Node Angle 
in the 

Ecliptic Plane (v ,deg) 
90" 0 "  
90" 180 O 

-90" (or 270") 0 "  
-90" (or 270") 180 O 

of the Spacecraft's Orbit 
(RN. h g )  

Table 1. Extrema of the till angle 
Extreme 

Value 
of 01, 

h- i 
h+ i 
i-h 

-A-i 

Example 3: Arbitrary and v 
Fig. 3 illustrates the variation of 810 and 81z as a function 

of the earth's position in the ecliptic plane ( 0 v 5 2x ) for i 
= 28.5" and 43.5" and eleven values of the ascending node angle 
RN. The apparent discontinuities in 810 curves at are 
inconsequential because the angle 810 has a range of 2x and +x 
= -TI. Furthermore, from Eq. (8), we infer that 

(12) for RN = TI: = sin-' [ s (h+i) sv I 

which is a counterpart of Eq. (lob) in Example 2. Clearly, the 
extremes of 81, are 

h+i @ v = x I 2  
 el^ = { -(h+i) @ v = 3x12 

These, as well as the sinusoidal variation of the angle 81z 
versus v, are illustrated in Fig. 3. Also, see Table 1. 

-Y Array Commands 
Regarding the -y-array, because the angles 8zY and 82, are 

defined about the axes Y20 and 220 which are respectively 
opposite to the +y-array axes Y1o and 210. it is clear that for 
keeping the array normal to the sun-rays 

Recalling Eq. (4). the desired 82,,(t) will therefore be 

It is instructive to compare the commands developed above 
with those developed by McElvainl and Kalweit2. 

3. Solar Radiation Torque 
Radlatlon Torque on a Solar Array 

For momentum accumulation study, the radiation torque g 
at the spacecraft mass center is required. Refemng to Fig. 1 . k  
hj (j = 12) be the vector from the reference origin 0 to the solar 
array hinge Oj (j = 1,2), and f p j  = 1,2) the vector from the 
hinge Oj to the pressure (or geomemc) center of the array. 
Additionally, let IC be the vector from the reference origin to the 
vehicle mass center. Denote the moment arm vector of the solar 
radiation force on the j-array as Epj. Then, 

(j = 1,2) (16) 
A 

G j  = -~c+h,+G, p4j 

where a, is  the transformation matrix defined by Eq. (1) and 
Eq. (2) for j=1.2. Following Reference 5, Section 8.3, the 
radiation torque experienced by a spacecraft about its mass center 
owing to the sun rays off-normal to the jth-array, is 

where p denotes the radiation pressure on a totally absorbing 
normal surface, A, is the array's area, caj = cos a, and a, is the 
angle between the inward normal unit vector mj and the sun 
vector S, oa is the absorptivity coefficient of the surface under 
consideration, cr,d is the diffused reflectivity coefficient, and ars 
the specular reflectivity coefficient. The notation x in Eq. (17) 
transforms a column vector to a 3x3 skew-symmetric mamx, as 
defied by Eq. (13), Section B.2, Reference 5. 

Array N o r d  to the Sun 

mj = S and Eq. (17) simplifies to 
When the sun rays are normal to the j* array, caj = 0, and 
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The three components of the radiation torque, Eq. (18). on the 
spacecraft in an arbitrary orbit, with the array normal to the sun, 
will now be shown explicitly. For concreteness, we assume that 
the spacecraft mission is such that the power and thermal 
requirements allow the +y-array to be normal to the sun. To 
express the vector cppl component-wise, note that the length of 
the A-frame along the pitch axis is ‘a’ (Fig. 1). and the rotation 
01, takes place about the Z1-axis of the array without involving 
the A-frame. Because in the X1Y 1Z1 frame, the pressure center 
of the array is at a distance L/2  along the yl-axis from the 
transverse edge of the array (Fig. 1). the vector Q1 Ppl in Eq. 

(16) can be calculated easily using Eq. (1). Furthermore, we 
assume that when the arrays are in the yozo plane (01, = 0 = 
82J, the vectors and bl are in that plane (Fig. 1). Therefore, 
in the LVLH frame s c :  

-b seiz c6iy 

Epl = - r cy+b iy+a+bc@i2  

-rcz + biz +b sOizsOiy 

, b e 1 / 2  

For analyucal convenience, define 

bly@ = -rcy + bly + a biz@ = -rcz + bl, (22) 

Using (21), (22)in Eq. (18) the following components of the 

torque - g in the LVLH kame are obtained: 

byz i z  + (b +b:y ce id ~0 I y 

gl = PA1 UA i 
While the angle 01,(t) varies Linearly at the rate a,, changing 
by 27t over one orbital period, the angle 81, is virtually 
constant in that period. Eq. (23) therefore indicates that, in the 
LVLH frame, the roll (x-) torque comprises a constanl and a 
cyclic torque, the pitch and yaw torques are cyclic, and the cyclic 
yaw torque is in quadrature with the cyclic component of the 
roll torque. (Also, see Ref. 4.) 

-Y-Array Off-Normal To The Sun 
When the spacecraft at hand has two arrays, power and 

thermal requirements might dictate one array to be normal to the 

sun rays and the other array off-normal. Fig. 4 depicts one such 
posture for the spacecraft in Fig. 1, with +Y-array normal and - 

To keep the m a s  center of the -y-array on the rotational 
axis yo, the A-frame is turned about the z2-axis by an angle 
02z,a (a negative 0223 is shown in Fig. 4); also, the array’s 
normal-to-the-sun orientation angle is denoted 8zz, whereas the 
off-normal orientation angle is denoted 022’. Under these 
circumstances, the transformation mamx €02. defined by Eq. 
(2), is altered to Q ~ , A  for the A-frame replacing 0zZ with 
02z,a, and to €02’ for the -y-array substituting BzZ’ for 8Z2. 

Thus the pressure center vector &2 f p 2  in Eq. (16) is revised 
to 

Y-array off-normal. 

To evaluate the torque g, cj=2), we note that the vector -k + - 
for the -y-array in the frame FC is. following Eq. (20) 

-E + h2 = [ 0 -‘cy + b y  -rcz + b z  1 (25) 

where, to symmetrize the mass distribution 

b2y = -bly b2z = blz (26) 

Using the equation 82,, = -Bly and Eqs. (24), (25).  and (26), the 
vector cpj = 2), Eq. (16), is found to be 

$2 = -fcy 4 1 ,  - bc 

where the lengths b, and b, are defined as 

The vector S and the inward normal for the -y-array in 
the off-normal frame F2A: XU Y2A Z2A pig. 4) are 

where S, is the off-normal angle, defined by 

s, = e= - (30) 

and equal to the angle a2 between the vectors S and for the 
array. Therefore the vector [ ] in (17) the spacecraft frame is 
found to be 
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Array Off-Normal 

[ (Qa + old) s + 2 (urd + Qrs Ca.21 nA 1 '" = 
I -Qcx ce2y Qcy -cx se2y IT (31) 

Where 
Qcx = 0 x 2  C02L ' - b y 2  s02z' 
bCy = oX2 se2z + ay2 ceZz' 

ay2 = ( 1  - a,) ss, 
0x2 = (1 + 0,) cS, + 20rd/3 

(32) 

Using the vector $2 in Eq. (27) and the vector Eq. (31) the 

torque g2 is found 10 be - 
"3 C 

8 2 "  =PA2chz  

which exhibits the same attributes as those exhibited by g 1 in 
Eq. (23). 

- 

Example  I Off-Normal Angle q, = 0 and A - F r m  Angk €$z,a = 0 
In this circumstance, the +y- and -y-array become parallel 

because now 8zz' = -01~.  and the torque g2FC, Eq. ( 3 3 ) ,  
simplifies to 

- 

b:z s + (- b + b:y ce 3 so I 

fB 

(34) -b2z ce l z  C e i ,  I (-b + b:), ce,z> 4, 
- g 2 5 c  = pA2 QA 

Where  

bZy0 = -rcy -bly -a b Z @  = biz@ (35)  

Example 2 :  Both Arrays Norm1 to the Sun; R e s u l m m  Torque 
Adding Eq. (34) to Eq. (23). and assuming that the arrays 

are identical in geometry as well as in optical surface propenies 

so that A, = A1 = A2, the resultant torque 8 equal to 8 + 

s2) is found to be 

Mass asymmetries in the spacecraft generate the components rcy 
and rcz; how each component conuibutes to the radiation torque 
on the spacecraft is seen clearly in Eq. ( 3 6 ) .  We also observe 
that, because the two arrays are parallel and geometrically 
identical, the A-frame length a and the array's half-length b do 
not contribute to the total torque, only the hinge location 
referenced from the vehicle mass center matters. 

E x a m p l e  3: +y-Array Normal and -y-Array Off-Normal: Resultam 
Torque 

The resultant torque j$.T-c is now obtained by addmg Eq. 

(23) with Eq. (33). To build a simple expression for &Fc, we 
observe that, in the Fc frame, ignoring the variation in the 
angle over one orbit period, the constant part g, of the x- 
torque (roll torque) is found to be 

and the amplitude ga of the sinusoidally varying part ga seiy of 
the x-torque is 

The z-component (yaw torque) has no constant part, and its 
sinusoidal variation is in quadrature with the roll component. 
Lastly, the y-component (pitch torque) also varies sinusoidally, 
with its amplitude gb equal to 

(37c) 

Thus, the total radiation torque g Fc acting on the spacecraft at 
its mass center, in the spacecraftframe. is 

gb = -PAS biz@ [OA C e l z  + Qcx Chz1 

The constant roll torque g, in the rotating frame Fc  becomes a 
periodic torque in  the orbit plane in a non-rotating frame; 
conversely, the periodic roll-yaw torque in  3c becomes a 
constant torque in the orbit plane in an inertial frame. 
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Meanwhile, the periodic pitch torque remains periodic even in a 
non-rotating frame because the rotation mot takes place about 
the pitch axis. 
Radlation Torque on Spacecraft Bus 

Usually the surface area of spacecraft bus is much smaller 
than that of the deployed solar arrays, and therefore the radiation 
torque caused by the bus is an order of magnitude smaller than 
that caused by the arrays. For this reason and to conserve space 
the analytical details of derivation of the radiation torque on a 
bus will not be given here. 
Torque On An Array Shadowed By the Spacecraft Bus 

Fig. 5 portrays a spacecraft with a cylindrical bus and a 
solar array, the bus casting a shadow on the array. The lit semi- 
cylindncal surface is ABC. The shadow boundary on the array 
may utmost consist of three segments: an arc cast by the lit 
end-face of the cylinder and two straight lines, enclosing the arc. 
cast by the boundary rulings at A and C. The shadow in Fig. 5, 
though, has two segments only because the shadow of the 
ruling at A falls off the array. The shadow boundary is 
determined as follows 

It may be clear that at any time only one array at the 
most will be shadowed. Knowing the angle p between the sun- 
ray unit vector s and nadir unit vector Q, we first determine 
which end-face is lit: 

if !3 < n/2, the earth-pointing end-face is dark, and the 
opposite end-face is lit; 

i f  p > n/2,the earth-pointing end-face is lit, and the 
opposite end-face is dark 

and the lit semi-cylindrical surface is then identified. Next, let 1 
be the vector from the reference origin 0 to any point P on the 
edge of the fully-lit face of the bus or along the two boundary 
rulings of the lit semi-cylinder. The vector from the hinge 0, of 
j'h array (j = 1,2) to the point P is then 4, + r. The two 
components of this vector in the array plane yjzj, which is not 
necessarily normal to the sun, are 

(-bj + r> . j j  and (-hj + r) . kj (38) 

where j j  and k, are the unit vectors along yj- and 2,-axis of the 
array, respectively. If these components fall on the array, that 
is, 

a I (-bj + . J j  (3%) 

- w /2 5 (-hj + 0 . kj I w /2 (j = 1,2) (39b) 

where w is the width of the array along the z, axis, then the 
array j is clearly shadowed. In that event, as the vector E moves 
along the edge of the lit end-face and the boundary rulings, the 
above two components will delineate the shadow boundary. 

The radiation torque due to the array is still given by Eq. 
(17). The area Aj represents the lit area of the array, and the 

vector PPI in the moment arm +,, Eq. (16), is the vector from 
Oj to the instantaneous center of pressure of the shadowed array. 

The instantaneous lit area and the vector P p j  are calculated 
numerically. 

Fig. 5 Cylindrical Spacecraft Bus Casting Shadow on the Solar 
Array 
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6 .  Comparison of the total radiation torque on the 
spacecraft with and without considering the shadow; Orbital 
parameters: v = 90°, L~N = IBO", i = 20". corresponding solar 
arrays'inclinations: elz = -eZz = 43.5 '(arrays parallel and both 
normal to the sun) 
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Fig.  7.  Shadowing of -y array: Orbital Parameters and solar 
arrays' inclinations same as those in Fig. 6 

I l lus tra t ion  
For parameters not recorded here because of space 

limitations, Fig. 6 furnishes total radiation torque (two arrays 
plus cylinder) with and without considering the shadow of the 
bus on the array, for &=O and both arrays normal to the sun 
rays. When the shadow is ignored, we observe that, in 
conformance with Eq. (36), the yaw torque is zero and the roll 
torque a constant over a few orbits. Slight oscillations in the 
roll torque are present because of the cylindrical bus. The 
variation of the pitch torque in Fig. 6 conforms with the y- 
component of the solar radiation torque in Eq. (36). Regarding 
the effect of shadow on the array, we observe that while the 
shadow does not alter y-torque, the trough of the x-torque 
plummets from 4.29E-3 ft.lb to 4.388-3 ft.lb during the 
shadow period. A small (O.lE4 ft.lb amplitude) cyclic z-torque 
also arises during the shadow period. For the parameters under 
consideration, it turns out that the -y-array is shadowed, +y- 
array is not. Traversal of the cylinder's shadow on the -y-array 
is shown in Fig. 7. The growth of the shadow area on the -y- 
array is shown in Fig. 8 for three parametric sets, including the 
set for Fig. 6. Fig. 8a shows that, for example, when 02, = - 
43.5". the maximum shadow area equals 88 sq.ft [(shadow area) 
/ (amy area) = 8 8 D 2 . 8 5  = 0.431 and the array remains partially 
shadowed for nearly 6 hours (one-fourth of the orbital period). 
We nonetheless also observe that the shadow occupies 43% area 
of one array only briefly (several minutes), occupying 
progressively smaller area befm and after the maximum shadow 
epoch. As the shadow traverses, the pressure center of the lit 
portion travels also; the loci of the instantaneous pressure 
center, from the moment the shadow enters the array till the 
moment it leaves, are shown in Fig. 8b for three sets of 
parameters. As expected, these loci are closed curves, and the 
bigger the angle 1B2z1. the wider the loci. The shadows occur 
around different orbit angles wot for different sets of orbital 
parameters v and QN (even if the orbit inclination i is the same 
for these orbits). For plotting convenience, however, the 
maximum shadow epoch is shown to be the same (t = 18 hrs) 
in Fig. 8a for all three sets of parameters. In the preceding 
results, the center of mass vector & is zero. However, as the 
arrays orientations change relative to the spacecraft bus while 

Fig. 8. (A)  Shadow area on the +array versus time; (B) Locus 
of the pressure center of the -y-array as shadow travels on the 
array; orbital parameters for @z = 4 3 . 5  " the same as those in 
Fig.7; for 02, = -309 the parameters are v = 30" and l 2 p ~  = 
140': for @, = -22 ", v = go", l& = 809 and i = 20 " 

tracking the sun, LC may vary depending on the arrays' 
arrangement. In the case at hand, this variation is found to be 
small, and it was not ignored in the computations. 

The pmxxbng results show that the spacecraft bus shadow on 
the array does not change radiation torque significantly. Also, 
based on the results not shown here due to space limitations and 
as stated before, the radiation torque on the bus is found to be an 
order of magnitude less than, and so negligible compared to, 
that on the arrays 

4. Momentum Accumulation Due to Solar  
Radiation Torque 

In the following analysis we will determine the momentum 
accumulation due to the arrays' torque only. It is instructive to 
compare the following development with that by McElvainl. 

Short Term Accumulatlon 
Let fL, be the inertial angular momentum vector of the 

earth-pointing spacecraft under consideration. If H,, Hy, H, are 
the components of &, in the body-fixed frame, then, in the 
presence of the radiation torque, (37d), they will be governed by 
the following three equations, expressed in the F O :  
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&--o  HZ = g c +  Basely (a) 
!Y = 8b cely (4ob) 
Hz + 00 Hx = ga cely (a) 

As is well known, the roll (H,) and yaw ( H 3  momentums are 
gyrically coupled, whereas the pitch momentum (Hy) is 
independent of roll and yaw. Examining the definitions of g,, 
gb, g, in Eqs. (37 a, b, c). we observe that they are functions 
of, among other things, the inclination angle 81, and the off- 
normal angle 622. Because these angles depend on the earth's 
motion around the sun (the angle v), they are held constant in 
flight over a few days, and therefore, within this period, the 
quantities ga, gb, & can be regarded as constant. Moreover, 
assuming that time t can be measured such that 01, (t=O) = 0, 
instead of 010 according io Eq. (7), 01, (t) in Eq. (40) can be 
replaced with coot. With these two assumptions, Eq. (4Oa) and 
(XIC) can be integrated together, yielding (i2 = -1) 

H, + iH, = -i (gJ00) (I&Wt) + i t g, e-iWt (41) 

The integration of Eq. (40b), on the other hand, yields the pitch 
momentum Hy as 

(42) Hy (t) = (&coo) sin coot + Hyo 

Because a constant torque & in the orbiting frame is a cyclic 
torque in the inertial frame, whereas a cyclic torque ga in the 
orbit frame is a constant torque in the inertial frame, it is 
natural to find in Eq. (41) a cyclic variation in (H, + iH,) 
owing to & and a secular growth owing to ga. At any arbitrary 
instant, the magnitude of the secular term in H,+iH, is tg,, 
showing a linear growth in the spacecraft momentum in the 
roll-yaw plane. The pitch momentum H, (t), Eq. (42), varies 
cyclically, with the amplitude equal to gb/wo. The constant 
Hyo in Eq. (42) equals Hy(0) and it embodies the spacecraft's y- 
momentum arising from its once-per-orbit equilibrium rotation. 

Yearly Accumulation 
It was just shown that the secular momentum in the roll- 

yaw plane at the end of one orbit (oot = 2x) is (H, + iH3 = i 
2x g$og. where the coefficient gas 4. (37b). is a function of 
the solar array's inclination angle 81, for an array normal to the 
sun, and of the inclination angles 0'2, and off-normal angle kz 
for an off-normal array. Fig. 3 shows that the angle 81, (or 82, 
which is equal to 413 varies as a function of the angle v (the 
earth's motion around the sun); therefore in order to calculate 
the yearly momentum accumulation, this variation must be 
considered. To separate the linearly varying angle ~ ( t ) ,  OSvax, 
from other constant orbital elements X, QN, and i in the 
definition of 81,. Eq. (8d) is mwiaen thus: 

with the amplitude Ao and the phase angle vo defined by: 

A, = si S ~ N  A, = -si CRN ck + ci SA (45) 

Smctly spealung, because of orbit regression the ascending node 
angle RN is not constant, but this variation is ignored here. 

Spacecroft With +Y-Array Only; 
Array Normal to the Sun 

given by Eq. (37b) simplifies to 
When the +y-array is normal to the sun, the coefficient g, 

ignoring the second term in [a] in Eq. (37b) because it pertains 
to the -y-array. The magnitude of the secular momentum 
accumulated at any instant t then becomes 

IH, + iH,I = PA, UA Cb + bly@ eel,) t (47) 

The yearly momentum is obtained by integrating (47) over the 
annual variation of the angle 81,. Let ny be the current orbit 
under consideration: 

ny  = t h o ,  T O 4  2xloo (48) 

where TO is spacecraft orbit period. and let N, be the total 
number of spacecraft orbits in one year. Then the yearly 
accumulation will be 

@ NY 
Hy-r = @As OA TO) @ + bl y cold  b y  (49) 

0 

Because -xlL c 01, < xR, cOlz will always be positive. With 
the aid of Eq. (43) and recalling that b is constant (= &?), and 
treating bly@, Eq. (22a), as Constant, Eq. (49) transforms to 

NY 
Hyr = @As UA 70) [bNy + bly* j ( 1 - b 2  sin2 

(vo + ;.so ny) I I n  hYl (50) 

(The assumption b ly@ a constant may not be always valid, 

change due to el,, but this change can be minimized by 
keeping the array's mass center on the axis of rotation.) Now, 
while ny changes from 0 to N,, the argument of sin2 in Eq. 
(50) varies from vo to vo+2x; therefore, the integral in (50) is 
an elliptic integral of the second kind. Measuring the time t 
such that the phase angle vo = 0 and capitalizing on the 
symmetry properties of the elliptic integral at hand, H, after 
integration is found to be 

Hy, = @AS OA 50) lbNy + 4 C b i y @ / k o )  E ( ~ ' 2  , b)l (51) 

where E(xf2,  Ao) is a complete elliptic integral given by the 
series: 

0 

because the quantity rcy involved in the definition of bl, @ may 

1 1  HH/VT-032 



Becasue the number of the spacecraft orbits in one year is 

Ny  = 27c/(&0) (53) 

the yearly momentum accumulation H, simplifies to 

Hyr = Ny TO pAs GA Tt, + biy@ (1 - A Q ~ / ~ ~  - ...) ] (54) 

In the series (52) or (54), as many terms are retained as are 
necessary to evaluate the sum up to a desired accuracy. 

Spacecrq? With +Y and -Y Arrays. 

a )  Both Arrays Normal to the Sun 
The coefficient ga. Eq. (37b), now simplifies to 

ga = - 2 ~ &  GA 'cy celz (55)  

This is corroborated by the coefficient of seiy in the first 
element of the vector equation (36). Comparing (55) with (46), 
the yearly momentum accumulation in the present case can be. 
written down following Eq. (54): 

2 2  Hyr = Ny ro pA, CJA -2rCy (1- Ao /2 - ... )I (56) 

b) +Y-Array Normal. -Y-Array Off-Normal to the Sun 
In this case, the coefficient ga is given by the full-length 

equation (37b). The definition of the coefficients b,, bs pEq. 
(28)J. and bCx. cCy IEq. (321 reveal the presence of the products 
of the trigonometric functions of the angles 6'z2 and 02z.a. The 
analysis therefore seems intractable, and developing a closed- 
form expression for H, infeasible; consequently, numerical 
integration of the equation IH, + iH,I = t g, over one year 
seems inevitable. 

Yearly Propellant Consumption 
Annual propellant consumption, Wp. should not be based 

on the momentum accumulation over one orbit and treating 
that constant for entire year, for the daily momentum varies 
significantly over one year (illustrated later in Fig. 10). Instead, 
knowing Hyr from Eq. (54). Eq. (56), or otherwise, and 
knowing the specific impulse Isp of the propellant under 
consideration and moment arm 1j of the thrusters from the 
vehicle mass center, Wp is obtained from 

I l lus tra t ions  
Example 1. Spacecrafi With Two Arrays: Momentum Accumdafion 
Over Three Orbits 

Fig. 9 illustrates momentum accumulation in the roll-yaw 
plane, Eq. (41), with the orbit angle o d a s  parameter. In 
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Fig. 9. Momentum occumulaiion in roll-yow plane. due Io [he 
two arrays only: +Y array normal IO rhe sun, Biz = 4.5 9. -Y 
array off-normal. &, ' = 25 ", hZ = 209 -Y array A-frame angle 
&z,a = -37" 

particular, it applies to the spacecraft configuration shown in 
Fig. 4, with +y-array normal to the sun and -y-array off-normal 
at an angle &. Fig. 9 shows the linear, radial growth of (H, + 
iH,)-the term itga ,-loot in Eq. (41)-superimposed upon a 
cyclic variation with an amplitude of g&o. 

Example 2. Momentum Accumulation As a Function of Earth's 
Position in the Ecliptic Plane 

In order to obtain complete dependence of the daily 
momentum accumulation over a one year period, we next 
illustrate in Fig. 10 the roll-yaw momentum at mot = 27c and 
the pitch momentum amplitude g b / q  as a function of the 
angle v:  0 5 v I 2 n ,  with the off-normal angle 6 z 2  as a 
parameter. Figs. 10a and 10b show that, for off-normal angle 
62, = 0. the roll-yaw and pitch momentum amplitude varies 
periodically with v, with half-year period; the corresponding 
ratio Hy / IH, + iH,I remains constant for entire year. When the 
off-normal angle 52, of the -y-may is introduced, the haif- 
yearly periodic variation of the roll-yaw momentum disappears 
and, instead, it begins to vary asymmetrically with v. Also, 
the peaks and valleys of the roll-yaw momentum grow further 
apart as 6z2 increases. The half-year periodic variation of the 
pitch momentum amplitude alters Little with the angle &Lz. Fig. 
1Oc illustrates the ratio Hy / IHx + %,I; the variations in this 
ratio with v become more pronounced as 62, increases. This 
ratio is of interest because it helps decide the cant angle of the 
reaction wheel configurations considered in the next section. 

Example 3. Yearly Momentum Accwnulotion 
equals zero (that is, when 

both arrays are normal to the sun) the yearly momentum can be 
obtained analytically using Eq. (56). and when 52z f 0, the 
yearly momentum is obtained by numerical integration of the 

When the off-normal angle 
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area under the curves IH, + *,I in Fig. loa for the entire range 

for the range 0 5 S, 5 20' for different orbit inclination angles, 
0 I v 5 271. Fig. 11 depicts the yearly momentum against t32z 

keeping QN at 170". For Szl = 0, the analytic prediction was 
compared and found identical with the numerical results. The 

Eq. (56)  increases with the orbit inclination i, and yearly 
momentum diminishes a little. The yearly momentum, 

2 8 o c ,  

2520 1 I 
r2.n ~ 

number of terms that must be retained in the infinite series in 
(16: - 

5 
4 . _  however, increases significantly with the off-normal angle &, .-.EO3 

10" 
' 20' 

'/ 30 
% = 170" 

as seen in Fig. 11. Lc, - 
f 1co-  

+ 

1 

3 2 4 5 5 ' :  I - c  

OFF-NORMAL ANGLE S2z (DEG) 

Fig.  11. Annual roll-yaw momentum versus off-normal angle 
of -y-array; + y-array always normal 10 the sun: = I70 " 

5. Reaction Wheel Sizing and Configuration 
Optimization 

In Section 4, we observed that the momentum along the 
roll and yaw axes are coupled. Depending on the initial 
conditions, the secular momentum build-up tga can exceed the 
capacity of the wheels either about the roll-axis, yaw-axis, or 
any other direction in the roll-yaw plane. Therefore, for the 
design purposes, the desired momentum capacity in the roll-yaw 
plane is the same in all directions. In conmast, the pitch 
momentum caused by the radiation torque is cyclic, with the 
amplitude equal to (gb/wO). Hence, the pitch and roll-yaw 
momentum requirements leads to the well-known right circular 
cylinder momentum requirement for designing a wheel 
configuration, with cylinder axis along the pitch axis. On the 

(6) 
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~- 
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other-hand, the reaction wheels are also required to produce 
certain peak control torque about each of the three spacecraft 
axes. The torque requirements therefore form a rectangular 
parallelepiped. Both the momentum and the torque requirements 
can be met, in principle, using three wheels (not necessarily an 
orthogonal set); but for the sake of redundancy, four or more are 
often employed. In the following subsections, four-, six-, and 
three-wheel configurations are analyzed, two arrangements of the 
wheels and one-wheel failure are considered for each 
configuration. 

To visualize the wheel configuration most easily, fist place 
the spin axes of all the wheels in the roll-yaw plane, perhaps 
radially symmetrically along the roll and yaw axes or otherwise, 
and then Cant all spin axes, equally or unequally depending on 
the design, towards the pitch axis or its opposite. When the 
wheels are not along the spacecraft axes, a transformation 
matrix €bw is required to transform the wheel momentum 

20 7 

2 16 
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N r 
I_ 0" 
+ e  
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15" 
20" 

. 
x" ' 100 
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Fig .  10. Variation of roll-yaw and pitch momentum with the 
earth's position (the angle v) in the ecliptic plane; y-array 
normal to the sun. -y-array off-normal a[ an angle bZ and its 
A-frame ~l an angle @r,o; A. = 23.44', orbit ascending node 
angle i& = I70 ', and inclimwn angle i = 285 ' 

vector Hww along the wheel axes to the total wheel momentum 
jibw along the spacecraft axes: 

b w  = G W  Hww (58) 
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When the number of wheels, n,. is more than 3, the matrix 
Q,, is rectangular, 3xnw, and its pseudeinverse Qwt 

cbwt = cbwT Qw QwTP (59) 

is required for the inverse transformation of (58): 

Hww = Gwt bw (60) 

The above two transformation matrices are useful also for 
transforming the desired control torque TC (3x1) about the 
spacecraft axes to the desired rate of change of the wheel angular 

momentum vector Hww (n, x I): 
. 

To determine the optimum cant angle($ with the roll-yaw 
plane, it is logical to impose the requirement that, for a desired 
momentum vector capacity HI,, in spacecraft axes, the norm of 
the wheel momentum vector fLww be the least so as to 
minimize the cost and weight of the wheels. One suitable norm 
of the vector Uww is its Euclidean norm II Hww It defined by 

where Hwi (i = 1. ..., n,) are the elements of the vector Hww. 
The minimization of It fiww I I  also results in minimum power 
consumption by the wheels for controlling the spacecraft, as 
shown below. 

Let w,i(O) be the initial speed of the wheel i. and 
%i(t) the instantaneous speed while the wheel is acted upon by 
an electric motor, changing the wheel’s momentum H,; at the 

rate H,i(t). Then 

where I, equals wheel’s moment of inertia about the spin-axis. 

For a constant Hwi, the instantaneous power Pwi consumed by 
the wheel i is given by, 

. 

where absolute values are taken to ensure that the power Pwi is 

positive for both signs of Hwj (t) and owi @).To determine the 
worst power consumption by the wheel assembly, we assume 

. 
that owi(0) has the same sign as that of Hwi. Furthermore, 
assuming that Owi(0)  is the same for all wheels, the total 
power Pw consumed by the n, wheels will be 

nw . 
Pw = I %(O) I I H,i I + t I,-’ NiWw I l 2  (65) 

i=l  
14 

tnus, we see mar, ignonng me linear term, minimizauon ot 
power consumption leads to the minimization of the norm I t  

The vectors HWw and HWw are related, respectively, to the 
required momentum capacity bW and the control torque 
capacity through the same pseudo-inverse matrix Gwt. 

Therefore, the minimization of both Hww and Hww yields the 
Same optimum cant angle if the components of Hbw and T, are 
proportional. This condition, however, is not always obeyed; 
for instance, in the presence of radiation torque, the desired roll 
and yaw momentum requirements are the same, but the desired 
roll and yaw torque requirements may be different because the 
roll and yaw emrs  might be controlled with controllers of 
different bandwidths, and the corresponding moments of inertia 
might be quite different. As a different example, the roll and 
yaw torques limits could be the same to facilitate momentum 
dumping with thrusters. The need for deliberation is thus 
evident 

. 

Four-wheel Pyramid Configurations 
One possible arrangement of four wheels is shown in Fig. 12. 
The angle between two adjacent wheels is 90°, and they all are 
equally canted toward the -y axis by an angle q measured from 
the roll-yaw plane.When the cant angle q and the angle y in the 
roll-yaw plane are both zero, the momentum hl  of the wheel 1 
is along the z-axis, h2 along the x-axis, h3 opposite to h l ,  and 
h4 opposite to h2. The angle y is introduced so that the wheel 
torque can contribute. if desired, to all three axes and not just to 
roll and pitch or yaw and pitch. The corresponding rectangular 
mamx&, is 

cqsy cqcy -cqsy -cqcy 

CVCY -CllSY -CTCY CVSY 
6 w =  -srl -srl -sll -ST ] (66) c 

S Y / ~ C ~  -1/4sq C Y / ~ C ~  
c Y / ~ c ?  -114.~7 - s Y / ~ c ~  

-sy/2cq -1/4sq - c Y / ~ c ~  [ - C Y ~ C ~  -1f4sq S Y / ~ C ~  

whose pseudo-inverse, Eq. (59), is found to be 

] (67) 

] (68) 

G b w t  = 

Let H,. Hy, H, be the desired momentum capacity of the 
reaction wheels about the roll-, pitch-, and yaw-axis of the 
spacecraft. These three components disperse along the four 
wheel axes as follows, using Eqs. (60) and (67): 

Hw = (-H,sr - H,cy)/;?cq 

( HXsy + H,CY)/~C? - HY/4sq 
( Hxcy - H2sy)/2cq - HY/4sq 

- H44sq 
(-H,cy + HZsy)/2cq - HY/4sq [ 

Let. T,, T,, T, be the desired maximum control torques about 
the x-, y-, and z-axis of the spacecraft. The maximum rate of 
change of the wheel angular momentum about wheel axes is 
then, according to Eqs. (61) and (67) 
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Fig. 12. Four-wheel Configuration 

(-TXsr - T , c Y ) / ~ c ~  + Ty/4sT\ 
(-T,cY + T2sy)/2cq + TY/4sq 

( Txc7 - T2sy)/2cq + TY/4sq 
( T,sy + T,cy)/2cq + Ty/4sq 

If H,, H,, H, are the desired momentum capacity of the 
reaction wheels about the roll, pitch, and yaw axis of the 
spacecraft, the 4x1 vector Bww is calculated analogously. Based 

on the definition (62), the norms II fIww II and II HWw II are then 
found to be: 

. 

II iww Il2 = (Tx2 + TZ2) / (2c%) + Ty2 / (4s$) (71) 

which are independent of the angle y because the angle between 
two adjacent wheels is 90". Comparing the two norms, it is 
clear that if (H,, Hy, H 3  and (Tx, Ty, T 3  are proprtional,the 
minimization of one is the minimization of the other. The 
optimum cant angle q* is found to be 

tan4 q* = Hy2/2(Hx2 + HZ2) = Ty2/2(Tx2 + TZ2) (72) 

which may be rewritten in a more revealing form: 

~ , 2 /  ~ , 2  + ~ , 2 / ~ , 2  = 1 4 2 d  q*) (73) 

which is the equation of a circle in the plane (Tx/Ty, 
TJ Ty) and the radius of the circle equals 1/(G tan2 q*). Eq. 
(73) states that as the torque requirements about x- and z-axis 
diminish, the radius of the circle shrinks and the optimum cant 
angle q* increases. This is exemplified in Fig.13 where Eq. 
(73) is plotted for q* = 25", 30". ..., 60". 

The norm II Hww II can be made dimension-free by dividing Eq. 
(71) with Ty2. This dimension-free right side of Eq. (71) is 
plotted in Fig. 14 as a function of q for a given (TX2 + 
TZ2)/Ty2. The minimum value of the norm occurs at the 
optimum cant angle q*, and that minimum norm is found to be 

II bww Il2 mi,, / Ty2 = [ V? (oxy2 + o ~ ~ ~ ) ~ / ~  + 1 12/4 (74) 

where the torque latios oxy and ozy are defied as 

Oxy = Tx / Ty bzy  = Tz / Ty (75) 

Table 2 furnishes optimum cant angle T)* for several desired 
torque ratios; it also demonstrates that, for example, q* = 35.26 
as long as oxy2 + ozy2 = 2, regardless of the individual values 
of oxy and a,?. 

To determine the torque (or momentum) capacity of the 
wheels to produce the desired maximum torques (or 
momentums) along the spacecraft axes, we again consider Hww. 
Eq. (69). Because T,. Ty, TZ are only three independent torque 

requirements. the four elements of fIww are not all independent. 
Indeed, they are constrained by a relationship that is divulged 
from 

TY 

- 4  J 

Fig. 13. Dependence of minimum-power cant angle on desired 
lorque ratios 
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By way of illustration, if the torque requirements about the three 
axes are all equal (Tx = T, = T3,  the inequality (79) yields 

Optrmum 
Cant 

12.54 I I /  

Example 
Ratios 

i li 

(Tx /Ty)2  t (Tz/Ty)2 
0.5 
1 

Angle Tx/Ty T d T y  

40.06' 1 1 f i  1 /J5 
45 ' 0.5 0.5 

1 1 
35.26' 

30.73' 
26.56' 

Recalling (66) and (67). Eq. (76) yields four identical equations 
stating 

(77) 

The wheel momentums observe a similar relationship. 

Because of (77) and because of the nature of decomposition of 
the three desired torques T,, Ty. T, dong the four wheel axes, 
Eq. (69), it  may be intuitively clear that the magnitude of each 

element in  (69) will not simultaneously reach Hw,,ax-the 
maximum achievable rate of change of wheel's angular 
momentum. Therefore, d i n g  the definition (62) 

When the cant angle is optimum, the norm I1 Hww II is related 
to the specified torques T,, T,, TZ according to Eq. (74). 
Therefore, in view of (78) 

Considering that there are four wheels, each of capacity H,,,, , 

for controlling three axes of the spacecraft each requiring the 
torque T,, the inequality (80) is perhaps a natural result, but  it 

does not reveal just how much Hw,mx must at last be, to size 
the wheel. For that, the Euclidean norm is not helpful and we 
must focus on Eq. (69) itself, as illustrated in the following two 
illustrations. 

Wheels ContribUing io Roll and Piich or Yaw and Piich Only 
In Fig. 12, when y = 0 or 90°, each wheel contributes LO 

either roll and pitch or yaw and pitch axes only. Regardless of 
y, the optimum cant angle for equal torque and momentum 
requirements satisfies, according to Eq. (72): 

ll* = 35.26'. UII q* = I /&,  sin Q" = l&. cos '1, = 

(81) 

Substituting T, = T, = T, and sq* and cq* from (81) in (69). 
we obtain, for y = 90' 

bww = T, [ -0.179 1.045 1.045 -0.179 IT (8%) 

which yields the desired maximum wheel torque capacity when 
not one wheel has failed 

I t  is illuminating to compare the inequality (80) with (82b). 
Regarding the required momentum capacity of the wheels, 

we first obtain HWw, from Eq. (60), for y = 90'. Next, recall 
that from Eq. (41). the secular roll or yaw momentum at the 
end of one orbit is g,zo (TO = orbital period) and, from Eq. (42). 
the pitch momentum amplitude is gdoo. The least momentum 
capacity of a wheel for momentum dumping p e r  orbit and for 
optimum cant angle (81) is then 

Finally, in order to calculate the power consumption P, 

I Hwi I and II 
nw . 

versus time 1, Eq. (65), we require the quantities 

hww Il2. From Eiq. (82a), 
i= 1 

nw 
I hw, 1 = 2.449 T, (Ma) 

which determines the intercept of the P, versus t curve at t = 0. 

The slope of this curve is proportional to the norm II iWw I l 2  

i =  1 
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which, for equal torque requirement, is obtained from Eq. (74) 
by inserting oxy = 1 = oyz: 

II iww Il2 = 2.25 TX2 (84b) 

The indexes (84a) and (84b) should be kept as small as 
consistent with performance specifications. 

Wheels Contributing to All Three Axes 
In  Fig. 12, when y = 45', each of the four wheels 

conuibutes equally to the roll and yaw axes, as evident from Eq. 
(69). Reference 6 has examined this configuration to some 
depth. For y = 45", for equal Lorque requirements (T, = Ty = T,) 
and optimum cant angle (81). Eq. (69) yields 

The element with maximum absolute value yields the desired 
torque capacity of the wheel: 

Comparing (85b) with (82) ,  we conclude that, to produce a 
torque of magnitude T, about each of the three axes, the 
reaction wheels corresponding to y = 45' configuration must 
have 24.4% higher torque capacity than the wheels 
corresponding to y = 0" configuration. This is not surprising 
because for y = 45". the wheel's torque capacity is dispersed 
along all three axes, whereas in the case y = 0", it is distributed 
along roll and pitch or yaw and pitch only. 

Following the derivation of the wheel momentum capacity, 
Eq. (83), the desired capacity for the configuration at hand is 

where the optimum cant angle (81) has been used. Comparing 
(86) with (83), we find that H,,,, now (y = 45") is smaller 
than before (y = 0'). in contrast with the torque capacity 
conclusion drawn above. The reason of course is that the secular 
momentum Toga is either about the roll-axis or yaw-axis, not 
both, whereas the torque capacity Tx is desired about both roll 
and yaw axes. 

The two indexes of the power consumption are 
calculated with the aid of (8%) and (74): 

4 
I fiW, I = 2.598 T, (87a) 

i= 1 

Comparing (87a) with (84a) and (87b) with (84b), we conclude 
that, for producing equal torque about the three spacecraft axes, 
and for the same initial wheel speed, the y = 45" wheel- 
configuration begins with a slightly higher power consumption 
and increases at the m e  rate as the y = 90" or 0" configuration. 

One-Wheel Fallure 
For the four-wheel configuration shown in Fig. 12, we are 

usually interested in either y = 45" or 90" (y = 0" or 90" are 
effectively the same). And for these values, because all wheels 
are arranged symmetncally, failure of any wheel has the same 
consequences as the failure of any other. Therefore, to facilitate 
analysis. we arbitrarily assume the failure of wheel-3, and in 
that case the 3x4 transformation matrix Q,, Eq. (66). 
condenses to a 3x3 matrix Q,,,3, formed by deleting the third 
column of &,,.The inverse &,w,3-l ofcbw,3 is found and 

then used to determine the torque vector H,,, following (61): 

1 - T x s Y / c ~  - T , c y / c q  

T , ( s ~  - C Y ) / ~ C ~  + Ty/2sq + T,(sy + c Y ) / ~ c ~  

0 ( w h e e l - 3  f a i l e d )  

T,(sy + cy)/2cq + Ty/2sq - T,(sy - cy)/2cq -I 
(88) 

BWUF - 1  
L 

The wheel momentum vector a,, is determined likewise. For 
one-wheel failure case, the cant angle is not re-optimized 
because the cant angle of the wheels, once installed. is not 
changeable in the flight. 

Maximwn Torque and Momenrum Capacity When y = 90" 
For y = 90", and for the optimum cant angle @ I ) ,  Eq. 

(88) yields 

iww = T, [-1.225 2.091 0 0.866IT (8%) 

which in turn yields the required torque capacity of the wheel as 

- H,,mx 2 2.091 T, @9b) 

This is twice the required torque capacity in the no-failure case, 
Eq. (82b). 

Following the derivation of the momentum capacity Eq. 
(83) for the no-failure case, the momentum capacity for one- 
wheel failure case is: 

1 

Depending upon the relative magnitudes of ga and gb, either 
wheel-1 or wheel-2 will yield the required momentum capacity 
(wheel4 will yield the Same capacity as the wheel-2). 

Regarding the two indexes of power consumption, Eq. (89a) 
furnishes 
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4 .  
I Hwi I = 4.182 Tx 

11 iww 112 = 6.62 Tx2 

(9 1 4  

(91b) 

i= 1 

which may be compared with the no-failure results. Eqs. (87). 

Maximum Torque and Momentvm Capacity W k n  y = 45 O 

For equal torque requirements about the roll, pitch, and yaw 
axes (Tx = T, = Tz), and for the optimum cant angle q *  = 
35.26, the desired torque capacity of each wheel is 

juxtaposed to the no-failure size (85b). By comparing the size 
(92) with the size (89b). the advantage of y = 45" configuration 
over y = 0" or 90" configuration emerges: when one wheel fails, 
the y = 45" configuration can control the spacecraft with the 
wheels of smaller torque capacity than the y = 0" or 90" 
configuration can.The two indexes of power consumption are: 

4 
C I f iwi  I = 3 6 Tx = 5.1% Tx 

i= 1 

I1 iww It2 = 9 Tx2 (93b) 

Comparing (93) with (91). a disadvantage of the y = 45" 
configuration is also unveiled: its power consumption is 
significantly greater than that of the y = 90' configuration. 
Finally, the desired momentum capacity is 

Hw,mx = fi ( IgalQ + Wo) 12 (94) 

Compared with its no-failure counterpart. Eq. (86), the desired 
momentum capacity is now twice. 

Reference 6 may be reviewed for a different aspect regarding 
the selection of cant angle for the configuration at hand. 

Six-Wheel Pyramld Configurations 
Two-Caw-Angle Configuration 

One such configuration is shown in Fig. 15 where the 
wheels are arranged symrnemcally (y = 60"). wheels 2 and 5 
controlling roll and pitch axes, and wheels 1, 3, 4, and 6 
controlling all three axes. Because of this fundamental difference 
between the two subsets of wheels, the cant angle q2 of the 
former subset is allowed to be, in general, different from the 
cant angle 111 of the latter subset. This freedom permits a 
greater economy in power consumption. if desired, and allows 
the reaction wheels to be of smaller torque and momentum 
capacity than the one-cant-angle configuration Qes. 

To determine the optimum cant angles ql* and q2*, define 

ci = cos qi si = sin qi (i = 1.2) (95) 

18 

c1n  c 2  c l n  <In 

Qw=[ - s 1  -s2 - 5 1  

( 3 ~ 1 1 2  0 -(3q12 

(%I 
where, from the second and fifth column, it is apparent that the 
wheels 2 and 5 do not control the yaw axis, while the remaining 
four wheels control all axes. The pseudo-inverse 
determined using the definition (59): 

and the Euclidean norm of the vector Bww is 

I I  iww \I2 = TX2/(cl2 + 2 ~ 2 ~ )  + 

Ty2/2(2sl2 + sz2) + Tz2/3Cl2 

which is minimized by the optimum angles 
defined by 
s27.11* = 

cq1*  = 

s%2* = 

c+* = 

Fig. 16 pomays the optimum angles 9 1* and q2* for specified 
torque ratios bxz  and oYz.  Substituting the optimum 
trigonometric functions in Eq.(98), the minimum value of the 

norm I1 iww Il2 is found to be 

I1 Gww ( I 2  = (Tx + Ty + T z ) ~  /6 (100) 

The three torque components Tx, T,. TZ are independent, and 

once specified, they are produced by the six Hwi (i=l, ..., 6), 
given by Eq. (61). Clearly, these six quantities are constrained 
by three relations which are obtained from the expanded version 
of Eq. (76). Due to these constraints, 

l l i w w  It2 c 6 fiw,mx2 (101) 

analogous to the inequality (78) for the 4-wheel configurations. 
Combining (101) with (loo), we obtain 

(Tx + Ty + T 3  / 6 c Hw.mx (102) 
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ll2 = CANT ANGLE FOR THE 
WHEELS 2. AND 5 

Fig. I S .  Six-wheel hexagonal configuration 

Fig. 16. Dependence of optimum cant angles 71' and 72* on 
the torque ratios a, and ayz 

which states that the sum of the maximum torques that can be 
produced about the three spacecraft axes must be less than the 
total torque capacity of the wheels-the cant angles being the 
underlying reason. For equal torque requirements (T, = Ty = 
T3, the inequality (102) reduces to 

which may be compared with (80). It is intuitively clear that, 
instead of arranging six wheels as shown in Fig. 15. if they 
were arranged two wheels per axis, then for equal torque 
requirement about the three axes each wheel's torque capacity 
must satisfy 

Hw,mx 2 Td2  (104) 

instead of (103). 

are all equal. Eqs. (99) yield Eq. (8 1) 
When the maximum required torque components T,, Ty. T, 

sql* = l& = s?12*; cql* = f i r 6  = qz*; 
~ \ 1 *  = 35.26" = ~ l 2 *  (105) 

The two cant angles, herefore. coalesce and indeed they become 
the same as that for the 4-wheel configurations. The desired 
maximum torque capacity of the wheel is then found to be . 

Hwmx 1 0.846 Tx (106) 

which is smaller than the torque capacity (82b) or (85b) for 4- 
wheel configmuons for the same torque requirements about the 
spscecraft axes. 

Regarding the power consumption, the Euclidean norm 
(1 00) yields 

I1 hww 112 = 1.5 TX2 ( 1 07) 

Comparing (107) with (84b) and (87b), we observe that for the 
same Tx about all three axes, the power consumption of the 6- 
wheel configuration increases at a smaller rate than that of the 
4-wheel configuration. Finally, 

6 .  
1 Hwi I = 2.509 T, (108) 

i =  1 

which is within the two values (&la) and (87a) for the two 4- 
wheel configurations. 

One-Cant-Angle Configuration 
A hexagonal wheel assembly with two different cant angles 

might be difficult to inslall in a spacecraft bus; so we now 
optimize a hexagonal configuration with one cant angle. The 
pseudo-inverse matrix, Eq. (97), simplifies and Eq. (61) yields 
the Euclidean norm 

II iww 112 = (Tx2 + TZ2) / 3c% + Ty2/6& (109) 

where the subscript 1 of ql is dropped because now there is 
only one cant angle. Minimization of this norm leads to, 
surprisingly, the condition (72) for the 4-wheel configurations. 
The minimum value of the norm (109) is 

II kww 112 = [TY + d 2 ( T X 2  + TZ2)  l2 / 6 (1 10) 
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X (ROLL) 

(YAW) 
Fig.  17. A Three- Wheel Pyramid Configuration 

which is two-thirds of the value in (74) for the 4-wheel 
configuration. Also, because of the inequality (101), we arrive 
at 

k , m X  > [d (TX2 + TZ2)/18 + TY/ 61 (111) 

which is different form (102) but, for equal torque requirement, 
reduces to (103). 

The one-wheel failure analysis. considered above for the 
four-wheel configurations, becomes unwieldy because of the 
5x3 size of the reduced matrix GW. Therefore, pertinent results 
such as wheel torque capacity and power consumption are 
obtained with the aid of a computer and summarized later in 
Table 3. 

Three-Wheel Pyramid Configuration 
When wheel redundancy is not warranted, when for reasons 

of cost and weight the number of wheels must be bare 
minimum, and when the torque requirements about the three 
axes are not necessarily equal, the three-wheel pyramid 
configuration shown in Fig. 17 might be an ideal choice. For 
this arrangement, the three wheel angular momentums can be 
expressed in spacecraft axes as follows: 

wherein the 3x3 transformation matrix is Gw. Because now 
there is no redundancy, the pseudo-inverse matrix Gwt 
becomes the regular inverse matrix QW-'. After determining 

Gw-l and substituting that in Eq. (61), the vector gww in 
terms of the required torque components T,, Ty. T, tums out LO 
be. 

] (113) 

For minimization of power consumption, we arrive at the 
followin Euclidean norm. 

2Tx/3cq + Ty/3sq 

' [  -Tx/3~q + Ty/3sq - T,/3cq 
yWw= -Tx/3~q + TY/3sq + TJ3cq 

which is four-thirds of the norm (71) for 4-wheel configurations 
and six-thirds (twice) of the norm (109) for 6-wheel 
configuration. implying that if they all begin from zero wheel 
speed, the 3-wheel configuration will consume greater power in 
the stated ratio. For example, for equal torque requirements (T, = 
T, = Tz), while the minimum value of the 4-wheel norm is 
2.25, that of the 3-wheel norm is 3.0, which is, incidentally, 
the same as that for the three orthogonal wheels one per axis. 
Moreover, if the cant angle is not set to be the optimum (q f 
q*), the three-wheel pyramid configuration will use more power 
than the one-per-axis configuration.Next. the norm (1 14) yields 
the same optimum angle as one for the 4- and 6-wheel 
configurations, Eq. (72). For this optimum angle, the following 
minimum value of the norm emerges: 

which is twice the value (1  10) for the 6-wheel configuration and 
four-thirds of the value (7 1) for the 4-wheel configuration. 

The required torque capacity of the wheels for equal torque 
requirements about roll, pitch, and yaw axes is found to be 

As a check, note that the norm of K,, for three-wheel 
configuration is indeed 

I I  fiww ( I 2  = 3TX2 (1 17) 

equal to that for a one-wheel-per-axis configuration: but the 
power consumption of each wheel would be quite different from 
that for the one-wheel-per-axis configuration. 

Overall Comparison of Six Configurations 
When the. torque requirements about the roll. pitch, and yaw 

axes are not the same, the wheels of different torque capacities 
along different axes might be selected; but from the standpoint 
of reliability and cost, that is usually not preferred. Perhaps 
a more attractive choice is a six-wheel configuration with 
identical wheels, the cant angle selected according to the. desired 
torque ratios. For equal torque requirements, the optimum cant 
angle is q* = 35.26', and the associated wheel torque capacity 
for the required torque T,, must be at least 0.846 T,, Eq. 
(106)]-greater than 0.5 T,, for the two-wheel-per-axis 
arrangement. The two power consumption indexes in the case of 
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no wheel failure shown in the second row of Table 3 restate 
Eqs. (107) and (108). When the wheel in the roll-pitch plane 
fails, the torque capacity of the remaining five wheels must be 
boosted to at least 1.3 11 T,, to produce the required torque T,, 
about the spacecraft axes. This result is obtained by failing the 
wheels 1,2, ..., 6, one at a time, and then determining the 
absolute maximum value of the wheel torque in each case for 
generating T,, torque about each of the three spacecraft axes. 
The maximum Euclidean norm and the associated absolute sum 
6 
CIHwil are also shown in Table 3. Comparing the 2-wheel-per- 

i= l  
axis and 6-wheel hexagon configurations, we find that for equal 
torque requirements, the latter (hexagon) configuration requires 
wheels of larger torque capacity and it consumes more power- 
and therefore not as favored as-the former configuration. 
However, when the roll, pitch, and yaw torque requirements are 
not the same, the conclusion will possibly swing in favor of 
the hexagon configuration. 

Although six-wheel configurations provide substantial 
reliability and three-wheel redundancy, they could be expensive, 
so four-wheel configurations may be desirable instead, which 
provide a one-wheel redundancy. Two such contigurations-one 
with pyramid base parallel to roll-yaw axes and the other with 
the base at 45"-are discussed above. For the purpose of 
comparison , call these configurations parallel- and 45 O- 

configuration, respectively. Under no-failure case, the 45"- 
configuration requires wheels of larger torque capacity than the 
parallel-configuration, but in the event of a one wheel failure, 
the situation reverses. On the other hand, from the power 
consumption viewpoint, under no-failure case, the 45"- 
configuration uses only slightly more power than the parallel- 
configuration, but the failure of a wheel aggravates this 
difference. Because the final design is usually based on one- 
wheel failure performance, we infer that if power is relatively 
abundant and the wheel torque capacity is at a premium, the 45"- 
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configuration should be selected. On the other hand, if power is 
expensive and the cost of the wheels depends only weakly on its 
torque capacity, the parallel configuration will then be a more 
prudent choice. 

When wheel redundancy is not warranted, only three 
wheels-necessary and sufficient for spacecraft control- be 
employed. If the torque and momentum requirements about the 
three axes are identical, the control engineer may opt for one- 
wheel-per-axis configuration. But in the case of dissimilar 
requirements, 3-wheel pyramid, with the cant angle suitable to 
the desired torque and momentum ratios, might be preferred. 
Table 3 compares these two 3-wheel configurations for equal 
torque requirements, and shows that the pyramid configuration 
requires wheels of 39% bigger torque capacity, although its 
power consumption may be slightly less than or equal to that of 
the one- wheel-per-axis configuration. 

Fig. 18 sums up the comparison between the power 
consumption of the six configurations considered in Table 3 for 
equal torque requirements. In pmcular. the Euclidean norm of 

the vector Hww versus the cant angle for each configuration for 
the no-wheel-failure case are shown in the figure. As noted 
before, the cant angle q* (q* = 35.26") for minimum power 
consumption is the same for 3-, 4-, or 6-wheel pyramid 
configurations. 

Concluding Remarks 
Among a variety of disturbance torque that act on a 

space-craft, only solar radiation is considered in the preceding. 
For clarity, the torque expressions are further specialized by 
assuming that the vehicle mass center always remains in the 
pitch-yaw plane. Although this was true for the spacecraft that 
led to this study, the roll component of the vector from 
instantaneous vehicle mass center to the geomemc center of the 
array or bus may not be zero for other spacecraft. Also, while 
solar torque vanes at orbit frequency, aerodynamic torque, for 

OPTIMUM WORST 1 WHEEL FAILURE 
ANGLE NO-FAILURE 
?' ( O W  TOROUE mwm 

Reqned Tout Power Total Power htercept Fdsd W Requr6d Torpcs Fdsd Tolal Paver Total P o w  lnercap! 
T c q ~ o  Consumpcon Rate Due to Nonzero Inmi Wed F'rodcwg Capacity W Consumpton Due IO Nonzem had 

I Max 8 Rate -ispeed 
T ~ W  h t m f l m  Rw W-1 

Capacny nW w s p e e d  
nw-1 

k n x b m x  xi2hm: 
C1 I;, I ITmx C L 1 2 / T m , 2  C IITmx 

tl t t  b! 

0 5  15 3 0  p n v b  10 2 0  3 2 
3526 0846  15 2 509 x 5  $ 4  1311 x 4  2 933 3 073 

35 26 1045 2 25 2 449 X 1  x 2  2 091 x1.2 6 62 4 182 

$ 2  it1 

3526 13 2 25 2 598 x 3  #l 2 4 1 732 x 3  9 0  5 196 
1 

3526 139 3 0  2 8  

1 30 3 0  
FAILURE DISALLOWED 

Table 3. Comparison of Six Configurations for Equal Torque Requirements about Roll, Pitch, and Y a w  hexes 
Based on Minimum Power Consumption 
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Fig.  18. Reaction wheel configurations trade-offs for equal roll, 
pitch, and yaw torque requirements 

instance, may vary at twice the orbit frequency and a yaw bias 
torque might arise. For these different circumstances, the torque 
and momentum expressions have to be derived afresh to size the 
wheels. Regarding the wheel configurations, besides the two 
four-wheel configurations considered in the paper, there are two 
more: 1) NASA’s standard four-wheel arrangement of one wheel 
along each body-axis and the fourth wheel inclined equally to all 
three axes; and 2) all four wheels canted equally LO the pitch axis 
and each controlling roll and yaw as well, but more inclined to 
roll-axis than to yaw-axis or the converse depending on the roll 
and yaw unequal torque requirements. In the first arrangement, 
the cant angle of the fourth wheel is already determined, only 
the wheels’ torque and momentum capacity need to be sized for 
one-wheel failure scenario. In  contrast, in the second 

arrangement, two angles must be optimized to minimize power 
consumption for given torque and momentum requirements: the 
cant angle with the roll-yaw plane and the angle y with the 
roll axis for all four wheels. For these optimum angles, the 
torque and momentum capacity of the wheels will be sized 
according to one-wheel failure condition, as shown in the paper. 
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Abstract 

The atti tude motion of a tumbling. rigid. axisymmetric spacecraft is considered. A 
methodology for  detumbling the spacecraft through energy dissipation is presented. The 
differential equations governing this motion are stiff. and therefore an approximate solution. 
based o n  the variation o f  constants method, is developed and utilized in the analysis o f  the 
detiimbling strategy. Stability o f  the detumbling process is also addressed. 

Introduction 

As human expectations and scientific frontiers expand, the capabilities of satellites and 
space platforms must espand t o  meet these challenges. This Iesul ts in more expensive 
satellites and space platforms being designed and launched. These elaborate systems will 
require on-orbi t servicing/repairs and recoveiy missions to  correct system malfunctions. I n  
the past, on-orbi t servicing and 1-ecoveiy missions have been uncommon operations since the 
cost of a replacement satellite wts f a r  less than the cost of  these missions. However. today‘s 
high cost o f  manufacturing and launching of space systems make servicing and i.ecovery 
missions an economical alternative to spacecraft replacement.’-4 For example. the 
IN’T’EISAT 6 communication satellite with an initial cost of  $265M will be repaired on orbit 
a t  a total cost o f  $ I 50M.5 

In addition t o  monetary costs. there is the “cost” of human lives when manned space 
tlights are involved. For these missions. recovety is no t  an alternative. it is the only  choice. 
Finally, the growing concern over space debris mandates that a t  the end o f  a spacecraft’s 
useful life. i t  must be  retrieved a n d  properly disposed of.  

Malfunctioning o f  a spacecraft could result in a wildly gyrating. uncontrolled system. In 
the case of  a manned spacecraft. i t  may n o t  be feasible to wait for a period of several days 
while the spacecraft settles i n t o  a state ofpui-e spin” before a rescue mission is attempted. I t  is 
also reasonable to  assume that the manned spacecraft may be ;t module from a larger system. 
and as such, does no t  possess the degree of  flexibility necessaiy t o  dissipate energy a t  a 
sufficiently high rate in order t o  quickly detumble itself. Consequently. it can be expected tha t  
during some recovery missions. the uncontrolled spacecraft will have non-zero precession 
and nutation rates which must be reduced to zero a s  quickly as possible. 

The dynamic interactions involved in detumbling one spacecraft (uncontrolled vehicle) 
by another spacecraft (rescue vehicle). of perhaps comparable mass. are non-trivial. The task 
o f  grasping the uncontrolled (tumbling) spacecraft poses cliiite a challenge t o  the recoveiy 

T. Assistant Professor 
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De tu mhl i ng S t I-a t egt 

I t  is well kno\vi i  t h a t  th t .  yt~iieriil ro t a t ion i l l  i i i o t ion  ot ;I torclire-free rigid bocly involves 
spin, nutation and " AISO, wtien dissipative effects are present (e.g., ;I t'lexihle 
hody). the r o t a t i o n a l  iiiotioii ot'the I ~ o c I v  e\$entually rediices t o  ;i state o f  pi re  spin ahout the 
axis ot iii;ixiiniiiii rnoment ot' inertia. I'liis state o f  piire spin rotational m o t i o n  is ;I result of' 

energy dissipation. and t1ici.efiii.e rqreseii ts  tlie steady state rotational mot ion  o f  all real 
sl>acecrxtt (i.e.. noii-rigid bodies). I t  is worth noting that  t o r  iiii  axisymriietric Ix~c ly  (one 

\vIiei.e the tv ,o  smaller I i r i i i L i p i I  nit)nici i ts o f  inertia are eqi id)  the n u t a t i o n  rate ;IS rneasiii-ecl 
with I Y S ~ X X ~  to the ~col i \ t ; l l i t )  iiligl1lal. ~ ~ i ( ~ ~ i i e ~ i t l i ~ 1 i  \'ectc)l' is z e t ~ .  

Iii Iwactice. the liriic rccluii.t.d for this state ot'rotational motion to occur  is typically on tlie 
01-del- o f  several days.'' I t  is propo\t~I  t h a t  i n  or-der t o  ctecrease tlie required time. the energy 
dissilxition I.iitc of the slxicec~~aft should IJC increased. 'l'liis would b e  accomplisliecl hy 
attaching ;I clissiliatiw clc\fice to the spacecraft: t h i t t  is. i-eti.oacti\~elp titting the slxicecratt with 
euteI.lia I piwession :I lid 1111 t i i  t ion cla  liil>el.s. 

.l'lie clissip;iti\v device consists ot ;I t'lesihle rod with aii erid m i s s  ;IS shown i n  I:ig. I .  
lhiiipiiig eft'ects i n  the rod \c.oulcl be tailored to dissipate enei.gy a t  a rate which decreases tlie 
i i i i t a t i o i i  angle witliiii  tlic time frame of the mission. 'l'he length and stit'fness ot the r o d .  and 
tlic siye ot the end mas:, ai.c design criteria which are governed by stability requirements. As 
depicted in f~-.ig. I .  usage o f  this dt,\.ice requires only ii slight modification o f  the 'liiiiihliiig 
Satellite Retrie\~;iI ( ' I 'SK) t i i t  d e \ ~ l o l ~ e c l  by (;i.uriiriian.' I t  is proposed t h a t  the ;irm ot' the 
device he  constrxcted t'roni "sm;ii-t" mateikils such that .  during instances when the device is 
attached to the i'esciie \,chicle. i t  \yilt I J ~  sufficiently stiff to allow i.al4d inaneii\~ers. Howevei-. 

. .  



once grappling has been accompiished. the device will be detached from the rescue vehicle, 
eliminating its source of power. thereby rendering the device passive. 

Y 

b) 
Fig. 1. Retrieval vehicle: a) current concept (Grumman), 

b) proposed concept 

In this paper. the issues associated with attaching the device to  a tumbling spacecraft (i.e.. 
locating/tracking/spin-rate matching and gripping), or the actual design of the dissipative 
device are not addressed. In what follows, it is assumed that the device has been successfully 
attached to the spacecraft. The following sections present an analysis of the dynamic 
performance of the device. 
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Equations of ,Motion 

The spacecraft model adopted for the present study is shown schematically in Fig. 2. I t  
consists of an axisymmetric rigd spacecraft, S, an end-mass, E, and a flexible link, L. The 
end-mass is attached to the spacecraft via the flexible linkin such a manner that when the link 
is in its undeformed state. both the link and the end-mass are along the axis of symmetry of 
the spacecraft. 

I Zb 

1 

Xb Yb 

Fig. 2. Spacecraft iModel 

The d e d  orthogonal coordinate system BXbYbZb is fixed in the spacecraft. The axes 
are centroidal principal axes for the spacecraft. The Zb axis lies along the a . s  of maximum 
inertia which is also the axis of symmetry. The displacements o f  the end-mass in the 
&-direction are assumed small and therefore are neglected. That is, the end-mass is 
assumed to move parallel to the XbYb-plane: in this plane, the displacements of the end-mass 
relative to the spacecraft are denoted by x and y as shown in Fig. 1. 

The centroidal moments of inertia of the ,spacecraft are I,, I,. and I,, where 
I, = I, < I,. The contribution of the end-mass to the overall system mass is neglected since 
its mass. m. is significantly smaller than the mass , M. of the spacecraft. The flexible link 
connecting the end-mass to the spacecraft is assumed ‘‘massless.” Under these assumptions. 
the center of mass location, B, is unchanged by the the addition of the dissipation device. 

Denoting the stiffness and the damping of the flexible rod by K and C, respectively, then 
the equations governing the motion of the system can be e,upressed as 

(1) 2 + c i  + (k - o$ - o:)x - 2oi + (oxoy - &)y = - (oxoz + h,)f 
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/tlth, = c(fx - .;y) . (3  
where1 is the distance ofthe end-mass from B. c. k. and 1. are mass"normalized" quantities. p 
is a nondimensional inertia ratio (u > 1). and F7 is the z-direction inertia force associated 
with the end-mass. Note that the mass noimialized stiffness, k .  is actually the sc1uai.e of  the 
fundamental freq 11 e n cy fc J I' t 11 e d issi pat i  ve de vice . 

((3.21) 

Equations ( I ) through ( 5 )  represent a set of  stiff cliffel-entia1 equations since there are two 
disparate time scales. An approximate analytical solution for these equations is developecl in  
the next section. 

Approximate Solution 

Assuming a small attached end-mass E ( m  M )  and relatively small dissipation rates. 

the rotational motion of  the system (spacecraft and device) can be approximated for a few 
cycles o f  oscillation by Euler's equations f o r  an axisymmetric. torque free. rigid body. 'I'hese 
equations are 

= - u,.to,(/c - 1). ( 7 4  

G7 = 0. (7.c) 

(8.a) 
where p is as defined in  Eel. (0.b). Euler's equation (Eq. (7)) has a solut ion 

(ox = A c ~ s Q ( t  + to). 

t o j  = AsinQ(t + to). (8.1)) 

(U, = constant (8.c) 

where Arepresents the tangential angular velocity (i.e., the resultant o f  oxand  0,: see Fig. 4) ,  
and st = (p - 1 ) ~ ~ .  Equations ( 1 )  and (2) can now be rewritten as 

(i)) C + ~k + ( k  - W: - A'SZ2)x - 2w7f + A2SLr('rzy = - / L W ~ I A ( ' ~ J  
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where 
SQ = sin Q(t + to); CQ = cosSl(t + to). 

Equations (9) and (10) have time varying coefficients; thus. a study o f  stability via the 
Routh-Hurwitz criterion is inapplicable. To circumvent this problem. a coordinate system. 
Btqc. which rotates relative to the spacecraft-fixed Zb-axis with angular rate i2 is defined (see 
Fig. 3). The counterparts of Eqs. (9) and (10) in this coordinate system are constant 

Fig. 3. B{q[ coordinate system 

coefficient differential equations for 5 and q. Routh-Hurwitz criterion can now be applied t o  
show that the complementary solutions of 6 and q decay provided that the normalized 
stiffness satisfies 

and the normalized damping is positive (Le.. c > 0). Note that if H is the magnitude of the 
angular momentum of the tumbling spacecraft. then 

(13) 2 2  2 2 H2 = m I ( p  oZ + A2). 

is bounded at all times for any given set of initial A’ H2 which implies p202 + - < - 
2 m212 

conditions. Therefore, proper selection of k will always satis@ Eq. (12). 
It can also be shown that in the BSqC coordinate system. the particular solutions for the 

counterparts of  Eqs. (9) and (10) are constants 61 and ql. Since the complementary solutions 
decay to  zero and the particular solutions are constant, then steady state solutions f o r  Eqs. (9) 
and (10) can be expressed as 
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l'he energy dissipation rate D rhen becornes 

D = m c ( i 7  + 97) = mcR'((f + ? I ; )  ( I S )  

iv1iet.e the entire energy clissipation i s  considered ;IS energy lost hy the tumbling spaceci~utt.  
That  is. 

cll' 
- -  - - D  
d t  

_ .  tnl 
2 

I = -(/[(I); + A') 

Nois.. the cliiantity A is ;I measui.e of how far  the spaceci~f't is f r o m  a state o f  pure spin. 
\\'lien A is zero. the n u t a t i o n  angle is zero. therefore. tlie spacecraft is i n  ;r state of pure s p i n .  
.l'he angle that tlie axis o f  symmetry makes with the dit-ectioii of t h e  constant angular 
momentuin \7ector is ~ j \ . e i i  by (sce Fig. 4) 

\\+et.e 8 is the nutation ha l f  angle. 

Fig. 3 .  Precessing spacecraft 
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Via Eqs. (13) through (17), a constant coefficient, ordinary differential equation for the 
A* can be developed. Omitting the algebra, this equation is 

(19) -(A2) d 
dt 

= - 2q12A2(P2 - A2)2(Q2 - c ? Q ~ A ~ )  
I(Q2 + (k - P2 - 

where p. P2. and Q2 are defined respectively as 

Q2 = (k - P2)’ f c?02P2. 

Note that the P is the precession rate of the spacecraft (see Fig. 4). 
Equation (19) is o f  the form 

dx ax@ - x)~ (Y  - x) - -  - -  
dt (a + x)2 

1 (d + K)2 

a X(B - ~ ) ~ ( y  - X) 

which may be rewritten as 

dX dt = -- 

Using a partial fraction e>tpansion. an analytical solution can be obtained. resulting in a 
solution of  Eq. (19) of the form t = f(A2). For studies of settling time versus A2. this form of 
the anti-derivative of Eq. (19) is quite convenient. However, when A2 as a function of time is 
required. i t  is more convenient to numerically integrate Eq. (19). 

Results 

In order to validate the approximate solution. Eqs. (1) through (5 )  and Eq. (19) were 
numerically integrated using the MATLAB’O function “ODE45.” Initial conditions for the 
approximate solution were A = 6. w, = 3 whereas initial conditions for the complete solution 
were o, = 6, o, = 0. w, = 3. 2 = y = 0. andx = y = 0 .  (Note, any combination of ox and oy 
resulting in A=6 is applicable since the transienk decay rapidly.) In both cases. p =  1.5 
resulting in P2 = 56.25. The results of these numerical integrations for two different 
scenarios are shown in Figures 5 and 6. While the accuracy of the approximate solution is 
quite acceptable, its computational requirement is typically three to four orders of magni tude 
less than that required for the “complete” solution. Figures 5 and 6 show that the relative 
error for  the approximate solution decreases as the detumbling time becomes longer (i.e., the 
energy dissipation rate decreases). This is expected since the approximation becomes more 
accurate as the dissipation rate decreases. 

Figures 7 through 11 demonstrate the dependence of energy dissipation rate. hence 
settling time. on system the parameters c. k. 1. p. and H, respectively. For an effective 
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comparison, an initial value o f A = 6  is used in each investigation. In Figs. 7 through 10. the 
parameter P2 remains unchanged at P2=56.25 (i.e., p =  1.5, w,=3). whereas. in Fig. 11. P2 
changes as wz is varied from 2 to 5. That is, in Fig. 11 the angular momentum is varied while 
keeping the inertia properties constant. In contrast. in Fig. 10 the angular momentum is held 
constant while the inertia properties are vaned ( O S <  p < 2  and o, adjusted such that P2 is 
maintained at  56.25). In Figs. 7 through 10. the label by each curve represents the value of the 
parameter which was varied: in Fig. 11, the label by each curve represents the value o f  0,. 

Damping obviously has a strong effect on the dissipation rate and generally an increase in 
damping leads t o  a decrease in settling time (Fig. 7). However. a relatively high damping 
value (c = 500) causes the settling time to increase indicating that for a given configuration. 
there is an optimal value of c. Increasing c beyond this optimal value will result in increasing 
settling times. A e.xpected. decreasing the length of the rod (Fig. 8) or increasing its stiffness 
(Fig. 9) increases the settling time since both of the processes decrease the e n e r a  dissipation 
rate. Values o f  1< p < 2 are required for stabifity about the &-axis (Fig. IO). For cases in 
which p < 1. the system is unstable about the &-axis, therefore A increases instead of 
decreasing. Note that p .c 1 does not violate the assumptions used in formulating the 
problem. but  represents an inappropriate configuration. Figure 11 demonstrates that the 
settling time increases as the initial spin rate of the spacecraft decreases. 

Figure 12 shows contours of constant settling time for various combinations o f  
normalized damping and stiffness. Settling time was defined as the time required for A* to  
decrease to 1% o f  its original value. The contours of Fig. 12 were developed using values o f  
I=400. k =  1.5, I = 1, and 0,=3: the parameter P2 was 56.25 (Le.. A=6 initially). Each 
contour is IabeiIed with the settling time in hours. These contours again demonstrate that for  
a given stiffness. there is an optimal value of c. beyond which the settling time increases. For 
large values o f  k. the optimal points on each contour lie approximately on a straight line. I t  
can be shown that for cases where (A2 < k )  , the "optimal" value of c is proportional t o  

(k-P2): the constant of proportionality depends on the choice of the initial and final values o f  
A2 used in the definition of settling time. Superimposed on the contours of Fig. 12 is the 
theoretically derived straight line. Excellent agreement is observed for cases involving large 
stiffness values. It should be noted that the "optimal" values of c are unrealistically large: 
therefore we may assume as a general rule of  thumb that the damping should be made as large 
as possible. 
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Fig. 7. Effects of damping o n  dissipation rate 
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Summary 

The approximate solution developed closely parallels the energy-sink approach." The 
device presented in this paper is an extension of the one-degree-of-fieedom (dot] 
ball-in-tube precession dampers studied by previous this device represents a 
two dof damper. 

The problem addressed in this paper is an important part of the bigger problem of 
devising safe and efficient spacecraft detumblimg and retrieval strategies. AI though the 
results presented in this paper are based on somewhat higher than normal initial rotational 
rates and normalized damping characteristics, the usefulness of the proposed device is well 
demonstrated. Currently, the "optimal" normalized damping coefficients are n o t  realizable: 
however, with developments in the area of material sciences. these "optimal" damping 
coefficients may eventually be achievable. Future work of direct practical utility will include 
(1) a detailed study of desired settling time as a function of system parameters, ( 2 )  stability 
analyses associated with misalignment of the device, and (3) despin strategies. 
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ABSTRACT 

The Arthur Holly Compton Gamma Ray Observatory (GRO) was launched by the shuttle 
Atlantis in April 1991. This paper presents the results of the attitude sensor calibration that 
was performed during the early mission. 

The GSFC Flight Dynamics Facility (FDF) performed an alignment calibration of the two 
fmed-head star trackers (FHSTS) and two fine Sun sensors (FSSs) on board Compton GRO. 
The results show a 27-arcsec shift between the boresights of the FHSTs with respect to 
prelaunch measurements. The alignments of the two FSSs shifted by 0.20 and 0.05 degree. 
During the same time period, the Compton GRO science teams performed an alignment 
calibration of the science instruments with respect to the attitude reported by the onboard 
computer (OBC). In order to preserve these science alignments, FDF adjusted the overall 
alignments of the FHSTs and FSSs, obtained by the FDF calibration, such that when 
uplinked to the OBC, the shift in the OBC-determined attitude is minimized. 

FDF also calibrated the inertial reference unit (IRU), which consists of three dual-axis 
gyroscopes. The observed gyro bias matched the bias that was solved for by the OBC. This 
bias drifted during the first 6 days after release. The results of the FDF calibration of scale 
factor and alignment shifts showed changes that were of the same order as their uncertainties. 

* Thiswork wassupported bythe National Aeronauticsand Space Administration (NASA)/Goddard Space Flightcenter 
(GSFC), Greenbelt, Maryland, Contract NAS 5-31 500. 



1. INTRODUCTION AND BACKGROUND 

The Arthur Holly Compton Gamma Ray Observatory (GRO) was launched by the shuttle Atlantis in April 
1991. This paper presents the results of the attitude sensor calibration that was performed during the early 
mission by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). 

1.1 Summary 

Section 1 of this paper provides an introduction and background information, consisting of a summary of the 
paper and its results, a brief history of the GRO mission, a description of the attitude sensors, and the attitude 
requirements. Section 2 discusses the purpose of in-flight calibration of the attitude sensors, describing the 
impact of calibration errors and how such errors are parameterized. Section 3 provides an overview of the 
methods used for the in-flight calibration of the attitude sensors and briefly summarizes the algorithms and 
FDF software system. Section 4 provides the results of the calibration. These results include a description of 
the data, the numerical results, and how the results were used. Section 5 gives a brief discussion of these 
results. 

FDF performed an alignment dalibration of the two fixed-head star trackers (FHSTs) and two fine Sun sensors 
(FSSs) on board Compton GRO. The results show a 27-arcsec shift between the boresights of the FHSTs with 
respect to prelaunch measurements. The alignments of the two FSSs shifted by 0.20 and 0.05 degree. During 
the same time period, the Compton GRO science teams performed an alignment calibration of the science 
instruments with respect to the attitude reported by the onboard computer (OBC). In order to preserve these 
science alignments, FDF adjusted the overall alignments of the FHSTs and FSSs, obtained by the FDF 
calibration, such that when uplinked to the OBC, the shift in the OBC-determined attitude is minimized. 

FDF also calibrated the inertial reference unit (IRU), which consists of three dual-axis gyroscopes. The 
observed gyro bias matched the bias that was solved for by the OBC. This bias drifted during the first 6 days 
after release. The results of the FDF calibration of scale factor and alignment shifts showed changes that were 
of the same order as their uncertainties. 

1.2 Mission and Brief History of Compton GRO 

The Compton Gamma Ray Observatory was the second great observatory launched by the National 
Aeronautics and Space Administration (NASA). Its purpose is to observe astronomical sources in the the 
gamma ray spectrum. The 18,000-kg spacecraft has four gamma ray instruments, which cover a wide range of 
capabilities. These capabilities include fields of view (FOV) ranging from all-sky down to 4 degrees, a total 
energy range of 0.1 to 30,000 MeV, a time resolution of as small as 0.1 ms, and a position resolution of as 
small as 5 arcmin (la). 

The shuttle Atlantis was launched from the Kennedy Space Center on April 5 ,  1991 at 14:22:44 UTC. The 
observatory was deployed on April 7,1991. During the deployment, the high-gain antenna became stuck, and 
the astronauts performed an unscheduled extravehicular activity (EVA) to free it. Compton GRO was released 
from the shuttle at 22:37 UTC into a near-circular orbit with a semimajor axis of 6833 km and an inclination 
of 28.48 degrees. Attitude calibration maneuvers were performed from April 9 through April 14,1991. That 
was followed by a series of observations designed to calibrate the scientific instruments. Calibrated attitude 
sensor alignments were uplinked on May 14,1991. On May 16, the spacecraft maneuvered to its first science 
target, which initiated the start of normal operations. Normal operations consist of 2-week observation 
periods, during whch Compton GRO is maintained in an inertial attitude. 

1.3 Attitude Sensors of Compton GRO 

Compton GRO is a multimission modular spacecraft (MMS) with two FHSTs, two FSSs, an IRU, two 
three-axis magnetometers (TAMS), and coarse Sun sensors (CSSs).  Attitude control during normal 
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operations is performed with reaction wheels and magnetic torquer bars. This discussion is limited to the 
in-tlight calibration of the FHSTs, FSSs, and IRU. FDF did perform a bias determination for the primary 
TAM (bias = [0,0,4] mG). However, based on comparisons of FHST attitude solutions to FSSDAM attitude 
solutions, the error in the FSSDAM solutions meets the requirement of less than 2 degrees (30) without the 
bias solution; thus no changes to the TAM bias were made. 

The FHSTs are the NASA standard star tracker built by Ball Aerospace Systems Division (serial numbers 7 
and 8). This model uses digital electronics, which replace much of the analog electronics of previous models. 
These devices are capable of locking onto and tracking the position and magnitude of one star at a time. The 
valid magnitude range is 2.0 to 5.7. The FOV is an 8degree square and the digital resolution is 7.78 arcsec per 
count. The position measurements have a random error of 8 to 24 arcsec (lo), depending on the magnitude 
and position in the FOV, and systematic calibration errors of less than 10 arcsec (lo). For Compton GRO, the 
FHSTs are mounted with their boresights separated by 90 degrees. 

The IRU is the DRIRU I1 manufactured by Teledyne. It consists of three dual-axis gyroscopes, giving a total 
of six channels of information. The precision output of this device is in the form of pulses that provide 
increments of rotation. Each gyroscope operates at two rate ranges, the low rate being 0.05 arcsec per pulse 
and the high rate being 0.8 arcsec per pulse. For Compton GRO, inertial attitudes are maintained in the 
low-rate range and maneuvers are done in the high-rate range. The angular rate bias is specified to vary by no 
more than 0.0012 arcsec/sec over 6 hours and 0.0008 arcsec/sec over one year. 

The FSS, manufactured by Adcole, has a 64-by-@-degree FOV. It consists of two orthogonal sensor heads, 
each of which provides the angle between the Sun and a plane defined by a slit and a set of reticules. The 
digital resolution is about 0.004 degrees per count. The noise of each measurement is specified to be half the 
digital resolution. The calibrated accuracy is specified to be less than 0.02 degree. The two FSSs on Compton 
GRO are mounted so that their FOVs overlap by about 2 degrees. 

1.4 Attitude Requirements for Compton GRO 

The Compton GRO mission requires coarse attitude determination to an uncertainty of 2 degrees (30) per 
axis, using FSS, TAM, and LRU data. Fine attitudes determined using FHST and IRU data are required with 
an uncertainty of 0.024 degrees (30)  per axis. After each maneuver, the attitude must be within 0.5 degree of 
the target attitude so that the OBC can correctly identify stars. 

2. PURPOSE OF IN-FLIGHT CALIBRATION 

Before launch, the manufacturers of spacecraft and attitude sensors measure the alignments and other 
calibration quantities. These measurements, made before and after various vibration, thermal, and vacuum 
tests, show slight shifts in calibration parameters. The shock and vibration of launch and the weightlessness, 
temperature, and vacuum of the space environment also result in slight shifts in calibration parameters. Such 
shifts introduce error into the attitude determination process. To reduce this error, the attitude sensor models 
are constructed to incorporate small changes in calibration parameters; in-flight sensor measurements are 
then used to solve for small shifts in calibration parameters from the best prelaunch values. This section 
presents models for small adjustments to calibration and dmusses the impact of calibration errors. 

2.1 FHST and FSS Alignment Calibration Error 

The mission requires alignment calibration of the FHSTs and FSSs. Let MAS be the prelaunch value of the 
3-by-3 transformation matrix from the sensor coordinates to the coordinates of the attitude control system 
(ACS), which coincides with the body coordinates of the spacecraft. Each sensor has its own value for this 
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matrix, which gives the alignment of the sensor with respect to the ACS. Let MAS! be the postlaunch value of 
the alignment matrix and let Msst be the difference between the prelaunch and postlaunch alignment 
matrices, sometimes called the misalignment matrix, such that 

To perform an alignment calibration, an algorithm must determine Mssf for each sensor. For the Compton 
GRO and many other missions, it is assumed that all the matrices in equation 1 are orthonorma4 thus there are 
only three degrees of freedom to each matrix. Let Msst be parameterized by the 3-vector 8 as follows: 

M,, = M L  Rot(5) M, 

- 
8 is the Euler rotation vector which is converted to the corresponding rotation matrix with the function 
Rot (G), 

o - e, e, 
Rot(6) = cos(8) I + 

where 8 = 15 I and I is the 3-by-3 identity matrix. The postlaunch alignment becomes 

M,, = Rot(6) M, (4) 

The algorithm discussed in Section 3 solves for a value of for each of the two FHSTS and each of the two 
FSSs on board Compton GRO. Unfortunately, not all 12 components of these four vectors are independently 
observable. An overall rotation of all the attitude sensors with respect to the scientific instruments or the body 
coordinate system is not observable by any calibration process that is limited to using attitude sensor data: 
thus only 9 of the 12 degrees of freedom in these alignments are observable. The criteria for the selection of the 
unobservable degrees of freedom are discussed in Section 3. 

FHST and FSS alignment errors have two main effects on the attitude of the spacecraft. First, an overall 
alignment error introduces a systematic error in the pointing gf the scientific instruments. This overall error is 
related to the three unobservable degrees of freedom already mentioned. Second, the relative alignment errors 
between these sensors results in higher measurement residuals and inconsistencies between attitude solutions 
obtained with one FHST and both FHSTs. 

2.2 IRU Calibration Errors 
The OBC and FDF ground software use the following model of the digital IRU output to obtain the measured 
angular velocity of the spacecraft, G,  
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where G is a 3-by-3 matrix that transforms the IRU outputs to the ACS, is a bias vector, ki is the scale factor 
for the ith IRU axis, and ANi is the change in the accumulated angle counts during the time interval At. By 
allowing the G-matrix to be nonorthogonal, the nonorthogonality of the IRU measurement axes can be taken 
into account. The adjustable parameters of this model are G, the ks, and b. Small variations of these 
parameters are applied to obtain an improved rate, G', 

where 6A is a 3-by-3 matrix of small adjustments to the prelaunch value of alignment, Si is a small adjustment 
to the scale factor of the i* axis, and 6 b is an adjustment to the prelaunch value of the bias. Since 6A contains 
independent adjustments to three axes, this matrix has six degrees of freedom. However, by allowing all nine 
components to vary, the scale factor adjustments can also be incorporated. Let 6M be the 3-by-3 matrix that 
includes both alignment and scale factor adjustments as follows: 

If $' is the true angular rate vector and the bias is assumed small, then the rate error is given to first order in the 
calibration error by 

For an inertially pointing attitude, G' is very small, so the errors in the IRU alignment and scale factors do not 
contribute any fmt-order errors to the attitude solution. The IRU bias error does contribute sigmficantly to the 
rate error at all times, which is why it is continuously solved for by the OBC. During a maneuver, IRU 
alignment and scale factor errors can accumulate to produce a noticeable effect on the attitude. This is 
especially true for Compton GRO, because the OBC uses only IRU data during maneuvers to compute the 
attitude. Section 3 discusses the algorithm that uses maneuver data to solve for adjustments to the IRU 
calibration parameters. 

2.3 Calibration Parameters Uplinked 

FDF has the capability to provide calibrated parameters for the attitude sensors in the form of uplink tables to 
the OBC. The information in these tables includes postlaunch alignments MAS' for each of the two FHSTs and 
each of the two FSSs and a postlaunch IRU alignment matrix G' = [ I + 6M] G. The OBC uses a Kalman filter 
to continuously solve for the spacecraft attitude and the IRU bias; thus ground-determined biases need not be 
uplinked. However, the ground-determined bias is compared with the OBC-determined bias. 

3. METHOD OF IN-FLIGHT CALIBRATION 

This section describes two algorithms used for the in-flight calibration of the Compton GRO attitude sensors. 
The alignments of the FHSTs and FSSs were determined by FDF with an algorithm derived by Shuster 
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(1982). FDF solved for the IRU alignments, scale factors, and biases with an algorithm origmated by 
Davenport (Keat 1977). This section also presents an overview of the FDF attitude ground support system 
(AGSS) for attitude calibration of Compton GRO. 

3.1 Calibration of FHST and FSS Alignments 

Malcolm Shuster has derived two algorithms for determining the in-flight alignments of attitude sensors such 
as FHSTs and FSSs (Shuster 1982 and 1990, Bierman 1988). Both algorithms work by comparing the dot 
products of unit vectors in spacecraft coordinates from different sensors measured at the same time with the 
dot products of the corresponding unit vectors in inertial coordinates. The vectors in inertial coordinates come 
from a star catalog or Sun ephemeris. Errors in the alignments used to compute the measured spacecraft 
coordinate vectors produce differences in these dot procucts. The algorithms parameterize the alignment 
adjustment to each sensor with the Euler rotation vector 8 defined in Section 2. 

These vectors are varied in a batch least-squares process to minimize the differences between dot products. 
These algorithms have the advantage of not requiring IRU propagation or attitudes except to identlfy stars. An 
overall rotation applied to all the sensors does not affect the relative measurements or the dot products. The 
Shuster algorithms resolve these three unobservable degrees of freedom by incorporating the prelaunch 
alignments into the least-squares sum. In effect, the three unobservable degrees of freedom retain their 
prelaunch value. The two algorithms differ in the way they weight the data in the least-squares sum. The older 
algorithm (Shuster 1982) does not optimally weight the data: this weighting ignores correlations between dot 
products which share a measurement vector. However, it is not necessary for a least-squares algorithm to be 
optimally weighted to give good results. Given sufficient data, the solved-for alignments of the older 
algorithm are still valid. However, the older algorithm assumes that the weighting is optimal in the derivation 
of the covariance of the solution. Thus, the solution is correct, but the covariance of the solution is not correct. 
Shuster remedied this problem in a newer version of the alignment algorithm (Bierman 1988 and Shuster 
1990) in which correlations between dot products at the same time are optimally weighted. However, the 
newer algorithm still ignores correlations between dot products at different times; the capability to optionally 
weight such correlations would be very Micult to implement. The FDF Compton GRO attitude ground 
support system uses the older algorithm, because the newer algorithm was not available soon enough. 

During the early mission of Compton GRO, the scientific instruments were calibrated before the attitude 
sensor calibrations were uplinked. The science calibrations included an alignment adjustment with respect to 
the attitude provided by the OBC. FDF personnel noticed that the alignments provided by the Shuster 
algorithm would shift the attitude computed by the OBC and thus degrade the alignment calibration of the 
scientific instruments. To prevent this, FDF personnel adjusted the overall alignment of the FHSTs and FSSs 
with a single rotation, which minimized the shift to the OBC-determined attitude. The algorithm for doing 
this adjustment is presented in the appendix. The adjusted alignments are indicated with double-prime 
subscripts, MAS” and Mssrf. 

3.2 Calibration of the IRU 

The IRU of Compton GRO was calibrated in flight by FDF with a batch least-squares algorithm of 
P. Davenport (Keat 1977). This algorithm uses data from maneuvers. The attitude difference is computed 
from inertial attitude solutions withFHST and IRU data before and after the maneuver. The attitude difference 
is also computed by integrating the IRU data over the time interval of the maneuver. The difference between 
these two attitude differences is directly related to errors in the IRU calibration parameters. Each such 
mcaneuver interval can provide 3 of the 12 degrees of freedom of the calibration. Thus, a minimum of four 
independent maneuver intervals is required for a full calibration. Typically, three of the intervals are chosen to 
be maneuvers around each of the spacecraft axes. The fourth interval must not duplicate any of the first three 
intervals: it could be a time span spent at an inertial attitude or a maneuver that is in the opposite direction 
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Figure 1. FDF Calibration System for Compton GRO 
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4. RESULTS OF CALIBRATION 

4.1 Results of FHST/FSS Alignment Calibration 

The data used for the FHST/FSS alignment calibration were obtained from observations at six different 
inertial attitudes (Davis 1991a). These observations include the Sun at four different positions in the FOV of 
FSSl and three different positions in the FOV of FSS2. The FFCAL results were then adjusted to be 
consistent with the science instrument calibration that occurred at the same time. Misalignments of 
0.20 degree and 0.05 degree were observed for FSSs 1 and 2, respectively. The significant part of the FHST 
calibration consisted of a 27-arcsec misalignment between the FHST boresights. These results were validated 
by comparing the residuals of the fine attitude solutions computed from the calibrated alignments with the 
residuals computed from the prelaunch alignments. The residuals from the calibrated alignments were 
significantly smaller than those from the prelaunch alignments. Figure 2 shows an example of the effect of 
the calibrated alignments on the residuals. The calibrated alignments were then uplinked to the spacecraft. 
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Figure 2. Fine Attitude Measurement Residuals with Pre- 
launch and Calibrated Alignments 

46 



Table 1 gives the prelaunch alignment matrices, MAS, obtained from the final OBC database before launch. 
Table 2 gives the misalignment matrices, M s s ~ ~ ,  obtained by adjusting the FFCAL results to preserve the 
average attitude solution with two trackers. Bble 3 gives the calibrated and adjusted alignments, consisting 
of the product of the prelaunch alignment matrices with the misalignment matrices. These mauices were 
uplinked to the OBC on May 14, 1991. The rotation vectors that rotate the prelaunch alignments to the 
adjusted calibrated alignment matrices are: 

FHSTI (ARCSEC) 

X-axis 41.7 

FHST2 (ARCSEC) FSSI (ARCSEC) FSSP (ARCSEC) 

56.4 236 -153 

Y-axis 

Z-axis 

Magnitude 

The angle between the FHST boresights of the calibrated alignments is 27.5 arcsec smaller than the angle 
between the prelaunch boresights. 

-41.7 56.3 -407 2 

- 13.8 13.7 - 562 110 

60.5 80.3 733 1 89 

4.2 Results of IRU Bias Calculation 

MANEWER AXlS AND 
ANGLE (DEGREES) 

x 6 0  

2 -28 

The FDF operations team used IRUCAL to compute the in-flight IRU biases as a function of time over a 
6-month period from April 9 to October 27,1991 (Kulp 1991). Biases were determined for the threechannels 
of the primary configuration and the three channels of the backup configuration, both in the low-rate IRU 
mode. For each bias solution, 90 minutes of data were processed. The attitude solutions were computed near 
each end of a 90-minute data span, and each solution was centered in a 10-minute batch of uniformly 
distributed FHST data. Figures 3 and 4 show the IRUCAL-determined bias vectors as a function of time for 
the primary and backup channels. Figure 3 also shows the bias solutions of the OBC. Note that the IRUCAL 
and OBC bias solutions follow one another and that both show some drift in the x- and z-axes of the primary 
channels early in the mission. 

SENSORS FOR INITIAL SENSORS FOR FINAL INTERVAL DURATION 
ATTITUDE AlTITUDE (MINUTES) 

FHST1 FHST2 FSS2 MST2 19 

FHSTl MST2 FHSTl FHST2 15 

4.3 Results of IRU AlignmentScale Factor Calibration 

The Compton GRO calibration team used IRU data and fine attitude solutions with the IRUCAL utility to 
solve for IRU alignment, scale factor, and bias during the earlymission (Davis 1991b). Maneuvers were done 
with all channels in the high-rate mode. The calibration team used data from four calibration maneuvers on 
April 9 through April 13, 1991. The full IRU calibration was done with data intervals from the following 
maneuvers: 

I Y 31 I FSSl M S T 2  I FHST1 FHST2 I 15 I 
I I I I Y-60 FSSl FHST2 FHSTl FHST2 20 1 
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Table 1. Prelaunch FHST and FSS Alignments for Compton GRO; MAS 

ROTATION MATRIX FROM PRELAUNCH FHSTl FRAME TO ACS FRAME 

1 - 0.707293868 0.000641730 - 0.706919372 
- 0.706919611 - 0.000965840 0 .707293212 
- 0.000228880 0.999999344 0 . 001 136780 

ROTATION MATRIX FROM PRELAUNCH FHST2 FRAME TO ACS FRAME 

1 - 0.706911922 - 0.000668710 - 0.707301319 
0.707300782 0.000884930 - 0.706912220 
0.001098630 - 0.999999404 - 0.000152590 

ROTATION MATRIX FROM PRELAUNCH FSSl FRAME TO ACS FRAME 

1 
1 

0.003753100 - 0.865531862 0.500839829 

0.003645920 0.500851870 0.865525305 
0.999986291 0.001422380 - 0.005035412 

ROTATION MATRIX FROM PRELAUNCH FSS2 FRAME TO ACS FRAME 

0.000871080 0.034161031 0.999415934 
0.999991417 - 0.004071418 - 0.000732420 
0.004044019 0.999408066 - 0.034164291 

Table 2. Postcalibration and Adjustment Alignment Change Matrices; MSs” 

ROTATION MATRIX FROM ADJUSTED FHSTl FRAME TO PRELAUNCH FHSTl FRAME 

1 
1 

0,99999991 - 0.00028956 0.00006638 
0.00028955 0.99999990 0.00000000 

- 0 .  oooO6631 0.000oO001 0.99999988 

ROTATION MATRIX FROM ADJUSTED FHST2 FRAME TO PRELAUNCH FHS”2 FRAME 

0.99999989 - 0.00039545 0.00006634 
0.00039545 0.99999987 O f  00000000 

- 0.00006634 0.00000003 0.99999996 

ROTATION MATRIX FROM ADJUSTED FSSl FRAME TO PRELAUNCH FSSl FRAME 

[ 

1 0.99999373 - 0.00220720 0.00272080 
0.00220561 0.99999742 0.00058720 

- 0.00272209 - 0.00058124 0.99999596 

ROTATION MATRIX FROM ADJUSTED FSS2 FRAME TO PRELAUNCH FSS2 FRAME 

1 0.99999959 0.00051921 0 .00053489 
- 0.00051950 0.99999973 0.00053081 
- 0.00053462 - 0.00053110 0.99999961 
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Table 3. Postcalibration and Adjustment Alignment Matrices; MAS/! 

ROTATION MATRIX FROM CALIBRATED & ADJUSTED FHSTl FRAME TO ACS FRAME 

1 - 0.70724671 0.00084653 - 0.70696623 
- 0.70696675 - 0.00076114 0.70724624 

0.00006060 0.99999928 0.00113677 

ROTATION MATRIX FROM CALIBRATED & ADJUSTED F H S n  FRAME TO ACS FRAME 

1 - 0.70686513 - 0.00038918 - 0.70734814 
0 .70734791 0.00060520 - 0.70686522 
0 .000703 19 - 0.99999967 - 0.00015251 

ROTATION MATRIX FROM CALIBRATED & ADJUSTED FSSl FRAME TO ACS FRAME 

1 0.00048072 - 0.86582899 0.50033978 

0.00239455 0.50033946 0.86582589 

ROTATION MATRIX FROM CALIBRATED & ADJUSTED FSS2 FRAME TO ACS FRAME 

0.99999690 - 0.00078186 - 0.00231379 

1 0.00031903 0.03363069 0 .99943420 
0.99999357 - 0.00355182 - 0.00019969 
0.00354310 0.99942801 - 0 .03363162 
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Even though two of the maneuvers are around the y-axis, they contribute different information about the 
calibration parameters because they are in different directions. 

The solved-for corrections to the primary configuration scale factor/alignment calibration and its uncertainty 
are: 

Solved-for GM-Matrix Uncertainty 

1 0.000507 0.000229 0.000610 

0.000527 0.000229 0.000608 
- 0.000511 - 0.000265 - 0.000223 0.000602 
- 0.000547 0.000365 0.000037 

0 .mol67 0.000374 

The observed corrections are of the same order as the estimated uncertainties. To improve these results, it 
would be necessary to process larger amounts of data or process different data with lower errors. A major 
source of error in processing the above data for IRU calibration comes from the FSS. The lack of coverage by 
both FHSTs forced the use of FSS data for three of the eight attitude solutions. The FSS has an inherent error 
(not removed by alignment calibration) of about 0.022 degrees (0.00038 radians). The IRU calibration 
uncertainties could be reduced by using only FHST data to compute the epoch attitudes: such data may be 
available in more recent maneuvers. On the other hand, the observed uncertainties in the calibration and the 
observed error after maneuvers are easily within the requirements of a successful mission; these results were 
thus not uplinked to the OBC. The OBC and the ground software are still using the prelaunch measurements 
of the scaIe factor and alignment. That alignment/scale factor matrix is 

1 1.OoooO 0.00108 0.00079 
-0.00100 1.OoooO -0.00156 
- 0.00056 0.00128 1.00000 

The solved-for high-rate gyro biases are 

primary configuration 

channel X 2  bx = 1.66E-4 deg/sec +/- 0.10E-4 deglsec 

channel Y1 by = 0.99E-4 deglsec +/- 0.09E-4 deglsec 

channel Z1 bz = 1.41E-4 deglsec +/- 0.10E-4 deglsec 

backup configuration 

channel X1 bx = -0.84E-4 deglsec +/- O.lOE-4 deglsec 

channel Y2 by = 1.22E-4 deglsec +/- 0.09E-4 deg/sec 

channel 22 bz = 0.81E-4 deglsec +/- 0.10E-4 deglsec 

These solutions reflect the gyro bias during maneuvers when the IRU is in the high-rate mode. The high-rate 
bias agrees with that obtained from low-rate data to within the estimated uncertainty. 

There was no observable change in scale factor and alignment to within the estimated uncertainty of the 
solution. The solved-for gyro bias is consistent with results obtained from data at inertial attitudes. 
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The in-flight attitude sensor calibration provides results that meet the requirements of the mission. The time 
history of the IRU bias is especially relevant to this and other missions with the same type of sensor. It would 
be useful to repeat the FHST/FSS alignment calibration to observe any time dependence on these parameters. 
It would also be worthwhile to redo the IRU alignment calibration with only FHST/IRU data for the attitude 
solutions to obtain a result with lower uncertainty. 
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APPENDIX - ADJUSTMENT ALIGNMENT SOLUTIONS TO PRESERVE 
OBC ATTITUDE 

This appendix describes the method used to adjust the alignment results from the Shusteralgorithm so that the 
OBC computes the same average attitude with the adjusted alignments as with the prelaunch alignments. This 
adjustment is done to preserve the alignment calibration of the scientific instruments, which is done with 
respect to the OBC-determined attitude using the prelaunch FHST alignments. Let the following matrices 
represent alignments that transform from the sensor to the ACS coordinates for the prelaunch alignments, 
solved-for alignments, and adjusted solved-for alignments. 

prelaunch solution adjusted solution 

FHSTl TO ACS MATI MATI' MATI" 
FHST2 TO ACS MAT2 MAT21 MAT211 
FSSl TOACS MAFI MAFI' MAFI 
FSS2 TOACS MAF2 MAF2' MAE" 

where the subscripts A, T1, T2, F1, and F2 mean the ACS, FWSTl, FHST2, FSSl, and FSS2 coordinate 
frames, respectively. The unpnmed, single-primed, and double-primed subscripts stand for prelaunch, 
solved-for, and adjusted solved-for alignments, respectively. The columns of each of these matrices provide 

the x-, y-, and z-axes of each sensor in the ACS coordinate system. Let XA , YA , and ZA be the axes of 
the FHSTl prelaunch alignment. Then 

,T1 AT1 A T1 

A similar relationship applies to the other sensor coordinate frames. The sensor boresight is defined by its 
z-axis. 

To preserve, on the average, the attitude comped  by the OBC with the two FHSTs, consider the following 
A TI A T 2  

intermediate coordinate frame (subscript N) obtained from the boresights of the two trackers, ZA , and ZA , 

L J 

The z-axis of this coordinate frame is along the direction formed by the cross-product of the boresights of the 
prelaunch alignments. The x-axis is opposite the direction formed by the sum of the boresights. The x- and 
z-axes are perpendicular. The y-axis completes the orthonormal frame. This intermediate coordinate frame is 
defined to be close to the ACS coordinate frame, although that definition is not necessary for the adjustment 
method. The prelaunch alignments can then be expressed as follows: 
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Together, the two matrices M w l  and MNT;! contain only three degrees of freedom, the angle between the 
boresights and a rotation angle of each tracker around its boresight. It is claimed here without proof that all 
pairs of tracker alignment matrices, related by a small rotation, with the same intermediate frame will 
produce, on the average, the same attitude solution. 

The matrix MAN' , computed from the FHST boresights of the Shuster algorithm, is in general different from 
the matrix MAN , computed from the prelaunch matrices. Adjust the solved-for alignments as follows: 

where MN*A = MmtT. The intermediate coordinate frame MAN", computed from the FHST boresights of the 
adjusted solved-for alignments, equals MAN. Thus, attitude solutions computed with the adjusted solved-for 
alignments will, on the average, be the same as attitudes computed with the prelaunch alignments. 

54 



Testing of the On-board Attitude Determination N 9 3 .. ZfiG 9 
, I  

and Control Alrrorithms for SAMPEX 
v 

/!;. f ;/r“+ 
Jon D. McCulloughl,Thomas W. Flatley 1, Debra A. Henretty2, , 

F. Landis Markley 3,  and Josephine K. San 

Algorithms for on-board attitude determination and control of the Solar, Anomalous, and 
Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant 
gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the 
reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope 
(HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital 
sun sensor (DSS) failure detection logic. These improved algorithms were tested in a 
closed-loop environment for three orbit geometries, one with the sun perpendicular to the 
orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter 
Solstice. The closed-loop simulator was enhanced and used as a truth model for the control 
systems’ performance evaluation and sensor/actuator contingency analysis. The simulations 
were performed on a VAX 8830 using a prototype versica af the on-board software. 

Introduction 

SAMPEX, the first in the Small Explorer (SMEX) series, will be launched by a Scout 
launch vehicle from the Western Test Range in June 1992. The mission is designed to 
obtain scientific data on several different natural phenomena. A statistically large sample of 
anomalous cosmic ray oxygen nuclei will be obtained to estimate their ionization state. The 
intensity, latitude, and local time dependence of the precipitating magnetospheric particle 
fluxes, particularly relativistic electrons, will be continuously recorded. In addition, the 
SAMPEX mission hopes to detect solar flare events from a low altitude, near-polar orbit 
during the declining phase of solar activity. The scientific instruments on board are the Low 
Energy Ion Composition Analyzer (LEICA), the Heavy Ion Large Telescope (HILT), the 
Mass Spectrometer Telescope (MAST), and the ProtonElectron Telescope (PET). 

The spacecraft mechanical configuration is shown in Fig. 1. The SAMPEX spacecraft has a 
body-fixed pair of solar arrays pointed in the “+y” direction and an experiment complement 
looking along the “+z” axis. The yaw axis is oriented along the instrument boresights, the 
pitch axis perpendicular to the solar panels, and the roll axis completes the orthonormal 
triad. The locations of some of the Attitude Control System (ACS) hardware and science 
instruments are shown in Fig. 2. The ACS hardware consists of one momentum wheel, 
three torquer bars, one two-axis fine sun sensor, five coarse sun sensors, and one three- 
axis magnetometer. The nominal attitude control system function is to point the solar arrays 
continuously within 5 degrees of the sun and to rotate the spacecraft around the sun line at a 
rate of 1 revolution per orbit, keeping the experiment axis pointed generally away from the 
earth. For a complete discussion of the ACS control laws, see Forden, et. al. (Ref. 1). The 
ACS control laws can be briefly summarized as follows: 

Aerospace Eiigiiieer, Guiduitce urtd Coritrol Branch, NASMGSFC. 
Aerospace Engineer, Guidance uiid Control Branch, NASAfGSFC; 
Mentbe r A I M .  
Assistarit Branch Head, Guidance und Control Branch, NASMGSFC; Associate Fellow 
A I M ,  Senior Member- AAS. 
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Fig. 1 Fig. 2 

Initial Acauisition 

The spacecraft is inserted into orbit by a spin-stabilized solid rocket motor. Following 
separation from the launch vehicle and a yo-yo despin, sun pointing must be achieved from 
an essentially unknown attitude and rate initial state. A small momentum wheel along the 
intended sun-pointing axis (+y) is spun up to a constant speed, and a conventional three- 
axis “B-dot” analog controller is used to damp residual body rates. This controller uses a 
three-axis magnetometer as a sensor and three magnetic torquer bars as actuators. 

The despun spacecraft then has a momentum bias along the y-axis (due to the momentum 
wheel) and the sun sensors are used to determine a sun-pointing error. There are coarse sun 
sensors which essentially measure the direction cosines of the sun vector in body 
coordinates for all attitudes and a single two-axis digital sun sensor whose boresight is 
aligned with the +y axis. The digital sun sensor output is used for control whenever i t  
indicates “sun presence”. 

Using sun sensor and magnetometer data, precession control logic drives the y-axis torquer 
bar in a bang-bang fashion to generate torques which precess the momentum vector toward 
the sun. During this maneuver, the “B-dot” controller acts as a nutation damper. 

Normal Control 

No additional equipment is employed for so-called “normal” control. Because of the 
modest pointing accuracy required, the spacecraft is controlled using on-board attitude 
determination based on the “Algebraic Method” (Ref. 2) .  probably for the first time ever. 
This method is based on the fact that if two vectors are known in both body coordinates 
and in inertial space, the attitude (as represented by an inertial-to-body transformation 
matrix A )  can be unambiguously determined by simple matrix manipulations. 

When the spacecraft is in sunlight, the two vectors here are the sun vector and the magnetic 
field vector. The sensors mentioned determine the components of these vectors in body 
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coordinates, but their inertial counterparts must be computed on-board based on uplinked 
ephemeris information and a spherical harmonic magnetic field model. When the spacecraft 
is in the shadow of the earth, the system angular momentum vector, which is assumed to 
be inertially fixed due to the pitch axis momentum bias, is used along with the magnetic 
field vector for attitude determination. 

Once A is determined, its derivative is approximated and classical matrix manipulations 
produce estimated three-axis body rates. Those rates, and the momentum wheel speed are 
then used to calculate an angular momentum vector. We would like this momentum vector 
(H) to have some amplitude, say Ho , and be aligned with the sun, i.e. H = HoS. For 
no nutation we would also like to have it aligned with the +y axis, H = HQ. We define a 

momentum error AH by 

and use the familiar H x B magnetic unloading law to drive the torquer bars for control, 
i.e. the commanded dipole moment M is given by 

where k is a gain factor. 

AH = (H - H o S )  + (H-H$) = 2H - Ho(S + j) 

M = k A H  x B ,  

The momentum wheel, in addition to providing a momentum bias, is used in a “pitch 
control loop” to achieve the desired 1 rpo spin rate and “away from the earth” experiment 
pointing. The yaw axis (the boresights of the instruments) points as close to north as 
possible at the northernmost point of the orbit, as close to south as possible at the 
southernmost point of the orbit, and close to the equator at the equatorial crossings. The 
north pole vector NP and orbit normal vector N in GCI coordinates are given as: 

and 
where R, V are the inertial position vector and inertial velocity vector of the spacecraft, 
respectively, estimated from the uplinked ephemeris data. The orbit angle as measured from 
the northernmost point in the orbit is computed from the two vectors: 

the unit vector in the direction of the ascending node, and 

the unit vector in the direction of the northernmost point of the orbit. The sine and cosine of 
the orbit angle can now be computed, 

The target vector U must lie in the plane perpendicular to the sun. The following two 
vectors provide an orthonormal basis for the target vector U: 

W is a unit vector perpendicular to the sun that lies close to the equatorial plane. Thus when 
the spacecraft is near the equator, we would like U to point along W. This corresponds to 
orbit angles of a = x / 2 and a = 3 IT / 2. The unit vector S x W is also perpendicular to 
the sun and points as close to the northernmost point as possible, given the sun constraint. 
Thus when the spacecraft is near the poles, we would like U to point along S x W. This 
corresponds to orbit angles of a = 0 , .n . Since it is desired to rotate the yaw axis about the 
positive sun line, the orientation of the orbit normal relative to the sun line must be taken 
into consideration. A candidate for the target vector U is 

NP = [0 0 1IT N = R x V/ I R x V I ,  

AN = NP x N / I N P  x N I ,  
NMP = N x AN, 

sin cc = - ROAN/ I R I ,  COS a = R.NMP/ I R I .  

w = NMP x s/ I NMP x s I ,  s x w. 

U,, = cosa(S x W) + Targetsign sinaW, 
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where Targetsign is set equal to the negative of SIGN(S.N) whenever the spacecraft 
comes within 0.5 degrees of the northernmost or southernmost point of the orbit. This 
avoids a 180 degree pitch flip if the sun passes through the orbit plane when the spacecraft 
is near the equator. 

For the case where the sun is pe 
reduces to a zenith pointing m o r  e. Fig. 3 shows that 

and the orientation of the yaw axis along the orbital path is zenith pointing. 

ndicular to the orbit plane, the orbit rate rotation mode 

S = N ,  W = N M P x S ,  N M P = S x W ,  

NMP = S x W - 
Targetsign W 

+ 
W 

Fig. 3a ORR Mode Geometry When Sun 
Is Perpendicular To Orbit Plane 

Urn (target pointing vector) 

Fig. 3b ORR Mode Target Pointing Vector Along The 
Orbital Path With Sun Perpendicular To Orbit Plane 

For the case where the sun is parallel to the orbit plane, the orbit rate rotation mode 
becomes a zenith pointing mode over the poles and points in the R x NMP direction at the 
equator. Fig. 4a shows that W = NMP x S, and so the orientation of the yaw axis can be 
determined throughout the orbital path and is shown in Fig. 4b. 
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Targetsign 

Fig. 4a ORR Mode Geomeuy When Sun 
Is In Orbit Plane 

@ @  Orbital Path 

1 
Fig. 4b ORR Mode Target Pointing Vector Along The 

Orbital Path With Sun Parallel To Orbit Plane 

System Angular Momentum Filter 

The attitude matrix A(t) is computed at At = 0.5 second intervals, and the least significant 
bit of the DSS output is 0.5 degrees. Therefore, if the angular velocity is computed by 
simply back-differencing the attitude matrix, as described above, the roll and yaw rates in 
sunlit portions of the orbit (the components depending on the DSS data) will be computed 
as either zero or one degree per second. These exceedingly noisy inputs to the control 
algorithm produced poor pointing performance in simulations, so it was decided to filter the 
rate estimates. Let the “derived” system angular momentum in the spacecraft body frame be 
given by 

where I is the spacecraft moment-of-inertia tensor, o is the (noisy) angular velocity vector 
derived from the attitude matrix, Hwheel is the wheel angular momentum (computed from 
its moment of inertia and tachometer data), and j is the wheel axis (pitch) unit vector. We 
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can also predict the system angular momentum at time t based on its dynamics by 

where M x B is the magnetic control torque in  body coordinates. Other external torques are 
ignored, a reasonable approximation. The reaction wheel torque does not affect the total 
system angular momentum, of course; it merely shifts the momentum between the 
spacecraft body and the wheel. The filtered angular momentum is computed as the linear 
com bination 

where K is a gain constant. This is referred to as a “constant-gain Kalman filter,” although 
it  is too simple to justify this name. The default value of K is 0.01, which corresponds to a 
time constant of 100 control cycles, or 50 seconds. Simulations show that this gives much 
smoother performance without introducing excessive lag into the control. 

“predicted ( t )  = A(t)Al’(t  - At)H(t  - A t )  + (M x B)At, 

= ( l  - K)Hpredicted + KHderived9 

Velocity Avoidance Algorithm 

Within 2000 kilometers of the earth’s surface, there are 3,000,000 kilograms of orbital 
debris (Ref. 3), consisting of fragments from explosions, solid rocket effluent, paint 
flecks, waste, refuse, etc. There are 6,645 orbiting objects currently being tracked which 
comprise 99.9% of the total mass of all orbiting objects. However, untrackable orbiting 
pieces (diameter less than 10 cm) number in the millions and are potentially catastrophic or 
at the least mission degrading (Ref 4). These pieces are almost all in high inclination 
circular orbits with velocities on the order of 10 kdsec .  The EnviroNET (Ref. 5) orbital 
debris model was used to calculate fluxes for the SAMPEX mission. The assumptions and 
equations used in computing the fluxes can be found in Kessler, et. al. (Ref. 3). 

The HILT proportional counter has  a triple entrance foil system with 80pm combined 
thickness. However, i t  has the effectiveness of a 380pm single foil for a particle velocity 
and density of 15 km/sec and 1 gm/cm3, respectively. Using these results and triple foil 
penetration limit equations, the smallest particle of concern for the HILT sensor has been 
determined by Klecker (Ref. 6) to be 0.01 cm. 

Meteoroids are part of the interplanetary environment and have average velocities of 20 
k d s e c  with respect to the earth’s orbital space. There are 200 kg of meteoroid mass within 
2000 km of the earth’s surface and most of the mass is concentrated in particles of diameter 
0.01 cm (Ref. 3). This coincides with the smallest particle of concern for the HILT sensor. 
The EnviroNET meteoroid model was used to calculate fluxes for the SAMPEX mission, 
using assumptions and equations found in Grun, et. al. (Ref. 7); and it was found that 
orbital debris is significantly more hazardous than micrometeoroids for the SAMPEX 
mission (Ref. 8). The maximum llux was found to be in the direction of the velocity vector 
and to be reduced by a factor of 3 for an 80 degree ram angle. 

The velocity avoidance algorithm to protect the HILT sensor from hazardous debris is 
discussed in Reference 8. The velocity avoidance feature, if desired, can be turned on and 
off by a ground command. Let 

V 
U - target vector 
qmln 

- unit velocity vector (body coordinates) 

- minimum ram angle (currently 90 degrees) 

If VeU I C O S ( P ~ , ~ ,  then the velocity avoidance algorithm is unnecessary. The spacecraft 
target vector is determine by the orbit rate rotation mode. However, if V-U > COS(P,,n, 
then the algorithm is implemented. 
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The algorithm is defined in the Flatley coordinate system. Let the sun unit vector S be the 1 
axis, the normal science mode target vector U be the 3 axis (which by construction is 
already perpendicular to the sun vector), and U x S be the 2 axis, as defined in Fig. 5. 

u x s  
(2 axis) 

(3 axis) 

Fig. 5 Flatley Coordinate System 

The unit velocity vector V and the target vector with velocity avoidance Uram can be 
expressed in the Flatley coordinate system as 

VF v F 1  v F 2  v F 3  IT 9 u r a m  = [  o sine case 1'. 
The desired constraint, Uram'VF = COS(Pm,n, is used to determine Urm. This implies 

VF3cos@ = - Vnsine. 

Squaring both sides and using a trigonometric identity results in a quadratic equation for 
sine with the solution 

VFZCOS(Pm i LI f lv FN v&+v&cos2 (Prn i n sin9 = 
(v;, + v;,) 

If V F ~  10, then sine < 0 and the negative sign is chosen for the radical. If v F 2  < 0, then 
sine > 0 and the positive sign is chosen for the radical. Thus Ur, is given by 

U,,, = sine(U x S) + cos8 U. 

The testing of the velocity avoidance algorithm is descibed in detail in Reference 8, and can 
be summarized as follows. For the best case orbit geometry (sun in the orbit plane), there is 
a small sun pointing error (c 0.3") for all minimum ram angles. Only for the 100" 
minimum ram angle does the zenith offset, the angle between zenith and the spacecraft yaw 
axis, become signifkant, reaching approximately 10 degrees. The velocity avoidance 
scheme keeps the yaw axis pointed at least the desired minimum ram angle away from the 
velocity vector, and science pointing performance is not affected by including the velocity 
avoidance algorithm.The worst case orbit geometry (sun in the orbit plane) dramatically 
illustrates the effect of increasing the minimum ram angle. The sun pointing error increases 
from 1" to 2'. The zenith offset and the ram angle show that the spacecraft flips when the 
minimum ram angle reaches 100". Also, science pointing performance begins to decrease 
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significantly for increasing minimum ram angles. Intermediate cases were also considered 
in Reference 8. 

Table 1 shows the percent of the orbit that the spacecraft is pointing within 15 degrees of 
zenith. These numbers were calculated for the periods of the orbit where the spacecraft was 
within 60 degrees of either pole. This table demonstrates how well the science pointing 
requirement is satisfied while maintaining the five degree sun pointing requirement. 

Table 1 - SCIENCE POINTING PERFORMANCE (percent of orbit) 

best case intermediate case worst case 

No Avoidance 100.0 68.9 0.0 
80 deg ram 100.0 68.9 4.9 
90 deg ram 100.0 59.3 4.7 
100 deg ram 100.0 27.0 11.2 

The probability of survival for the HILT sensor was computed for the orbit rate rotation 
mode with and without the velocity avoidance scheme (Ref. 8), with the results shown in 
Table 2. 

Table 2 - HILT SURVIVAL ESTIMATES 

Mode Mean Flux (coll/m2yrl z (vrs/colll -S P(%) 

ORR 3.11485 2 1.690 87.1 
ORRw/80° ram 2.92332 23.1 11 87.8 
ORR w/ 90" ram 2.68487 25.164 88.8 
ORR w/lOOo ram 1.90232 35.5 15 91.9 

Sun Sensor Failure Detection Logic 

The Small Explorer spacecraft, including SAMPEX, are designed as single-string systems 
with very little ACS sensor and actuator redundancy. The only sensor redundancy on 
SAMPEX is that the sun vector can be obtained from either the digital sun sensor (DSS) or 
the coarse sun sensor (CSS) eyes. Since the sun-pointing constraint is critical for powering 
the spacecraft, it is desirable to substitute CSS data for DSS data in the unlikely event of 
failure of the latter sensor. 

The logic to decide which sun sensor to trust makes use of the fact that the dot product of 
two vectors is frame-independent, specifically the dot product of the sensed sun vector and 
magnetic field B in the body and the dot product of the modeled sun vector and magnetic 
field in inertial space. Thus the ACS perfomis three tests on each control cycle when the 
spacecraft is in sunlight: 

DSS and CSS disagree if cos- 1 (Scss*SDss) > CSS tolerance, 

CSS and models disagree if I cos- 1 (ScSS*B) - cos- 1 (Smode,.B ) I > CSS tolerance, 

DSS and models disagree if 1 cos- 1 (SDSS*B) - cos- 1 (Smode,*Bmode, 1 > DSS tolerance. 
model 
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The DSS tolerance is conservatively set to 5", to allow for a combination of sensor and 
modeling errors. The CSS tolerance is much larger, 30". to allow for earth albedo 
corruption of the CSS sun vector. 

If the DSS agrees with either the models or the CSS, the ACS uses the sun vector 
computed from DSS data. If the DSS disagrees with both the CSS and the models, but the 
CSS and models agree, the ACS sets a flag indicating that the DSS data are bad and uses 
the sun vector computed from CSS data. In all other cases of disagreement, it is not 
possible to determine whether the DSS, the CSS, the magnetometer, or the models 
(including the onboard ephemeris) are in  error, so the data source for computing the sun 
vector is left unchanged. 

If SAMPEX enters safehold, the analog safehold control will use DSS data if available. 
Thus it is desirable to turn off the DSS by ground command if telemetry shows that the 
DSS data are consistently bad. 

Contingency Analyses 

Through the use of the closed-loop simulator, tests were run to ascertain the performance 
and stability of spacecraft control in the presence of sensor or actuator failures. The 
simulations were run for a 9 p.m. orbit in which the aerodynamic torques on the spacecraft 
are greatest. Some of the tests are summarized below. 

DSS Failures 

The two-axis DSS that will be used on SAMPEX consists of two measurement 
components mounted at right angles that yield a 128 x 128 degree Field of View (FOV). 
The two measurement components generate two eight bit Gray-coded outputs which are 
digital representations of the angle between the sunline and the normal to the sensor when 
the sun is in the FOV of the command component (Ref. 9). The purpose of the command 
component is to indicate when there is sun presence. These outputs are then converted to 
two eight bit binary outputs which are translations of the Gray-coded outputs and have 
values (counts) ranging from 0 to 255. Simulations were run to evaluate spacecraft 
controllability for failures in both the Most Significant Bit (MSB) and the second bit of the 
Gray-coded output. 

The MSB, or sign bit, determines which side of the sensor the sun is on, and can fail to 
either 0 or 1. Since both of these failures result in similar behavior, a true reading on one 
side of the boresight and a false reading (error signal with the opposite sign) on the other 
side of the boresight, only one of these failures was modeled. This is illustrated in Fig. 6. 

The plot of the Sun Pointing Error (Fig. 7) shows an average error of approximately 15 
degrees in ORR mode for a failure in the sign bit. The failure was initiated 3,000 seconds 
into the run so that it could be modeled in steady-state. The plot of the Bad FSS Flag (Fig. 
8) shows continual shifting between the CSS and DSS. As long as the truth models agree 
with the DSS and the CSS to within 30 degrees, the Bad FSS Flag is not toggled and the 
spacecraft may be controlled entirely by the failed DSS. This is a result of the way the 
DSSKSS switching logic is implemented and can result in the spikes shown in the Sun 
Pointing Error. 
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Fig. 6 Sun Angle with a Failure in the MSB 

Feiture 01 DSS MSB 
12-22-82/9pm/550~675X)AR SUN POINTINQ ERROR (DEGREES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

20 . . . . . . . . . . . .  

10 . . . .  

0 loo00 M o m  3oooo 4oooo 60000 
TIME (SECONDS) 

Fig. 7 Sun Pointing Error (Failure of DSS MSB) 

0 loo00 moo0 ‘. 3oooo 4oooo 50000 
TIME (SECONDS) 

Fig. 8 Bad FSS Flag (Failure of DSS MSB) 

The failure of the second bit to either a 0 or 1 results in very different behaviors, as 
illustrated in Fig. 9. Both of these failures were modeled and are discussed below. 

A failure of the 2nd bit to 0 results in a “bang-bang” control since the effective Least 
Significant Bit (LSB) of the DSS becomes 64 degrees near null rather than 0.5 degrees, 
causing the pitch axis to move away from the sun. The simulation shows that this failure of 
the DSS is easily detected and the spacecraft is controlled entirely by the CSS. The plot of 
the Sun Pointing Error (Fig. 10) for a 2nd bit failure to 0 shows that the average error is 
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approximately 6 degrees in ORR mode, which reflects the +/- 6 degree blind spot of the 
CSS on the positive pitch axis. 

A failure of the 2nd bit to 1 results in a very benign failure as long as the spacecraft remains 
within 32 degrees of the sun, since the second bit of the Gray code should be 1 in this case. 
However, if the spacecraft is pointing between 32 degrees and 64 degrees of the sun there 
will be an error in the DSS. This computed pointing error will be smaller than the true sun 
error but will be of the correct sign. The plot of the Sun Pointing Error (Fig. 11) shows 
that the spacecraft pitch axis remains within 32 degrees of the sun in ORR, and a failure in 
the 2nd bit is never detected. Thus, the DSS continues to control the spacecraft maintaining 
a sun pointing error of less than 5 degrees. 

Sun Anglo (dew-) 
Cfny-w f Bit Fail& to 0 

Fig. 9 Sun Angle (DSS Failure of 2nd Bit) 

to  

5 

0 

Failure of DSS 2nd Bil lo 0 
SUN POINTING ERAOR (DEGREES) 

10000 20000 3oooo 4owo 50000 
TIME (SECONDS) 

0 

Fig. 10 Sun Pointing Error (Failure of 2nd Bit to 0) 
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12-22-92/9~550~675/ORR SUN POINTING ERROR (DEQREES) 
r 1 

0 1 OOOO 20m 30040 
TIME (SECONDS) 

40000 50000 

Fig. 1 1  Sun Pointing Error (Failure of 2nd Bit to 1) 

Wheel Failures 

Simulations were also run to evaluate the controllability of the spacecraft for a failure in the 
momentum wheel. The failure was simulated by setting the commanded wheel torque to 
zero and allowing friction to slow the wheel speed to zero. 

The average sun pointing error for a failure in the momentum wheel is approximately 4 
degrees in ORR mode. As the wheel speed decreases the momentum of the wheel is 
distributed to the spacecraft which generates a spin about the pitch axis. Thus, the system 
momentum vector along the pitch axis is conserved and the magnetic torquers continue to 
precess this momentum vector towards the sun line. As long as the sun pointing error does 
not exceed 20 degrees the spacecraft will not enter Safehold. 

After initial acquisition, the x and z B-dot controls will be turned off. In this way, if 
Safehold is entered due to a momentum wheel failure, the spin of the spacecraft will not be 
damped out, thus conserving the momentum vector needed for sun pointing. It should be 
noted that the y B-dot control must always be active while in Safehold. The precession 
control is inherently unstable if it is used by itself. If the sun line is inside the nutation 
cone, the torques produced by the magnetic torquers will increase any nutation that is 
present. Therefore, the y B-dot is needed to dampen this nutation. 

Wnetometer  Failures 

The SAMPEX three-axis magnetometer contains an x-axis redundant coil which is available 
to ORR mode but not to Safehold. If the spacecraft were to enter Safehold with a failure in 
the primary x-axis coil and sun pointing were not satisfactory, then autonomous switching 
between the x-axis coils in ORR would be required. Simulations showed an average sun 
pointing error of 6 degrees in Safehold and the spacecraft remains power safe. Thus, 
autonomous switching is unnecessary. 

Conclusions 

The SAMPEX attiude control system has been shown by simulations to meet the SAMPEX 
mission requirements for sun-pointing and instrument pointing. The velocity avoidance 
algorithm with a minimum ram an@e of  90 degrees added to the orbit rate rotation mode 
provides the HILT sensor with an 89 percent chance of survival over a three year period 
without seriously degrading science pointing performance. Larger ram angles cause the 
spacecraft to flip and seriously decrease science pointing performance. During safehold 
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mode or when the HILT is switched off for an extended period of time, a retractable cover 
will be closed to protect the HILT sensor. 

Several contingeny cases were analyzed by simulation, to verify that the attitude control 
algorithms are robust in the presence of sensor or actuator failures. Autonomous logic was 
added to switch from digital to coarse sun sensor data in the presence of digital sun sensor 
failures. Simulations of failure of the most significant bit and second significant bit of the 
digital sun sensor output showed that the failures were either benign or were successfully 
detected. Adequate sun-pointing performance was maintained for all sun sensor failures 
studied. Simulations of a momentum wheel failure indicate that the default x and z B-dot 
switches in Safehold mode be set to open after the initial acquisition phase of the mission 
Then, if the spacecraft enters Safehold due to a failure in the momentum wheel, the spin of 
the spacecraft about the pitch axis will not be damped out, and the angular momentum bias 
produced by the spinning spacecraft will enable SAMPEX to remain sun-pointing. The x 
and z B-dot switches should be closed during initial acquisition to accomplish acquisition 
as quickly as possible. Simulations of a failure in the primary x-axis magnetometer show 
that the sun pointing error remains less than approximately 6 degrees. Thus the spacecraft 
is in a power safe attitude, and autonomous swithing to the redundant x-axis magnetometer 
is not required. 

The SAMPEX attitude control system algorithms provide robust spacecraft control, and are 
expected to contribute to a succesful mission. 
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STAR TRACKER OPERATION IN A HIGH DENSITY PROTON FIELD 

Kenneth J. Miklus, Frank Kissh, and David J.Flynn 
, - .  Hughes Danbury Optical Systems, Inc. -1 - .  if 

ABSTRACT , 

Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have 
been implemented in the HDOS ASTRA-1 Star Trackers to be flown on the TOPEX mission scheduled for 
launch in July 1992. A unique technique for simulating a proton-rich environment to test trackcrs is described, 
as well as the test results obtained. 

Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high 
proton flux levels. There are three ways in which spurious proton generated signals can impact tracker per- 
formance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal 
can compromise the accuracy of the star’s reported magnitude and position; and the tracked star can bc lost, 
requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA- 1 Star 
Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant re- 
duction in reponed position errors due to these improvements. 

STAR TRACKER OPERATION IN A HIGH DENSITY PROTON FIELD 

Star sensors have been utilized in high-accuracy attitude determination systems since the early 1960’s pro- 
viding precise measurement of the position and magnitude of stars in the sensor’s field of view (FOV). As 
applications continue to demand higher performance, the effects of a natural or enhanced radiation environment 
need to be accommodated by the star sensor’s design. HDOS recently delivered two star trackers for the 
TOPEXPoseidon mission which is scheduled for launch in July 1992. These enhanced trackers contain an effi- 
cient mix of hardware and firmware that permits effective acquisition and tracking throughout their orbit, which 
includes extensive exposure to the transient rich environment of the South Atlantic Anomaly. This paper dis- 
cusses the algorithms employed, the environment simulated, and the results of the tests performed, demon- 
strating successful operation in a proton-rich environment. 

BACKGROUND 

State-of-the-art star sensors (see Figure 1) have recently benefited from two major technological devel- 
opments, the CCD detector and the microprocessor. The heart of the current HDOS ASTRA star senson is 
the RCA 504 CCD, a 256 x 403 pixel array which operates in the frame transfer mode. The thinned, backside 
illuminated device provides high quantum efficiency in the visible range. A thermoelectric cooler is used in the 
ASTRA-1 sensors to provide low noise operation in harsh environments. Fitted with a wide FOV (7x9 de- 
gree) color corrected lens, the ASTRA star sensors can provide position accuracy to 10 arc-seconds or better, 
and sensitivity down to a visual magnitude of 6. The HDOS ASTRA star sensors also utilize a versatile 16- 
bit microprocessor. Acquisition and tracking, centroid determination and correction, debris and transient event 
discrimination, and self-test functions are performed autonomously by the microprocessor. This design pro- 
vides a flexible interface and reduces the computation burden on the host computer. 

Star sensors utilizing mosaic CCD arrays can be separated into two classes: star trackers and star mappers. 
Star trackers have two distinct functional modes: acquisition and track. During acquisition, the sensor field of 
view is searched for valid targets. High-pass spatial filtering and pixel amplitude thresholding are often used 
to limit the amount of data saved each frame. Data from multiple frames can be used during acquisition to 
discriminate valid stars from debris and transient events. Once a star has been acquired, the sensor enters 
the track mode. During the track mode, data from previous frames is used to estimate the current position of 
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funded by NASA JPL under Conerect No. 957849 

69 



1 
I 

------------------------ r------ 
-1- 

Figure 1. Functional Diagram of the Advanced Star Tracker (ASTRA). 

the star. A reduced field surrounding the star is then read, processed, and the magnitude and position of the 
star are output to the host. The HDOS ASTRA-I built for the TOPEX/Poseidon mission is an example of a 
star tracker. The ASTRA Star Tracker currently being built for Space Station Freedom will operate as four 
virtual star trackers allowing simultaneous acquisition and tracking of up to four stars. 

Star mappers acquire stars throughout the total sensor field of view and report their magnitude and position 
each frame. High pass filtering and pixel amplitude thresholding are used to limit the amount of data that must 
be processed each frame. Normally, information is not saved from frame to frame. The HDOS ASTRA-2 built 
for the JH/APL START experiment' is an example of a star mapper. It outputs the position and magnitude of 
up to five stars at a 10 Hz update rate. 

Trackers have a number of functional advantages over star mappers when operating in a transient event-rich 
environment. Once a star tracker has acquired a star, only a small fixed number of pixels must be read, stored, 
and processed each frame. A star mapper must process the entire CCD array each frame and the number of 
transient events will impact the amount of data that must be processed. By using data from multiple frames, 
star trackers can discriminate between stars (with predictable magnitudes and positions) and transient 
events during acquisition. Using magnitude and position data from previous frames during track mode also al- 
lows a star tracker to determine if a transient event has corrupted the reported magnitude and position data. 
Star mappers do not store information from previous frames and cannot discriminate between transient events 
and valid targets; this task must be performed by the host. Star mappers can also report a different set of 
stars each frame which requires identification of stars each frame. In a star tracker system, once a valid star 
has been identified, there is no need for the host to re-identify a star so long as it remains in track. 

THE ENVIRONMENT 

For a star sensor to operate in a natural or enhanced radiation environment, the effects of radiation damage 
and radiation induced noise events on the CCD must be addressed. Space radiation that will interact with the 
CCD can be divided into two major groups, trapped particles and solar  proton^.^^^ Trapped particles are pro- 
tons and electrons trapped in the magnetic fields surrounding the earth. The energy and fluence profiles will 
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vary with the altitude and inclination of the orbit. In low earth orbits, anomalies at the poles and off the coast 
of Brazil (the South Atlantic Anomaly) can result in high fluxes of energetic protons. Solar protons are emitted 
during solar flares which occur randomly. Intense solar flares occur about every 1 1  years. At high altitudes, 
i.e. geostationary orbit, solar protons can dominate, with fluxes sometimes orders of magnitude greater than 
the trapped particle radiation. HDOS has developed the capability to evaluate the radiation environment in 
space and its impact on sensor systems for given orbits. These models are based on the RADBELT AP-8. 
AE-8 radiation environment data supplied by NASA-GSFC. 

The effects of radiation damage in CCDs have been the focus of much recent w o k 4  HDOS has developed the 
tools required to model the end-of-life performance of CCD detectors, and has also performed experiments to 
measure these effects on irradiated devices. The primary concern of this paper is the effect of transient noise 
events that occur when high energy particles impact the CCD. Charged particles interact directly with the 
CCD pixels, causing a random series of ionization events. These events can be localized to within a few pix- 
els or can result in streaks, depending on the angle of incidence of the particle, the geometry of the device, and 
the energy of the p a r t i ~ l e . ~ . ~  A large number of events in the sensor field of view can interfere with the opera- 
tion of the sensor. If the system must operate in a high density proton environment, a method to reduce the 
impact of these events on the sensor operation is required. The most obvious solution is to increase the 
shielding around the CCD to reduce the number of events. However, this will increase system size and 
weight. A more elegant solution is to apply real-time processing to reject these transient events. 

Transient events can degrade a star tracker’s performance in a number of ways. During acquisition, transicnt 
events can be acquired falsely or can impede acquisition of a valid target. During track, transient events can 
corrupt position and magnitude data or can result in the sensor dropping a valid star track. For the TOPEX 
mission, Fairchild Space C O . ~  determined that the star tracker must operate with up to 150 transient events in 
the sensor FOV per frame, 100 milliseconds. All of these events were assumed to be indistinguishable from 
real stars to the CCD. Since these transient events were independent of one another their position and 
magnitude were random and uniformly distributed over the CCD array. 

The system had to meet the following requirements: 
Acquire and track stars with up to 150 transient events per frame 
Acquire and track stars moving up to 0.3 degreehecond 
Probability of acquiring a valid star within 22 seconds is 95% 
Alert host if data has been corrupted 
Maintain track of valid stars during proton event disturbances. 

ALGORITHM IMPLEMENTATION 

Any solution is dependent on determining what information is available to discriminate between transient 
events and valid stars. Star image size is a function of the point spread of the optics and the motion and jitter 
of the spacecraft. Therefore, bounds can be placed on the size of valid targets and single pixel upsets and 
events that result in long streaks can be rejected. Proton events only last for one frame. Since they are in- 
dependent of one another, the position and magnitudes of the proton events randomly change from frame to 
frame. Positions of the star images on the array are determined by the dynamics of the spacecraft and there- 
fore change systematically from frame to frame. By applying spatial and magnitude filtering, we can reject 
transient events. The probability of transient events passing this filter will be a function of the number of 
transient events per frame and the size of the discrimination windows. The line-of-sight (LOS) motion re- 
quirement (up to 0.3 degreehecond) thus determines the minimum spatial window to be used. The size of the 
magnitude window is determined by the tracker’s predicted error in determining star magnitude. Once a star 
is acquired, magnitude can be checked to determine if a transient event is contiguous with the star image, 
causing an error in the centroid of the image and in its reported magnitude. 
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Our selected approach was to limit the data processing load during each tracker frame when in the acquisition 
mode to be consistent with existing hardware capabilities. The tracker FOV was divided into 19 acquisition 
bands (19 pixel rows by 403 pixel columns). The bands were stacked in the row direction with a small overlap 
and the search for a star confined to one band at a time. If the acquisition sequence fails to find a star in the 
current band, the tracker sequences to the next band and searches for a valid star. This sequence continues 
until the tracker acquires a star in one of the bands and transitions to track mode. If the entire FOV is 
searched unsuccessfully, the sequence is repeated. 

The acquisition sequence consists of two acquisition states (A1 and A2) and five validation states (H1 
through H5). Each state takes one tracker frame to implement. 

The acquisition sequence searches an acquisition band to determine if any group of pixels with signal exceed- 
ing a threshold exists that could quality as a star. If no such group exists the tracker transfers to the next 
acquisition band and the sequence is repeated. If candidate stars are found in the A1 state, the tracker enters 
the A2 state. If any of the candidate stars identified in A1 is also found in A2. the tracker goes into the vali- 
dation phase of the acquisition sequence. During validation states, the tracker continues to evaluate the can- 
didate star’s characteristics for temporal and spatial consistency. Upon transition to the track state, sufficient 
history has been established so that i t  is highly probable that the group represents a valid star and is not 
caused by transient events. If the star is not confirmed in any of the validation states the tracker increments 
to the next acquisition band and the acquisition sequence is continued. 

Upon transition to track, a small track window is defined which is centered about the last validated star po- 
sition. The window position is updated each frame to track the updated star position. The window is made 
small enough to limit the data processing load and exclude the majority of transient proton signals; but it is 
large enough to account for vehicle LOS rates. 

The track window is scanned in a raster fashion each frame, and the magnitude and position characteristics of 
the candidate star are evaluated. If the star is evaluated as a “valid” star, the centroid data and star magni- 
tude data are sent to the host and a bit is set in the data word that indicates the data is valid. If no valid star 
is found in the track window after multiple attempts to recover from proton hits, the star is considered lost and 
the tracker reverts to the acquisition mode. 

TEST METHOD 

The CCD’s inability to distinquish between proton or photon generated-signals was utilized to test the 
tracker with the proton flux improvements. A Scene Simulator (SS) concept was implemented. Scenes con- 
sisting of point sources of light were generated on a computer monitor. The point sources were collimated and 
then imaged by the tracker on its CCD detector. The signals generated in this fashion at the CCD could be 
considered as having been generated by either protons or stars. This technique achieved complete control of 
the interactions between a simulated star and simulated proton events. 

The SS equipment shown in Figure 2 consisted of a VGA monochrome monitor and a personal computer (PC) 
with a 386 processor running at 25 MHz. The monitor was positioned at the focal plane of an achromatic colli- 
mating lens with a focal length (FL) of 1185 mm. The scene was generated by commanding 150 monitor pixels 
on, to serve as “proton” sources, and one pixel to serve as a “star”. The intensity of each monitor pixel was 
controlled by the SS software. The collimated light from each monitor pixel was imaged by the tracker optics 
on its CCD detector. The tracker optics had an FL of 41 mm which imaged the monitor pixels at the CCD de- 
tector, resulting in a demagnification factor of 29. All images at the tracker, simulated protons as well as 
simulated stars, were equivalent in size to predictions for a valid star in orbit, Le. between two and 25 CCD 
pixels. The angular FOV that the monitor accommodated exceeded the 9x7 degree FOV of the tracker. 

To ensure a worst-case test scenario, all proton events were sized (in pixels) within the range considered by 
the tracker to be acceptable stars. Figure 3 (frames 299 and 300) shows the excellent image size achieved 
with the Scene Simulator. 
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Figure 2. Configuration for Simulation of Stars and Proton Events in a 
Laboratory Environment. 
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Figure 3. Excellent Image Properties Were Achieved with the Scene Simulator (Mi-3.7). 

To limit simulated proton signals to one tracker frame, the generated scene display was synchronized with the 
10 Hz frame rate of the tracker. This synchronization was mandatory because a star will be imaged at a spa- 
tially consistent location during successive tracker frames, whereas a proton signal will be transitory both 
spatially and temporally. 

TESTS RESULTS 
The tests described were designed to verify three basic aspects of the tracker software performance in a pro- 
ton-rich field, specifically: 

A star being tracked will not be lost as a result of the proton events 
Acquisition of a valid star will occur within 22 seconds of the start of the search and star position 
Magnitude data corrupted by proton events will be identified for the host. 



The scene simulator technique was especially useful since the intensities and positions of the simulated pro- 
tons could be varied by the software to have any desired relationship to the simulated star. In all, 14 unique 
scenarios were used to test the response of the tracker to various combinations of “proton” influences on 
tracker performance. Generally the scenes simulated conditions of near or dircct proton hits on the star p s i -  
tion. In addition a “no stars” scene was used to verify that the tracker software was not fooled by the 
“proton” signals and did not erroneously report star acquisitions. Both moving and stationary stars were 
simulated. 

Each test scene scenario always consisted of 150 simulated protons and one simulated star. The simulated 
proton positions were generated in a random fashion in the tracker’s FOV. Consistent with Fairchild’s radi- 
ation analysis/specifications. 35 of the simulated proton signals were at an equivalent star Instrument 
Magnitude (Mi) of 3.2; 115 ranged between the equivalent Mi of 3.7 and 5. Thc simulated star was set at 
Mi = 3.7. Generally the “star” in the scenes was not subjected to random “proton” influences. Each scene 
was carefully designed to introduce specific and periodic Occurrences of “proton/star” interactions so that 
tracker software processes could be evaluated. Completely random occurrences of “proton/star” interactions 
were used to gather statistical information regarding frequency of “star” disturbances, to ensure that the 
three primary performance requirements were met and that interacting events did not cause unanticipated 
results. 

The results of a test designed to demonstrate ASTRA’s capability to reject “protons” during the star acqui- 
sition sequence are shown in Figure 4. The particular scenario contains 150 “protons” but no valid star in the 
FOV. As required, at no time did the tracker indicate a star acquisition. If no signals were found during the 
search of the tracker’s FOV, the highest acquisition state achieved by the tracker is the A1 state, and the 
minimum time to search the entire FOV is 3.8 seconds. The figure shows that the “protons” caused the 
search of each band to extend routinely to the A2 state, periodically to the H1 state and occasionally to the 
H2 state. Each state beyond the A1 state, caused by proton signals, typically adds 100 msec to the overall 
search time. 
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Figure 4. The ASTRA Design Never Reports a Proton as a Star. 

Figure 5 shows the results of a test in which a “star” moves horizontally across the FOV at an apparent ve- 
locity of 0.35 degree/second and periodically experiences a direct and “near proton” hit. The figure is similar 
to many of the following figures. Row, Column, and Intensity are displayed as a hnction of tracker frame 
number. Row and Column are plotted in CCD pixel space, Intensity is in output counts. Any time a star signal 
is invalid or lost, the values of all three parameters drop to zero. A momentary dropout is characterized by a 
zero signal for no more than 10 frames. If the signals go to zero for more than 10 frames, the tracker has 
reentered the acquisition mode, and the time that the signal remains at zero is indicative of the time required 
to reacquire the star. 
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Figure 5. ASTRA Does Not Report Star Data Corrupted by Direct or Very Near Proton Hits. 

Every 100 tracker frames, the S S  causes a “proton” hit directly at the star position and 15 frames later a 
“proton” hit occurs 0.035 degree from the star. It can be seen from the data in Figure 5 that each event 
causes a dropout (i.e., the star position data is not used by the host). The increased intensity of the direct 
“proton” hit causes the “star” to be evaluated as invalid since its increased intensity is outside the average 
intensity limits being continuously determined and updated by the tracker for the valid star. The near hit, 15 
frames later, drops out for the same reason since the near “proton” signal merges with the “star” signal and 
increases the signal intensity. If the position determination had been reported for the “near hit” condition, the 
position would have been in e m r  by the bias that the “proton” signal would have introduced. For the “direct 
hit” condition an incorrect star magnitude would have been reported potentially impeding star identification by 
the host. 

It was also of interest to determine how close a “proton” could come to a “star” without perturbating the 
star (see Figure 6). This scene has a diagonally moving star which is approached within 0.16 degree by a 
“proton” every 100 frames. As a benchmark, a simulated direct hit on the star by a proton was introduced 
causing a dropout for one frame, 15 frames prior to the near “proton” event. The data 15 frames after the 
dropout was reviewed and no effect of the close approach of the “proton” to the “star” was evident. View (a) 
of Figure 6 shows the entire test results in which the regular “star” dropouts due to the direct “proton” hit 
are evident. View (b) of the figure shows a single transit of the star over the tracker’s FOV; view (c) shows 
a greatly magnified view of an area of interest. This plot is typical of all of the proton event occurrences during 
more than two hours of testing. 

Figure 7 demonstrates the ability of ASTRA to maintain track even when a significant number of sequential 
frames were impacted by interfering “protons”. The S S  scenario was a stationary “star” interrupted by four 
blank scenes every 100 frames. Despite the long periodic interruptions, the tracker did not revert to the ac- 
quisition mode. 

Table 1 provides statistical data on acquisition of a star in a “proton”-rich field. All the tests had either mov- 
ing stars that left the FOV at one edge and then were re-introduced at the other edge or stationary stars that 
were deliberately caused to break-track periodically. In all but the diagonal scan cases the S S  scenario was 
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Figure 6. ASTRA Accommodates Near (Non-Interfering) Proton Hits, 

designed so that the tracker had to search the entire FOV before it was in a position to find the star. The 
minimum time required to reacquire a lost star without proton interferences would be 4.4 seconds. Since the 
average time to acquire a star (see the table) is 7.1 seconds, the acquisition delay due to proton effects is 2.7 
seconds. 

TRACKER PERFORMANCE COMPARTSONS IN A PROTON FIELD 

Results of tests in which the SS generates a stationary “star” positioned approximately in the center of the 
FOV and 150 “protons” are generated in a completely random fashion in the FOV without regard to “star” 
position are shown in Figures 8 through 10. Random interfcrences with the “star” do occur. A comparison of 
the data from the three tests quantitatively demonstrates the increased error in the reported “star” position 
due to “proton” interference with the intensity discrimination disabled (Figure 9) and with both the intensity 
and position discrimination disabled (Figure IO). The latter case is indicative of the performance expected 
from the tracker i f  no consideration were made in the design to accommodate proton events. 
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Figure 7. Tracking of a Valid Star is Maintained for Multiple Sequential Proton Events. 

View (a) of Figure 8 illustrates the “star” position variation over an 11.6 minute test as reported by the 
tracker. An evaluation of the data shows that the uncorrupted data sent to the host represented 90 percent of 
the total number of frames. This statistic was valid for two separate trackers within 0.5 percent. This particu- 
lar test displayed a standard deviation of the reported row and column positions of 5.1 arc-seconds and 3.2 
arc-seconds, respectively. Figure 7(b) shows the row, column and intensity of the star plotted against time. 
Although there are numerous dropouts of data due to “proton” induced variations in star position or magni- 
tude beyond preset limits, the tracker never lost the “star” long enough for the tracker to re-enter the ac- 
quisition mode. 

Figure 9 presents the results from the same SS test scene but with the intensity compare discriminator dis- 
abled during the track mode. The standard deviation of the position data reported to the Host increased to 
14.1 and 12.5 arc-seconds in row and column positions, respectively. Since the position comparator remains 
enabled the increase in the the position error is due solely to direct interference of the “protons” with the 
star, since the “proton” signals merge with the star signal to form an erroneous star position centroid. 
Despite the relatively large position errors and the numerous dropouts of “star” data, the tracker never lost 
the “star” to the extent that it re-entered the acquisition mode, see View (b) of Figure 9. 

Figure 10 presents the results from the same SS test scene but with both the intensity compare and position 
compare discrimination of the tracker disabled during the track mode. The standard deviation of the reported 
“star” position increased to 145.3 and 173.7 arc-seconds in row and column positions, respectively. These 
large errors are due not only to interference with the “star” by the “protons” but, in addition, “proton” gen- 
erated centroid positions are mistakenly reported as the “star” position. This case of mistaken identity 

77 



Table 1. Average Acquisition Times in “Proton” Rich Environment 
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occurs if the proton signal occurs within the Track Window and precedes the star position during the raster 
scan of the window. The dissymmetry of the “star” position variations shown in view (a) of Figure 10 is 
explained by this phenomena. View (b) shows a case in which the errors have become so large that the 
“star” is lost and the tracker must re-enter the acquisition mode to re-acquire the “star”. 

Figure 11 evaluates the same data from an acquisition perspective. The software of the tracker with the po- 
sition and magnitude comparators disabled was also modified so that during acquisition the first signal with 
the characteristics of a valid star (i.e.. proper size and magnitude) would cause a transition to track. (The 
multiple frames and tests implemented in the design for use in high-proton flux environments were disabled.) 
In the proton-rich environment, as simulated here, a large number of false star acquisitions were caused by 
proton signals. The actual “star” was acquired only nine times in 30 minutes of tracker operation, and was 
tracker for only six percent of the time. 
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Figure 11. Without the Proton Flux Design 
Features, the Tracker Will Usually 
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Proton Events. 

SUMMARY 

Radiation-induced proton events can result in anomalous operation of solid-state star trackers, specifically: 
Erroneous acquisition of proton events and/or failure to acquire valid stars 
Loss of track of valid stars 
Incorrect position and intensity data. 

Through incorporation of hardware-efficient processing algorithms, HDOS has completed delivery of two flight 
trackers for the TOPEXPoseidon mission which can operate effectively in a proton-rich environment. Using a 
scene simulator to produce effects similar to those caused by protons, tests validating the performance gains 
achieved have been completed on both units. For an environment that produces 150 false multi-pixel events 
at the detector, the following results were obtained: 

No acquisition of false stars (proton events) 
Reliable acquisition of valid stars 
No loss of tracking a valid star 
Identification of corrupted data for the host, caused by proton impact upon valid star pixel groups. 

The algorithms incorporated into the tracker firmware can be tailored to unique user mission requirements. 
The scene simulation techniques developed provide a powerful tool for validating performance for rather 
unique and complex test conditions. 
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Resolution of the COBE Earth Sensor Anomaly 

J. Sedler 
COMPUTER SCIENCES CORPORATION (CSC) 

ABSTRACT 

Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background 
Explorer (COBE) have shown much greater noise than expected. The problem was traced to 
an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS 
timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be 
incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor 
residuals, based on gyro-propagated fine attitude solutions, were as large as f0.45 deg 
[much greater than fO.10 deg from scanner specifications (Reference l).] Also, 
discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 
0.30 deg, respectively) were noted several times during each orbit. 

However, over the course of the mission, each Earth sensor was observed to independently 
and unexpectedly reset and then reactivate into a new configuration. Although the 
telemetered AOS timing corrections are still in error, a procedure has been developed to 
approximate and apply these corrections. This paper describes the approach, analysis, and 
results of approximating and applying AOS timing adjustments to correct Earth scanner 
data. 

Furthermore, due to the continuing degradation of COBE’s gyroscopes, gyro-propagated 
frne attitude solutions may soon become unavailable, requiring an alternative method for 
attitude determination. By correcting Earth scanner AOS telemetry, as described in this 
paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch 
and roll discontinuities are removed. When proper AOS corrections are applied, the standard 
deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude 
solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from 
fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS 
corrections are applied. 
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1. INTRODUCTION 

Since its launch on November 18,1989, the Cosmic Background Explorer’s (COBE’s) Earth sensors have 
shown greater noise than expected. It was determined that the acquisition-of-signal (AOS) timing correction 
was in error. Since no useful information could be extracted from this telemetry, the total AOS timing 
correction was ignored altogether, causing the split-to-index (SI) angles to be time-tagged incorrectly. 

However, over the course of the mission, each Earth scanner was observed to independently and unexpectedly 
reset and then reactivate into a new configuration. Although the telemetered AOS corrections are still in error, 
a procedure has been developed to approximate the AOS corrections by assuming certain scanner attributes. 
This paper describes the approach, analysis, and results of approximating and applying these AOS timing 
corrections. 

Section 2 describes predicted Earth scanner performance. Section 3 presents observed Earth scanner 
performance, both before and after reconfiguration. Section 4 explains the procedure to determine the AOS 
timing C O K K ~ ~ O ~ S .  Section 5 compares the results both from applying and from ignoring the AOS timing 
corrections. Section 6 lists major assumptions and possible sources of error in the procedure. 

2. PREDICTED EARTH SCANNER PERFORMANCE 

COBE is equipped with three independent Earth horizon scanners (manufactured by Barnes Engineering, 
Inc.) to provide pitch control signals to orient the spacecraft with respect to the ~ d i r  (Earth-pointing) vector. 

Each scanner consists of a small infrared telescope whose 2.5deg diameter field-of-view (FOV) rotates at 
240 f 24 rpm by means of a spinning mirror. The rotating FOV defines a scan plane whose normal is a control 
axis (Reference 2). 

During each revolution of the scanner FOV, the detector line of sight will nominally intersect the Earth. As it 
does, each sensor produces five signal pulses: 

1. One pulse at the space-Earth transition (referred to as the AOS); 
2. Three pulses as the scanner line of sight is aligned with respect to the spacecraft +X-axis at rotation 

angles of -9O,O, and +90 degrees (referred to as index pulses); 
3. One pulse at the Earth-space transition (referred to as the loss-of-signal (LOS)). 

It is assumed that an Earth pulse occurs midway between the AOS and LOS pulses. This Earth pulse, referred 
to as the “split,” is the projection of the nadir vector onto the scan plane. During the primary spacecraft control 
mode (mission mode), the index pulse produced at 0 deg is used. These pulses start and stop clock counters 
that give a count proportional to the SI angle that is finally telemetered (Reference 1). 

Each scanner also produces the time of occurrence (referred to as the telemetered AOS timing correction) of 
the AOS crossing pulse with respect to the minor frame synchronization (MFS) pulse by counting the number 
of changes in state of the spacecraft clock. The nominal minor frame period is 0.25 sec. 

In the event that the scanner FOV is not spinning at 240 rpm, it is possible for the SI data to be referenced to a 
previous minor frame. Each scanner, therefore, telemeters a minor frame offset (MFO) as follows: 

woequals  zero for the current minor frame, one for one minor frame previous, two for two minor frames 
previous, or three for three minor frames previous. 

(Under nominal scanner conditions and FOV rates, the MFO should oscillate between 0 and 1.) 
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Due to the 0.83 rpm spin rate of the spacecraft, total AOS timing corrections (consisting of the telemetered 
AOS timing correction and the MFO output) must be applied to SI measurements. At polar crossings during 
summer solstice, the measured SI angles (under nominal conditions) will oscillate approximately between 
f 36 degrees over the 72 sec spin cycle. The rate of change of the SI angle will be (36 deg) (&)/(72 sec) = 
3.2 deg/sec. If the total AOS correction is ignored and the SI calculation corresponds to one minor frame 
previous (MFO 21), the error in the SI measurement will approach 3.2 deg/sec (1) * 0.25 sec = 0.8 deg 
(outside of 0.1 deg from scanner specifications). 

A hypothetical plot of scanner output signal versus time is illustrated in Figure la (shown for a scanner FOV 
rate less than 240 rpm). Four pieces of information are of interest: the time of the minor frame 
synchronization pulse, the time of AOS crossing pulse, the time of the SI calculation from the scanner 
electronics, and time of the serial input/output (I/O) request for Earth scanner data. (The amount of time 
between the LOS crossing pulse and the SI calculation time is assumed to be small and is neglected in this 
analysis.) These four pieces are labeled in Figure la as M, A, C, and R, respectively. 

An explanation of Figure la  follows: 

1 . At COBE’s altitude of 900 km, the full angular width of the Earth is approximately 120 deg. Thus, the 
time between the AOS and LOS pulses should be approximately 1/3 of a scanner FOV period, or 
(0.25 sec)+(l/3) = 0.0833 sec (assuming a near-nominal FOV rate). 

2. The nominal transmission bit rate of 4.096 kbps requires the time between MFS pulses to be 0.25 sec. 
3. The serial I/O request for Earth scanner telemetry occurs approximately midway between MFS 

pulses. 
4. In this example, the scanner FOV rate is 216 rpm. 

Figure l b  depicts the corresponding AOS and MFO output for this example. 

In order for the MFO to equal 0, the AOS pulse and the updated SI angle must occur bemeen the MFS pulse 
and its respective serial I/O request time (e.g., minor frames 1 and 2 in Figure la). 

If the scanner FOV is spinning slower than 240 rpm, the serial 1/0 request time for Earth scanner telemetry 
will be out of phase with the SI calculation time. The request time will eventually occur before the new SI 
angle is calculated. When this happens, the SI angle and AOS timing correction of the previous minor frame 
should be telemetered and the MFO set equal to 1 (e.g., minor frame 3 in Figure lb). 

Earth scanner data corresponding to one minor frame previous will continue to be telemetered until the AOS 
and SIcalculation times occur within the current MFS and data request times, at which time, the MFO r e m s  
to 0 (e.g., minor frame 11 in Figure lb). 

Assuming the scanner FOV rate remains relatively constant and less than 240 rpm, this output will repeat 
itself with a period proportional to the scanner rate. It can be shown that the scanner FOV rate can be 
approximated by the following equation: 

where QFOV is the scanner FOV rate in rpm and 
T is the number of seconds between successive 0-to-1 MFO transitions. 

(NOTE: If the telemetered AOS timing corrections decrease, the scanner FOV rate is greater than 
240 rpm. In this case, Equation 1 becomes QFOV = [240 + (60/T)]. 

85 



-- r. 

-- 9 
-- Ln 

-- v 

-- r) 
-- C.l 

-- - 

I 

I 

86 



Ground Processing 

Once the telemetry is received, the COBE Attitude Determination System (ADS) converts the SI to angles 
and AOS timing corrections to seconds. The SI angle is then time-tagged to the time of the AOS pulse by the 
equation: 

t,, = [fs/c - 64 * 8/BR] + [at,, - N * (128 * 8/BR)] 

where tsI is the adjusted time tag of the SI angle ; 
ts/c is the spacecraft clock time (64 * 8 is the bit offset of the spacecraft clock from the 

MFS pulse); 
&AOS is the telemetered AOS timing correction (sec); 
N is the MFO corresponding to the SI angle and AOS timing correction 

(128 x 8 bits = 1 minor frame); and 
BR is the transmission bit rate, 4.096 kbps. 

The number in the first set of brackets is equivalent to the time of the current MFS pulse. In this report, the 
number in the second set is referred to as the “total AOS timing correction.” 

3. OBSERVED EARTH SCANNER PERFORMANCE 

Before Earfh Scanner Reconfigurations 
Figure 2 shows MFO output and the corresponding total AOS timing corrections for Earth scanner A at the 
beginning of the mission. (Scanners B and C show similar output.) While scanner SI angles were correct, 
both the AOS timing correction and the minor frame offset telemetry were inexplicable. A characteristic 
11 -second rollover in the AOS timing correction (Figure 2) was observed for each scanner. This decreasing 
AOS correction is consistent with a FOV rate of approximately 245 rpm (greater than 240 rpm). 

Given t h i s  scanner rate, the corresponding MFO should oscillate between 0 and 1 with the same 11 -sec period. 
No such oscillation is observed. Also, at AOS rollover points, slight discontinuities in the SI angles should 
exist as the SI angle is updated within a given minor frame. No discontinuities in SI angles with an 11 -sec 
period were observed. 

It was therefore determined that both the AOS timing correctionandminor frame offset output wereincorrect. 
Practice became to set the total AOS timing correction to zero, thus time-tagging the SI angles to the MFS 
pulse (see Equation 2). 

Discontinuities in SI angles were, however, observed for each scanner approximately every 5 to 10 minutes, 
corresponding to scanner FOV rates of approximately 239.8 to 239.9 rpm. It was postulated that total AOS 
timing corrections could be simulated by fmt locating these discontinuities in SI telemetry. Then, if various 
scanner attributes were assumed (see Section 2), AOS corrections could be linearly interpolated between SI 
discontinuities. Unfortunately, noise in SI telemetry at nodal crossings along with Sun and Moon interference 
made locating the SI discontinuities difficult and unreliable. 

After Earth Scanner Reconfigurations 
Over the course of the mission, each Earth scanner was observed to independently and unexpectedly “reset” 
itself. Upon its initial reactivation, each scanner would change into and remain in a new configuration. The 
MFO output was no longer constant at 0 but was observed to oscillate between 0 and 3 with the ll-sec AOS 
rollover period. The telemetered AOS timing correction, 6tAOS, remained unchanged in the new 
configuration. Figure 3 shows the new MFO output pattern and the corresponding total AOS timing 
correction. Even in this new configuration, the total AOS timing correction is still incorrect. 
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Figure 2. 
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Figure 3. MFO/AOS Output After Earth Scanner 
Reconfiguration (Shown for Scanner A) 
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Fortunately, changes in this characteristic MFO output were simultaneous with discontinuities in SI angle 
(see Figure 4). It was therefore assumed that a ‘‘true” MFO transition occurred when the MFO pattern was 
broken. Since the MFO output was independent of SI noise and SunFroon interference, these characteristic 
breaks were used to reliably signal SI discontinuities due to MFO transitions. Total AOS timing corrections 
for each Earth scanner could then be interpolated and subsequently applied to SI angle time-tags. The 
reconfiguration times for each Earth scanner are recorded in Table 1. 

4. PROCEDURE FOR ADJUSTING AOS TIMING CORRECTIONS 

For a selected time span, minor frame offsets were compared with the AOS rollover periods for each 
individual Earth scanner. Each break in the MFO characteristic pattern previously described was assumed to 
be a “true” MFO transition from 0 to 1 or from 1 to 0. 

To determine which transition had actually occurred, the number of seconds between successive “true” MFO 
bansitions was calculated. Table 2 contains an example of MFO transition times for Earth Scanner A. 

Two classifications of transitions were discovered: 

1. ‘‘W I” transitions: separated by 300 sec or more and 

2. “’Ilpe II” transitions: separated by 100 sec or less. 

...... .................... 

Break In rne 
C h a m  t e r l s l l c  

........................................... 
m- I I sec -4 

Corrcsvondlng 

51 angle 
........... 

.............. .... .... 

Figure 4. MFO/SI Discontinuity Relationship After Earth 
Scanner Reconfiguration (Shown for Scanner A) 
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Table 1. Reconfiguration Times of COBE Earth Scanners 

Earth Scanner 

A 

Reconflguratlon llme (GMT) 

9OO814.130047 
~ ~~ 

B 

C 
~ ~ _ _ _  ~~ ~~ ~ 

Table 2. MFO Transition Times for Earth Scanner A 

~~ ~ ~~ 

91 0926.1 73059 

91 0101.181415 

Mlnor Frame nme (GMT) Difference (sec) 

91 0504.203406267 - 
910504.2O4050767 404.5 

91 05O4.204O51767 1.0 

11 (2) I +o.w I 0.5 I 91 0504.204052267 I 

Total AOS me Correction (sec) 

_- -_ 
I -0.208 

11 (1) -0.208 

91 0504.204055767 

91 0504.2041 31267 

91 0504.204936267 

91 0504.205007767 

910504.2O5008267 

0.5 I 11 (3) I -0.208 I 910504.205008767 I 

3.5 11 (3) -0.208 

35.5 11 (4) +O.W 

485.0 I -0.208 

31.5 11 (1) -0.208 

0.5 11 (2) +0.042 

91 0504.205009267 

91 0504.205010267 

910504.205010767 

91 0504.205737267 

910504.210458267 

91 0504.21 1324767 

The T&e I transitions could be explained by the following hypothesis: 

If the scanner FOV rate was slightly less than the nominal 240 rpm, then the serial I/O request would be out of 
phase with the SI angle calculation (see Section 2). The request time would eventually occur before the new SI 
angle was calculated,causing the previous minor frame SI angle to be telemeter&. The “true” MFO transition 
would, therefore, be from 0 to 1. Furthermore, if scanner FOV rate is assumed relatively constant, this process 
would repeat itself periodically. Using Equation 1, for T 1300 sec, the approximate scanner FOV rates range 
between 239.8 and 240 rpm. 

At the initial ’&e I MFO trausition, the request time is assumed to occur just before the new SI is calculated. 
The AOS timing correction is then approximately equal to the time difference between the MFS pulse to data 
request and the AOS pulse to calculation (see Figure 5),  or 4.042 sec. Since the MFO is assumed to equal 1, 
the total AOS timing correction, measured from thecurrent MFS pulse (seeEquation 2), is 4.042 - (1)*0.250 
= -0.208 sec at the initial transition. 

0.5 11 (4) +0.042 

1 .o 11 (5) -0.208 

0.5 11 (6) + o m 2  

446.5 I -0.208 

441 .o I -0.208 

506.5 I -0.208 
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Prior to the next Type I transition, the data request time is assumed to occur just after the new SI is calculated 
(Le., N equals 0 in Equation 2). The total AOS timing correction is then equal to 4.042 - (0)*0.250 = +0.042 
sec. Assuming a constant scanner rate, the total AOS timing corrections for the intervening SI angles are then 
linearly interpolated between these two corrections according to the equation: 

AOS, = ([(tm - tl)/(t2 - t,)] * 0 . 250) + (-  0 . 208), (3) 
where t m  is the minor frame time; tl S tm < t2; 

tl is the time of the first Type I MFO transition; 
t2 is the time of the second Type I MFO transition; and 
AOST is the total AOS timing correction (sec). 

5 p e  11 transitions could be explained in a similar manner. The serial I/O request occurs at a fixed period of 
0.250 sec. However, the period at which the SI calculation is determined is not fixed. It is dependent upon both 
the AOS and LOS pulses which, in turn, vary according to spacecraft attitude, orbit location, time of year, etc. 
It is plausible, therefore, to assume that these transitions, which are separated by less than 100 sec, result from 
the movement of the calculation time with respect to the serial I/O request. 

When the calculation time occurs after the request time, the “true” MFO transition would be from 0 to 1 (see 
Figure 6), corresponding to a total AOS timing correction of 

AOST = -0.208 sec 

When the calculation time occurs just before the request time, the MFO transition would be from 1 to 0, 
corresponding to a total AOS timing correction of 

AOST = +0.042 S ~ C  

All intervening AOS corrections are assumed constant between these ?).pe I1 MFO transitions. 

Assuming the scanner FOV rate is less than 240 rpm, there should always exist either zero or an even number 
of ?Lpe II MFO transitions between ?Lpe I transitions (see Table 2). Even though the data request and 
calculation times may toggle back and forth several times, the data request time eventually will remain before 
the calculation time. Examination of SI angle discontinuities supports both explanations of T ) p  I and II).pe II 
MFO transitions. 

In summary, the total AOS timing corrections are determined in the following manner: 

1. If the SI angle occurs at or within a set of ?)rpe I MFO transitions, the total AOS timing correction is 
linearly interpolated according to Equation 3; 

2a. If the SI angle occurs at or within an odd-numbered set of q p e  I1 MFO transitions, the total AOS 
timing correction is -0.208 sec; 

2b. If the SI angle occm at or within an even-numbered set of ?Lpe 11 MFO transitions, the total AOS 
timing correction is 4.042 sec. 

5. RESULTS 
Figures 7a and 7b show coarse attitude determination subsystem (CADS) solutions over a typical 30-minute 
span, using the AOS timing corrections directly from telemetry. Discontinuities (as large as 2.5 deg in pitch 
and 1 deg in roll) are observed with an 11-sec periodicity (at all AOS rollover locations). 

(NOTE: For all the attitude solutions contained in this report: 
1. Corrections for Earth oblateness and spacecraft spin have been applied to the SI angles. 
2. For the selected timespan, Earth scanner B had not yet been reactivated into the new configuration by 

which AOS corrections could be made. Therefore, only data from Earth scanners A and C are used. 
3. In the fine attitude solutions, the X-gyro scale factor has been corrected for a known temperature 

dependence.) 
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Figure 7a. Coarse Attitude Using Unadjusted AOS Timing Corrections 
(Pitch Angle) 
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Figure 7b. Coarse Attitude Using Unadjusted AOS Timing Corrections 
(Roll Angle) 
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Figures 8a and 8b depict corresponding CADS solutions when the AOS corrections are ignored altogether 
(time-tagging SI angle to the MFS pulse). Discontinuities (0.80 deg in pitch, 0.30 deg in roll) are observed 
with a 5-  to 10-minute periodicity resulting from “true” MFO transitions. 

Figures 9a and 9b show CADS solutions using the AOS timing correction method presented in this paper. All 
attitude discontinuities are removed. 

To measure the solution accuracies, two gyro-propagated fine attitude determination system (FADS) 
solutions were determined. One solution was computed ignoring the total AOS corrections (time-tagging SI 
observations to the MFS pulse), and the other applied the AOS correction procedure described above. 

Graphs of SI residuals, equal to the observed SI angles minus the predicted SI angles from the 
gyro-propagated solution, were created for Earth scanner A without AOS corrections (Figure 10) and with 
AOS corrections (Figure 11). Similar results were found for Earth scanner C .  By applying the corrections, the 
maximum SI residual was observed to decrease from f 0.45 deg to f 0.10 deg for each scanner (meeting 
sensor specifications). Also, the overall standard deviation of SI residuals decreased by a factor Of 4, from 
0.126 deg (without AOS corrections) to 0.032 deg (with AOS corrections). 

The gyro-propagated fine attitude solutions were then compared with their respective coarse attitude 
solutions for each case. Corresponding pitch residuals (equal to the fine pitch angle minus the coarse pitch 
angle) are found in Figure 12 (when AOS corrections are ignored) and Figure 13 (using AOS corrections). By 
applying the AOS corrections, the maximum pitch residual was observed to decrease from f 0.50 deg to 
f 0.15 deg. Similarly, the overall standard deviation of the pitch residuals decreased by a factor of 3, from 
0.159 deg (without AOS corrections) to 0.062 deg (with AOS corrections). In addition, the root mean square 
of the deviation angle decreased from 0.262 deg to 0.199 deg when the AOS corrections were applied. 

These results indicate an increase in both fine attitude and coarse attitude accuracy when the AOS correction 
method is applied. 

6. SOURCE OF ERRORS 

The following is a list of assumptions and possible sources of error: 

1. Earth scanner FOV rates are assumed to be less than 240 rpm. All examinations of SI data for each 
reconfgured scanner were consistent with this assumption. 

2. Earth scanner FOV rates are assumedconstant between both types of MFO transitions. Examination 
of the envelope of SI residuals using the AOS correction method (Figure 11) is not constant 
throughout the time span and may indicate a varying FOV rate. Application of a different 
interpolation method, such as a natural cubic spline, may minimize this source of error. 

3. The time between AOS to LOS pulses (Le., Earth width) is assumed constant. This measured width 
changes most rapidly at polar crossings, sinusoidally oscillating with spacecraft yaw angle. The 
width is also dependent upon thecommanded spacecraft attitude and Sun declination. Unfortunately, 
the time span analyzed in this report is centered about the spacecraft’s northem-most passage. The 
oscillatory behavior of the SI residuals in Figure 11 may be caused by the assumption of a constant 
Earth width. Further analysis is needed. 

4. No correction for Earth horizon radiance is made. With the increase in accuracy of the attitude 
solutions, its detection and determination may now be possible. 

5 .  A drawback to this method is its susceptibility to data dropout. Ifa “true” MFO transition is omitted 
due to data dropout, AOS timing corrections may be interpolated between improper times. It is 
possible, however, to predict the MFO output (using its characteristic ll-sec periodicity). By 
comparing the predicted and actual MFO, it can be determined if a “true” MFO transition occurred 
during the dropout period. 
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Figure 8a. Coarse Attitude Ignoring AOS Timing Corrections (Pitch Angle) 
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Figure 8b. Coarse Attitude Ignoring AOS Timing Corrections (Roll Angle) 
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Figure 9a. Coarse Attitude Using Adjusted AOS Timing Corrections (Pitch 
Angle) 

Figure 9b. Coarse Attitude Using Adjusted AOS Timing Corrections (Roll 
Angle) 
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Figure I O .  Earth Scanner A SI Residuals (Ignoring AOS Timing Corrections) 

Figure 11. Earth Scanner A SI Residuals (Applying AOS Timing Corrections) 
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Figure 12. Gyro-Propagated Fine Pitch Angle Minus Coarse Attitude 
Pitch Angle (Ignoring AOS Timing Corrections) 

Figure 13. Gyro-Propagated Fine Pitch Angle Minus Coarse Attitude Pitch 
Angle (Applying AOS Timing Corrections) 
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Using the new scanner configuration, “true”MF0 transitions can be located and total AOS timing corrections 
can be interpolated accurately and reliably. When the AOS timing corrections are applied, Earth scanner 
accuracy is observed to be within f 0.10 deg (meeting sensor specifications), yielding more accurate coarse 
attitude and fine attitude solutions. 

Furthermore, with the continued degradation of COBE’s gyroscopes, gyro-propagated fine attitude solutions 
may soon become unavailable, requiring an alternative method for attitude determination. By correcting 
Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are 
obtained and all pitch and roll discontinuities are removed. When proper AOS corrections are applied, the 
standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions 
decreases by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions 
decreases by a factor of 4 (meeting sensor specifications) when AOS corrections are applied. 

This method of adjusting the AOS timing correction was formulated solely from observations in telemetry 
and assuming scanner attributes. It is hoped that an inspection of the actual electronics diagram may assist in 
the development of a more sophisticated and accurate AOS adjustment procedure for each Earth scanner, 
especially before the scanner reconfiguration times listed in Table 1. 
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Abstract 

This paper discusses a covariance study on the feasibility of using station-differenced carrier 
phase on short baselines to track the TDRSS satellites. Orbit accuracies for the TDRSS using 
station-differenced carrier phase data and range data collected from White Sands, NM are given 
for various configuarations of ground stations and range data precision. A one-sigma position 
position accuracy of 25 meters can be acheived using two orthogonal baselines of 100 km for 
the station-differenced phase data and range data with 1 m accuracy. Relevant configuration 
parameters for the tracking system and important sources of error are examined. The ability of 
these data to redetemine the position after a station keeping maneuver is addressed. The BRTS 
sysrem, which is currently used for TDRSS orbit determination, is briefly described and its 
errors are given for comparison. 

I.  Introduction 

The Tracking and Data Relay Satellite System (TDRSS) is a network of geosynchronous satellites used 
to communicate with low earth orbiters. Each satellite has two single access (SA) high gain antennae 
which operate at 2 GHz (S-band) and 14 GHz (Ku-band) and one multiple access (MA) array at 2 GHz 
that receive signals from users. Telemetry received from a user satellite is sent from a Tracking and Data 
Relay satellite (TDRS) to White Sands, NM on a dedicated link at 14 GHz. A user satellite may obtain 2- 
way range and doppler data from a TDRS in order to determine the user’s position. The two TDRSS 
satellites currently in use are 67” of longitude west and east of White Sands. The TDRSS positions are 
required to be known to 50 m at one-sigma and their position must be redetermined to this accuracy 
within 2 hours of a station-keeping maneuver. Currently, position determination for the TDRSS is done 
using range and doppler data at 2 GHz collected using the Bi-lateral ranging transponder system (BRTS) 
described below. In addition, rough position determination is done using angle and range radio memc 
data from three ground antennae at the White Sands complex also described below. The tracking 
technique presented in this paper is part of a study of alternative tracking strategies for supporting orbit 
determination of the Advanced Tracking and Data Rela Satellites (ATDRS). Other approaches, 
involving GPS tracking techniques, are also being explored. 1 
In this paper, the possibility of using station-differenced camer phase data on short baselines to perform 
TDRSS orbit solutions is explored. Biased carrier phase data could be obtained passively by each of a 
few antennae near White Sands by tracking the 14 GHz carrier on which telemetry is sent from a TDRSS 
satellite to White Sands. The differenced phase between a pair of stations measures the plane-of-sky 
position of a transmitter in the direction of the baseline formed by the stations. The precision of the 
measurment is given by A6= Ao/Bsin6, where B is the baseline length, A@ is the precision of the 
differenced phase measurement and 6 is the angle between the baseline and the transmitter. The 
differenced phase observable has a remaining bias due to the difference in instrumental signal path 
through the two stations; as a result, only the change in plane-of-sky position over a data arc is 
effectively measured. This technique differs from Connected Element Interferometry (CEI)3 in which the 
phase bias between the stations and the integer cycle ambiguity is resolved. While station-differenced 
biased phase provides weaker position information than CEI, it is operationally simpler and does not 
require a capability to record quasar signals for calibration as required for CEI. 



Table 1 
Error budget for TDRSS orbit determination with BRTS 

Error Source Error model Position Error (m) 
Computed error: 

Range data noise? 
Doppler data noise? 
Total computed error 69 

10 m white noise, 10 m bias 
0.003 Hz white noise 

Considered errors: 
Solar pres sure 
Troposphere 5 cm zenith error 
Ionosphere 10 TEC error 
BRTS station locations 5 m error per axis 

2% error in reflectivity 

RSS Dosition error: 

4 
2 
18 
13 
73 

t The data have a 10 second integration time, and are scheduled for 4 minutes every four hours for a 34 
hour arc. 

In this paper, baselines small enough to f i t  within the few hundred kilometer footprint of the TDRSS 
space-to-ground link signal are considered. Because of the high precision with which phase delay can be 
measured, the station-differenced phase data type can provide good plane-of-sky velocity measurements 
with baselines of this modest size. For stations within about 100 km, it is possible to distribute a 
common frequency reference signal to the stations over a fiber optic link, reducing errors, associated with 
drifts in separate station c10cks.~ Baselines of 1 km, 10 km and 100 km with stations sharing a 
frequency reference and baselines of 100 km and 500 km in which the stations have separate frequency 
references are discussed. 
11. Current TDRSS Orbit Determination 

a) BRTS svsterq 

The BRTS consists of several ground-based transponders at four near equatorial locations around the 
globe. Each TDRS can view two or three BRTS stations. A range code particular to the transponder is 
sent from White Sands through a TDRSS satellite to each BRTS transponder and back once every four 
hours. TDRSS orbit solutions are calculated for 34 hour passes of BRTS four-way range and doppler 
data. The BRTS geometry results in a robust orbit solution for the TDRSS; however, data-taking with 
BRTS occupies the SA or MA user antenna of each satellite for about four minutes every four hours. 

Because it is the operational data type used for TDRSS orbit determination, many studies have been done 
to determine the accuracy of the BRTS solutions.1 BRTS regularly achieves 50 - 100 m one-sigma 
position errors. For completeness, an error budget for BRTS is included here (Table 1). A data accuracy 
of 10 m for the BRTS range data and 0.003 Hz for the BRTS doppler data is used for 10 second 
integration times.5 Four minute arcs of data are scheduled every four hours, and an epoch state solution 
is found for a 34 hour data arc. A systematic error in  the range measurements was included by estimating 
a bias parameter with an a priori error of 10 m. Errors from propagation media, solar pressure 
mismodelling and station location rnismodelling are considered at the levels shown in Table 1. The 
computed error dominates the TDRSS position error; however, ionosphere mismodelling and station 
location uncertainty contribute significant consider error. 

b) White Sands Ground Tracking Svstem 

The White Sands site has angle and range radio metric data available for rough TDRSS position 
determination. The angle data, consisting of azimuth and elevation measurements from antenna pointing, 

1 04 



Table 2 
Differenced Troposphere Models for Several Baseline Lengths 

Station separation (km) Differenced troposphere Differenced troposphere 
(baseline length) sigma (cm) at 10" elevation time constant (s) 

10 
100 
500 
lo00 

0.63 
0.1 1 
2.53 
5.86 
9.40 
11.2 

370 
2380 
1333 
7050 

17,460 
30.000 

i In the case of a 1 km baseline, the model used was the sum of two Gauss-Markov processes (see text). 

have a precision of 0.1" and are biased. The current ranging system at White Sands is used to maintain 
an uncertainty in TDRSS range better than 10 km when the TDRSS position solution is propagated 
forward a few days.6 The ranging signal has a 4 MHz bandwidth and the code is 244 ps long. The 
precision of the range measurements is about 20 m one-sigma for a 1 minute integration time with 
systematic error of about 30 m one-sigma. The system is not intended to be used for precision orbit 
determination and it may not be possible to calibrate the existing ground any antennae better. For the 
purposes of this study, it is assumed that a better ranging system could be put in place, although the 
current ranging system enhanced with station-differenced phase data is also studied. 

111. Data Modelling and Filter Assumptions 

a) Configuration 

Figure 1 shows the configuration of antennae used in the covariance study. Three antennae, all near 
White Sands, form a north-south and an east-west baseline. For simplicity, north-south and east-west 
baselines of the same length are used. Baselines from 1 to 500 km are considered. In addition to the 
station-differenced phase data, range and doppler data collected at one of the stations are also included. 
The position solutions are found for 24 hour data arcs including station-differenced phase measurements 
on each of the two baselines and range data points every 10 minutes using the OASIS filter.7 Position 
solutions calculated for TDRS-east and TDRS-west are very similar due to their symmetrical location 
with respect to White Sands. Hence, only the solutions for TDRS-east are shown. 

Stochastic troposphere and station clock models are used to simulate the station-differenced phase data 
noise as discussed below. The station-differenced phase data are weighted at one-tenth of the line-of- 
sight troposphere sigma for each baseline, in order that it have negligible effect on the computed position 
error in the filter program. This results in data weights from about 0.025 cycle to about 0.5 cycle for the 
14 GHz (Ku-band) phase data, depending on the baseline length. While carrier phase precision is much 
better than 1/40th of a cycle the data weight must be kept large enough to prevent unrealistic sensitivity to 
modelling errors. A constant phase bias is estimated at each of the three stations. The phase biases, 
which would result from integer cycle ambiguity and uncalibrated signal path delays at each station, are 
taken to be constant and initially unknown. 

@ Noise modelline for station-differenced Dhase dm 

While carrier phase can be measured with high precision at each antenna, there would be noise in the 
station-differenced phase due to fluctuations in the difference between the propagation media along the 
two lines of sight and the difference between the station frequency references. If the stations have a 
common frequency reference, the noise in the station-differenced phase data should result mainly from 
fluctuations in  the signal propagation media. For 14 GHz signals, the dominant media fluctuations are 
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Figure 1. Configuration of antennae for carrier phase measurements used in covariance study. 
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Table 3 
Station Clock Models Used 

Clock type growth (km/ds) walk growth 24 hours 
Phase Random Walk Frequency Random Phase growth in 

((km/s)/ds) (cm) 

Rubidium 1.5~10-6 4.7xlO-lO 1200 

Hydrogen Maser 1 . 5 ~  10-8 4.7~10-12 10 
Cesium 1 . 5 ~  10-6 1 . 5 ~  10-11 40 

from troposphere, so charged particle media are ignored in this analysis, The data noise for differenced 
phase data from two stations sharing a frequency reference is simulated by estimating a stochastic 
troposphere model at each station. To simulate the noise in the differenced phase data from stations with 
separate references, a stochastic clock model at each station is also estimated. 

i )  TroDosphere modelling 

The sigma-squared and time constant of the Gauss-Markov stochastic troposphere model used for each 
baseline are determined by fitting the autocorrelation of the station-differenced troposphere to an 
exponential (table 2). In the case of a 1 km separation between stations, two exponentials, one 
accounting for the short term fluctuations and one for the longer term fluctuations, are required to f i t  the 
autocorrelation function well. For the longer baselines, a single exponential fits well. The autocorrelation 
function is calculated in a flat-earth frozen troposphere model using a wind velocity of 10 d s e c  and a 
tropospheric height of 1 km.879 The autocorrelation is calculated for north-south and east-west baselines 
of several sizes accounting for the 10' elevation of the TDRSS satellites from White Sands and the 
projection factor between the wind direction and baseline (fig 2). Since there is little dependence on 
baseline orientation, the autocorrelation with the largest value at t=O for a given baseline length is used to 
model all the baselines of that length. For symmetry, a troposphere model is applied at each station, with 
a sigma-squared half the value of the differenced troposphere autocorrelation sigma. The differenced 
troposphere fluctuations grow with baseline; but they grow slower than the enhanced precision in angle 
measurement due to the longer baseline. 

ii) Station Clock Modelling 

Slightly longer baselines can be considered if frequency reference sharing between stations is not 
required. Baselines of 100 and 500 km in which the stations each have their own frequency reference are 
considered in this paper. If the stations forming a baseline have separate frequency references, drifts 
between the clocks at the stations increases the noise in the measurement of station-differenced phase. 

Typical frequency standard stabilities have a short term behavior of a white frequency noise and long 
term behavior of a random walk in frequency. In the OASIS program, the phase of a station clock is 
modelled as a polynomial in time, 0 = $0 + ogz  +a721 where 'I is time past some epoch, @cj is a bias 
parameter, 00 is a dnft  parameter and a is a dnft  rate parameter. In this analysis, the white frequency 
noise behavior of the station clocks is modelled by applying a random walk noise model to (Q, the clock 
bias, and the random walk of frequency behavior is modelled by applying a random walk model to 00, 
the station clock drift. Clock models representing the performance of rubidium, cesium and hydrogen 
maser standards, shown in table 3, are used in this study.10 The rubidium and cesium standards have 
comparable short term stability, but the cesium has better stability on a 24 hour or greater time scale. A 
hydrogen maser is stable enough over a 24 hour data arc that would result in position solutions 
comparable to the case in which the stations share a common clock. 

107 



I I I I r 

a) 1 km baseline 

East-West baseline I 

North- South baseline 
1 1 1  

I 

I 

\ I L L - - - - - - - - - -  

I I I I I I I 

0 

I 8 

b) 10 km baseline 
I 

East-West baseline 
North-South baseline - - 1 1 1  

I 

I 

I 
\ I - - - - - - - 

- 0 - C  
- v  

\ 

- 1 x 10-21 I I I I I I 

1000 2000 3000 4000 
Time (seconds) 

0 lo00 2000 3000 4000 
Time (seconds) 

I I I I I I I 

c) 100 km baseline 3x 1 O-*O 
I .I 

East-West baseline - 
North- South baseline 

1 - 1 1  

I I 

2x10-20 - I 

I 

I 

- .I 

1x10-20 ~ I I I I I I I L 

0 lo00 2000 3000 4000 
Time (seconds) 

Figure 2. Autocorrelation function of the troposphere differenced between two lines of sight with 
elevation of 10" from stations forming an east-west or a north-south baseline of size: a) 1 km, b) 10 
km or c) 100 km. These are based on the model developed in ref 9. 
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Figure 3. Signature on the plane of the sky of the TDRS-east as seen from White Sands, NM. 

c) Range data 

Station-differenced phase data are able to trace the small signature in the plane-of-sky made by a 
geosynchronous satellite over a day (fig 3). In the geometry at hand, this determines 5 elements of the 
TDRSS orbits well, but leaves the longitude-of-node poorly determined. In addition, an orbit solution 
with this data type alone is very sensitive to mismodelling of forces such as solar pressure. A small 
mismodelling results in a several hundred meter error in the satellite position with most of the error in the 
satellite longitude. For these reasons, it is impractical to perform TDRSS orbit determination with 
station-differenced phase data alone. 

In the analysis, range and doppler data from one station are included in the simulated data set. The range 
data are modeled with a white noise measurement error along with systematic bias parameter which is 
estimated, with an a priori constraint corresponding to the ranging system calibration accuracy. Doppler 
data are modeled simply with white measurement errors. We will consider weights and biases for the 
range measurements between 1 and 30 meters. 

Range data can help determine the along-track position, which helps constrain the satellite longitude. 
Low precision range data (20-100m) is good enough to control the error due to solar pressure 
mismodelling. Better range data are required to reduce the computed along-track error to an acceptable 
level. The range partial with respect to the longitude of the TDRSS satellite orbit, 6p/6@, for the 
geomeay discussed here is ID, so a range measurement of better than 7m is required to get the longitude 
component of the TDRSS position error below 50m. The range data precision does not have to be quite 
this good, since it averages down over several rneasurments. However, the systematic error in the range 
measurment must be less than 1/7 of the required position error. 
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Table 4 
TDRS-east satellite position errors using station-differenced 

phase data from connected-clock stations and range from White Sands. 
case 1 case 2 case 3 case4 case5 

inputs 
Data weights: 

S tation-differenced phase baseline (km)? 100 100 100 10 1 
Dopper Noise ( m m / s ) *  1 .o 1 .o 1 .o 1 .o 1 .o 
Range Noise (m)t 10 10 1 1 1 
Range Bias (m) 30 10 1 1 1 

Range station location(m) 2 2 2 2 2 
S tation-differenced phase station locations(m) .35 .35 .35 .35 .35 
Solar pressure(% of reflectivity) 2% 2% 2% 2% 2% 

Consider Inputs: 

results (epoch) 
Computed error (m) 247 84 14 25 63 
Consider errors (m) 

Solar pressure 12.1 10.4 12.4 12.4 12.6 
Range station location 14 14 14 14 14 
Station-differenced phase station location 0.12 0.12 0.10 0.12 11.9 

RSS position error (m) 2 4 8  8 6  2 3  3 1  67  
t Two orthogonal baselines of this size are used. + Dala noise for 10 minute points. 

IV. Covariance Results 

a) Computed Errors 

Table 4 shows the computed errors that result in several scenarios with station-differenced phase on two 
orthogonal baselines combined with range and doppler data all taken from White Sands for a 24 hour 
data arc. The first case corresponds to using the current WSGT ranging system data enhanced with 
station-differenced phase data. The others are examples of performance with various combinations of 
baseline length and improved range data. 

i) Dependence on Range Bias 

As is apparent from Table 4, the position accuracy is limited by the ranging system accuracy in several 
cases. Figure 4 shows the dependence of TDRS position error on range bias a priori uncertainty when 
the range data are combined with station-differenced phase data from various sized baselines. In all cases 
the range data noise was 1 m. In order that the position error be limited only by the station-differenced 
phase data, the range data bias must be better than approximately 1 m in the 100 km baseline connected 
frequency reference case. For smaller baselines, the station-differenced phase data are weaker and the 
TDRS position error becomes dominated by the station-differenced phase data at larger values of range 
bias error. In all cases, the range data largely determine the component of the TDRS position in the 
longitude direction, while the stationdfferenced phase data determine the other orbital elements. In order 
to obtain a range bias of 1 m it may be necessary to upgrade the current 2-way ranging from White Sands 
to TDRSS. Typically, a ranging system can be calibrated to about 90% of the inverse bandwidth of the 
system; thus a ranging system calibrated to 1 m would require a 30 MHz bandwidth. 
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Figure 4. R.S.S. position error for a TDRSS satellite using a one day arc of station-differenced phase and range data from 
White Sands as a function of systematic error in the range measurement. The range noise is held fixed at 1 m for a 10 
minute point. 

jil Dependence on Trouos~ here mode 1 

Since the troposphere model is the important source of data noise for the station-differenced phase data in 
the case where the stations share a common clock, it is useful to know how the troposphere model 
parameters affect the TDRS position error. The two parameters that describe the station-differenced 
troposphere, as modelled in this paper, are the steady-state sigma and the correlation time constant. 
Figure 5 shows how TDRS position accuracy varies with these model parameters. In Fig. 5a, The 
magnitude of the troposphere sigma is varied by a factor of two from the nominal values shown in Table 
2, while the time constant is held fixed at its nominal value. In Fig. 5b, the time constant for the 
stochastic station-differenced troposphere is varied, while the steady-state sigma is held fixed. In both 
cases the position error changes slowly with the variation in troposphere parameters. 

jii, Effect of SeDarate Stan 'on Clocks 

Because a configuration in which the stations have independent freqeuncy references may be simpler to 
build, we consider it as well, despite the cost in position accuracy. Position determination with station- 
differenced phase depends on tracing the signature in  the plane-of-sky from the station made by the 
satellite. In the case of a geosynchronous satellite like TDRS, there is a 24-hour period to the signature 
(Fig 3), so that is the time scale during which the difference in the station clocks must be stable. The 
expected plane-of-sky error from clock phase error growth is approximately pA@c/B, where p is the 
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Figure 5 a.) R.S.S. position error for a TDRSS satellite using a one-day arc of differenced carrier-phase 
and range data from White Sands as a function of sigma of station-differenced zenith troposphere. b.) 
R.S.S.position error for a TDRSS satellite using a one day arc of differenced carrier-phase and range data 
from White Sands as a function of station-differenced zenith troposphere autocorrelation time constant. A 
range data noise of 1 m and range bias of 1 m were used in both figures. 
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Figure 6 The position error for TDRS-east using station-differenced phase data from two orthogonal 
baselines plus range data ( 1  rn error) as a function of the baseline size, if the stations have separate frequency 
references of the type indicated. 

distance between the satellite and the tracking antennae, B is the projected baseline length, and A k  is the 
path delay due to the phase error from the two clocks drifting. Clearly, somewhat larger baselines are 
required to offset the loss. 

Figure 6 shows the expected position error as a function of baseline length if each of the three stations 
measuring phase (see Fig 1) have their own frequency reference. Only cesium and rubiduim standards 
are shown, since consider and troposphere errors dominate the position error if each station has a 
hydrogen maser standard. In these examples, the range data have a 1 m data noise and 1 m bias error and 
are unaffected by the clock model. 

b, Consider Errors 

A consider analysis was performed to assess the sensitivity of the solution to mismodelling due to solar 
pressure and station location uncertainty. Errors due to polar motion uncertainty and mismodelling of 
gravity harmonics are found to be small, and not included in Table 4. The same consider errors are 
applied to all the cases described in this paper. 

In this covariance analyis, solar ressure is modelled as a force due to specular reflection from the 

satellite, A is the reflecting area, and q is its reflectivity. The reflecting area is assumed to be constant 
with a value of 40 m*. Solar pressure mismodelling is simulated as a 2% of the solar reflectivity 

satellite surface: F = CA (1 + q)/r 5 , where C is the solar flux, r is the distance between the sun and the 
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Table 5 
Position error (m) achieved after a station-keeping maneuver 

case 3 case 4 case 5 case 1 case 2 
inputs 

carrier phase baselines (km) 100 100 100 10 1 
range weight (m) 10 10 1 1 1 
range bias (m) 30 10 1 1 1 
doppler weight (mm/s) 1 1 1 1 1 

results 
error after 30 minst 379 30 1 287 124 3 19 
error after 60 minst 249 94 49 97 242 
error after 90 minst 248 91 43 85 206 
error after 120 minst 247 88 40 76 182 

t The solution includes 22 hours of data from before the maneuver and data after the maneuver up to the times listed in 
column one of table (see text). The errors include consider errors at the same levels as table 2. 

parameter, (l+q), with a nominal value of 1.42. It has been shown that solar pressure effects on the 
TDRSS satellites can be modelled to 2%.11 Operationally, the solar reflectivity might be estimated, 
enlarging the computed error somewhat, and a much smaller mismodelling error could be considered. 

The error due to uncertainty in the antenna locations is also determined with consider analysis. A 2 m 
uncertainty in each component of the ranging station location is used. A 35 cm uncertainty in each 
component of the stations measuring carrier phase is used. This corresponds to allowing about 0.5 m 
uncertainty in the baselines formed by pairs of stations. The sensitivity to the baseline length error is 
small except in the case of the smallest baselines studied. 

c) Recovering Position After a Maneuver 

The TDRSS satellites occasionally make corrective maneuvers in order to stay in their desired orbits to 
the required tolerance. The requirement for TDRSS is 50 m position error one-sigma within two hours 
after the maneuver. Because good position determination with station-differenced phase data requires 
about a 1-day arc, it is impossible to redetermine all the state parameters to this accuracy within two 
hours. Instead of redetermining the whole state, we may take advantage of the good instantaneous plane- 
of-sky velocity information in this data type by estimating the velocity change in the satellite state 
associated with the maneuver. Line-of-sight doppler data collected along with the range data at one 
station, provides the third component of the satellite velocity. 

It is assumed that there is nearly a day long arc of station-differenced phase, range and doppler data prior 
to the maneuver. The corrective maneuver is modelled as a velocity impulse with well known time of 
burn. N o  a priori knowledge of the error in the impulses is assumed. Table 5 shows position error 
achievable after such a maneuver, if the state and the maneuver are both estimated using a day long arc of 
data ending two hours after the maneuver. In each case, the position error is about twice as large as after 
a full day data arc uninterupted by a maneuver. 

V. Conclusions 

We have examined the possibility of using station-differenced carrier phase with stations forming small 
baselines for orbit determination for the TDRS satellites. We find that two orthogonal baselines between 
10 and 100 km, located near White Sands, are sufficient to obtain position accuracies of 25 to 50 meters. 
However, for the geometry considered, station-differenced phase data alone poorly determine the 
longitude of the spacecraft, and thus range data with systematic error of about 1 m must be included to 
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obtain these accuracies. The accuracy of the station-differenced carrier phase data from such moderate 
baselines results from the use of a common frequency reference at the stations. As can be seen in figure 
6, acceptable position accuracies can also be acheived with separate station clocks; however, much larger 
baselines are required. 

The station-differenced phase data along with two-way doppler can be used to estimate the velocity 
change associated with a station-keeping maneuver well enough to determine TDRSS position to 50-100 
meters within two hours of a maneuver. Nearly a full day is required to recover the best possible position 
accuracy with this method. No aprior-i knowledge of the size of the impulse is required; though the time 
of the impulse is assumed to be known. 

Range data with accuracy of about 1 m is crucial for this technique to be viable independent of the 
baseline size used and whether or not the stations share a frequency reference. With a 1 m systematic 
error in the ranging system, the position accuracy is only slowly dependent on the exact value of the 
bias. 
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In this paper, we evaluate two fundamentally different approaches to TDRS orbit determination 
utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first. 
a GPS flight receiver is deployed on the TDRSS spacecraft. The TDRS ephemerides are 
determined using direct ranging to the GPS spacecraf; and no ground network is required. In the 
second approach, the TDRSS spacecraft broadcast a suitable beacon signal, permitting the 
simultaneous tracking of GPS and TDRSS satellites from a small ground network. Both 
strategies can be designed to meet future operational requirements for TDRS-I1 orbit 
determination. 

1. I NTRODUCTON 

The Tracking and Data Relay Satellite System (TDRSS) is 
used by NASA to support positioning and data relay 
activities for a wide variety of Earth orbiting spacecraft [l]. 
The present operational system is composed of two 
geosynchronous satellites (TDRS-E and TDRS-W at 41" and 
171" W longitude respectively), a central ground station 
located at White Sands, New Mexico, and remote tracking 
sites at Ascension Island, American Samoa, and Alice 
Springs, Australia. Accurate real-time positioning of the 
TDRSS spacecraft is fundamental to the proper operation of 
the system, and is achieved via the relay of coherent signals 
broadcast by unmanned transponders at the remote tracking 
sites. These remote beacons are collectively referred to as the 
Bilateration Ranging Transponder System (BRTS). Range 
and Doppler observations from BRTS are routinely scheduled 
by the central ground processing facility at White Sands, 
where they are used in conjunction with models of the forces 
perturbing the spacecraft motion to determine the TDRS 
positions. Evaluation of the TDRS ephemerides suggests 
that orbit consistency is maintained to better than 70 m 
using the operational BRTS method [2]. This level of 
precision is adequate for current applications: however, the 
technique requires valuable TDRS antenna time that could 
otherwise be used for servicing user spacecraft. 

In recognition of the need for improved tracking for the 
next generation TDRS System (TDRSS-11), a number of 
alternative methods have been explored [3-6]. The demand 
for improved accuracies provides an important motivation for 
these efforts. This requirement, however, is balanced by the 
appeal of a simple, reliable and autonomous system that 
requires no disruption of TDRSS user services and delivers 
the ephemerides in near real-time, One technique which 
promises the potential to meet these sometimes conflicting 
demands relies on technology from the U. S. Department of 
Defense Global Positioning System (GPS). Previous efforts 
addressing this option have produced encouraging results. 
Wu [7] proposed two GPS related-techniques for determining 
the orbits of high-altitude Earth satellites. He envisioned a 

wide variety of possible applications; hence the breadth of 
the study prevented a thorough treatment of TDRSS. 
Recent efforts have focused directly on TDRSS, but software 
limitations precluded a complete evaluation [3]. In this 
paper, we build on these earlier studies by revisiting their 
assumptions, and revising them to insure they reflect current 
state-of-the-art. The new assumptions form the basis of a 
covariance study that exploits software and methodology that 
have evolved over the past decade as part of a program at the 
Jet Propulsion Laboratory (JPL) to support GPS-based 
tracking of Earth orbiters. 

Results for two distinct solutions strategies, as prescribed 
by Wu [7], are reported. In the first, a GPS receiver is 
deployed on the TDRSS spacecraft and the ephemerides are 
determined using direct measurements from the GPS to 
TDRSS spacecraft. In the second, the TDRSS spacecraft 
broadcast wide-beam beacon signals which permit the 
simultaneous tracking of GPS and TDRSS satellites from a 
small ground network. 

2. GPS-BASED TECHNIOUES FOR ORBIT 
DETERMINATON 

For both military and civilian customers, the principal 
application of GPS is the precise positioning of ground sites 
and of moving vehicles near the Earth's surface [81. The 
space segment of this system, which is due for completion 
in mid-1993, will consist of 21 satellites and 3 active spares 
orbiting in 6 uniformly spaced orbit planes inclined at 55" 
with respect to the equator. The satellites, which are at an 
altitude of about 20,200 km, transmit unique navigational 
signals centered on two L-band carrier frequencies (L1 at 
1575.42 MHz and L2 at 1227.60 MHz). Each carrier is 
modulated with pseudo-random square-wave codes: a coarse 
acquisition (C/A) code on L1, and a precise (E') code on both 
L1 and L2. An additional Y-code may be used to encrypt the 
P-code (anti-spoofing or AS). 

A GPS receiver generates a replica of these codes and 
correlates them with the received signals, from which a 



pseudorange to each visible spacecraft can be inferred. 
(Pseudorange is simply a range biased by the unknown offset 
between the spacecraft and receiver clocks.) The receiver uses 
these pseudorange measurements together with ephemeris and 
clock information broadcast by the respective GPS spacecraft 
to determine its location. A minimum of 4 satellites must be 
in view of the receiver in order for the user to solve for the 
three components of position and the clock offset. The 
accuracy with which the user can determine his position is 
dependent on a number of factors; principal among them is 
the geometric configuration of the satellites in view. The 
quality of the broadcast ephemeris and clock information, 
which can be intentionally degraded as part of Selective 
Availability (SA), is also an important factor. 

The same principles can be applied to the positioning of 
low-Earth orbiters equipped with GPS receivers. Because the 
applications in this area are primarily in the field of precise 
geodesy, a more robust approach is generally required. In 
particular, multidirectional pseudorange and carrier phase 
measurements collected simultaneously at ground stations 
and the user spacecraft can be combined over suitable 
intervals of time-typically a few hours to several days-in 
order to determine the ephemerides of the orbiter [9-111. The 
simultaneous measurements from the ground stations can be 
combined to nearly eliminate effects of clock errors SA 
degradation, while also mitigating the effects of errors in the 
GPS ephemerides. 

What makes this approach especially attractive is that the 
robust observation geometry permits orbit solutions without 
dynamic model constraints on the spacecraft motion [ 121. 
(Errors in dynamic models are the principal limitations in 
traditional approaches to satellite orbit determination.) Where 
advantageous, however, dynamic models can still be 
exploited to improve the accuracy [13]. Although a state-of- 
the-art GPS receiver capable of providing proof-of-concept 
has not flown at this writing, covariance analyses suggest 
that positioning at the sub-decimeter level should be 
achievable. Plans for a number of U. S. and international 
missions include flight-hardened, high performance GPS 
receivers. Two such missions, the joint U. S.-French 
TopexPoseidon satellite 1141 and NASA's Extreme 
Ultraviolet Explorer, are to be launched in 1992. 

While the application of GPS for the positioning of low- 
Earth orbiters has received considerable attention, this is not 
the case for high-Earth orbiters such as the geosynchronous 
TDRSS spacecraft. The GPS constellation illuminates the 
Earth from an altitude of 20,200 km and as such, is better 
suited for low-Earth users. Since the TDRSS spacecraft are 
located above the GPS constellation, they must look down 
to receive GPS signals spilled over the limb of the Earth 
from satellites on the other side of the planet. The 
configuration, hereinafter referred to as "down-looking GPS" 
in keeping with Wu [7], is shown in Figure 1. 

Although an observer traveling with TDRS would be able 
to establish a direct line of sight to many GPS satellites, the 
number of useful GPS spacecraft is limited to those that fall 
within an annular region delineated on the inside by the Earth 

blockage and on the outside by the beamwidth of the GPS 
signals. The half-width of the mainbeams are 22" and 27" 
respectively at L l  and L2 frequencies, while the angle 
subtended by the Earth at GPS altitude is 27". Together 
these constraints imply that, on average, the signals from 
only 1 GPS satellite can be seen from geosynchronous 
altitude at any given time [7]. Of course this entirely 
precludes the possibility of kinematic positioning, and the 
orbits must be determined dynamically. For a spacecraft at 
geosynchronous altitude, however, the perturbative 
accelerations due to the non-spherical Earth are highly 
attenuated and the effects of atmospheric drag are negligible. 
As a result, the proper modeling of the forces acting on a 
spacecraft is much less problematic than it is for a low-Earth 
orbiter. 

TDRS 

Figure 1. 2-d view of down-looking GPS tracking 
configuration: Geosynchronous TDRSS satellite with 
GPS receiver sees GPS signals spilled over limb of 
Earth. 

Aside from these special limitations, the overall strategy 
for down-looking GPS is not unlike that for the up-looking 
variation used by low-Earth orbiters. In particular, the 
determination of the orbit can be made using simultaneous 
observations formed with data collected at ground stations, or 
directly, without the aid of a ground network. The benefit 
gained from the use of simultaneous observations, however, 
is somewhat limited owing to visibility Constraints. 
Simultaneous observations of the same 2 GPS spacecraft 
from geosynchronous orbit and the ground are possible less 
than half the time even with the most optimistic scenarios 
[3,7]. Implicit in both approaches therefore is a greater 
vulnerability to clock errors, and to the effects of SA if the 
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flight receiver is not equipped with a decryption module. 
Despite these problems, the down-looking GPS approach is 
quite attractive for TDRS orbit determination because of the 
high level of autonomy and the greater potential for 
achieving real-time results. 

An alternative strategy requires that the high-Earth orbiter 
transmit a suitable signal which can be monitored at the 
same ground stations observing GPS [7, 151. This method is 
referred to as “inverted GPS” because the major factor 
affecting the orbit accuracy is the number of ground stations, 
rather than GPS satellites, in common view of the user 
spacecraft (Figure 2). Inverted GPS promises the highest 
accuracies for geosynchronous tracking because any number 
of ground sites may be visible from the TDRSS spacecraft 
[7]. Coincident observations of the GPS satellites from the 
ground are desired in order to enable estimation of clock 
biases. As is the case for down-looking GPS, dynamic 
models of the forces governing the orbital motion are used to 
supplement the geometric content of the measurements. 

TDRS $? 

recovered rapidly after a station-keeping maneuver). For 
system autonomy, the primary drivers include: minimized 
impact on TDRSS user . services, minimized human 
intervention during normal operations, and for the inverted 
technique, a simple ground network. We began with the 
premise that the inverted-technique would provide the best 
accuracy, and focused on identifying compromises that would 
ensure greater autonomy. Conversely, for the down-looking 
approach, we devoted our efforts to determining ways to 
improve the accuracy. 

The Orbit Analysis and Simulation Software (OASIS) 
package developed at JPL served as the primary evaluation 
tool. The OASIS system is designed to provide a 
flexible,versatile and efficient covariance analysis tool for 
Earth satellite navigation and GPS-based geodetic studies 
[ 161. It has been used extensively for spacecraft orbit error 
analysis, and its factorized Kalman filter strategies [ 171 also 
form the basis for the GPS Inferred Positioning System 
(GIPSY) software used in the reduction of actual GPS data 
for recovering geodetic baselines and improving satellite 
orbits. 

For both strategies, a full  24-satellite GPS constellation 
was assumed. The TDRSS-11 satellites were assumed to be at 
the same locations as the present TDRS-W and TDRS-E. 
The actual TDRSS-I1 constellation will contain additional 
satellites, but they should be clustered in the same vicinities 
as the current spacecraft. The results therefore should not be 
significantly different for these additional satellites. The next 
sections detail specific error models applied in the two 
solution strategies, along with the results. Covariance 
analysis results portray the actual expected errors only to the 
extent that the a priori models are authentic. In order to 
address the possibility of unanticipated errors, we therefore 
adopted a set of a priori assumptions that were somewhat 
conservative. 

4. INVERTED GPS 

Assumptions 

Figure 2. Inverted GPS tracking configuration: TDRSS 
and GPS beacon signals tracked simultaneously from 
ground. 

3. COMMON STRATEGY 

The assumptions forming the foundation of this study are 
governed by guidelines that have been advanced by NASA 
for future TDRS-I1 orbit determination [e.g. 3,4]. These 
guidelines reflect a balance between the demands for increased 
accuracy and system autonomy. For this effort, the figure of 
merit for the accuracy is 50 m in total position (1-0). We 
assumed that this level of accuracy should be met in nominal 
operations with 24-hours of tracking, although we also 
examined the feasibility of achieving 50 m after only 2 hours 
of tracking (for the cases where the trajectory is to be 

As a starting point, we propose some small ground 
networks suitable for the simultaneous tracking of GPS and 
TDRSS spacecraft. An initial stated goal for TDRSS-I1 orbit 
determination was to confine all stations to the continental 
U.S [3]. This constraint was subsequently relaxed [4]; it 
nonetheless remains essential to identify a minimum 
network that will deliver the desired orbit accuracy. For this 
effort, we selected various station configurations from the 6- 
site global GPS network that has been established to support 
the Topex/Poseidon mission. Three of the 6 sites are 
collocated with NASA Deep Space Network (DSN) stations 
at Goldstone, California; Madrid, Spain; and Canberra, 
Australia. The remaining three are at Santiago, Chile; 
Usuda, Japan; and Hartebeesthoek, South Africa. An 
additional receiver at the TDRSS ground control station at 
White Sands was assumed for some of the variations. The 
visibilities of these sites from the TDRS-E and TDRS-W 
respectively are shown in Figure 3. 
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TDRS-E TDRS-W 

Figure 3.  Visibility of proposed GPS ground network for TDRS tracking. The views show the perspectives of the Earth 
from the TDRS-E and TDRS-W geosynchronous orbit positions respectively. The minimum network considered, 
consisting of stations at the DSN sites and the White Sands TDRSS ground control center is shown in shadowed text. 

It  is instructive to note that these sites are presently used 
to support well-established NASA programs. Each is 
equipped with a JPL Rogue digital receiver capable of 
tracking pseudorange and carrier phase from 8 GPS 
spacecraft simultaneously [ 181. Although the receivers are 
designed to operate unattended, staff are always on call at 
these sites should a n y  problems develop. For this study, we 
assumed that the Rogue receivers at each of the tracking 
sites were retrofitted so that a TDRSS beacon signal could 
be tracked continuously on 1 of the 8 channels (Figure 4). 
We note that GPS receivers have already been used in 
demonstrations to track Pioneer Venus and Magellan at X 
and S bands [19]. 

A critical design parameter for the inverted GPS technique 
is the measurement characteristic of the TDRS beacon 
signal. Several options for the design of an advanced beacon 
signal have been considered [3, 41. For the present study, 
ranging tones broadcast by the TDRSS spacecraft at Ku band 
served as the nominal configuration for the transmission. A 
major advantage of exploiting the high-frequency Ku band is 
the relatively small signal delay due to ionospheric 
refraction. Equivalent range delays at Ku band vary from less 
than 1 cm to 20 cm depending on the level of solar activity. 
Ionospheric calibration based on the GPS dual frequency L- 
band data collected at the various tracking sites can then be 
applied in modeling the delay to better than 1 cm in range. A 
similar activity is already underway at the DSN sites, where 
the GPS data is used to calibrate ionospheric delays for deep- 
space tracking 1201. 

The proposed Ku-band signal could, in theory, provide 
pseudorange measurements with a random noise component 
of 1 cm averaged over 30 minutes, assuming a 100 MHz 
bandwidth (L. Young, private communication, 1992). In 
practice, the implementation of new Rogue hardware to 
down-convert the Ku-band signal to GPS frequencies (L 
band) would introduce an additional error because separate 
signal paths would be used for the TDRS and GPS signals. 

This instrumental error would manifest itself as a slowly 
varying delay offset in the TDRS pseudorange residuals. 
Preliminary analysis indicates the effect would be bounded by 
about 1 nsec (amounting to 30 cm in range delay) and would 
modulate with a period of about one-half day. Because of the 
long period, the error appears as a constant bias over a 
typical measurement interval, permitting us to model it as a 
stochastic process in OASIS. Several variations from these 
nominal characteristics were explored in order to assess how 
deviations from these assumptions would impact the TDRS 
orbit accuracies. Results and additional details are presented 
in the next section. 

Modified GPS 
Ground Receiver 

’111 GPS 

mm4 
- 2 - 4  
5 - 4  
5 1 7 1  4 

m satellites 

TDRS-II 
Inl 

Converter (for non L band data) or Ku-band) 

Figure 4. Schematic showing 8-channel GPS receiver 
modified for TDRS tracking on one channel. 

The noise of the ionosphere-corrected GPS P-code 
pseudorange and carrier phases measurements was set at 25 
and 1 cm respectively for 30 minute measurement intervals. 
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The sensitivities of the TDRS orbit to errors in several 
important unestimated parameters were also computed. These 
unestimated or “consider” parameters, can be included in 
covariance studies in order to yield more realistic error 
estimates. The additional error contributions from the 
consider parameters are added to formal errors from the filter, 
which contain only the effects of data noise. The consider 

Table 1. Note that these errors for consider parameters 
represent fixed systematic errors [ 171. Most important 
among them are the tracking station coordinates and Earth 
orientation parameters. For individual components of the 
DSN station positions, errors of 3 cm were assumed. Recent 
analyses suggest that cm-level accuracies are already being 
achieved for the locations of GPS antennae at the 2 DSN 
sites in the Northern Hemisphere (221. Coordinates for non- 
DSN sites were assigned conservative errors of 10 cm. 
Uncertainties in the X and Y pole positions were set at 25 

parmeters and associatedemrs (I-‘) are also shown in 

Figure 5 .  Actual post-fit GPS data residuals from Rogue receiver at Goldstone for carrier phase (left) and pseudorange (right). 
The GPS measurements are at a 6-minute rate. 

A PRIORI FOR ESTIMATED PARAMETERS 

TDRS Position. Vel. (X, Y, Z) 5 km, 50 m/s 
TDRS solar Radiation Pressure 5 % 
GPS Position, (x- y* z, l oo  m ,  rn/s 
GPS Radiation Pressure 25 o/o 

10-12 m/s2 
1000 km 

GPS 
GPS Carrier Phase Biases 

Zenith Troposphere 40 cm +I2 cmJday 

CONSIDERED PARAMETERS 

DSN Station Coordinates 3 cm 
Non-DSN Station Coordinates 10 cm 
CM Earth 2 PPb 
Lumped Earth Gravity Field 
X ,  Y Pole Motion 2 5  cm 

GPSflDRS/Station Clocks 1000 psec white noise 

25 % GEM-IO-L2 

6 X  10-4 s , UT1-UTC 
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Resuitsfor Routine Orbit Determination 

We consider first a nominal case which is characterized by 
the TDRS Ku-band beacon design outlined in the previous 
section and a minimal ground network consisting of the 3 
DSN sites and White Sands. Figure 6 depicts the mapped 
orbit error (1-0) for TDRS-W as a function of time past the 
epoch of the arc. The formal (computed) e m r  reflecting the 
effects of data noise is shown along with the systematic 
error from unestimated (consider) parameters. We adopt the 
maximum RSS total error as the basis for comparing 
various strategies in relation to the TDRSS requirement. For 
the 24-hour period in question, the total position error for 
TDRS-W never exceeds 15 rn, well under the 50 m 
requirement. 
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Figure 6 .  TDRS-W position error for 24-hour arc. 
Orbit determined using inverted technique with 
tracking from 2 DSN sites and White Sands. TDRS-W 
carries nominal Ku-band beacon. 
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Figure 7.  TDRS-W position error over 24-hour arc for 
hypothetical beacon signals. Orbit determined using 
inverted technique with tracking from 2 DSN sites and 
White Sands. 

In interpreting Figure 6 ,  i t  is instructive to note that the 
total error is dominated by the formal (computed) error 
Contribution, indicating the results may be highly sensitive 
to our assumptions for the TDRS beacon signal, To address 
this concern, we examined two limiting cases. In the first, 
the TDRS signal was degraded by increasing the magnitude 
of the systematic contribution from 30 cm to 100 cm. 
Introducing this increase allows the partial accommodation 
of unmodeled ionospheric refraction errors, in addition to 
aggravated instrumental effects. For instance, if the TDRS 
beacon broadcast at S band instead of Ku band, the 
calibration of the ionospheric delay would yield accuracies of 
only a few decimeters. For the case of this degraded beacon, 
the maximum total error grew to 41 m (Figure 7), a value 
which is still lower than the 50-m requirement. 

In the second case, the systematic contribution was 
removed entirely, but the noise was increased by a factor of 
25 (from 1 cm to 25 cm for 30 minute averaging). Inasmuch 
as the GPS pseudorange signals were also assigned a data 
noise of 25 cm, this approach is analogous to the situation 
in which the TDRSS spacecraft are equipped with actual 
GPS beacons. The maximum total RSS error was 10 m, an 
improvement over the nominal case, showing that the 25- 
fold increase in the noise contribution was more than 
balanced by the elimination of the slowly varying bias (cf. 
Figure 7). Taken together, these results indicate that the 
greatest concern for the TDRS beacon signal lies in  the 
minimization of the systematic, slowly varying bias 
introduced by the different path lengths for the GPS and 
TDRS signals. 

It is also instructive to investigate how the period of these 
systematic errors in the TDRS beacon signal affect the orbit 
determination. To answer this question, we assigned different 
values to the time constant for the 30 cm bias and computed 
the formal position error for TDRS-W at epoch. (Recall that 
the nominal l/e folding time constant, T, was one-half day.) 
The results, depicted in Figure 8, indicate that the worst 
accuracies are experienced when the period of the systematic 
error is about 5 hours. As the time constant of the 
systematic error decreases below 5 hours, the orbit error also 
decreases until the limiting case of white noise is reached. 
This phenomenon is evidently a consequence of increased 
decoupling with other parameter errors, even though smalier 
T represents higher process noise. Likewise, as the period 
approaches I-day, the orbit error decreases as the systematic 
error appears more like a single constant bias over the entire 
23 hour arc. 

We examine now the effects of various different tracking 
network configurations. While it is adequate for observing 
TDRS-W at 171' W, the minimum network consisting of 
stations at the 3 DSN sites and White Sands is not well- 
suited for tracking TDRS-E at 41' W. The situation is best 
illustrated in Figure 3. TDRS-W is viewed by 2 DSN sites 
(Goldstone and Canberra) plus White Sands. Although the 
distance between the two American stations is rather short, 
the overall baseline orientation is adequate enough to provide 
the necessary geometric diversity in  the observations. In 
contrast, TDRS-E is viewed by only Madrid and White 
Sands. (The elevation of TDRS-E above the horizon at 
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Goldstone is about 2 O ,  rendering any observations collected 
there unreliable.) The network consists of a single, long 
baseline which can provide TDRS-E orbit accuracies no 
better than 300 m. Even in a best-case scenario, in which 
we assume that useful observations can be made from 
Goldstone, the maximum orbit error for TDRS-E cannot be 
brought below the SO m level without tuning of Earth 
orientation parameters. For tracking TDRS-E, i t  is therefore 
necessary to consider an augmented tracking 
network. 

-e-mTDRsE 
............................................... I!- -+- TDRSW 

.................................................................................. 
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Figure 8. TDRS-W epoch position error for various 
systematic signal errors in TDRS beacon. R e  time 
constant refers to the period of the systematic error. 
The error is bound by 1 nsec (about 30 cm in range). 

The simplest augmented network is a 5-station 
configuration consisting of the 3 DSN sites, White Sands, 
and the Topex site in Santiago, Chile. While the tracking 
geometry for TDRS-W remains identical to the nominal 
case, the situation for TDRS-E is dramatically improved. 
The introduction of the Santiago site implies that TDRS-E 
is observed by 3 well-distributed stations. Indeed, Table 2 
reveals that with this 5-station network the TDRS-E orbit 
can be determined to the sub-5 m level, a factor of three 
better than the TDRS-W orbit. 

Table 2: TDRSS orbit error for various tracking strategies 

TRACKING NETWORK TDRS-W TDRS-E 
max error max error 

3 DSN + White Sands 
3 DSN +White Sands + Santiago 

As a final case, we considered the 6-station Topex 
network. This configuration supplies the most robust and 
consistent geometry for observing both spacecraft - TDRS-E 

is observed by Madnd, Hartebeesthoek, and Santiago, while 
TDRS-W is viewed by Canberra, Goldstone, and Usuda. I t  is 
noteworthy that no tracking from White Sands is involved, a 
scenario which is attractive because: 1) Among all the sites 
discussed, White Sands is the only location not presently 
part of the operational NASA GPS network. 2) In many of 
the strategies, tracking of both TDRS-W and TDRS-E is 
required from White Sands, implying that the single TDRS 
channel in the reconfigured GPS receiver would have to be 
shared. Figure 9 shows the orbit accuracies for TDRS-W and 
-E throughout a 24-hour simulated arc with tracking from the 
full Topex network. The accuracies achieved are better than 
5-rn for both spacecraft, an order of magnitude better than the 
the 50-m requirement. 

4 ................................................................................. 

3 & ......................... -4 .-m.. 

“ I  I I I I 1 I 

0 4  8 1 2  16 20  24 
Hours After 21-MAR-1992 14 00 

Figure 9. TDRS-E and -W position error for 24-hour 
arc. Orbit determined using inverted technique with 
tracking from 6 Topex sites. Both satellites carry 
nominal Ku-band beacon. 

Results for Trajectory Recovery and Prediction 

The TDRSS spacecraft are actively maneuvered as part of 
routine station-keeping activities. In order that minimum 
disruption to user services occurs, i t  is desirable to recover 
the trajectory as quickly as possible after the thrust 
maneuvers. In this section, we explore the capability of the 
inverted technique for determining the TDRS positions to 
better than 50 m within 2 hours of a thrust event. Two 
different approaches are adopted: In the first, a complete 
recovery of the TDRS epoch state immediately after the 
maneuver is performed. No a priori information on the 
TDRS trajectory is assumed. In contrast to the nominal 
approach outlined in the previous section, however, the GPS 
orbits are well determined from routine tracking for 12 hours 
prior to the maneuver. In the second approach, a 3 -  
component velocity increment at the maneuver time is used 
to augment the TDRS state vector; thus the thrust maneuver 
is determined as part of the orbit determination process. 

Figure 10 depicts the TDRS-W orbit accuracy as a 
function of time after the thrust event for these two 
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advanced design capable of 35 cm pseudorange measurements 
- with averaging over 15 minutes. 

Figure 11. TDRS-W position error as a function of 
time for definitive and predictive orbit determination. 
Actual observations are reduced only for the first day. 

Figure 10. TDRS-W position error after station- 
keeping maneuver for inverted technique. Orbit after 
njaneuvei is determined either using full TDRS-W state 
recovery or via the solution of 3-component velocity 
increments. 

TDRS Solar Radiation Pressure 5 % 
GPS Position (RSS 3-d) 
GPS Clock Error 
Earth G M  

6 nsec 

A PRIORI FOR ESTIMATED PARAMETERS 

TDRS Position (X, Y, Z) 10 km 
TDRS Velocity ( X .  Y, Z) 1 m/s 
TDRS Clock Bias 3 3  psec 
TDRS Clock Drift 3 nsecls 

CONSIDERED PARAMETERS 

Table 3 lists the nominal set of a priori assumptions for 
the down-looking approach. The TDRSS spacecraft epoch 
positions and clock errors (bias and linear drift) served as the 
only estimated parameters. Solar radiation pressure was 
considered at 5 %, a value which is conservative in 
comparison with the 2 % value that is representative of 
current modeling efforts 1261. GPS satellite epoch states and 
clock errors were also considered. For the nominal case, in 
which it was assumed that the flight receiver was equipped 
with a decryption module, the GPS ephemeris and clock 
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errors were set at the few-m level. For the degraded case, 
these values were increased by a factor of 4 or more to 
account for the effects of SA [27]. 

Results for Rourine Orbit Determination 

Figure 12 shows the position error for TDRS-W as a 
function of time for nominal 24-hour tracking. Because the 
down-looking technique considered herein does not rely on 
ground tracking, the overall results are invariant to the 
position of the satellite and should not be much different for 
TDRS-E. The results suggest that with the decryption 
module on the TDRS satellites, the down-looking technique 
yields orbit accuracies at the sub-10 m level. In contrast, 
without the module, the position error reaches 80 m, and the 
50-m requirement is not met. Longer data spans are not 
expected to provide appreciably higher accuracies - after 24 
hours the TDRS position errors approach the limiting values 
governed by the GPS ephemeris and clock errors. 

Because the TDRS orbit errors for the down-looking 
approach are dominated by errors in unadjusted panmeters, it 
is instructive to examine a simple error budget. Figure 13 
shows the breakdown of the TDRS-W orbit error for the 24- 
hour arc. For the nominal case (with decryption), the 
limiting error sources are the GPS clocks and ephemerides. 
The data noise contribution from the filter estimation is 
negligible, owing to the high quality of the pseudorange 
measurements. For the case in which the receiver is not 
equipped to handle SA degradation, the GPS errors increase 
several-fold. In addition, the data noise contribution from the 
filter estimation becomes quite significant. This increase 
reflects the dithering of the GPS clocks, which can introduce 
apparent range errors as high as 60 m into the pseudorange 
observables [271. 

Results for Trajectory Recovery and Prediction 

The figure of merit for evaluating the trajectory recovery 
capability of down-looking GPS is simply the shortest 
interval of tracking that can provide sub-50 m position error 
for TDRS. In this context, rapid recovery of the trajectory 
after station keeping can be achieved only if  the flight 
receiver is equipped with a decryption module. Without the 
module, the TDRS position error after 2 hours of tracking is 
in  excess of 4 km; approaching the 50-m requirement 
requires at least 24 hours of tracking. With the module, the 
50-m requirement can be met with tracking as short as 4 
hours (Figure 14). 
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Figure 12: 
Orbit determined using down-looking technique. 

TDRS-W Position Error for 24-hour arc. 
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Figure 13: TDRS-W orbit error for 24-tu arc. Orbit 
determined using down-looking technique. 
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Figure 14. TDRS-W maximum position error after 
station-keeping maneuver for down-looking 
technique. Orbit after maneuver is determined using 
full TDRS-W orbit state recovery. 

The nature of the predicted orbit error for TDRS-W was 
not explicitly examined for the down-looking case. We note 
that predicted orbit error is a function of 1) the error in the 
satellite state at the beginning of the predictive interval (also 
called the initial condition error); and 2) the errors in the 
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dynamic models used to integrate the satellite position. To 
the extent that the initial condition errors for the down- 
looking and inverted approaches are roughly equivalent in 
magnitude, the predictive errors should also be similar. In 
this context, we conclude that the 50-m requirement cannot 
be met during the predictive interval unless the flight 
receiver is equipped with a decryption module. Without the 
module, the errors in the initial conditions estimated with 
24-hours of tracking prior to the predictive interval would 
exceed the 50-m threshold. With the module. sub-15 m 
initial condition error is achieved after 24-hours of tracking, 
and the pattern of the predicted error would likely be similar 
to that shown in Figure 11. 

6. CONCLUSIONS 

We have explored two GPS-based strategies for tracking 
the geosynchronous TDRSS spacecraft. Direct tracking of 
the TDRSS spacecraft from the GPS constellation promises 
the greatest autonomy since no ground network is required. 
For this strategy, the primary impairment is the poor 
geometry-the TDRSS spacecraft must look down to find 
signals broadcast from GPS satellites on the other side of 
the Earth. The situation is exacerbated by sensitivity of the 
TDRS orbit accuracy to Selective Availability (SA), 
because measurements from the ground cannot be exploited 
to form differential observations which are free from these 
effects. In order to circumvent this difficulty, the TDRS-I1 
satellites can cany military qualified GPS flight receivers 
which are designed to decrypt the degraded signals. Our 
results suggest that, equipped in this manner, a GPS receiver 
should be able to provide the TDRS positions 
autonomously to better than 15 m for routine 24-hour 
tracking. Implicit in this result is the assumption that 
nominal Department of Defense operations are maintained. 
Moreover, if this technique is adopted, the effects of the long 
GPS to TDRS transmission paths and near-Earth grazing 
need to be further examined. 

An alternative approach relies on simultaneous tracking of 
TDRSS and GPS beacon signals from the ground. If  
accuracy is the prime concern, then this inverted technique is 
the best suited for tracking geosynchronous orbiters. 
However, the introduction of a ground network makes i t  less 
autonomous than its down-looking counterpart. For this 
study, we relied on a small number of current NASA GPS 
tracking sites and assumed that the receivers operating at 
those sites would be retrofitted to track TDRSS-I1 on 1 of 
the 8 channels that are normally reserved for GPS. 
Moreover, we assumed that the TDRSS-I1 spacecraft would 
be configured to broadcast continuously a suitable wide- 
beam beacon signal, preferably at Ku band to mitigate the 
effects of ionospheric refraction. Our results suggest that 
data collected at the ground sites introduces a robust 
differential observation geometry that promises to deliver 
few-m accuracies for TDRS with as few as 6 global stations. 
Smaller networks could still meet the 50-m TDRSS 

accuracy requirement, but each satellite must be observed by 
a minimum of 3 stations that are moderately well 
distributed. The TDRSS-I1 orbit determination activities 
could be incorporated into routine GPS data processing that 
is currently done at JPL to support ongoing NASA 
programs. The mechanisms for near real-time operations are 
already in place, as the GPS data from these remote sites are 
transmitted to JPL on a daily basis for automated 
processing . 
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ABSTRACT 

The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned 
Applied Technology Associates, Incorporated, to develop the Real-Time Orbit 
Determination/Enhanced (RTOD/E) system on a Disk Operating System (D0S)-based 
personal computer (PC) as a prototype system for sequential orbit determination of 
spacecraft . This paper presents the results of a study to compare the orbit determination 
accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, 
Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established 
batch least-squares system, the Goddard Trajectory Determination System (GTDS), 
operating on a mainframe computer. The results of Landsat4 orbit determination will 
provide useful experience for the Earth Observing System @OS) series of satellites. 

The Landsat4 ephemerides were estimated for the January 17-23.1991, timeframe, during 
which intensive TDRSS tracking data for Landsat4 were available. Independent 
assessments were made of the consistencies (overlap comparisons for the batch case and 
covariances and the first measurement residuals for the sequential case) of solutions 
produced by the batch and sequential methods. 

The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit 
solutions for Landsat4; the solution differences were less than 40 meters after the filter had 
reached steady state. 

This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center 
(GSFC), Greenbelt, Maryland, under Contract NAS 5-31500. 



This paper compares the orbit determination accuracy of a prototype sequential orbit determination system 
with the accuracy achieved using an established batch least-squares system for a Tracking and Data Relay 
Satellite (TDRS) System (TDRSS) user spacecraft. 

The National Aeronautics and Space Admuustration (NASA) has completed a transition from tracking and 
communications support of low Earth-orbiting satellites with a ground-based station network, the Ground 
Spaceflight Trackmg and Data Network (GSTDN), to the geosynchronous relay satellite network, the 
TDRSS. TDRSS currently consists of three operational geosynchronous spacecraft (TDRS-East, 
TDRS-West. and TDRS-Spare) and the White Sands Ground Terminal (WSGT) at White Sands, New 
Mexico. TDRS-East, TDRS-West, and TDRS-Spare are located at 41, 171, and 174 degrees west longitude, 
respectively. The target TDRSS relay constellation will consist of four operational TDRSs, one each at 174, 
171, 62, and 41 degrees west longitude. The ground network can provide only about 15-percent visibility 
coverage, while TDRSS has the operational capability to provide 85-percent to 100-percent coverage, 
depending on the spacecraft altitude. 

The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for 
maintaining each TDRS orbit. The ground-based BRTS transponders are tracked as if they were TDRSS user 
spacecraft. Since the positions of the BRTS transponders are known, their ranging data can be used to 
precisely determine the trajectory of the TDRSs. 

The focus of this paper is an assessment of the relative orbit determination accuracy of the batch least-squares 
method, used for current operational orbit determination support, with that of a sequential method 
implementedin a prototype system, used for analysis in the GSFC Flight Dynamics Facility (FDF). The batch 
weighted least-squares algorithm implemented in the Goddard Trajectory Determination System (GTDS) 
estimates the sets of orbital elements, force modeling parameters, and measurement-related parameters that 
minimize the squared difference between observed and calculated values of selected tracking data over a 
solution arc (Reference 1). GTDS resides and operates on the mainframe computer system at the FDF. 

The sequential estimation algorithm implemented in a prototype system, the Real-Time Orbit Determination/ 
Enhanced (KI'ODE), simultaneously estimates the TDRSS user and relay spacecraft orbital elements and 
other parameters in the force and observation models at each measurement t h e  (Reference 2). RTOD/E 
performs forward filtering of tracking measurements using the extended Kalman filter with a process noise 
model to account for serially correlated, geopotential-induced errors, as well as Gauss-Markov processes for 
drag, solar radiation pressure, and measurement biases. The main features of RTOD/E are summarized in 
Reference 3. 

An orbit determination analysis of Landsat-4 using TDRSS is reported here. Motivation for an orbit 
determination evaluation of Landsat4 derives from the fact that the orbital characteristics of Lmdsat-4 are 
similar to those of the Earth Observing Satellite @OS) series of missions, planned for launch starting in 1998. 
The results of a study for Landsat-4 will provide useful experience and verification of EOS flight dynamics 
support requirements. Early assessment of conclusions regarding meeting EOS support requirements will 
provide adequate opportunity to develop comprehensive support scenarios. 

The estimated Landsat-4 ephemerides were obtained for the January 17-23.1991, timeframe. This particular 
timeframe was chosen because dense TDRSS tracking data for Landsat-4 were available. Independent 
assessments were made to examine the consistencies (overlap comparisons for the batch case and state error 
covariances and the first measurement residuals for the sequential case) of results obtained by the batch and 
sequential methods. 

Section 2 of this paper describes the orbit determination and evaluation procedures used in this study, and 
Section 3 gives the results obtained by the batch least-squares and sequential estimation methods and 
provides the resulting consistency and cross comparisons. Section 4 presents the conclusions of this study. 

130 



2. ORBIT DETERMINATION AND EVALUATION PROCEDURE 
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This section describes the analysis procedures used in this study. The TDRSS and BRTS tracking data 
characteristics are presented in Section 2.1, and the orbit determination evaluation methodology and options 
used are described in Section 2.2. 
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2.1 Tracking Measurements 

Landsat-4 was deployed by Delta-3920 in July 1982. It has a nearly circular orbit, an altitude of 
approximately 715 kilometers, an inclination of 98 degrees, and a period of approximately 99 minutes. The 
time period chosen for this study was from 0 hours Greenwich mean time (GMT) on January 17, 1991, 
through 10 hours GMT on January 24,1991. 

During this interval, unusually dense TDRSS tracking of the Landsat-4 satellite was made available. The 
tracking consisted of an average of 15 passes of two-way TDRSS range and Doppler observations each day, 
each pass ranging from 3 minutes to 45 minutes in duration. The n o d  TDRSS tracking of Landsat4 (less 
dense) typically consists of about six S-minute passes each day. A timeline plot of the TDRSS tracking data 
distribution is given in Figure 1. 

The typical scenario for BRTS tracking of the TDRSs during the period of study included approximately 4 or 
9 minutes of range and two-way Doppler measurements from two ground transponders for each relay every 2 
to 3 hours, consisting of an average of 12 BRTS passes per TDRS each day. BRTS stations for TDRS-East are 
located at White Sands and Ascension Island. BRTS stations for TDRS-West are located at White Sands, 
American Samoa, and Alice Springs, Australia. 

~~~~~~ 

0 ALL DATA EDITED BY FILTER 

4 
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2.2 Evaluation Methodology 

The evaluation methodologies for the batch least-squares and sequential estimation methods are described 
below. Since there are some known differences between the GTDS and RTOD/E force models (geopotential, 
atmospheric density, solar and planetary ephemerides presentation, solid Earth tides, and process noise 
modeling), and since the RTODETDRSS and BRTS measurement models were implemented independently 
from GTDS, the two systems are not expected to provide identical results. Therefore, this study assumes that 
each system is used in its optimal configuration. Table 1 gives the parameters and options for the 
simultaneous solutions of the user and relay spacecraft. Table 2 gives the force and measurement model 
specifications. 

Table 1. Parameters and Options for the Simultaneous Solutions 
of User and Relay Spacecraft 

GlDS V U S  

HUN OF 18500 

30.0 

30.0 METERS 
0.25 N R R  

N/A 

MEAN OF 1950.0 

600.0 

BFITS 

1PER1osEcoN)s 

0.006 

3L7 

10.0 M m R S  
0.003 HERR 

FUA 

RTODE VALUES 

vARuTH)N OF 
PAWMEERS 

MEAN OF 1850.0 

80.0 

mss 
lPER20SEcoNDs 

N/A 

3a 

0.4 MEER 
0.004 WRR 

vMunoN OF 
Pcsu)A€lERS 

MEAN OF 1850.0 

800.0 

0.4 METER 
0.003 HERR 

WA = NOT- 
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Table 2. Force and Measurement Model Specifications 

GTDS V U E S  

USER 
(W’JDSAT4) 

~~ ~~ 

GEM-KI (50 II So) 

JACCHlAROBERTS 
DAILY SOCAR F u l x  
VALUES (209.2u3.199. 
204,2a?. 224, p3) 

JRDE-118 

1 5  

ESTIMATED 

BENT MODEL 

WA 
YES 

YES 

YES 

YES 

J R  DE-1 18 

ApRJED W 

N/A 

BENT MOOEL 

YES 
WA 

YES 

YES 

No 

RTODE VALUES 

USER 
(LAMSAT4) 

ESTlMATEO 

No 

YES 

YES 

Ho 

GM-laB (8 x 6) 

WA 

A N A l y T l w  

ESTWATQ 

NM 

No 

YES 

YES 

No 

GEM = GODDMD EARM MOOEL 
J R  = JET PROPULSION UBORATORV 
FVA =NOTAppucABLE 

613Oc-5 

Batch Least-Squares Method 

Except for the variations noted, the computational procedures and mathematical methods used in this study 
are those used for routine operational orbit determination in the GSFC FDF. The choice to expand the state 
space of the least-squares solutions to include measurement biases was motivated by the fact that the RTOD/E 
orbit determination algorithm estimates an equivalent set of bias parameters. The batch weighted 
least-squares algorithm implemented in GTDS (Reference 1) solves for the set of orbital elements and other 
parameters that minimizes the squared difference between observed andcalculated values of selected tracking 
data over a solution arc. Parameters solvedfor, other than the spacecraft state at epoch, include free parameters 
of the force model and/or the observation model. 

A detailed study of the Earth Radiation Budget Satellite (ERBS) with the batch least-squares estimation 
method was reported in Reference 4, and it was further refined in Reference 5. The models and options found 
optimal in the previous study of ERBS are used here for Landsat-4. The options used for the study described in 
this paper are summarized in columns 2 and 3 of Tables 1 and 2. 

The solar reflectivity coefficients (CR) for TDRS-East and TDRS-West were not estimated in the 
simultaneous solutions of Landsat-4, TDRS-East, and TDRS-West but were applied. The values of CR 
applied in the present calculations were obtained from a set of separate companion solutions of TDRS-East 
and TDRS-West using only BRTS tracking data. 
To evaluate the orbit determination consistency achievable with a particular choice of options using 
least-squares estimation, a series of seven 34-hour definitive solutions was performed with l 0-hour overlaps 
between neighboring arcs. The GTDS Ephemeris Comparison Program was used to determine the 
root-mean-square (RMS) position differences between the definitive ephemerides for neighboring solutions 
in the 10-hour overlap time period. These “overlap” comparisons measure the adjacent solution consistency, 
not the absolute accuracy. 
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Sequential Estimation Method 

RTODE was recently developed by Applied Technology Associates, Incorporated (ATA) for the GSFC 
Flight Dynamics Division (FDD) to respond to the need for a realtime estimation capability, to address future 
increased TDRSS-navigation accuracy requirements, and to provide automation of some routine orbit 
determination operations. The goal for future orbit determination accuracy is 10 meters total position error 
(la) for the user and 25 meters total position enor (la) for the TDRSs. RTODE provides a proof of concept 
for the use of sequential estimation techniques for orbit determination with TDRSS tracking data and offers 
the potential for enhanced accuracy navigation with realtime responsiveness. RTODE is a research tool for 
assessing sequential estimation for FDF navigation applications in realistic operational situations. 

RTODE uses the extended Kalman filter form for sequential orbit estimation. With the sequential estimation 
method, each tracking measurement can be processed immediately upon receipt to produce an update of a 
spacecraft’s state vector and auxiliary state parameters. This fact makes it well suited for realtime or 
near-realtime operation. Sequential estimation is particularly well suited to the development of systems to 
pexform orbit determination autonomously on the spacecraft’s onboard computer (Reference 6). Spacecraft 
orbit determination during and just after a maneuver is a critical support function for which orbit 
determination is needed in near-realtime. Therefore, sequential estimation is also well suited for such an 
application. In addition, the forward filter can be augmented with a backward smoothing filter to further 
improve the overall accuracy, especially during periods without tracking data. 

RTOD/E employs a sequential estimation algorithm with a process noise model to stochastically account for 
gravity model mors (Reference 7). In addition to the spacecraft orbital elements, the filter estimates free 
parameters of the force model and the measurement model, treating these parameters as random variables 
whose behavior is governed by a Gauss-Markov stochastic process. 

RTODE uses a forward-processing extended Kalman filter for sequential orbit estimation. The mathematical 
algorithms and computational procedures are described in References 2 and 7. The specific options used in 
RTOD/E for this study are listed in the last two columns of Tables 1 and 2. 

A good indicator of the consistency of the sequential estimation results is provided by the state error 
covariance function generated during the estimation process (Reference 8). In addition, the relationship of the 
first predicted measurement residual of each tracking pass to the associated predicted residual variance 
provides an indication of the physical integrity of the state error covariance of the filtered orbits. These 
parameters were monitored during the sequential estimation process. 

3. RESULTS AND DISCUSSION 

The results of this study for the Landsat-4 and TDRSS relay spacecraft are presented in this section, along 
with an analysis of the results. Greater emphasis is placed on the Landsat-4 results, since the primary 
objective is to study TDRSS user orbit determination. The orbit determination results using batch 
least-squares calculations and sequential estimation are given in Sections 3.1 and 3.2, respectively; the 
comparisons are presented in Section 3.3. 

3.1 Batch Least-Squares Results 

The RMS values of six Landsat-4 overlap comparisons are summarized in Figure 2. The overlap values vary 
from about 3 to 5 meters. The mean and sample standard deviation of this distribution, in the form of mean f 
standard deviation, is 3.8 f 1 .O meters. The maximum total position differences over the same distribution 
vary between 5 and 9 meters, with a mean and standard deviation of 6.1 f 1.8 meters. The maximum 
position difference values for Landsat-4 are typically a factor of 1.6 larger than the RMS values. 
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Figure 2. Landsat Overlap Comparisons 

It should be noted that all data arcs forLandsat4 solutions consisted of 34 hours, beginning at 0 hours GMTof 
each day from January 17 to January 23, 1991, with one exception. The exception was made for the arc 
beginning at 0 hours GMT on January 20,1991. There is a long data gap of about 5 hours (see Figure 1) at the 
end of the nominal 34-hour period, resulting in a predicted solution for the last 5 hours instead of a definitive 
solution. Therefore, for this particular solution, the arc length was extended by 2 hours to 36 hours so that the 
next tracking pass was included in the solution. 

The RMS values of six TDRS-East and TDRS-West overlap comparisons are summarized in Figure 3. The 
overlap values for TDRS-East vary from about 7 to 30 meters. The mean and sample standard deviation of this 
distribution is 14.2 f 7.8 meters. The maximum total position differences over the same distribution vary 
between 9 and 35 meters, with a mean and standard deviation of 19.1 f 9.1 meters. The overlap values for 
TDRS-West vary from about 10 to 55 meters. Themean and the sample standard deviation of this distribution 
is 21.6 f 16.9 meters. The maximum total position differences over the same distribution vary between 12 
and 74 meters, with a mean and standard deviation of 26.2 f 23.8 meters. The maximum position difference 
values for the TDRSs are typically a factor of 1.2 larger than the RMS values. 

The possible advantage of estimating a set of bias parameters versus not estimating the set was evaluated. The 
mean values of the TDRSS range and Doppler measurement residuals (Le., the observed-minus-computed 
values for each solution) calculated without estimating biases indicated the existence of a small systematic 
error, The mean range measurement residuals varied between -0.8 f 3.0 meters and +l. 1 f 3.5 meters for 
the seven solution arcs. The mean Doppler measurement residuals varied between -15.8 f 80.3 millihertz 
and -3.8 f 85.3 millihertz. The estimation of a set of bias parameters in the calculations in this study 
effectively removed the systematic error, thereby significantly reducing the mean range (0.4 x l o d  to 0.2 x 
lvme te r s )  and mean Doppler measurement (0.2 x lo-’ to 0.3 x millihertz) residual values, as expected. 
The standard deviations of the residuals were also somewhat reduced. However, although the removal of a 
bias may improve accuracy, it was not expected to improve consistency. As a matter of fact, the mean RMS 
overlap value without estimating for a set of bias parameters was largerfor Landsat4 (4.7 f 1.1 meters) and 
for TDRS-East (38.5 f 13.2 meters) and somewhat smaller for TDRS-West (15.1 f 10.4 meters). 
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Figure 3. TDRS-East and TDRS-West Overlap Comparisons 

3.2 Sequential Estimation Results 

During sequential processing of the TDRSS and BRTS measurements using RTOD/E, the position 
component standard deviations from the state error covariance function (3a) were closely monitored. The 
filter was started with hgh  initial diagonal values in the covariance matrix. In the initial phases of filtering, 
the 3a values were as high as 6OOO meters for Landsat4 and were 1200 meters for the TDRSs. This is not 
unusual before the filter has reached steady-state performance, especially considering that there is no TDRSS 
data for Landsat4 in the fmt 4 hours (see Figure 1). After an initial filter settling period (about 24 hours), the 
3a values varied from about 10 to 40 meters in the RMS position for Landsat4 and 40 to 60 meters for the 
TDRSs. The 3a values for Landsat4 dropped to their lowest levels during a tracking pass and then gradually 
rose to the maximum values during the time update phase (propagation phase). (The duration of the time 
update phases can be seen in Figure 1 .) Unlike Landsat-4, the 3a  values for the TDRSs continued to decline 
gradually for about 4 days. Subsequently, the 3u values for TDRS-West and TDRS-East remained relatively 
steady at about 25 meters and 35 meters, respectively. 

The first predicted range residuals of Landsat4 tracking passes after the filter processed the tracking data for 6 
days are shown in Figure 4a. The tracking passes via TDRS-East and TDRS-West are plotted separately. The 
value of the residual varied from nearly -12meters to about 12 meters. The largest value occurred after about 
1 hour of the prediction period following the previous aacking pass, The ratio of the predicted range residual 
to the predicted residual standard deviation corresponding to Figure 4a is plotted in Figure 4b. The first 
residual of each pass was within the 3a bound in the residual space. The postmeasurement-update range 
residuals were negligibly small, typically of the order of 0.3 meter or less. 

The estimated force model parameters varied as a function of time and were updated after each measurement 
was processed. The time variation of the atmospheric drag coefficient for Landsat4 is shown in Figure 5. It 
varied from a low value of 1.6 to a high value of 3.0. The 3u uncertainty boundary (CD minus the 3a 
uncertainty) in the drag parameter on the lower side is also plotted in NO TAG. The boundary on the upper 
side (CD plus the 3a uncertainty) is not plotted so as not to clutter the figure. The variations in the drag 
parameter are smaller than the 3 0  uncertainty. The 3auncertainty converges to anapproximate value of 1.2 at 

136 



I 

W 
(3 
Z 

i2 -104 

0 VIATDRS-EAS1 

I VIATDRS-WES' 
0 

-1 - 
- 

-2- 
- 

I 

I 

C 0 

I 

1 I I I 1 I 4 12 $6 $0 8 I -1 5 

HOURS ON 1/23/91 

Figure 4a. First Predicted Range Residual of TDRSS 
Tracking Passes for Landsat-4 

- 
3 

._.. -.. 

0 

I 

a 

1 VIA TORS-WESl 

I 

_.. 

2 4 6 8 1'0 12 1'4 $6 1'8 20 $2 
I -3 

HOURS ON 1/23/91 

Figure 4b. Ratio of the Predicted Range Residual to 
the Predicted Standard Deviation 

137 



n 
n 

0 

(3 

[I 
Q 
0 
U 
w 
I a cn 
0 
E 
I- < 
LL 
0 
I- z 
w 
0 
L L  
LL 
W 
0 
0 

W 

a 

- 

- 
- 

Figure 5. Coefficient of Atmospheric Drag (CD) for Landsat-4 

steady state. The time variations of the solar radiation pressure coefficient for TDRS-East and TDRS-West are 
given in Figures 6 and 7, respectively, along with the 3a uncertainty boundaries (CR f 3a uncertainty). After 
the filter reached steady state, the coefficient varied between 1.3 and 1.5. The variations in the estimated solar 
radiation pressure coefficients are smaller than the 3a uncertainty, which varies between 0.15 and 0.2 at 
steady state. The estimated values obtained from the batch least-squares solutions are also shown in Figures 5 
through 7 for comparison. 

The solar flux values are input to RTODE on a daily basis. The time variation of the flux value over the 
24-hour period is not input. Therefore, the atmospheric drag coefficient must be adjusted to compensate for 
the variation (NO TAG). RTOD/E models the area of the TDRS to be a constant throughout the day, whereas 
in actuality the TDRS surface area exposed to the solar flux varies with a 24-hour period. The CR estimated 
values for TDRS-East, shown in Figure 6, display an approximately repeated variation over 24 hours for the 
last 5 days during steady-state performance. Such a clear signature of variation is not evident in the CR values 
for TDRS-West shown in Figure 7. 

The time variation of the estimated range bias values for Landsat-4 via TDRS-East and TDRS-West are 
shown in Figures 8 and 9, respectively, along with the 3a uncertainties. The bias values varied from 
approximately-15 meters to approximately 10 meters, with an average value of approximately -1 meter. The 
3a uncertainty is 18 meters during data gaps. During tracking passes, it reduces to about 7 meters; following 
each tracking pass, it returns to 18 meters, with a half-life of 60 minutes (a priori input; see Table 1). There are 
some known physical phenomena and considerations that are absorbed in the estimation ofthe range bias: the 
time-varying tropospheric refraction delay and ionospheric refraction delay, which are not modeled in the 
measurement model; static position biases; and TDRS transponder delays. 
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Figure 6. Coefficient of Solar Radiation Pressure (CR) for TDRS-East 
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Figure 8. Range Bias Estimates for Landsat-4 via TDRS-East 
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Figure 9. Range Bias Estimates for Landsat-4 via TDRS-West 
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3.3 Comparison of Batch and Sequential Estimation Results 

Comparisons of the estimated Landsat-4 orbits between GTDS solutions and RTOD/E forward-filtered 
solutions are presented in Figures 10 and 11. Figure 10 shows the differences during the first day of the filtered 
solution. Since the filter had not reached steady state during the early phases of this period, the position 
difference was as large as about 300meters. However, this difference is not larger th'm the correspondmg state 
error covariance values of the filter, an indicator of the internal consistency of the filtered solution. After the 
filter had reached steady state, the differences between the GTDS and RTOD/E solutions were much smaller 
than on the first day. Therefore, these results are plotted in Figure 11 with a different vertical scale, along with 
the fdter 3a uncertainty; the position differences (root-sum-square ( R S S )  of the radial, along-track, and 
cross-track components) shown in this figure are mostly less than40 meters. The maximum difference did not 
increase or decrease toward the end of the 7-day comparison period. Figure 12 shows the position differences 
on the seventh day, along with the tracking timeline for Landsat-4 and the estimated uncertainty in 
consistency (3a covariance function) obtained from RTOD/E. 

A few important features shown in Figure 12 are of note. Every time a tracking pass is processed by the 
sequential filter, the filter's confidence level in the solution increases: conversely, the error covariance 
function decreases. During the tracking passes, the 30 position uncertainty estimated by the filter is between 
10 and 25 meters. Ifcontinuous tracking were available, theoretically it would have been possible to sustain a 
near-umform steady-state 3a uncertainty. Conversely, with a relatively normal gap of about 3 hours in 
traclnng, the 3aposition uncertainty rises to as high as 45 meters. This study was performed during the period 
of dense Landsat-4 tracking (Figure 1). During normal operation, the tracking is performed with interpass 
gaps of 4 hours or longer. 
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Figure 10. GTDS and RTODlE Ephemeris Estimate 
Differences for Landsat-4 (Day 1) 
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Figure 12. GTDS and RTOD/E Ephemeris Estimate Differences for Landsat-4 
and 3a Filter Uncertainty and Tracking Schedule (Day 7) 
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The position differences between the GTDS and RTODE solutions in Figure 12 exceed the estimated 
uncertainty of the RTODE solution more than half the time. The maximum difference of about 40 meters is 
not consistent within the cumulative consistencies of the batch and sequential solutions. An analysis to 
identify the source of t h ~ s  discrepancy and resolve it is in progress. 

A si@icant part of the difference between the batch and sequential orbit determination results in Figure 12 
can be attributed to the differences in the force and measurement models used for GTDS and RTODE. 
Quantitative estimates for some of these model difference effects are available from previous studies using 
GTDS. It was reported in Reference 4 that the maximum position difference for 34-hour definitive ERBS 
solutions using the Goddard Earth Model-T2 (GEM-T2) (50 x 50) and GEM-1OB (36 x 36) geopotential 
models can be as high as 30.1 f 5.2meters. RTOD/E uses the GEM-1OB geopotential model with order and 
degree 30. Due to the inclusion of a process noise model for geopotential errors in RTODE and its absence in 
GTDS, the impact of differences in the geopotential models used would be different in the two systems. The 
maximum position differences observed in the defrnitive ERBS orbits due to the presence and absence of 
ionospheric refraction correction in the measurement model for the spacecraft-to-spacecraft leg can be 
2.6 f 0.9 meters (Reference 4). The maximum position difference due to solid Earth tide effects on ERBS 
were measured at 7.0 f 3.2 meters. A detailed analysis of the influence of polar motion and solid Earth tides 
on ERBS orbits is given in Reference 9. ERBS is at an altitude of about 600 kilometers, whereas Landsat-4 is 
at an altitude of about 715 kilometers. Therefore, all the stated effects above for ERBS should be somewhat 
diminished in magmtude for Landsat-4. However, Landsat-4 has a polar orbit, which has a significant adverse 
effect on the tracking geometry. 

Another source of the difference between the GTDS and RTOD/E estimated ephemerides is due to the 
fundamental difference in the way the estimated parameters are obtained in the batch least-squares and 
sequential estimation techniques. In the batch least-squares method, a single set of parameter values is 
estimated over an entire arc. In the sequential estimation process, the set of estimated parameter values is 
updated at each measurement time. The time variations in selected estimated parameters are shown in Figures 
5 through 9. 

Based on the magnitude of these differences and the differences in the estimation techniques, the maximum 
position difference of about 40 meters between the GTDS and RTOD/E results is not unusual. 

3.4 Remarks 

The results presented in this paper were obtained using dense-tracking TDRSS measurements for Landsat-4. 
A previous study of ERBS with single-relay (TDRS-East only)TDRSS tracking has shown that to achieve the 
highest precision orbit determination using the batch least-square method, the tracking coverage should not 
fall below 10 minutes every two orbits (Reference 10). The tracking coverage used in the present study, as 
shown in Figure 1. was well above this criterion. The impact of tracking coverage on accuracy using 
sequential estimation techniques will be pursued in future studies. In theory, the filter is expected to be more 
sensitive to large gaps in tracking data than the batch least-squares method; conversely, it would benefit more 
from more continuous tracking than would the batch least-squares method. 

A covariance analysis to further understand the orbit determination results and to identify the major 
contributing factors to the errors in the estimated orbits is in progress. 

4. CONCLUSIONS 

This study presented an analysis of TDRSS user orbit determination using a batch least-squares method and a 
sequential estimation method. Independent assessments were performed of the orbit determination 
consistency within each method, and the estimated orbits obtained by the two methods were also compared. 
This assessment is applicable to the dense-tracking measurement scenario for tracking Landsat-4. 
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In the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was 
heavily tracked by TDRSS during January 1991, was found to be about 4 meters in the RMS overlap 
comparisons and about 6 meters in the maximum position differences in overlap comparisons. In the 
sequential method analysis, the consistency was found to be about 10 to 30 meters in the 30 state error 
covariance function; and, as a measure of consistency, the first residual of each pass was within the 3u bound 
in the residual space. 

After the filter had reached steady state, the differences between the definitive batch least-squares 
ephemerides and the forward-filtered sequentially estimated ephemerides were no larger than 40 meters. 
Further studies are in progress to investigate the relative qualities of the two methods within this difference. 
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ABSTRACT 

The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine 
the topography of the Earth’s sea surface over a 3-yearperiod, beginning shortly after launch 
in July 1992. TOPEX/Poseidon is a joint venture between the United States National 
Aeronautics and Space Administration (NASA) and the French Centre Nationale d’Etudes 
Spatiales. The Jet Propulsion Laboratory is NASA’s TOPEX/Poseidon project center. The 
Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the 
day-to-day orbit determination aspects of the mission. Due to its extensive experience with 
TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics 
Facility (FDF) will receive and process TDRSS observational data. 

To M i l l  the scientific goals of the mission, it is necessary to achieve and maintain a very 
precise orbit. The most stringent accuracy requirements are associated with planning and 
evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain 
the required groundtrack. 

To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, 
covariance anaIysis was undertaken with the Orbit Determination Error Analysis System 
(ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit 
determination, including arc length, force models, and other processing options. The most 
recent analysis has focused on determining the size of the geopotential field necessary to 
meet the maneuver support requirements. Analysis was undertaken with the full 50x50 
Goddard Earth Model (GEM) T3 field as well as smaller representations of this model. 

Thiswork wassupported bythe National Aeronauticsand Space Administration (NASA)/Goddard Space Flight Center 
(GSFC), Greenbelt, Maryland, Contract NAS 531500. 
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1 .I Background 
Error analysis has been used in a long succession of investigations to evaluate the orbit determination 
capabilities of the TOPEX/Poseidon mission. Reference 1 gives a mission overview and summarizes the 
day-to-day operational orbit determination requirements and nominal capabilities. The requirements were 
provided by the Jet Propulsion Laboratory (JPL), and the capabilities were obtained from previous error 
analyses presented in References 2 and 3. 

The TOPEX mission has been divided into two general phases: the assessment phase, where maneuvers will 
be used to navigate the spacecraft from the injection orbit to the operational orbit, and the observational phase, 
where the majority of scientific data will be obtained. Maneuvers will also be required during the 
observational phase to maintain the stringent groundtrack requirements necessary for the scientific goals. 

The TOPEX mission scientific goals require orbit determination accuracies that have spurred the 
development of new mathematical models for representing the motion of near-Earth satellites. One such 
improvement is a special 50x50 geopotential field called GEM T3. Approximately 6 months after launch of 
the satellite, TOPEX tracking data will be added to the observations used to develop GEM T3 to create a 
gravity field tailored specifically for TOPEX. 

PARAMETER 

CHANGE IN AADIAL COMPONENT OF VELOCITY 

1.2 Goal of Study 

MAXIMUM 3-0 ERROR 

10.0 MWSEC 

The use of a full 50x50 geopotential field in conjunction with other improved models for representing 
near-Earth satellite motion is expected to produce orbit ephemerides that will support the scientific goals of 
the TOPEX mission. However, for operational day-to-day orbit solutions, use of a full 50x50 geopotential 
field places a si@icant burden on computer resources. Consequently, the specific goal of this study is to 
determine if day-to-day operational orbit determination requirements can be achieved with smaller 
representations of the GEM T3 field. 

This investigation uses the Orbit Determination Error Analysis System (ODEAS) to estimate the effect of 
reducing the size of GEM T3 on day-to-day operational solutions. The most stringent requirements are for 
support of maneuver evaluations in the observational phase. Consequently, this is the specitic area addressed 
in this study. 

1.3 Maneuver Support Requirements 
The orbit determination requirements specified by JPL for support of maneuver evaluation during the 
observational phase are given in Table 1. The requirement that is the most difficult to achieve is the 
0.2 millimeter/second (mm/sec) change in the alongtrack component of velocity. 

CHANGE IN CROSSTRACK COMPONENT OF VELOCrPl 

CHANCE IN ALONGTRACK COMPONENT OF VELOCrrY 

CHANGE IN OSCULATING VALUE OF SEMIMAJOR AXIS 

Table 1. TOPEX Orbit Determination Requirements for Evaluation 
of Changes in Osculating Parameters Due to a Maneuver 

10.0 MWSEC 

0.2 MWSEC 

0.2 M' 

I CHANGE IN OSCULATING VALUE OF INCLINATION I 5.0 x IO+DEG* I 
'M - METERS) 
DEG - DEGREE(S) 
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2. ANALYSIS 

SATELLITE 

STARLElT’E 

2.1 Geopotential Error Models 

SATELLITE 
SEMIMAJOR AXIS 

(KM’) 

7371 

This investigation is concerned with the effect of different-size representations of the GEM T3 gravity field on 
maneuver evaluation capabilities. The GEM T3 field is a full 50x50 set of coefficients developed by S. 
Klosko (Reference 4). 

Covariance analysis estimates the effect of uncertainties in measurement and force model parameters on the 
solved-for quantities. An error model for the GEMT3 geopotential field has been developed in Reference 5 by 
creating a 1-sigma standard deviation “clone” geopotential model by a purely mathematical method. The 
difference between the original GEM T3 and GEM T3clone represents a 1-sigma error model for GEM T3. A 
3-sigma error model is constructed by simply applying a multiplicative factor of 3 to the 1 -sigma error model. 

7.5 7.5 7.5 

Two additional geopotential models have been generated from the same observations used in the 
development of the 50x50 GEM T3 model. The additional models solve only for geopotential coefficients up 
to 20x20 and 30x30. These latter fields are called “folded-over” models. Clone representations for these two 
additional reduced-size models have not been undertaken because the process requires extensive computer 
resources on very large systems. Consequently, error models are not currently available for these two 
folded-over representations, and without error models, these reduced-size fields cannot be used in 
conjunction with covariance analysis. 

7.5 7.5 

Two possibilities exist for developing an error model for the folded-over fields without the use of clone 
representations. The first is based on analysis presented in Reference 6 and reproduced in Table 2, which 
summarizes the quality of orbit determination fits to the Starlette, Ajisai, and Lageos satellites with five 
different geopotential fields based on GEMT3 (the fuIl50x50 field, folded-over 20x20 and 30x30 fields, and 
GEM T3 truncated at 20x20 and 30x30). The TOPEX altitude will lie between that of Starlette and Ajisai. 
Table 2 suggests that the root mean square (RMS) of fit to the observations for a spacecraft between these two 
altitudes will be best for the full 50x50 field, with a poorer fit for the folded-over fields and the worst fit using 
the truncated fields. 

Error analysis is usually concerned with presenting “worst-case” scenarios. Table 2 suggests that truncated 
models produce the worst results, so that if error models could be developed for the truncated 20x20 and 
30x30 fields, those error models would likely produce error estimates that are larger than those obtained from 
the folded-over fields. While this procedure may produce excessively pessimistic results, the results would at 
least indicate a worst-case scenario. Error models for truncated fields can be constructed without using clone 
representations by differencing the original and clone models up to, say, 20x20, and adding to this set of error 
coefficients 100 percent of the original GEM T3 model from 21x21 up to 50x50. 

Table 2. Fit to Residuals of Different Satellites as a Function of Gravity Field 

I 

AJlSAl I 7820 

LAGEOS 1 2273 I 
‘CM - CENTIMETER(S) 

KM I KILOMETER(S) 

RMS OF FIT (CM.) 

FOLDED- FOLDED- FULL GEM T3 FULL GEM T3 
GEM T3 OVER 30 x 30 OVER 20 x 20 TRUNCATED TRUNCATED 1 GEMT3 I GEMT3 I A T 3 0 ~ 3 0  I A T 2 0 ~ 2 0  

11.4 -90.9 1 166.9 1 141.1 I 573.3 

8.7 I ~ 10.7 I 22.4 I 10.3 1 38.3 
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The second alternative for producing an error model for the folded-over fields without the benefit of clone 
representations is to assume that the full 50x50 GEM T3 field is absolute truth, and simply difference the 
50x50 and 20x20 fields. Two problems arise with this representation. First, the error in GEM T3 itself is 
ignored. Second, the error model would include 100 percent of the SOx50coefficients above degree and order 
20x20, and yet, to the extent possible, the dynamics of these high-order terms might already be included in the 
folded-over field. Some of this apparent “excessive error” might be removed when differencing the 50x50 
GEM T3 and folded-over 20x20 fields due to inherent correlations, but without evidence to this effect, it 
appears that the best alternative is to use error models based upon truncated fields and accept a worst-case 
scenario. Table 7 presents the different geopotential fields and associated error models used in this 
investigation. 

GEOPOTENTlAL MODEL 

50 x 50 GEM T3 

3-0 ERROR MODEL 

3 x (GEM T3 - GEM T ~ C L ~ E )  

3 
PLUS 100% OF (GEM T3) 31 x 3 1  up TO mx 50 

(GEM T3 - GEM TSCLONE) UP TO 30 x 30 I GEM T3 TRUNCATED AT 30 x 30 

2.2 Input Parameters 

Epoch conditions for TOPEX and TDRS-East (E) and -West (W) are given in Table 4. Table 5 presents the 
station locations and Table 6 defines the error sources and associated 3-sigma uncertainties. 

Because this investigation is primarily concerned with the effect of geopotential size on maneuver evaluation 
capabilities, there is no need to propagate errors into the future. Consequently, Table 6 indicates an 
uncertainty of 2.5 percent for solar flux errors throughout the definitive period, with no errors for prediction 

The tracking schedule for determining the orbits of TDRS-E and -W consists of 5 minutes of range and 
Doppler observations every other hour with a sampling frequency of 60 seconds. The nominal tracking 
scenario for the observational phase of TOPEX by the two TDRS spacecraft was specified by JPL. It consists 
of a 7-day arc with 40 minutes per revolution of one-way noncoherent Doppler and a single 20-minute pass 
per day of two-way coherent range and Doppler. The two-way pass replaces the one-way pass for that 
particular revolution. For three revolutions before and after a maneuver, the 40-minute one-way Doppler pass 
is replaced by a 40-minute pass of two-way range and Doppler. TDRS tracking of TOPEX incorporates a 
10-second sampling frequency. 

periods. 

2.3 Evaluation of Capabilities for Computing the Changes in 
Osculating Parameters as a Function of Geopotential Field Size 

An outline of the procedure used to estimate the error in the change of a parameter due to an instantaneous 
maneuver is given in Reference 3. In general, the process involves computing and saving the error budget at 
the time of the maneuver based on the premaneuver solution. A corresponding error budget is obtained at the 
maneuver time from the postmaneuver solution. If all the error parameters are assumed to be perfectly 
correlated, the error in the change of a parameter due to an instantaneous maneuver is obtained by differencing 
the two error budgets, parameter by parameter and component by component. Uncertainties in station 
position and CD can certainly be assumed to be correlated for the premaneuver and postmaneuver solutions. 
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Table 4. Epoch Conditions 

1 PARAMETER I TDRSE I TDRS-W I TOPEX 

I EPOCH I 92/06/08 22h OOm OOs 1 92/06/08 22h 00"' OOs I 92/06/08 22h 00"' OOs 
~ 

421 68 29724487 -1 4216380284769 7706 82281 771 
- - ~~ I F:$IMAJOR AXIS 

I ECCENTRICITY I 0.00019745860 I 0.00024304387 I 0.0010889678 

INCLINATION (DEG) 4.50609744 3.72087923 66,04679405 

ASCENDING NODE 70.15012793 162.831 94621 142.72939563 
i (DEG) 

I I 0.0064865 

~~~~~ 

AREAIMASS I 0.02 I 0.02 
(M*/KG*) 

337.82089362 I ARGUMENT OF 
PERIGEE (DEG) 

MEAN ANOMALY 
PEG) 

E. LONG. (DEG) 

I 6.09376125 1 91.1 1231 707 I 
138.32697568 162.69648054 358.38472966 

318.85566801 189.08900083 

CR 

CD 

1.5 1.5 1.3 

WA M A  2.3 

SOLAR FLUX 
(WATTS/I&/HT) 

225.0 

Table 5. Station Locations 

E' LATITUDE (DEG, 
MIN, SEC) STATION ACRONYM (DEG, MIN? 

SEC) 
HE,GHT (M) 

WHITE SANDS 

WHITE SANDS BRTS 

~~ ~~~~~ 

WHSK 253 23 29.21 32 30 03.56 1430 

WHSJ 253 23 16.92 32 30 2253 1413 

W I N  -MINUTES 

ASCENSION BRTS 

ALICE SPRINGS BRTS 
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Table 6. Error Sources and Associated 3-Sigma Uncertainties 

CD 

SOLAR FLUX 

I PARAMETER ACRONYM IN LISTING 

USERDRAG 

SOLFLUX 

I GRAVITY FIELD I GEOERROR 

LOCAL X 

LOCAL 2 
LOCAL Y 

TROPOSPHERE 

XLT-NAME 

ZLT-NAME 

TRP-NAME 

YLT-N AM E 

CR 
TOP EX 
TDRS-E 
TDRS-W 

MEASUREMENTS 

BRTS RANGE (M) 
TDRSS RANGE (M) 
TDRSS WO-WAY WR’ (MWSEC) 
TDRSS ONE-WAY WR (MWSEC) 

STATION POSITIONS 
ASCENSION TRANSPONDER 
ALICE SPRINGS TRANSPONDER 
WHITE SANDS TRANSPONDER 
WHITE SANDS GROUND 

MEASBI 3,4,5,6 
MEASBI 1,2 

SOLRAD 1 
SOLRAD 2 
SOLRAD 3 

NAME = ACNJ 
NAME = ALSJ 
NAME = WHSJ 
NAME = WHSK 

IONOSPHERE 
FROM STATIONS 
FROM TDRSE 
FROM TDRS-W 

ION-NAME 
IONSAT 2 
IONSAT 2 

3-0 UNCERTAINTY I 
SEE TABLE 3 I 
30% IF NOT SOLVED FOR 

MEAN SOLAR FLUX = 225 x loz2 WAlTS/b#/HZ. 
DAILY ERROR = 2.5%. 

30% 
2% 
2% 

100% 
100% 
100% 

NOISE WElGHTa BIAS 

1.5 3.0 x 10-4 7.0 
1.5 90.0 7.0 
2.82 100.0 0.0 
6.29 6.29 SOLVE FOR 

CLOCK DRIFT 
AND CLOCK 
ACCELERATION 

‘RANOURATE 

Other parameters, such as the uncertainties in the ionospheric and tropospheric refraction, are not necessarily 
correlated; as a result, errors in the change of the solved-for parameters due to these latter uncertainties are not 
differenced, but the RSS is computed. The total error in the change of a specific component is obtained by 
forming the RSS of the individual error sources of the differenced/RSS’ed error budget. 

The premaneuver arc was selected to be 7 days, because this will be the typical definitive period for the 
observational phase. JPL requested deliveries of the changes in parameters at 8 and 24 hours after the 
maneuver. GSFC personnel indicated that it would take approximately 1 hour to process the data and send the 
results to TPL. Consequently, postmaneuver data spans of 7 and 23 hours were selected as nominal 
postmaneuver data arcs. However, the requirements apply only to the 23-hour postmaneuver solution. 

Simulations were constructed using the epoch conditions, tracking scenarios, and error models noted in 
Section 2.2 and Table 3. The maneuver time was selected as exactly 7 days past the epoch time noted in 
Table 4. 

If a maneuver is assumed to be instantaneous, the maneuver will change only the velocity (not the position at 
this instant of time). It is possible to simulate this scenario by applying the appropriate weight sigmas to the 
position components of the postmaneuver a priori covariance matrix. This process ensures the same position 
for the pre- and postmaneuver solutions at the time of the maneuver, but the operational version of ODEAS 
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does not produce the necessary output to allow the same error in the pre- and postmaneuver solution. 
Consequently, it is not currently possible to properly simulate the process of constrained solutions. The 
following analysis assumes unconstrained postmaneuver solutions, but the subject of constrained solutions 
will be addressed in Section 2.4. 

~~~ 

23 

7 

23 

Tables 7 ,8 ,  and 9 indicate the maneuver evaluation capabilities as a function of postmaneuver data span and 
gravity model size for semimajor axis, inclination, and crosstrack velocity. The capabilities for evaluating 
radial and alongtrack velocity components will be discussed later. 

~~ ~ ~ ~~ - ~~ ~ 

30 x 30 0.1 961 0.038 0.1112 0.1 10 0.2055 

30 x 30 0.2722 0.086 0.1112 0.110 0.2603 

20 x20 0.2087 0.081 0.2962 0.296 0.2885 

Consider fust Table 7, which contains the maneuver evaluation capabilities for the semimajor axis. Separate 
columns are included for the premaneuver and postmaneuver solutions as well as the error in the change of the 
parameter. The results indicate that for all postmaneuver solutions, the error in the semimajor axis due to the 
uncertainty in the gravity model is relatively small when compared to the RSS of all other error sources. This 
is not the case for the premaneuver solutions, where the uncertainties in the gravity field dominate the RSS of 
all errors. As would be expected, 23-hour postmaneuver data spans produce smaller errors in the change of the 
semimajor axis than 7-hour data spans. The larger gravity field representations also produce smaller errors in 
the change of the semimajor axis, but there is relatively little difference between them. The dominant 
contributor to the error in the change of the semimajor axis is a result of the uncertainty in the geopotential 
field for the 20x20 gravity model simulations. For the 30x30 and 50x50 gravity fields, the dominant errors are 
due to the uncertainties in the tropospheric refraction and measurement biases. 

Table 7. TOPEX Observational Phase Maneuver Evaluation Capabilities for the 
Semimajor Axis With No Constraints on the Postmaneuver Position 

PREMANEUVER DATA SPAN = 7 DAYS 
REQUIREMENT ON CHANGE OF SEMIMAJOR AXIS = 0 9  METERS 1 

POSTMANEUVER ERROR IN 
CHANGE OF 
SEMIMAJOR 

ERRORS GRAVITY ERRORS 

GRAVITY 
MODEL 

POST- 
MANEUVER 

DATA SPAN (HR.) 

I 23 I 50x50 I ~ 0.19iS 1 0.042 I 0.0855 I 0.084 I 0.1968 

I 7 I 50x50 I 0.2716 I 0.084 I 0.0855 I 0.084 I 0.2592 

I 7 1 20x20 I 0.2723 I 0.086 I 0.2962 I 0.296 I 0.3332 

‘HR - HOURS 

In summary, no unusual or unexpected results appear in Table 7, and it appears that a 30x30-size gravity field 
will meet the requirement of 0.2 meters for the23-hour solutions. However, it must be remembered that errors 
in the premaneuver and postmaneuver solutions change as a function of time, and the results noted in Table 7 
are valid for only a single maneuver epoch. Different maneuver evaluation capabilities may be obtained for 
different epochs. This concern will be addressed later in Section 2.5. In addition, the geopotential error model 
used to produce the results in Table 7 represents a truncated geopotential field, whereas operational solutions 
will probably be based on folded-over fields, which should be superior to the truncated results (see Table 2). 

151 



Table 8 presents the corresponding results for the inclination. No unusual results appear, with little or no 
sensitivity to the gravity model size. The requirement of 1x104 degrees can be met with a 20x20 geopotential 
representation. The domin'mt error source in the change of the inclination is the ionospheric refraction from 
the ground stations. 

POSTH ANEUVER 

RSS OF ALL ERROR FROM 
ERRORS GRAVITY 

GRAVITY 
MODEL 

POST- 
MANEUVER 

DATA SPAN (HR) 

Table 8. TOPEX Observational Phase Maneuver Evaluation Capabilities for the 
Inclination With No Constraints on the Postmaneuver Position 

PREMANEUVER ERROR IN 
CHANGE OF 
INCLINATION 

RSS OF ALL ERROR FROM DUE TO ALL 
ERRORS GRAVITY ERRORS 

PREMANEUVER DATA SPAN = 7 DAYS 
REQUIREMENT ON CHANGE IN INCLINATION = 1 x 10 DEGREES r I 

23 

7 

23 

7 

I I I ERROR IN INCLINATION (DEGREES x 10 4) I 

50x50 0.205 -.0064 0.272 .0439 034 

50x50 0.562 .0097 0.272 ,0439 0.63 

30 x 30 0.202 -.0031 0.271 ,0372 0.34 

30 x 30 0.146 .0117 0.271 ,0372 0.63 

23 

7 

20x20 0.211 -.0602 0.275 -.0587 0.34 

20x20 0.560 .0019 0.275 -.0587 0.63 

Table 9 gives the maneuver evaluation capabilities for the crosstrack component of velocity. Once again, the 
results are not sensitive to the size of the geopotential, and the requirement of 10 mm/sec can be obtained with 
a 20x20 gravity field. The dominant error source in the change of the crosstrack component of velocity is 
again the uncertainty in the ionospheric refraction at the ground stations. 

The final set of requirements deals with the errors in the change of the in-plane velocity components. To help 
explain these results, it is beneficial to first examine the errors in the change of the radial position (not the 
radial velocity), which are given in Table 10. 

The important feature of this table is that the errors in the change of the radial position are about 15 times larger 
than those for the semimajor axis noted in Table 7. The semimajor axis reflects the orbital period, while errors 
in the radial position involve not only errors in the semimajor axis, but also the eccentricity and the eccentric 
(or true) anomaly. The fact that the radial position error is substantially larger than that of the semimajor axis is 
due to the errors in these two additional parameters, which produce a tendency to point the velocity vector in 
the wrong direction. This in turn produces errors in the in-plane velocity components. 

Table 10 also indicates that the 20x20 gravity model produces smaller errors than the larger gravity fields, 
which is opposite to intuition. This feature may be a result of certain correlations in the truncated field, and it 
might not occur if the maneuver epoch were changed. Since the radial errors are smaller for the 20x20 gravity 
field, the corresponding in-plane velocity errors are likely to be smaller for the 20x20 geopotential 
representation, as well. 
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Table 9. TOPEX Observational Phase Maneuver Evaluation Capabilities for 
the Crosstrack Velocity With No Constraints on the Postmaneuver 
Position 

NEUVER ERROR IN 
CHANGE OF PREMANEUVER 

0.0 

4 . 1  

3.5 -0.5 4.3 

3.5 -0.5 8.1 

I ERROR IN RADIAL POSITION (M) I 

~ ~ ~~ ~ ~~~ ~ ~ - 7 

23 50 x 50 0.93 0.39 2.92 

7 50 x 50 1.67 -0.04 2.92 

~~ ~ ~ 

-2 80 3 3  

-2.80 3 4  

23 

7 

23 

7 

30 x 30 0.89 0.30 3.01 -2.89 3.3 

30 x 30 1.67 -0.05 3.01 -2.89 3.4 

20 x 20 1.10 0.70 1.17 -0.81 1.8 

20 x 20 1.67 -0.01 1.17 -0.81 2.1 

PREMANEUVER DATA SPAN= 7 DAYS 
REQUIREMENT ON CHANGE IN CROSSTRACK VELOCITY=10 MMlSEC 

ERROR IN CROSSTRACK VELOCITY (MMISEC) 

POSTMA POST- 
MANEUVER 

DATA SPAN (HR) 

GRAVITY 
MODEL 

VELOCITY RSS OF ALL ERROR FROM DUE TO ALL 

GRAVITY 1 ERRORS I GRAVITY [ ERRORS 

RSS OF ALL 
ERRORS 

I 23 50x50 2.5 0.0 I 3.6 I -0.6 I 4.3 

50x50 4 . 1  I 3.6 I -0.6 I 8.1 7.2 

2.5 30 x 30 

30 x 30 7.2 

20x20 2.6 0.7 1 3.6 I 0.7 I 4.3 

I 7 20x20 7.2 -0.0 I 3.6 I 0.7 I 8.2 

Table 10. TOPEX Observational Phase Maneuver Evaluation Capabilities for the 
Radial Position With No Constraints on the Postmaneuver Position 

PREMANEUVER DATA SPAN = 7 DAYS 
NO REQUIREMENTS ON RADIAL POSITION 

ERROR IN 
CHANGE OF 

RADIAL 
POSITION DUE 

ERRORS 

POSTMANEUVER PREMANEUVER 

ERRORS GRAVITY ERRORS GRAVITY 

GRAVITY POST- 
MANEUVER 

DATA SPAN (HR) 

Table 11 presents the results for the radial component of velocity. The most notable feature of these results is 
that they do not meet the requirements. However, as conjectured, superior results are estimated when the 
gravity model is smaller. The dominant error in the change of the radial component of velocity is due to the 
uncertainty in the geopotential. Smaller errors in the change of the radical component might be obtained with 
the use of a shorter premaneuver data span. 
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Table 11. TOPEX Observational Phase Maneuver Evaluation Capabilities for the 
Radial Velocity With No Constraints on the Postmaneuver Position 

7 

23 

PREMANEUVER DATA SPAN = 7 DAYS 
REQUIREMENT ON CHANGE IN RADIAL VELOCITY = 10 MMSEC 

50x50 9.3 4 . 1  11.2 -1 0.5 14.2 

30 x 30 11.9 1.2 11 .o -10.4 17.4 

ERROR IN RADIAL VELOCITY (MMSEC) 

7 

23 

7 

ERROR IN 
CHANGE OF 

RADIAL 
VELOCITY 

ERRORS 

POSTMANEUVER PREMANEUVER 

GRAVITY 

GRAVITY 
MODEL 

POST- 
MANEUVER 

DATA SPAN (HR) 

~ ~ ~~ 

30 x 30 9.3 4 . 1  11 .o -1 0.4 14.1 

20x20 11.9 0.6 7.7 -6.7 14.9 

20x20 9.3 4 . 1  7.7 -6.7 11.6 

23 I 50x50 I 11.9 I 1.0 I 11.2 I -10.5 I 17.3 

The last parameter to be addressed is the alongtrack component of velocity. The requirement for this 
parameter is, by far, the most stringent (0.2 mm/sec). 

JPL requested that the error in the alongtrack component of velocity be estimated with the use of the Vis Viva 
energy equation. The development of the relationship is straightforward. The energy integral, 

V2 = GM*(2/r  - l /a)  

renders 

2*V*(AV)  = (Aa) + (Ar) 

Taking the appropriate partial derivatives, this becomes 

AV = 

Substituting typical values for the TOPEX orbit (r = 7698.8 km, a = 7706.8 km, and V = 7.2 km/sec) gives 

AV = 4.66 x (Aa) - 9.341 x * (Ar) km/sec (1) 

The terms (Aa) and (Ar) are the errors in the change in a and r respectively. When this equation is used in 
conjunction with unconstrained postmaneuver solutions, both (Aa) and (Ar) must be included in the 
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computation. If, on the other hand, we could properly simulate a constrained postmaneuver solution where 
there would be no discontinuity in the position (and consequently, no error in the change of position), then 
only the (Aa) term would be included in the equation. Table 12 presents the errors in the alongtrack 
component of velocity. Note that a factor of lo6 has been applied to Equation (1) to convert the units from 
km/sec to mm/sec. 

Table 12 indicates three particular features: first, the requirements are not met; second, there is good 
agreement between the two methods of computing the error in the change of the alongtrack component of 
velocity; third, the conjecture that the 20x20 gravity field would produce smaller errors also holds true for the 
alongtrack component of velocity. The uncertainty in the gravity field is the dominant error source. 

ERROR IN CHANGE 
OF ALONGTRACK 
VELOCITY FROM 
ODEAS (MMSEC) 

GRAVITY MODEL POSTMANEUVER 
DATA SPAN (HR) 

Table 12. TOPEX Observational Phase Maneuver Evaluation 
Capabilities for the Alongtrack Velocity With No 
Constraints on the Postmaneuver Position 

ERROR IN CHANGE 
OF VELOCITY FROM 
VIS VIVA EQUATION 

(MWSEC) 

23 

7 

~~ ~~ ~~ ~ ~ 

50x50 3.1 3.0 

50x50 3.1 3.0 

23 

7 

30 X 30 3.1 3.0 

30 x 30 3.2 3.1 

2.4 Constrained TOPEX Maneuver Evaluation Capabilities Implied by 
Analysis of ERBS Data 

~ ~ 

23 

7 

The preceding results assume an unconstrained postmaneuver solution, while a constrained postmaneuver 
position is the proper simulation technique for instantaneous maneuvers. Due to limitations in the output 
capabilities of the ODEAS program, the proper technique cannot be simulated, but previous analysis 
presented in Reference 7 indicates what can be expected from constrained solutions. 

Reference 7 has used the Goddard Trajectory Determination System (GTDS) in conjunction with actual 
tracking data of the Earth Radiation Budget Satellite (ERBS) to estimate the accuracy of changes in the 
velocity components. The technique used was to find an interval of time where a maneuver did not occur and 
to break this tracking interval into premaneuver and postmaneuver solutions. Ideally, there should be no 
discontinuities in the velocity components for the two solutions at the time chosen for the maneuver. The 
differences in the velocity components of the pre- and postmaneuver solutions at the maneuver time are a 
measure of GTDS’s ability to resolve the change in the velocity. Reference 7 refers to this as the “Null” 
maneuver evaluation. GTDS solutions were made that constrained and did not constrain the postmaneuver 
position. A truncated 30x30 GEM T2 (not T3) gravity field was used in the analysis. 

In addition to the GTDS solutions, unconstrained ODEAS simulations were constructed using the same 
tracking data schedule as incorporated in GTDS. Table 13 indicates the error in the change of the alongtrack 
velocity. Two important results are apparent. First, constrained GTDS solutions produce errors that are 

~ ~ 

20 x 20 1.8 1.5 

20x20 1.9 1.8 
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approximately an order of magnitude smaller than unconstrained solutions. Second, the corresponding 
ODEAS 3-sigma errors are slightly larger than those obtained with GTDS but follow similar trends, giving a 
certain measure of credibility to the ODEAS results. 

The errors in the changes of the alongtrack component of velocity provided by ODEAS in Table 12 (for 
TOPEX) and Table 13 (for ERBS) are of the same order of magnitude. This implies that constrained 
postmaneuver solutions for TOPEX should be of the same order of magnitude as obtained for ERBS, as noted 
in Table 13, and perhaps even smaller, since the ERBS results were obtained with GEM T2. This in turn 
suggests the TOPEX requirements for theerror in the change of the alongtrackcomponent of velocity should 
be achievable most of the time with a truncated GEM T3 30x30 geopotential field, with additional 
improvements for a folded-over representation. Extrapolation to a GEM T3 20x20 geopotential field is 
difficult duc to the unusual results noted in Table 12 for the smaller-size gravity field. 

Table 13. Comparison of GTDS Null Velocity Changes and 
ODEAS 3-Sigma Error Estimates for Changes in the 
Alongtrack Velocity for ERBS 

CHANGES IN ALONGTRACK COMPONENT OF VELOCITY (MM/S) 

FROM ODEAS WITH NO POST- FROM GTDS MANEUVER 
NUMBER 

MANEUVER CONSTRAINTS NOT CONSTRAINED I CONSTRAINED 

I 1 I 2.50 I 0.13 I 3.38 1 
--I ~~ r -  I 1.27 I 0.54 I 2.10 

1 3  I 2.65 I 0.21 I 5.84 I 

2.5 The Effect of Maneuver Epoch 

The preceding results are based on a single maneuver epoch. Reference 3 (Table 2-29) indicates that the error 
in the change of the semimajor axis is sensitive to time. For three selectedepochs, theerror in the change of the 
semimajor axis var ied from .12 to .60 meters. 

The operational scenario for TOPEX allows for maneuvers to be postponed for one revolution if deemed 
necessary by the project office. Consequently, error analysis was undertaken for a second epoch. which was 
chosen as one revolution before the one used in the previous set of results. 

Table IS presents the results for both maneuver epochs. IR general, the results indicate relatively small 
variations in the error of the change of parameters. This is not surprising, given the difference in the epochs of 
exactly one revolution. Larger variations might be seen if the second maneuver epoch were selected at a 
different point in the orbit. 

3. CONCLUSIONS 

This study has applied covariance analysis to investigate maneuver evaluation capabilities of the TOPEX 
satellite in the observational phase as a function of gravity model size. Three representations of the GEM T3 
geopotential field have been considered: a full 50x50 model and 30x30 and 20x20 truncated models. 
Truncated fields were incorporated rather than folded-over representations, because error models for 
folded-over fields are not available. Orbit solutions using actual tracking data have indicated that folded-over 
fields should produce results superior to those based on truncated fields. 
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Table 14. Maneuver Evaluation Capabilities as a Function of Gravity Model Size 
and Time of Maneuver Using Unconstrained Postmaneuver Solutions 

PARAMETER 

SEMIMAJOR AXIS (M) 

INCLINATION (DEG x lo4) 

CROSSTRACK VELOCITY (MWSEC) 

RADIAL VELOCITY (MWSEC) 

ALONGTRACK VELOCITY (MWSEC) 

CAPABILITY 
GRAVITY MODEL REQUIREMENT L 

EPOCH 1 EPOCH 2 

FULL 50 x 50 0.2 0.20 0 .a 
TRUNCATED 30 x30 0.21 0.21 
TRUNCATED 20 x 20 0.29 0.31 

FULL 50 x 50 1 .o 0.34 0.35 
TRUNCATED 30 x 30 0.34 0.35 
TRUNCATED 20 x 20 0.34 0.35 

FULL 50 x 50 10.0 4.3 4.3 
TRUNCATED 30 x30 4.3 4.3 
TRUNCATED 20 x 20 4.3 4.3 

FULL 50 x 50 10.0 17.3 15.1 
TRUNCATED 30 x30 17.4 15.0 
TRUNCATED 20 x 20 14.9 12.3 

FULL 50 x 50 0.2 3.0 3.2 
TRUNCATED 30 x 30 3.0 3.2 
TRUNCATED 20 x 20 1.5 1.9 

The proper methodology for analyzing instantaneous maneuvers is to incorporate constraints on the 
postmaneuver position components. The current version of the covariance analysis software cannot properly 
simulate constrained postmaneuver solutions. The covariance analysis results presented here are therefore 
limited to unconstrained postmaneuver simulations. 

GTDS solutions using tracking data of the ERBS satellite have indicated two important features. First, errors 
in the change of parameters are substantially smaller for Constrained postmaneuver solutions than 
unconstrained simulations, and, second, covariance analysis corresponding to the unconstrained ERBS 
solutions gives generally good agreement with the unconstrained GTDS simulations. These two features give 
credence to the error analysis results and suggest that if the requirements can be met with unconstrained 
simulations, they should also be met with constrained solutions. 

Requirements on errors in the change of parameters have been placed on the semimajor axis, inclination, and 
three spacecraftcentered components of velocity (radial, crosstrack, and alongtrack). In general, the 
requirements on the inclination and crosstrack component of velocity can be met with any of the three gravity 
models using unconstrained postmaneuver solutions. The semimajor axis requirement is slightly exceeded 
for the 20x20 field, but these results assume the use of an unconstrained postmaneuver solution and a 
truncated field. The use of constrained postmaneuver solutions and folded-over fields should produce smaller 
errors. 

The in-plane velocity component requirements are not met. The error in the change of the radial component of 
velocity is exceeded by a factor of approximately 2, while the error in the change of the alongtrack component 
of velocity is exceeded by a factor of 30. The analysis of tracking data using the GTDS program indicates an 
order-of-magnitude reduction in the error in the change of the alongtrack component of velocity for 
constrained solutions compared with unconstrained solutions. Lf this condition prevails for TOPEX, the 
requirement for the error in the change of the alongtrack component of velocity should be met or only slightly 
exceeded. 
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ABSTRACT 

Future NASA Earth Observing System (EOS) Spacecraft will make measurements 
of the earth’s clouds, oceans, atmosphere, land and radiation balance. These 
EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper 
specifically addresses the EOS AM Spacecraft, referred to as “AM” because it has 
a sun-synchronous orbit with a 10:30 AM descending node. This paper describes 
the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit 
control, and navigation system impact on earth based pointing. The EOS AM 
Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation 
System (TONS) as the primary means of navigation. TONS flight software will 
process one-way forward Doppler measurements taken during scheduled TDRSS 
contacts. An extended Kalman filter will estimate spacecraft position, velocity, 
drag coefficient correction, and ultrastable master oscillator frequency bias and 
drift. The TONS baseline algorithms, software, and hardware implementation are 
described in this paper. TONS integration into the EOS AM Spacecraft Guidance, 
Navigation and  Control (GN&C) System, TONS assisted onboard time 
maintenance, and the TONS Ground Support System (TGSS) are also addressed. 

This work was performed for the National Aeronautics and Space Administration (NASA) 
Goddard Space Flight Center (GSFC), Greenbelt, MD, under contract NAS5-32500. 
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1.0 INTRODUCTION AND BACKGROUND 

Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth’s 
clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the 
NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, 
referred to as “AM” because it has a sun-synchronous orbit with a 10:30 AM descending node. 
The EOS AM Spacecraft is shown in Figure 1. The first EOS AM Spacecraft is scheduled for 
launch in 1998. A second and third EOS AM Spacecraft will subsequently be launched in five year 
intervals. The five year mission life for each EOS AM Spacecraft will yield 15 years of continuous 
scientific observations. Normal command, telemetry, and primary science data return will be 
through the Tracking and Data Relay Satellite System (TDRSS). Additionally, a direct downlink 
capability will be provided to send science data directly to user ground stations. 

x-body (-velocity vector) 
Y -body 

(neQative orbit normal) 

A/L z-body (nadir) 

Figure 1 : EOS AM Spacecraft 

Table 1 lists the EOS AM Spacecraft mission requirements that are related to orbit determination 
and orbit control. These requirements were derived from and are driven by instrument science 
requirements (Reference 1). Requirements include earth pointing knowledge and control, earth 
pointing jitter and stability, and navigation. Additional effort is in process to refine jitter and 
stability requirements, and to refine estimates of spacecraft performance with respect to jitter and 
stability. Jitter as used here refers to peak-to-peak spacecraft attitude motion over time periods 
required to image one pixel. Stability as used here refers to peak-to-peak spacecraft attitude motion 
over time periods required to image one scene composed of many pixels. The location of a pixel or 
scene on the surface of the earth is referred to as the geolocation. Navigation as used here refers to 
real-time onboard orbit determination. The EOS AM Spacecraft is currently baselined with a 
geocentric attitude, meaning the spacecraft z-body axis will point toward the center of the earth. 
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Table 1 : EOS AM Spacecraft Mission Related Requirements (3-sigma) 

Repeating Ground Track 

Sun-Synchronous Orbit 

I Parameter I I 
16 day repeat cycle, 233 orbits per cycle, 
+/- 20 kilometers at all latitudes 
10:30 AM descending node, + /- 15 minutes, 
local mean solar time 

Earth Pointing Knowledge 
Earth Pointing Control 

I Radial Orbit Position Repeatability 1 +/- 5 kilometers at a given latitude I 
+ /- 90 arc-seconds, per axis 
+ /- 150 arc-seconds, per axis 

Earth Pointing Jitter and Stability 
(Requirements Definition in Progress) 
Navigation Radial Position 

Peak-to-peak, per axis, over time periods 
from less than 1 second up to 1000 seconds 
+/- 150 meters 

Navigation Intrack Position 

Navigation Cross track Position 
+ /- 150 meters 
+/- 150 meters 

Table 2 lists the mean orbit elements that satisfy the mission requirements in Table 1. This orbit is 
very similar to the Landsat-4/5 orbits and may use the same World Reference System (WRS) 
ground track. The repeating ground track period of 16 days and the sun-synchronous orbit require 
a mean semimajor axis of 7078 kilometers and a mean inclination of 98.2 degrees. The mean 
nodal period is 5933 seconds and the mean equatorial altitude is 705 kilometers. The sun- 
synchronous descending node time is specified with respect to a fictitious mean sun. The local true 
solar time will actually vary by as much as 16 minutes from the local mean solar time. Radial orbit 
position repeatability of +/- 5 kilometers requires a frozen orbit with a mean eccentricity of 0.0012 
and a mean argument of perigee of 90 degrees. 

Navigation Crosstrack Velocity 

Time Knowledge 

Table 2 : EOS AM Spacecraft Mean Orbit Elements 

+ /- 0.160 meterdsecond 

+ /- 100 microseconds 

Parameter 
Semimajor Axis 

MLhG 
7078 kilometers 

~~~ 

Inclination 98.2 degrees 
Eccentricity 0.0012 
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The EOS AM Spacecraft will use the TDRSS Onboard Navigation System (TONS) as its primary 
means of navigation. The Global Positioning System (GPS) had previously been considered as 
the source of measurements for the navigation system. GPS is a satellite based navigation system 
owned and operated by the Department of Defense (DoD). A TONS / GPS trade study addressed 
accuracy, power, weight, security, risk, and cost. A TONS implementation would require the 
addition of TONS software, and would use the S-band transponder and ultrastable oscillator 
already provided for communications and for ground based TDRSS tracking. A GPS 
implementation would require additional and redundant flight hardware including antennas, 
preamps, cabling, and receiver / processors. Performance analyses showed that both TONS and 
GPS could meet a +/-150 meter navigation requirement under nominal conditions. However, the 
cost and security concerns of the military version of GPS, and the inability to guarantee the 
performance of the civilian version of GPS during times of crises, were major factors in the 
decision to select TONS rather than GPS. 

Section 2.0 of this paper describes how navigation errors affect attitude control and geolocation. 
Section 3.0 provides an overview of TONS and describes the TONS implementation baseline for 
the EOS AM Spacecraft. Section 4.0 discusses TONS interfaces with the real-time navigation and 
attitude control system. Example jitter and stability results are also presented in section 4.0. 
Section 5.0 describes the TONS ground support system and other ground system interfaces. 
Section 6.0 briefly describes orbit control. Section 7.0 provides a summary and conclusions. 

2.0 NAVIGATION IMPACT ON ATTITUDE CONTROL AND GEOLOCATION 

The EOS AM Spacecraft navigation system will generate real-time estimates of spacecraft position 
and velocity. Near real-time position and velocity estimates will be obtained by processing TDRSS 
Doppler measurement data in an onboard extended Kalman filter. These estimates will then be 
propagated up to real-time and used to compute the commanded spacecraft body axis inertial 
attitude as illustrated in Figure 2 and detailed in the Appendix. Examples 1 and 2 in the Appendix 
show how navigation errors impact the commanded attitude on a per axis basis. TONS and the 
short term high rate propagator are described later in sections 3.0 and 4.0, respectively. 

The EOS AM Spacecraft primary mode attitude determination system will generate real-time 
estimates of the actual spacecraft body axes inertial attitude. These estimates will be obtained by 
processing star tracker and rate gyro measurement data in an onboard extended Kalman filter. The 
attitude control system will compute an attitude error by taking the difference between the 
commanded attitude and the estimated attitude. The attitude control system will then drive this 
error toward zero by commanding reaction wheel or thruster torques. Errors in the navigation 
system will therefore result in errors in the actual spacecraft attitude. 

A navigation error will also result in an error in the projection of the spacecraft position on to the 
surface of the earth, referred to as the subsatellite location knowledge error. The navigation 
induced subsatellite location knowledge error and the navigation induced attitude error are both 
illustrated in Figure 3 using the example of a 150 meter intrack position knowledge error. This 
150 meter error will result in a 135 meter subsatellite location knowledge error. This 150 meter 
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error will also result in a 4.4 arc-second attitude error. The 4.4 arc-second attitude error 
contributes an additional 15 meters to the geolocation knowledge error as shown by example 3 in 
the Appendix. The total geolocation knowledge error from a 150 meter intrack position knowledge 
error is therefore 150 meters (135 meters + 15 meters). 

Navigation - 
(TONS) 

A navigation correction will result in spacecraft attitude motion with respect to the desired 
spacecraft attitude. This attitude motion must be considered when evaluating jitter and stability. 
The 150 meter intrack position knowledge error is used here again as the example. Assume that 
the navigation error had grown to 150 meters, then a measurement was processed and the 
navigation error reduced to 0 meters. Although this situation represents a desirable correction to 
the navigation estimate, it results in a 4.4 arc-second change in the commanded spacecraft attitude 
with respect to the desired spacecraft attitude. The actual spacecraft attitude will then change by 
4.4 arc-seconds with respect to the desired spacecraft attitude, as the attitude control system tracks 
this command. The 150 meter correction to the navigation estimate will therefore result in a 150 
meter correction to geolocation knowledge, and a 15 meter correction to geolocation pointing. 

Spacecraft Attitud: 
Short Term 
High Rate - 

Propagator Cont ro I Dynamics 
Attitude 

Figure 2 : TONS / Attitude Control System Interface Block Diagram 

Actual 
Posit ion 

Estimated 
Posit ion 

Earth 
Surface Actual 

Actual Attitude 

Note: Figure not to scale, 

Figure 3 : Geocentric Earth Based Pointing 
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3.0 TDRSS ONBOARD NAVIGATION SYSTEM (TONS) 

TONS Overview 

There are two user implementations of TONS, referred to as TONS-I and TONS-11. TDRSS 
infrastructure currently supports a TONS-I user capability. During scheduled TDRSS 
communication contacts the TONS-I user extracts, time tags and processes one way forward S- 
Band (approximately 2 106.4 MHz) Doppler measurements. White Sands Ground Terminal 
Doppler compensation is inhibited so that the user can extract valid Doppler measurements. A 
TONS-I1 user would also have access to the planned TDRS-I1 navigation beacon and would not 
require scheduled TDRSS services. The TONS-I1 navigation beacon will include a pseudorange 
measurement and a navigation message similar to GPS. TONS-I1 offers the following advantages 
over TONS-I: reduced TDRSS scheduled resources, near continuous Doppler tracking, more 
current and accurate TDRS ephemerides, and onboard time determination. The EOS AM 
Spacecraft is baselined with TONS-I and is expected to have provisions for TONS-TI. 

A TONS experiment will be performed in conjunction with the Explorer Platform (EP) / Extreme 
Ultraviolet Explorer (EUVE) mission to flight qualify TONS-I (References 2 and 3). Onboard 
Doppler extraction, onboard Doppler compensation, and TONS algorithms and software will be 
proven by this experiment. A GPS receiver / processor will also be flown on EP / EUVE for 
comparison purposes with TONS. EP / EUVE is currently scheduled for launch in May 1992. 
TONS data collection and analysis will continue for one year after launch. Lessons learned from 
the EP / EUVE experiment will be factored into the EOS AM Spacecraft implementation of TONS. 
Algorithms and software will be optimized for the EOS AM Spacecraft with respect to speed, 
accuracy and robustness. EOS AM Spacecraft unique features will also be added. 

TONS uses an extended Kalman filter to measurement update the state vector estimate and the 
associated state error covariance matrix. The state vector includes user spacecraft position, 
velocity, drag coefficient correction, spacecraft ultrastable oscillator frequency bias and drift, and a 
spacecraft clock time bias. The state error covariance matrix represents the uncertainty in the state 
vector estimate. The filter computes measurement residuals by taking the difference between actual 
measurements and estimated measurements. The actual measurement is considered valid if i t  
passes a 3-sigma or 4-sigma measurement residual edit test. The fraction of the measurement 
residual to be incorporated in the measurement update is a function of the uncertainty in the 
measurement, and the uncertainty in the current state vector estimate. Spacecraft position and 
velocity are propagated between measurement updates with a [30 x 301 earth gravity model, drag, 
solar gravity and lunar gravity. A physically connected state noise model (References 4 and 5) is 
used to account for uncertainties in the [30 x 301 earth gravity model. 

The actual observation from the S-Band transponder is an accumulated Doppler cycle count. A 
Doppler cycle count difference is computed by taking the difference between two successive 
accumulated Doppler cycle counts, approximately 10 seconds apart. An average Doppler 
measurement is computed by dividing the Doppler cycle count difference by the 10 second 
integration time. The Doppler measurement is modeled in the TONS Kalman filter as a change in 
range over the 10 second integration time. The measurement model also includes the ultrastable 
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oscillator frequency bias and drift. TONS requires knowledge of TDRS positions when estimating 
Doppler measurements, TDRS state vectors will be uplinked daily and propagated in TONS-I with 
an [8 x 81 earth gravity model, lunar gravity, solar gravity and solar pressure. TDRS positions 
will be accurate to +/-150 meters (3-sigma) after a one day onboard propagation. 

Current and near term TONS algorithm development studies are addressing covariance 
factorization for numerical stability (Reference 6) ,  addition of a state vector element to model the 
time correlated measurement noise characteristics of TDRS ephemeris errors, refinements to the 
earth gravity state noise model, additional measurement residual edit tests, and thrust acceleration 
modeling during orbit maneuvers. Current and near term error analyses are addressing TDRSS 
scheduling sensitivities, the effects of a flight processor 48 bit word length, processing 
requirements for different sections of the EP / EUVE TONS software, ionospheric refraction 
during periods of high solar activity, and Doppler measurement time tag errors. 

The EOS AM Spacecraft will use TONS as the primary means of navigation. TONS performance 
will vary somewhat as a function of the number, duration, and location of TDRSS scheduled 
contacts, and the selection of TDRS East or TDRS West. Nominal EOS AM Spacecraft 
performance analyses have assumed one 20 minute contact every 99 minute orbit. On average, 
TONS must therefore propagate its state vector estimate and state error covariance matrix for 79 
minutes between measurement updates. EOS AM Spacecraft performance assessments for TONS 
are based on TONS-I (Reference 7). Performance estimates ranged from a best case of 16 meters 
(1-sigma), to a worst case of 35 meters (1-sigma) for the case of high drag and degraded TDRSS 
scheduling. The nominal performance estimate is 25 meters (l-sigma). 

Communication and navigation requirements will both be factored into the EOS AM Spacecraft 
TDRSS scheduling process. Multiple shorter duration contacts, e.g., two 10 minute contacts 
instead of one 20 minute contact, are preferable for navigation because (1) they are easier to 
optimally schedule than one long contact, (2) they provide the opportunity to observe different 
parts of the orbit, and (3) they reduce the propagation time between measurement updates. 
Navigation requirements will be specified by geometric criteria that maximize Doppler observability 
and minimize ionospheric refraction. Doppler observability is maximized for the radial and intrack 
directions when the scheduled TDRS is in the EOS AM Spacecraft orbit plane. Ionospheric 
refraction is minimized by avoiding long, low altitude, signal paths through the earth's 
atmosphere. In general, geometric requirements for TONS are similar to those for standard ground 
based orbit determination with TDRSS. 

The EOS AM Spacecraft has one 4.5 foot diameter Ku/S-Band high gain antenna, one zenith 
facing S-Band omni antenna, and one nadir facing S-Band omni antenna. The TCINS-I Doppler 
measurement can be obtained via the high gain antenna with S-Band Multiple Access (SMA) 
service or S-Band Single Access (SSA) service, or via the zenith S-Band omni antenna with SSA 
service. Link margin analysis has shown that the TDRS-I1 navigation beacon could be obtained 
via the EOS AM Spacecraft high gain antenna. 
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TONS software will be located in the EOS AM Spacecraft Control Computer (SCC) as shown in 
the TONS functional interface block diagram in Figure 4. Attitude determination, attitude control, 
delta-v control, high gain antenna control, solar array drive control, and navigation are all elements 
of the EOS AM Spacecraft Guidance, Navigation and Control (GN&C) System. The SCC will be 
a MIL STD 1750A instruction set architecture computer. SCC processing and memory 
requirements include allocations for TONS Ada flight software, based on EP / EUVE TONS 
software (Reference 2) with modest growth provisions for EOS AM Spacecraft unique features. 

- (TONS-I) Software 

* Attitude Reference 
Estimates: Attitude 

Position Control 
Software . UncoupledThruster . velocity 

Acceleration Estimate . Drag Coefficient 

- 1 
U ltrasta bl e 

Master 
Time Tagged Accumulated Osallator 
Doppler Cyde Count, 
PN Code Epoch Time Tag l 

Figure 4 : TONS / EOS AM Spacecraft Functional Interface Block Diagram 
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The EOS AM Spacecraft baseline has a 20 MHz ultrastable master oscillator that provides 
commonality in reference frequencies for the Command and Data Handling subsystem and the 
Communication subsystem. The drift in the ultrastable master oscillator will be less than 1.OE-10 
parts per day. Short term stability will be approximately 1.OE-12 parts over 10 seconds. The 
Command and Data Handling subsystem will use the 20 MHz frequency to derive the 1 MHz 
spacecraft clock. The 20 MHz master oscillator will also be used to derive a 5 MHz frequency for 
the S-band transponder. The S-Band transponder will be a third generation transponder with a 
built-in Doppler extraction function. The S-Band transponder will control the Doppler integration 
interval within an accuracy of +/- 25 nanoseconds. The S-Band transponder will have access to 
the spacecraft time and frequency bus and will generate time tags for the Doppler measurement. 

Correction a S-Band 
Transponder . Frequency Bias 

Frequency Drift Doppler Compensation and Time Tag 
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The EOS AM Spacecraft requires accurate onboard time for (1) time tagging Doppler measurement 
data for TONS, (2) incorporating uplinked TDRS state vectors and initial EOS state vectors in 
TONS, (3) time tagging spacecraft position, velocity, attitude, and other data in the spacecraft 
ancillary telemetry stream, and (4) time tagging instrument science data. The spacecraft time 
knowledge requirement is +/- 100 microseconds. Actual time knowledge accuracy may vary from 
+/-5 to +/-30 microseconds, depending upon the accuracy and frequency of ground based 
spacecraft clock calibrations. TONS-I Doppler only measurements can not estimate the spacecraft 
clock time bias, but TONS-I frequency bias and drift estimates can be integrated to maintain an 
onboard software estimate of the spacecraft clock time bias. Preliminary analyses have shown that 
TONS-I can maintain the time bias estimate within a few microseconds of its uplinked value for 
days to weeks. Ground based spacecraft clock calibration is described briefly in section 5.0. 

In the event of TDRSS contact outages, TONS will continue to propagate an accurate EOS AM 
Spacecraft state vector and accurate TDRS state vectors. Additionally, a backup onboard 
ephemeris will be provided for the EOS AM Spacecraft. This ephemeris will be sufficient for S- 
Band high gain antenna pointing and will also be used periodically in the flight software Fault 
Detection, Isolation, and Recovery (FDIR) logic for TONS. The TONS position estimate and the 
backup onboard ephemeris will be differenced, and a flag set if this difference exceeds the accuracy 
of the backup onboard ephemeris. If this flag is set, the ground system will be notified so that 
appropriate action can be taken. Various backup ephemeris representations are presently being 
considered. TONS estimates of the ultrastable master oscillator frequency bias and drift, drag 
coefficient correction, and time bias could also be compared onboard with uplinked backups. 

TONS is not required to meet EOS AM Spacecraft mission requirements during propulsive orbit 
and attitude maneuvers. Additional TDRSS contacts will be requested during and after these 
maneuvers for monitoring and tracking. As shown in Figure 4, TONS will have knowledge of 
thrust accelerations acting on the spacecraft center of mass. TONS will maintain a valid state 
vector estimate and state error covariance matrix during drag makeup maneuvers. Future analyses 
will determine if the +/-150 meter navigation requirement can be maintained during drag makeup 
maneuvers, and if not, the time required to reconverge. 

4.0 TONS REAL-TIME INTERFACE 

As discussed in section 2.0 and shown in the Appendix, real-time position and velocity estimates 
will be used to generate the commanded spacecraft attitude. This section discusses the interface 
between TONS and the EOS AM Spacecraft real-time navigation and attitude control system. 
Simulation programs and simulation results are presented as necessary to understand the associated 
jitter and stability issues. TONS accuracy estimates were presented in section 3.0. 

A TONS truth model simulation, a TONS filter model simulation, and an example TONS real-time 
interface simulation were used to generate the jitter and stability results in this section. These 
simulations are currently being used for real-time navigation sensitivity studies and for TONS real- 
time interface algorithm development. The TONS filter model algorithms and simulation results 
m similar to those in Reference 7. 
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The TONS truth model simulation used the Artificial Satellite Analysis Program (ASAP), 
(Reference 8) to generate simulated truth trajectories for the EOS AM Spacecraft, TDRS East, and 
TDRS West. The EOS AM Spacecraft trajectory was generated with a [36 x 361 GEM-T1 earth 
gravity model, solar gravity, lunar gravity, solar pressure and drag. Atmospheric density was 
based on the Jacchia J70 model with a Solar Flux (F10.7) of 230 and a Geomagnetic Activity 
Index (Ap) of 400. TDRS truth trajectories and TDRS filter trajectories were generated with 150 
meter errors similar to those in Reference 7. The TONS "average Doppler" measurement was 
modeled in the TONS truth model as a "range difference + integrated frequency error range 
difference equivalent". Units are therefore expressed in meters rather than Hz. The simulated 
observation was corrupted with timewise uncorrelated Gaussian noise with a l-sigma value of 
0.0141 meters at each sample time. Because the average Doppler measurement (range difference) 
involves two independent samples, the measurement noise is statistically greater by the square root 
of two and would be 0.020 meters. Assuming no cycle slips, the measufement noise is actually 
correlated in a desirable fashion from one measurement to the next. Simulated measurements 
include the effects of the ultrastable master oscillator frequency bias and drift. The simulated 
frequency drift was 1 .OE- 10 parts per day. 

The TONS filter model simulation used a ten element state vector ( X Y Z  position, X Y Z  velocity, 
drag coefficient correction, oscillator frequency bias, oscillator frequency drift, and a time bias). A 
fourth order Runge-Kutta integrator was used with a 10 second time step. The TONS state vector 
estimate and the state error covariance matrix were always propagated to the measurement start 
time, then to the measurement stop time, but never ahead of the start time in order to prevent 
backward integration when estimating the measurement. The acceleration model used a [22 x 221 
GEM-1OB earth gravity model and an exponential atmospheric density model. Position and 
velocity state noise were modeled in the radial, intrack, and crosstrack directions. In comparison 
to the simulated truth measurement noise of 0.020 meters, the filter measurement noise value was 
set high at 0.142 meters to compensate for the unmodeled TDRS ephemeris biases. The oscillator 
frequency drift and the drag coefficient correction were modeled in the filter as first order Gauss- 
Markov variables with time constants of 100,OOO seconds. The oscillator frequency bias was 
modeled as the integral of the oscillator frequency drift. The time bias was modeled as the integral 
of the normalized frequency bias and drift. No effort was made to optimally tune the filter. 

The TONS real-time interface simulation used the example timeline and algorithms in Figure 5.  
Simulated measurements were processed every 10 seconds. A short term high rate propagator 
took the latest near real-time TONS estimate, measurement updated or not, propagated it forward in 
time and blended it in with the real-time navigation estimate. The commanded spacecraft attitude 
was then computed. A third order Taylor series integrator and a J2 earth gravity model were used 
to propagate the TONS estimate up to real-time. The Taylor series integrator, acceleration and its 
derivatives were taken from Reference 9. The propagated estimate was blended into the real-time 
system over a 10 second period in 0.5 second increments. The Taylor series integrator only 
required one evaluation of acceleration and its derivatives at the start of the 10 second blending 
interval for all twenty 0.5 second increments. The example interface algorithm in Figure 5 
introduced an error less than 0.1 meters in position and less than 0.005 meters/second in velocity. 
A [4x4] earth gravity model could be used in the acceleration computation to improve accuracy. 
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ti- 1 ti ti+l ti+2 

TONS / RTI Software Processing Everv 10 Second Cvcle Cti+l:$ = 10 seconds) - 

TONS 

TONS 

TONS 

TONS 

TONS 

RTI 

RTI 

RTI 

Receive time tagged accumulated Doppler cycle count Ni. 

Compute Doppler cycle count difference: ANi = Ni - Ni- 1. Count Ni- 1 and 
time ti-1 known from previous cycle. 

Propagate TONS state estimate and covariance: Zi-1 
estimate Gi- 1 and covariance Pi- 1 known from previous cycle. 

2;; Pi-1 + Pi-. TONS state 

Estimate measurement using TONS state estimates Zi-1 and ?[, then perform edit test. 

Measurement update TONS state estimate and covariance: 2; + Gi'; Pi- + Pi'. 

Propagate TONS state estimate using Taylor series integrator": ?i+ + & - I .  

' -  
Compute available correction to real-time state estimate: &i+ 1 = Fi+1 - Xi+l]. 
Real-time estimate Zi+1 is known from previous cycle. 

N 

Compute real-time state estimates Yi+1+1/20, ..., xi+2 using Taylor series 
integrator* with one evaluation of acceleration and its derivatives for time ti+l: 

j = l , 2  ,..., 20. 

*Third order Taylor series integrator propagates position (R) and velocity (E) from any time 

step (k) to (k+l). Acceleration (E) and its derivatives include the 52 earth zonal harmonic. 
- 
R(k+l) = R(k) + E(k) AT + E(k) AT2/2 + E(k) AT3/6. 
- 
R(k+l) = E(k) + E(k) AT + &k) AT2/2 + g(k) AT3/6. 

Figure 5 : Example Real-Time Interface (RTI) for TONS 
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Simulation results were generated using a two day TDRSS contact schedule that had 20 minutes of 
geometrically favorable contact with a TDRS every orbit (Reference 7). Simulated errors were 
computed by comparing simulated filter estimates with simulated truth data. The intrack position 
error was larger than the radial and crosstrack position errors. A representative one day simulated 
intrack position error profile is shown in Figure 6. The 1-sigma values from the filter state error 
covariance matrix were consistent with the simulated errors for all state vector elements. 

Peak navigation transients occur during TONS measurement updates as can be seen in Figures 6 
and 7 at time [45 hours : 11 minutes = 2711 minutes]. The intrack position error and the 
associated filter state error covariance matrix had both grown for 79 minutes since the last TONS 
measurement update at time [43 hours : 52 minutes = 2632 minutes]. At time [45 hours : 11 
minutes = 271 1 minutes] a measurement was obtained and a 40 meter correction made to the 
intrack position estimate. Although this 40 meter change is a correction to the TONS intrack 
position estimate, its effects must be considered in jitter and stability analyses. If incorporated 
immediately, the 40 meter correction would result in a 1.2 arc-second step change in the 
commanded pitch attitude. If blended in smoothly over the next 10 seconds as shown in Figure 8, 
this would result in a 0.12 arc-second per second ramp change in the commanded pitch attitude. 
Note that the TONS measurement update valid at time [2711 minutes : 00 seconds] was not 
incorporated into the real-time system until time [27 11 minutes : 10.5 seconds]. 

Figure 8 also shows the approximate attitude control system / spacecraft rigid body response to a 
navigation transient. This dynamic response is very approximate and is shown here for illustration 
only. The dynamic response was modeled as a second order system with an undamped natural 
frequency of 0.14 radians / second and a damping ratio of 0.6. Jitter and stability can be evaluated 
from the simulated attitude control system response in Figure 8. As an example, the peak-to-peak 
attitude error change was 0.7 arc-seconds over 10 seconds. A longer blending time will result in a 
smaller rate of change. Blending the 1.2 arc-second command in over 60 seconds resulted in a 
peak-to-peak attitude error change of 0.2 arc-seconds over 10 seconds. Navigation transients will 
be incorporated into the EOS AM Spacecraft attitude control system simulation in the future. 

Analysis to date has demonstrated the feasibility of interfacing TONS with the EOS AM Spacecraft 
real-time navigation / attitude control system. Future studies will address longer blending times 
and other interface algorithms. For example, the TONS integrator and force model could be used 
to propagate a state vector ahead of real-time, then real-time data obtained by interpolation. Final 
algorithm selection will depend upon spacecraft jitter and stability requirements, TONS Doppler 
measurement processing rate and propagation step size (e.g. every 10 seconds vs. every 60 
seconds), and associated accuracy vs. processing trades. 

5.0 TONS GROUND SYSTEM INTERFACE 

The TONS Ground Support System (TGSS) will be used to perform quality assurance checking of 
downlinked TONS state vectors, support initial on-orbit filter tuning, evaluate performance, 
provide diagnostic assistance, and verify flight software updates. The TGSS is currently 
independent of standard GSFC Flight Dynamics Facility (FDF) operations such as orbit 
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determination and ephemeris generation. The TGSS will be independent of the EOS AM 
Spacecraft Operations Center which will factor navigation requirements into the TDRSS scheduling 
process, perform spacecraft clock calibration, and handle normal command and telemetry. 

Backup orbit determination and any ephemeris generation functions will be performed by the 
GSFC FDF. Two way coherent range and Doppler measurements, or one way return noncoherent 
Doppler measurements will be obtained via TDRSS tracking. Coherent and noncoherent 
measurements can be obtained simultaneously with TONS onboard Doppler extraction. Ground 
based measurements will be processed in a batch least squares process to generate an estimate of 
the spacecraft orbit state vector at a given epoch. This orbit state vector, a table of predicted state 
vectors, or a Fourier power series f i t  to a predicted ephemeris will then be uplinked to the EOS AM 
Spacecraft. This backup ephemeris data will be generated and uplinked as often as necessary 
depending upon the level of solar activity and drag. Ground based orbit determination results will 
be used in the TGSS for quality assurance checking of downlinked TONS state vectors. 

The EOS AM Spacecraft will use the User Spacecraft Clock Calibration System (USCCS) 
developed for the Gamma Ray Observatory (GRO). The USCCS is a method designed for 
calibrating a spacecraft clock using TDRSS pseudo-random noise (PN) ranging epochs. The 
USCCS is expected to provide time calibration accuracy of approximately +/- 5 microseconds with 
respect to Universal Time Coordinated (UTC). The USCCS is described in Reference 10. EOS 
AM Spacecraft clock calibration will be performed by the EOS AM Spacecraft Operations Center in 
conjunction with the White Sands Ground Terminal. A brief description of the USCCS is given 
here: (1) The spacecraft S-band transponder extracts and time tags a PN code epoch from the 
TDRSS forward S-band signal. This time tag is based on the PN code epoch receive time as 
observed by the spacecraft clock; (2) This time tag is then sent to the ground system in spacecraft 
telemetry; (3) The ground system estimates the time at which the spacecraft should have received 
the PN code epoch, then computes the difference between the telemetered time tag and the ground 
predicted time tag. This difference is the clock calibration parameter; (4) This clock calibration 
parameter is then uplinked to the spacecraft. 

Normal one per orbit navigation telemetry will include time tagged state vector estimates and filter 
variances, time tagged Doppler measurements, the number of edited Doppler measurements, a flag 
to indicate if the filter position or velocity variances exceeded pre-specified limits, a flag to indicate 
if the TONS state estimate exceeded a pre-specified tolerance when compared with the backup 
onboard ephemeris, and a flag to indicate if other TONS state vector elements exceeded a pre- 
specified tolerance when compared with onboard backup values. When requested for initial filter 
tuning, performance evaluaiion, or diagnostics, telemetry will also include measurement data 
quality, time tagged filter measurement residuals, and time tagged state error covariance matices. 

Normal one per day navigation commands and data will include TDRS state vectors, a backup EOS 
ephemeris, a backup for other TONS state vector elements, and a time calibration parameter. As 
necessary, commands and data will also include an initial state vector estimate and initial state error 
covariance matrix for TONS, filter tuning parameters for TONS, TDRS contact schedules, flags 
indicating TDRS orbit adjusts, flags indicating EOS AM Spacecraft orbit and attitude maneuvers, a 
solar activity parameter, major changes to spacecraft mass, and flight software updates. 
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Ground based post-processing could be a solution for instruments that might desire non-real-time 
accuracies significantly better than +/-150 meters. Ground based post-processing has the 
following advantages in comparison to onboard real-time navigation: (1)  Real-time estimates are 
based on measurement data up to the current time. Post-processed estimates can include additional 
“future” measurement data when the epoch of interest is centered within the fit interval. In other 
words, today’s estimate of the orbit state vector at yesterday’s epoch can be better than yesterday’s 
estimate of the orbit state vector at yesterday’s epoch; (2) Ground based computers have more 
processing and data storage capability than flight computers. This allows for the use of more 
sophisticated models and algorithms; (3) Ground based post-processing can incorporate additional 
measurement data types not available to the onboard navigation system, such as two way range 
data; (4) Ground based post-processing can incorporate today’s knowledge of yesterday’s solar 
activity; (5) Ground based post-processing allows for manual inspecting and editing of potentially 
bad measurements. 

6.0 ORBIT CONTROL 

The GSFC FDF will perform orbit maneuver prediction and orbit maneuver planning. Orbit 
maneuvers include initial mission orbit acquisition, drag makeup, frozen orbit maintenance, 
inclination correction, and end-of-life safe re-entry if required. Maneuver command tables will be 
generated at the GSFC FDF and uplinked via the EOS AM Spacecraft Operations Center. The 
maneuver planning algorithm considers uncertainties in orbit determination, maneuver execution, 
and orbit propagation. The maneuver plan will include bum start time, total required AV, and 
estimated burn duration. The onboard system will compute the delivered AV open loop and stop 
the burn when the commanded AV has been achieved. The closed loop attitude control system will 
fire thrusters as necessary to maintain attitude control. TONS state vectors will be used by the 
GSFC FDF for orbit maintenance maneuvers. 

The EOS AM Spacecraft will be launched with an expendable launch vehicle from the Vandenberg 
Air Force Base in California. The launch vehicle will inject the EOS AM Spacecraft into an orbit 
with a 300 kilometer perigee altitude and a 705 kilometer apogee altitude. The target apogee 
altitude may be biased low to account for launch vehicle dispersions, and apogee altitude increases 
during the mission orbit acquisition sequence. The EOS AM Spacecraft will use its hydrazine 
based propulsion system to boost up to the mission orbit. The target inclination may also be biased 
to maximize the time to the first inclination correction maneuver (Reference 11). 

Atmospheric drag will cause a decay in semimajor axis. This will result in a decrease in the nodal 
period and a drift in the ground track. Drag makeup maneuvers will be required to reset the 
semimajor axis and thus maintain the ground track within the +/- 20 kilometer tolerance. The time 
between drag makeup maneuvers will vary with the level of solar activity. The time between 
maneuvers is expected to vary from approximately 7 days to approximately 3 months. 

A frozen orbit minimizes altitude variations at any given latitude. The orbit is frozen when secular 
perturbations due to even zonal harmonics are balanced by long period perturbations due to odd 
zonal harmonics in the earth’s gravity field. This condition exists for the EOS AM Spacecraft orbit 
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when the mean eccentricity is approximately 0.0012 and the mean argument of perigee is 
approximately 90 degrees. Once initially acquired, the fiozen orbit can be maintained by optimally 
locating drag makeup bums so as to provide maximum correction to the eccentricity vector. The 
nominal orbit will have altitudes that range from approximately 705 kilometers at the equator to 
approximately 732 kilometers near the south pole. Altitude variations due to drag and a non-ideal 
frozen orbit will result in few kilometers of altitude variation, within the +/-5 kilometer tolerance. 

Solar gravity causes a secular decrease in mean inclination for a 10:30 AM descending node orbit. 
This results in a drift in the descending node time. The time to the first inclination correction 
maneuver will depend upon the initial inclination and the initial ascending node. If the ideal 
combination is achieved during launch or during mission orbit acquisition, inclination corrections 
can be postponed for 5 years (Reference 11). Inclination corrections could typically be expected 
every few years. Inclination must also be controlled to maintain the ground track at high latitude. 
Note that inclination corrections require a 90 degree yaw maneuver. 

NASA requires that space debris and effects of re-entering space hardware be minimized 
(Reference 12). EOS is addressing these requirements through detailed break-up / passive re-entry 
analyses (and design modifications as necessary). This approach meets NASA requirements and 
requires less propellant and operational complexity than other options (i.e., powered disposal or 
safe orbit). 

7.0 SUMMARY AND CONCLUSIONS 

1 ,  

2. 

3 .  

This paper has summarized the orbit determination and orbit control baseline for the EOS AM 
Spacecraft. This paper has shown how the TDRSS Onboard Navigation System (TONS) 
can be integrated into the EOS AM Spacecraft Guidance, Navigation, and Control System. 
Current and future analyses and design studies have been addressed. 

Onboard navigation will improve real-time geolocation knowledge and control when 
compared to previous ephemeris upload methods. Accurate navigation data will be available 
in the spacecraft telemetry stream and in the direct downlink to user ground stations. 

Onboard navigation will also reduce the magnitude of geolocation jitter and stability when 
compared to the magnitude of ephemeris upload transients that typically occur once per day. 
Blending can be used to further reduce the magnitude of navigation induced transients. 
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The commanded spacecraft body axes unit vectors Gb, yb, 6) are computed using the spacecraft 

position vector (R) and velocity vector (E) as shown below. A commanded attitude matrix [A], 

a direction cosine matrix, can be formed from &,, vb, zb). All vectors are defined in an earth 

centered inertial coordinate system. 

(Xb, Yb, Zb) origin is at the spacecraft center of mass. 

- zb axis is (+) in the nadir direction. A s m d  rotation about &, is referred to as yaw. 

- 
yb axis is (+) in the direction opposite to the orbital angular momentum vector. 
A small rotation about &, is referred to as pitch. 
- 
X b  axis completes the right handed orthogonal coordinate system, and is not necessarily 
aligned with the velocity vector direction. A small rotation about Fb is referred to as roll. 

Example 1 

A 150 meter intrack position knowledge error results in a commanded pitch attitude error of 
approximately 4.4 arc-seconds as shown below, using the 7,083,000 meter orbit radius. The 
same results apply for a crosstrack position error and the resulting commanded roll attitude error. 

(180)(3600) arc-seconds = 4.4 X 150 meters 
7,083,000 meters 7c radians 

Example 2 

A 0.160 meter / second crosstrack velocity knowledge error results in a commanded yaw attitude 
error of approximately 4.4 arc-seconds as shown below, using the 7502 meter / second orbit 
velocity. The crosstrack velocity knowledge error is an error in the knowledge of the velocity 
vector direction, not an error in the knowledge of the velocity vector magnitude. 

(180)(3600) arc-seconds = 4.4 arc-seconds. 0.160 meters / seco nd 
7502 meters / second 

x 
n radians 

Example 3 

A 4.4 arc-second pitch or roll attitude error results in a geolocation pointing error of approximately 
15 meters as shown below, using the 705,000 meter orbit altitude. A yaw error will rotate an 
instrument scene, but it will not result in a geolocation pointing error by itself. 

4.4 arc-seconds x x radians x 705,000meters = 15 meters. 
(1 80)( 3600) arc-seconds 
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ABSTRACT 

This study, an investigation of the effect of mean local nodecrossing time on the evolution of 
Sun-synchronous orbits, was undertaken during Phase-A orbit analysis for the National 
Oceaak and Atmospheric Administration (NOM)  Op,Q environmental spacecraft. That 
analysis added to the growing body of evidence that individual Sun-synchronous missions, 
at differing nodecrossing times, experience nodal drift rates that can differ in both 
magnitude and direction. A Sun-synchronous orbit is obtained by means of a nodal drift rate 
approximating the 0.9856degree-perday apparent precession of the position of the mean 
Sun. This drift rate is achieved through the interaction of the orbital semimajor axis and 
inclination in Earth's gmpotential field. LnfIuencing perturbations include atmospheric drag 
and, most important, the effects of solar gravitation on inclination. The present analysis 
examines a series of Sun-synchronous orbits with mean local nodecrossing times at 1 -hour 
intervals from 6 a.m. to 6 p.m. It considers the fixed geometry of each orbital piane with 
respect to both the Sun and the diurnal atmospheric bulge, then analyzes the influence of 
these features upon the evolution of the semimajor axis and inclination and thus upon the rate 
of the nodal drift in the course of 1 year. 

~ 

Thisworkwassupported bytheNational Aeronauticsand Space Administration (NASA)/Goddard SpaceFlight Center 
(GSFC), Greenbelt, Maryland, Contract NAS 5-31500. 

I77 



1. INTRODUCTION 

Because of the nonspherical mass lstribution of the Eartb, satellite orbits between roughly 200 kilometers 
(km) and 6OOO km in altitude experience gravitational perturbations that cause the orbital plane to rotate about 
the Earth’s polar axis. As shown in Figure 1 (from Reference l) ,  the resulting nodal rotation is negative for 
direct orbits [inchation (i) < 90 degrees (deg)]. For retrograde orbits (i > 90 deg) the nodal rotation is 
positive. The rate of the nodal drift can be approximated by: 

h = - 2.06474 x 1014a-’j2 (1 - e2)-2 (cos j) 

where = nodal drift rate (deg/&y) 

a = semimajor axis (km) 

i = inclination(deg) 

e = eccentricity 

[derived from Equation (3-41). Reference 11. In a nearcircular retrograde orbit, the altitude and inclination 
may be chosen to produce a nodal drift rate equal to the 0.9856 deglday precession of the position of the mean 
Sun. With such a drift rate and without other perturbations, the orbital plane would maintain a fued geometry 
with respect to the Sun’s position throughout the course of the year. In practice, the altitude and/or inclination 
are selected to maintain Sun-synchronicity for a specified period within specifedbounds. The orientation of a 
specific Sun-synchronous orbit with respect to the Sun is identified by its mean local time (MLT) of 
node-crossing: i.e., the local Sun time (LST)  of the nodal crossing nearest the Sun. 

Figure 2 plots the results of Equation 1. showing mean altitude versus mean inclination for Sun-synchronous 
orbits from 200 km to 5974 km in altitude. The resulting c w e  approximates the full range of 
altitude/inclination (a/i) combinations which, without other perturbations, would produce nodal drift rates 
equaling the Sun’s precession. A/i combinations above and to the left of this Sun-synchronous curve produce 
nodal drift rates of less than 0.9856 deg/day. The MLTof such an orbit gradually decreases as the node moves 
westward toward 06:OO LST (6 a.m.). Similarly, an a/i combination below and to the right of the curve 
produces a drift rate greater than 0.9856 deg/day, with an MLT that gradually increases as the node moves 
eastward toward 18:00 U T  (6 p.m.). 

It has been widely observed both in orbit determination and in theoretical studies (Table 1,  References 2 and 3) 
that nodal drift rates can differ si@icantly from mission to mission, in direction as well as in magnitude. 
Where the di’s are similar, the rate differences can occur with differing MLTs. One example comes from early 
mission planning for the N O M  0S.Q series of Sun-synchronous environmental spacecraft, scheduled for 
launch after 2001. These spacecraft are designed to operate in one of two orbits with similar a/i’s but differing 
MLTs (orbit parameters are given in Table 2). Figure 3 [from orbit propagations using the Goddard Mission 
Analysis System (GMAS)] shows that, when each orbit is targeted to an a/i point lying on the 
Sun-synchronous curve, the MLT drift of the 08:00 LST morning (“AM”) orbit is opposite to that of the 
13:45 LST afternoon (“PM”) orbit. The mean attitude and inclination for both orbits in Figure 3 are plotted 
against time in Figures 4 and 5 ,  respectively. The differences in the altitude decay rates of the two orbits is 
attributed to atmospheric drag effects, which are discussed below. The directional difference in the a/i drift is 
explained in Figure 5 ,  where the inclination is shown to be increasing in the P M  orbit and decreasing in the 
AM. As demonstrated by K. I. Duck in 1973 (References 2 and 3) and supported by analysis in GMAS (shown 
in Figures 6a and 6b), the source of this inclination drift is solar gravitation. 
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2. PERTURBATIONS IN SUN-SYNCHRONOUS ORBITS 

Because of the fixed geometry with respect to the Sun, Sun-synchronous orbits are subject to the cumulative 
effects of solar gravitation. This force, which is greater on the Sunward side of the orbit, produces a small 
resultant (orbit-averaged) torque that acts on the angular momentum vector, thereby changing the inclination 
as shown diagrammatically in Figure 7 (adapted from Reference4) and analytically (from GMAS outputs) in 
Figures 6a and 6b. As can be readily deduced from Figure 7, the torque is opposite in direction for MLTs on 
opposite sides of local noon, whether ascending or descending nodal crossings are involved. According to 
Duck’s analysis, maximum inclination drift rates should occur at 09:OO and 15:OO LST, with minimum drifts 
at 06:00,12:OO, and 18:OO LST. Since there is no fued geometry with respect to the Moon, lunar gravitation 
produces no cumulative torque on the orbit but does cause the oscillation in the rate of the inclination drift 
seen in Figures 5 and 6a. 

As in all near-Earth orbits, the altitude is subject to decay due to atmospheric drag. Due to the fvred geometry, 
however, Sun-synchronous orbits decay at differing rates depending on the orientation of the orbit plane to the 
diurnal bulge in Earth’s atmosphere. Daily heating of the atmosphere results in a bulge of warmed air which 
lies about 2 hours east of the Sun line. Thus, Sun-synchronous spacecraft with MLTs near 14:OO LST pass 
through increased densities at each node crossing on the Sunward side. This causes the difference in decay 
rates in Figure 4. 

3. EFFECT OF NODE-CROSSING TIME ON NODAL DRlm 

To examine systematically the effect of node-crossing time, a series of 1-year orbit propagations was 
generated in GMAS using the Goddard Space Flight Center (GSFC) Flight Dynamics Division O D )  
mainframe computing system. The GMAS force model [calibrated on observed Television Infrared 
Observation Satellite (TIROS) data] included the following: the Goddard Earth Model (GEM9) geopotential 
field model with a 21 x 21 matrix, atmospheric drag modeling based on modified Harris-Priester 
atmospheric density tables with July 1, 1991, Schatten +2a solar flux prediction data, and solar and lunar 
gravitational perturbations. The Averaged Variation of Parameters (AVGVOP) propagator was used with a 
l-day step size. Identical initial Brouwer mean element sets (Table 3) were used in each run, with the 
exception of the right ascensions of the ascending node (RAANs, Table 4), which were chosen as necessary 
for MLTs at l-hour intervals from 06:OO to 18:OO LST. The 800-km altitude and 98.603deg inclination were 
taken from Figure 2, with other elements from a NOAA O,P,Q, AM orbit and an epoch of January 1,1999. 
Rates of change of the mean altitude and inclination over the year were calculated from the GMAS output and 
plotted for analysis using the Quattro Pro commercial spreadsheet package running on an IBM PC. 

The resulting l-year drift rates in inclination and altitude are plotted against MLT in Figures 8a and 8b, 
respectively. As K. I. Duck predicted (References 2 and 3), the direction of inclination drift is negative at 
morning MLTs and positive at afternoon MLTs, with maximum rates at 09:OO and 15:OO LST and near-zero 
drift at 06:OO,12:00, and 18:OO LST. The rates at intermediate MLTs show an orderly progression between the 
predicted means and extremes, suggesting that, with appropriate altitudes, the long-term result of the Sun’s 
gravitatiod torque would be to align Sun-synchronous orbits perpendicular to the Sun vector. This variation 
of the drift rates across the day also accords well with the 08:OO and 13:45 LST NOAA OP,Q inclination 
changes seen in Figure 5. The drift rates at 08:OO and 14:OO LST are indeed opposite in direction, with the 
same near-maximum magnitudes. As expected, the maximum altitude decay rate was at 14:OO LST, with the 
minimum rate 6 hours earlier at 08:OO LST, when the spacecraft would encounter the lowest atmospheric 
densities. Again, this agrees with the altitude decay rates seen in the PM and AM NOAA O,P,Q orbits 
(Figure 4). 

Figure&showsthecombinedchangesina/iforeachMLT.Asexpected, thelinesforthe06:00(6a.m.), 12:OO 
(noon), and 18:OO (6 p.m.) U T  MLTs lie near the center of the plot, indicating little inclination change. The 
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curves for the morning (6 to 11 a.m) MLTs curve to the left, showing decreasing inclinations, and the curves 
for afternoon (1 to 6 p.m.) MLTs curve right, showing increasing inclinations. The lengths of the curves, 
indicating the change in altitude, decrease from 06:oO to 08:OO LST, then increase to a maximum at 14:OO 
(2 pm.) LST, after which they begin decreasing again. Figure 8d shows the inchation drifts in a 1200-km 
Sun-synchronous orbit where altitude decay is no longer a factor. 

It is evident from Equation (1) that the initial nodal drift rate at each MLT is dependent upon both altitude and 
inclination. Subsequent nodal drift rates at each MLT are controlled chiefly by the altitude and inclination 
drift rates in effect at that MLT, as described above. A third factor in the determination of the long-term MLT 
drift at a given MLT is the solar flux level, determined by the phase of the 11 -year solar cycle, which affects the 
rate of altitude decay at lower altitudes. To test this effect, an additional series of GMAS runs was performed 
using the original elements (Table 3) with the MLT-specific RAANs (Table 4), but changirrg the epoch to 2006 
and the solar flux data to -2a, effectively changing the solar flux level from near maximum to near minimum. 
As shown in Figure 9a, this change has little effect on inclination drift. However, the effect on altitude decay 
(Figure 9b) is more sigmficant. Figure 10 shows the effect on MLT drift for the N O M  OP,Q PM orbit due to 
flux differences between the maximum and minimum phases of the solar cycle. 

4. COMBINED EFFECTS OF INCLINATION, ALTITUDE, AND 
NODE-CROSSING TIME ON NODAL DRIFT 

How, then, do altitude decay and inclination drift rates vary across the day for Sun-synchronous orbits at 
varying a/i combinations? Further GMAS propagation runs, modeled as described above, were executed for 
selected a/i combhations from Table 1 and/or Figure 2. Again, the MLT-specific RAANs were taken from 
Table 4 and the remaining elements from Table 3. The epoch in all cases was January 1,1999, with +2a solar 
flux data. The resulting altitude and inclination drift rates are shown in Figures 1 la  and 1 lb, respectively. The 
disparity in the inclination drift rates at 500 km is due to rapid altitude decay at that altitude. Figure 1 IC shows 
the resulting MLT drift rates at 14:30 U T  for 500-, 800-, and 1200-km Sun-synchronous orbits. 

Note the inclination drift rate (from Table 1) indicated in Figure l l a  by the numeral 1, a value of 
0.053 degtyear as calculated in GMAS. This value agrees very well with K. I. Duck’s 1973 prediction of 
0.0552 deg/year inclination drift for a 3:00 p.m. (1590 UT)  orbit at this altitude (References 2 and 3). [The 
inclination for the GMAS runs at this altitude was estimated using Ekluation (l).] Other key data pints from 
Table 1 are also indicated by item number on Figure 1 la. 

5. MISSION PLANNING ISSUES 

Though the drift rates in Figure &, 1 la, and 11 b will vary with the solar cycle, as has been shown, they can be 
used together with the methods described in References 5 and 8 to guide the initial design of Sun-synchronous 
orbits. For one example, altitude-sensitive missions would do well to avoid the 13:00 to 15:00 U T  MLT 
range. For another, the low inclination drift rates at MLl3 near 06:00,12:00, and 18:00 LST (Figure l la )  
suggest that longduration missions might operate more efficiently at near-noon or near-terminator node 
crossings. Figure 12b confirms this for orbits in the 800 km altitude range, showing how closely the 12:00 
LST (noon) A/I drift tracks the Sun-synchronous line. However, with the low altitude decay rates in 1200 km 
orbits (Figure 12a), even a small inclination drift moves the A/I curve away from the Sun line very quickly. 
With the high altitude decay rates in 500 km orbits (Figure 12c) no MLT will hold the A/i drift near the Sun 
line, but a comparison of Figures 12b and 12c suggests that, for altitudes in the 600 to 750 km range, a 
morning MET might be found which would hold the M drift curve very near the Sun-line. This would allow a 
very stable nodecrossing MLT for an extended period. Where the science or operational requirements of a 
mission make these choices impossible, an understanding of the direction and rate of a/i drift at a given MLT, 
altitude, and/or inclination can lead very quickly to a Sun-synchronous or biased-Sun-synchronous targeting 
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scenario to meet the general MLT constraints. With such a scenario in hand, relatively few GMAS 
propagation runs are needed to optimize the a/i targets for a detailed plan to meet mission constraints over a 
given phase of the solar flux cycle. As an example of such a plan, the biased Sun-synchronous orbit plan for 
NOAA OJ,Q (complete with a mid-life maneuver for the PM orbit) is given in Figures 13a through 13c. 
Figure 13a shows the 5-year a/i dnft; the resulting MLT d n f t s  in the PM and AM orbits are shown in 
Figures 13b and 13c, respectively. 

6. SUMMARY 

The evolution of the MLT of nodecrossing of Sun-synchronous orbits depends upon drifts in the orbital 
inclination and altitude, which arise from perturbations due to solar gravitation and atmospheric drag. As 
shown in Figures 8c, l la,  and 11 b, the rates of these drifts vary with the node-crossing time as well as with the 
initial altitude and inclination. Though the drift rates will vary to some extent with the solar cycle, these 
Figures can be used according to methods described in References 5 and 8 to simplify early mission planning 
for any Sun-synchronous orbit. 
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Table 2. NOAA O,P, 0 Mlsslon 
Parameters 
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Figure 6a. Effect of M a r  and Lunar 
Gravltatlon Perhfrbetlonr on 
the lncllnatlon of the NOM 
O,P,Q Attemoon O M  
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Flgure 6b. Effect of Solar and Lunar 
Gravltatlon perhrrbatlom 
on MLT Drltt In the NOM 
O,P,Q Attomoon O M  

L - R X ~ V  
T - R X F  
Tr - C R i  x F i  
T r - w X L  

SUN 

T = Instantaneous torque due to Solar gravitation 
T, - Resultant (orbit averaged) solar gravitation torque 
w = Resultant torque precession vector 

1 
Where: 
L = Angular momentum vector 
R - Spacecraft position vector 
V = Spacecraft velocity vector 
F - Force due to solar qrsvitiation 

Flgure 7. Toques Due to Solar Ornvltatlon 
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Table 3. Mean Elements Used In 
GMAS Runs 
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Figure 8a. Effect of lnltlal MLT on lncllnatlon Drift: Mean 
Altitude = 800 km, Mean lncllnatlon = 98.603 deg 

Figure 8b. Effect of lnltlal MLT on Altltude Decay Rate: Mean 
Attitude = 800 km, Mean lncllnatlon = 98.603 deg 
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Abstract 

The Topographic Mapping Laser Altimeter (TMLA) 
will measure the surface elevation of the Earth's land- 
mass and ice sheets to 10- precision. With the space 
craft flying in a polar Sun-synchronous orbit in the 
altitude range of 350 to 400 h, the laser altimeter will 
illuminate three 100-m diameter circular spots on the 
ground and scan rapidly in the cross track direction, 
producing a swath width of 6 h. The objective is to 
cover the entire Earth gradually, overlapping slightly 
between adjacent swaths. Providing complete Earth 
coverage requires precise ground track control, necessi- 
tating frequent maneuvers to counteract the effects of 
atmospheric drag. Therefore, the spacecraft will carry 
a propulsion system with small thrusters for this purpose. 

This paper presents the results of an analysis of an 
algorithm that will provide autonomous onboard orbit 
control using orbits determined with Global Positioning 
System (GPS) data. The algorithm uses the GPS data to 
(1) compute the ground track error relative to a fixed 
longitude grid and (2) determine the altitude adjustment 
required to correct the longitude error. A program was 
written on a personal computer (PC) to test the concept 
for numerous altitudes and values of solar flux using a 
simplified orbit model including only the Jz zonal har- 
monic and simple orbit decay computations. The algo- 
rithm was then implemented in a precision orbit propaga- 
tion program having a full range of perturbations. The 
analysis showed that, even with all perturbations (includ- 
ing actual time histories of solar flux variation), the 
algorithm could effectively control the spacecraft ground 
track and yield more than 99 percent Earth coverage in 
the time required to complete one coverage cycle on the 
fixed longitude grid (220 to 230 days depending on 
altitude and overlap allowance). 

1. INTRODUCTION 
The objective of the Topographic Mapping Laser 

Altimeter (TMLA) mission will be to measure the surface 
elevation of the Earth's landmass and landmass ice sheets to 
submeter (10 cm) precision. The TMLA spacecraft will be 
launched into orbit by an enhanced Scout or Pegasus booster 
on or about 1 June 1999. The anticipated mission lifetime 
will be 3 years with a 30 percent duty cycle. 

The spacecraft will fly in a low, Sun-synchronous Earth 
orbit, with 6 a.m. ascending node nodal crossings. A laser 
altimeter illuminates three 100-m diameter circular spots on 
the ground, which are rapidly scanned in the across-track 
direction. The combined swath width scanned by the lasers 
is 6 km. Figure 1 illustrates the laser ground scanning 
geometry. A sweep rate of 70 scans per second produces a 
100-m along-track interval between successive scans. The 
satellite incorporates a hydrazine/electric-arc-jet thruster with 
a thrust of 0.01 Ibs. The specific impulse of the thruster is 

1 TOPOGRAPHIC MAPPING LASEH ALTIMETER 

I 
Figure 7 .  Topographic Mappihg Laser Altimeter 

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC), 
Greenbelt, Maryland, Contract NAS 5-3 1500. 
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in the range of 600 to 800 sec when electric power is 
supplied to the thruster or 250 to 300 sec without electric 
power. Ground track positions for the science measurements 
will be determined from Global Positioning System (GPS) 
data. 

This paper introduces a concept for autonomous ground 
track control using GPS data as the primary data type. The 
onboard computer (OBC) determines longitude position 
errors at the ascending nodes and commands altitude-raising 
maneuvers to correct those errors. The following steps were 
camed out in the development of the ground track control 
algorithm: 

For a range of orbit skip cycles, the altitudes required 
for efficient ground coverage (i.e., sensor ground 
swaths with specified, small overlaps) were determined 
for a range of altitudes between 300 and 400 km using 
a 6-km ground swath width. 
An algorithm for autonomous orbit control was devel- 
oped on a personal computer (PC) using a simplified 
analytical two-body model. 
Performance of the orbit control algorithm was deter- 
mined with a realistic Earth gravity field, third body 
perturbations, and solar flux variations, using the 
Goddard Mission Analysis System (GMAS). 

It was concluded that the ground track control algorithm 
developed could meet the coverage objectives in a 3-year 
mission. 

2. ALTITUDES FOR REPEATING GROUND TRACKS 
Complete Earth coverage requires choosing an altitude 

that results in sufficient overlap of adjacent swaths to cover 
the dispersions in ground track position attributable to orbit 
control inaccuracies and all other orbit perturbations. 
Frequent altitude-raising maneuvers are required to maintain 
the desired ground track overlap and avoid gaps in coverage. 
The number of orbits between adjacent ground tracks (the 
repeat cycle) and the  minimum number of orbits necessary 
for complete Earth coverage are functions of the nominal 
orbit altitude. the swath width, and swath overlap, assuming 
no orbit perturbations. 

The geometry associated with ground track spacing and 
swath coverage is illustrated in Figure 2. The longitude 
interval, DL, between successive ascending nodes for repeat 
cycle, R ,  and ground track spacing, S, for an eastward- 
advancing ground track is 

and for a westward-advancing ground track by 

WESlWAnD ADVANCING GllOUND TnACK OF TMCA SUN S Y N C H n O N O U S  OnBlT 

Obit No. I o m  NO. I 

+%4 
LOnglIudS W -Swalhwldlh 

s' - ~ t o u n d  track spacfng 
DS-Swathoverlap 

Figure 2. Westward-Advancing Ground Track of TMLA 
Sun-S ynchronous Orbit 

For a Sun-synchronous orbit, 

where w, = rotational rate of the Earth 

r, = length of a sidereal year in 

a - - semimajor axis 
p (km'/sec') = 

(deg/sec) 

seconds 

Earth's gravitational attraction 

The semimajor axis is the sum of the spherical Earth 
radius, R,, and height, H .  above the ground: 

u = R< + H = 6378.14 + H ,  km (3) 

Because the equator is traversed twice in every orbit, the 
minimum number of orbits needed for complete Earth 
coverage is 

(4) 

where W, is the swath width, and DS is the swath overlap 
distarice. The nominal spacing, S, between ground tracks at 
the equator is S = W, - DS. Complete Earth coverage for 
a given repeat cycle and nominal altitude is seldom obtained 
in exactly N,,,,, orbits. 
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The repeat cycle is efficient if the number of orbits 
needed for compIete Earth coverage is not significantly 
greater than N ~ , , .  Equations 1 and 2 were solved for values 
of S equal to 5.6 and 5.8 km (overlap of 0.4 km and 0.2 
km) in a range of R between 50 and 600 and a range of 
altitudes between 300 and 400 km. Altitudes with a poten- 
tial for producing a high percentage total coverage in N,, 
orbits were selected to evaluate the ground track control 
algorithm. 

3. GROUND TRACK CONTROL ALGORITHM 
At every ascending node, the OBC determines whether 

an orbit maneuver is needed to correct a ground track error. 
The longitude at the ascending node is determined from GPS 
data. The longitude error is the difference between the 
observed longitude and a nominal longitude. The sign of the 
error determines whether the spacecraft is too high or too 
low. If the longitude error is positive, the altitude must be 
raised, and a Hohrnann orbit-raising maneuver is used; 
otherwise, no maneuver is performed. The first bum of the 
Hohmann orbit maneuver is performed at the ascending 
node; the second bum is performed half an orbit later. The 
OBC determines when an ascending node is reached, then 
computes a longitude error, determines the necessary 
thruster bum times if a maneuver is required, and issues 
commands to start and stop the burns. The orbit control 
algorithm has two control modes. 

Control Mode 7 
Control Mode 1 uses a relative longitude error, defined 

as the difference between two longitude differences; one is 
the difference between estimated longitudes at two successive 
ascending nodes, the other is an uplinked reference delta 
longitude (the difference between longitudes of successive 
ascending nodes of a reference orbit). In this control mode, 
the spacecraft altitude is caused to move toward the nominal 
altitude. This mode is used only after orbit injection, or 
after a command to change the nominal altitude is uplinked 
from the ground. 

Control Mode 2 
Control Mode 2 is based on an absolute longitude error. 

The absolute error is the difference between the estimated 
longitude and a longitude obtained from a fixed-longitude 
grid. The first longitude of the fixed-longitude grid is 
created by setting it equal to the estimated longitude the first 
time the sign of the relative longitude error in Mode 1 
changes, which occurs when the nominal altitude is reached. 
Thereafter, a new reference longitude is computed at every 
node by adding the uplinked reference delta longitude to the 
longitude at the previous nodal crossing. The reference delta 
longitude is changed only if  i t  becomes necessary to change 
the reference altitude. Ground support for satellite naviga- 

tion consists entirely of uplinking a reference delta longitude, 
when needed, and uplinking the measured solar flux at 
regular intervals. 

The Control Equation 
The altitude correction required to cancel a ground track 

error consists of two parts. One part results from a longi- 
tude error at the ascending node, the other part results from 
the rate of change of the longitude error. Each part is the 
product of a gain constant and a corresponding error, 
divided by the sensitivity of the delta longitude between 
successive ascending nodes to a change in the semimajor 
axis. The resulting semimajor axis correction is as follows: 

d 
dt 

k, Ahi + kr - (AX;) 
(5) Aa = 

4 
da 

where kd is the dimensionless displacement gain constant, 
and k, is the dimensionless rate gain constant. 

(6) Ai - 180 - - - (ac - 0) P, dcgikm 
du T 

where P is the orbital period, w, is the Earth’s rotation rate, 
and fi is the node rate. 

The rate error term damps longitude error oscillations. 
The nodal regression rate, fi , is a function of the semimajor 
axis, a ,  eccentricity, e. and orbit inclination, i. The follow- 
ing relation for fi from Reference 1 is accurate to first order 
in J.. 

-2.06474 X lOI4 X cos(i) - 
7 

a’ X ( I  - X 86164.09 

(7) 

The semimajor axis, a ,  in Equation 7 is assumed to be 
constant, and eccentricity is assumed to be zero. 
’ In the simulation, the estimated longitude at the node is 
assumed to have a standard deviation of 30 rn. with a 
Gaussian distribution and zero mean. 

4. PC SIMULATION OF AUTONOMOUS ORBIT 
CONTROL 
The orbit control algorithm was tested in a PC program 

Several sim- to investigate the feasibility of the concept. 
plifying assumptions were made: 
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Two-body analytic circular orbits, with J2 only. 
The semimajor ax is  reduction per orbit due to atmo- 
spheric drag is approximated from energy consider- 
ations; hence, integration of the equations of motion is 
not necessary. 
Instantaneous altitude corrections are made at the 
ascending node. 
An exponential density is fitted to the Harris-Priester 
(H-P) atmospheric density model between 300 and 
400 km altitude. Density is modeled empirically as a 
function of solar flux and adjusted for the effects of the 
atmospheric bulge. 

Altitude Loss Per Orbit 
A calculation is made at every ascending node to 

determine the altitude loss in the preceding orbit. The 
altitude loss is obtained by equating the energy loss in one 
orbit to the work done by the drag force on the spacecraft. 
The work done by the drag force, D, is 

W = 2 n d  = ?rap C, AV’,  N - m  (8) 

where A = reference area (m’) 
a = semimajor axis(m) 
p = atmospheric density 
C, = drag coefficient 
V = velocity 

The total energy loss per orbit (potential plus kinetic) is 

where a, and a, are initial and final values of semimajor axis, 
and m is the spacecraft mass. Because 

2 
a,  = ai a/ 

the change in the semimajor axis, Au = (ai - a,), from Equa- 
tions 8 and 9 becomes equal to 

CdA 
Aa = -2x p - 

m a& 

The Atmospheric Density Approximation 
The H-P density between altitudes of 300 and 400 km 

was approximated at solar flux levels of 80 and 240 by 
exponential functions fitted to an orbital density intermediate 
between the minimum and maximum density values in the 
H-P density model. The intermediate value was equal to the 
H-P minimum, plus 0.2 times the difference between the 

H-P maximum and minimum densities. It approximates the 
effects of an atmospheric bulge on the density for a Sun- 
synchronous (0600 hrs ascending node) TMLA orbit. The 
atmospheric density equations for the 300 to 400 km altitude 
range are as follows: 

(12) 
For solar flux level of 80, 

p = 5.761091 X Exp(-0.0216952 H), kglkm’ 

(13) 
For solar flux level of 240, 

p = 4.142531 X E~p(-0.01566959 H), k g l h 3  

The exponential density functions are compared with 
H-P data at 20 km intervals between 300 and 400 km 
altitude in Figure 3. The solar flux is measured at the 
10.7 cm wave length (FiO,,) and is in units of lo-’’ 
Watts/m2/Hertz. 

0.M 

300 310 320 330 340 350 360 370 380 390 400 
HEIGHT, (KM) 

I 

Figure 3. Atmospheric Density Functions Compared 
With H-P Data 

Optimized Control Gain Constants 
Values of kd and k, that minimize the dispersion of 

longitude error were determined experimentally from runs 
made with constant flux values of 80 and 240 (Equations 12 
and 13). The control gains, formulated as functions of 
altitude and solar flux, are given in the following equations, 
which are the default optimum control gains in the PC 
simulation. 
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(14) kd = 0.08 + F,,,, 
x (0.0083 - 0 . 3 2 5 ~  H + 3.0~ lo-' H2) 

k, = 0.0035 (15) 

In Figure 4, kd is presented as a function of altitude and 
solar flux. 

Figure 4. Displacement Gain as a Function of 
Altitude and Solar Flux 

PC Simulation Numerical Results 
A sequence of runs with optimum control gains was 

made to determine the effects of ground track spacing, 
altitude, solar flux, and position measurement accuracy on 
the standard deviation of the controlled position error and the 
total delta-V for N , ,  orbits. The solar flux was either held 
constant at 80 or 240, or else actual past daily values of F,,,, 
from a flux file were used (covering a period of time in 
which the flux levels approximated the levels predicted by 
Schatten (Reference 2)  after the TMLA epoch). 

Constant Solar FJux 
Numerical results are presented in Table 1 for a nominal 

ground track spacing of 5.8 km; altitudes of 300, 350, and 
400 km; constant solar flux values of 80 and 240; and 
measurement noise standard deviations of 0 and 30 m. The 
standard deviation of the longitude distance error for perfect 
position measurements is between 3 and 7 meters, due 
largely to a transient at the start of the runs. For a 30 m 
measurement noise, the standard deviation of the distance 
error is 37 to 39 m for both low and high flux values (i.e., 
up to 30 percent larger than the measurement noise). An 

Table 1. Orbit Control Performance From PC Simulation 
Based on Constant Solar Flux 

O 8 L t .  

J 

264.11 
'02.70 
2131.87 
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75.4 

l4S.S 
45.2 

L7.3 
'1 . I  
29.2 
'7. .  
JG.D 
.: 5 

i..t 

o0.a 

orbit maneuver is required at every ascending node. Total 
mission delta-V, based on propellant specific impulse (I,J of 
275 seconds, ranges from a low of 32.44 d s  for an altitude 
of 400 km with a low flux, to a high of 262.11 i d s  for an 
altitude of 300 km with a high flux. Bum times (half of a 
Hohmann maneuver) for the 0.01 Ib thruster ranged between 
24.1 and 188.3 sec for the two altitude and flux conditions 
investigated. 

Similar data for a 5.6 km nominal ground track spacing 
are presented in Table 2. The control error statistics are 
unaffected by the ground track spacing. However, because 

Table 2. Orbit Control Performance From PC Simulation 
Based on Constant Solar Flux 

N m I Y L L  GlamD TRACE SPlClYG s 5.6 CM 
IS79 ORBITS: IIu = 273 S E C  

S f d .  

 CY. 3nrtanci 
u r n  "tal. Error (e) 
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100 BO 30 .I30 1L8 37 299.124 300.151 11.75 3579 
350 2bO 0 . V  313 6 3 L P . W  JSO.040 23.62 3579 
3SO 80 0 - 2 1  60 5 JLP.8TT 34V.978 12.S2 3S7V 
350 240 30 -112 lt4 38 349.006 3S0.123 18.S5 3 5 7 9  
350 a0 50 .127 17b IV w . s r  3 s o . i n  7 . 6 1  ssm 
*DO 240 0 - 2  96 6 399.877 399.9119 IL.V2 35pP 
100 80 0 . 4  M 7 359.927 b00.037 10.31 357V 
L ~ O  240 10 37 Sw.a3L 4 0 0 . 1 ~ 5  10.64 3 5 7 9  
LOO 80 30 -11s IMJ 31 3w.856 4ao.im 6.30 5579 

OCIC. E"?" PCI.  
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A X  

10b.36 7 3 . 3  
209.10 145.3 

6 S . 2 3  i S . 1  
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z n . s v  w . 9  

4 0 . n  29.2 

80.5s s7.3 
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S8.29 41.7 
33.71 24.2 
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more orbits ( N ,  are necessary to obtain total coverage, the 
total delta-V is increased by the ratio of 5.8/5.6 = 1.0357. 

The standard deviation of position errors shown in 
Tables 1 and 2 is a useful-measure of the control accuracy 
obtainable from the algorithm. The standard deviations do 
not translate directly into a percent coverage; however, when 
the nominal altitude is properly chosen, smaller position 
error dispersions correlate with a higher percent coverage 
for a given swath overlap. 

Daily Varying Solar Flux 
A daily solar flux variation from observations made 

during the last solar cycle that approximates the predicted 
solar flux variation after the TMLA epoch is presented in 
Figure 5 .  This flux variation was used to determine the 
altitude loss per orbit. The same data, delayed one day, 
were used as the flux input to the control law. This simulat- 
ed an operational scenario in which the 1-day-old measured 
solar fluxes would be uplinked daily. 
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Figure 5. D8ily Solar Flux for TMLA Simulation 

The performance of the control law with the daily solar 
flux data is presented in Table 3 for a ground track spacing 
of 5.8 km and in Table 4 for a ground track spacing of 
5.6 km. With no error in orbit determination, the standard 
deviation of distance error is 1.6 to 4.2 times greater than 
when solar flux is constant, the error decreasing with an 
increase of altitude. With a 30 m orbit determination 
accuracy, the standard deviation of position error is 24 
percent greater at an altitude of 300 km than if solar flux 
were constant, but only 1 percent greater at an altitude of 
400 km. For a daily flux variation and a 30 m orbit 
determination error, the ratios of the standard deviation of 
longitude error to the nominal overlap (6 km swath minus 

Table 3. Orbit Control Performance From PC Simulation 
Gain Constants Based on I-Day-Old Solar Flux 
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Table 4. Orbit Control Performance From PC Simulation 
Gain Constants Based on 7 -Day- Old Solar Flux 
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the ground track spacing) and the maximum longitude error 
to the overlap are summarized below: 

Altitude Std Dev/Overlap Max Error/Overlap 
300 0.12 0.50 
350 0.11 0.39 
400 0.10 0 .38  

With careful selection of the nominal altitude, the 
percent coverage for ground track spacing of 5.6 and 5.8 km 
at low or high altitude in the 300 to 400 km range is 
between 98.35 and 99.98 percent in N,,, orbits. On the 
basis of these results, it was concluded that the performance 
of the Th4LA ground track control algorithm merited further 
analysis, including the effects of orbit perturbations from 
higher order gravitational potential model terms and third- 
body effects of the Sun and Moon. Additional analyses 
were, therefore, performed using the Goddard Mission 
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Analysis System (GMAS) program. 
described in the sections that follow. 

Those analyses are 

5. GMAS SIMULATION OF AUTONOMOUS ORBIT 
CONTROL 
The orbit control algorithm detailed in the previous 

sections was implemented in a special module for use with 
the GMAS Cowell orbit propagator. This propagator can 
include perturbations resulting from drag, the geopotential 
field, and solar and lunar gravitational effects, as desired. 
The program stops at each ascending node and checks the 
longitude error from the reference (the error includes 
simulated measurement noise). 

If the error is positive (the altitude is below nominal), 
the required Hohmann transfer delta-V is computed. Half 
the delta-V is applied as an impulse at the current nodal 
crossing, and the remainder is applied at the next descending 
node. The longitudes at all ascending and descending nodes 
are recorded for later sorting and generating statistics. 
Ground track error at each ascending node is also output. 

The procedure followed is first to choose a case from 
the PC simulation that gives good coverage, input the 
nominal longitude separation between successive nodal 
crossings (DLONG), and iterate on the initial osculating 
semimajor axis until the longitude separation matches 
DLONG. The GMAS implementation uses only Control 
Mode 2 (see Section 3 ) ,  so the simulator must start at the 
correct altitude. A long run is then made and gains are 
adjusted in an attempt to improve the resulting coverage. 

Computation of statistics involves sorting the crossings 
in ascending order of longitude, computing the spacing 
between adjacent longitudes, and summing all the gaps and 
overlaps. The number of crossings (ascending and descend- 
ing) used to generate statistics is the theoretical minimum 
needed to give total coverage. This number is 6910 for a 
grid with 5.8 km spacing and 7157 for a spacing of 5.6 km. 
The swath width used in this analysis is 6 km. 

Simulations were performed with J 2  only, an 8 by 8 
geopotential. constant solar flux, a smoothly varying flux, 
and daily flux variations for both 5.8 and 5.6 km spacings. 
Initial runs were made with constant gains in the control 
law. After the algorithm was verified, !he computations for 
gain as a function of flux described in Section 4 were 
implemented and runs were made using daily flux variations 
with a I-day delay. The results of each are discussed in the 
following sections. 

Initial GMAS Tests 
The initial runs were made with J ,  only to simplify the 

modeling and ensure the algorithm was working properly. 
The spacecraft was assumed to have a mass of 230 kg, area 
of 1 m2. and coefficient of drag equal to 2.2. The epoch for 

all runs is June I ,  1999. Densities were computed with the 
H-P atmosphere model. 
I 

I 
figure 6. Effect of Various Gain Settings on Ground 

Track Error 

Figure 6 shows the evolution of  ground track error for 
125 orbits using different gain values. The three curves that 
show a large buildup in fluctuations did not have a rate gain 
applied; while the nearly horizontal line from the fourth case 
used a rate gain of 0.0125. This plot clearly shows the need 
for using both rate and displacement gains and for choosing 
good values. 

Figure 7 shows the effects of added measurement noise. 
The noise used in all GMAS simulations assumes a Gaussian 
distribution with a standard deviation of 30 rn, as in the PC 
simulations. The plot shows ground track error for two sets 
of  displacement gain (DG) and rate gain (RG). The smooth 

Figure 7. TMLA Ground Track Error J2 
/Witb and Without 30 M Orbit Error) 
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curves represent J2 only with no noise; while the fluctuating 
ground track error shows the effect of the added noise. 

1 -  i., , - c- .... - .............. * ............... * .............. -.A. ......... * .... s. ............... 
_I  

I A: 0Ekl .Z RGd.0245 8: OGd.125 RO-0.01i5 

Figure 8. TMlA Ground Track Error J2 8x8,  
Different Gains 

Figure 8 compares the difference between using J, only 
or a more realistic 8 by 8 geopotential model (noise not 
included). The 8 by 8 model causes the ground track to 
vary over a range of between 0.5 and 0.6 km. 

Figure 9 shows the response of the algorithm to values 
of solar flux and gains. These runs were made with J2 only 
and no noise. The top curve, A, shows the ground track 
error history for 4OOO orbits (8000 nodal crossings) with a 
slowly increasing flux that follows the Schatten +2 sigma 
prediction. The predicted flux values for 1 year are as 
follows: 

I 3.5 
A 

" '! 
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3IULYFLUXU(OGUNV*RUrKNS 1 i i I . .............._. ........... : ........................... 

I 
I 
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Figure 9. TMlA Ground Track Eiror J2 Only, No Noise 

Date 
Jun 1 ,  1999 
Jul 1, 1999 
Aug 1, 1999 
Sep 1, 1999 
Oct 1, 1999 
Nov 1, 1999 
Dec 1, 1999 
Jan 1,1999 
Feb 1, 2000 
Mar 1, 2000 
Apr 1, 2000 
May 1, 2000 
Jun 1, 2000 

Flux 
195 
20 1 
207 
213 
218 
223 
228 
232 
236 
239 
242 
244 
246 

Curve B results from a constant flux of 200. Both A 
and B use constant gains. The bottom curve, C, shows the 
error resulting from a flux that vanes daily (see Figure 5) 
and gains that are computed daily from the observed flux. 
There is a I-day delay between the observed flux value and 
the use of that value in the control computations. Coverage 
statistics were generated for these three cases and are as 
follows: 

Percent Coverage 
Case at Equator 
A 99.972 
B 99.975 
C 99.965 

Using J, only, no orbit error, and a constant flux yields 
the best total coverage that the algorithm can produce. 
Adding orbit error, the geopotential, and flux variations for 
more realistic modeling will always yield less coverage. 
However, the total coverage can still be above 99 percent, 
as will be shown later. A coverage of 99.975 percent means 
that a total of only 10 km (out of 40,075) remains uncovered 
at the equator. 

GMA S Simulations With AI1 Perturbations 
Simulations were run for several different altitudes with 

grid spacings of both 5.8 and 5.6 km. The spacing is 
controlled by using the correct semimajor axis in combina- 
tion with the appropriate value of DLONG for each case. 
DLONG is the separation in deg between successive equator 
crossings (one orbit apart) and is a precise number that is 
determined by the PC program. Using an incorrect value 
for DLONG results in greatly reduced total coverage. Runs 
were made first with constant gains and the Schatten flux 
predictions and then with daily varying flux and gains. The 
results of each are discussed below. 
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Sample Results With Daily Flux Variations. Figure 
10 shows ground track error versus time for a case when the 
initial osculating semimajor axis  is 6769.34 km (391 km 
altitude at the initial ascending node), and DLONG is set to 
give a desired ground track spacing of 5.6 km. For this 
case, the daily flux variations shown previously in Figure 5 
were used. The value of RG was set to 0.001, and DG was 
computed from the daily flux, assuming a 1-day delay. The 
ground track repeat cycle for this run was 78 orbits; that is, 
the time between two adjacent ground track swaths is 78 
orbit periods. With all perturbations included, the ground 
track error varies over a range of about 0.8 km and is fairly 
well behaved. 

Figure 11 shows the number of node crossings as a 
function of ground track spacing for this run. The longi- 
tudes at each crossing are sorted in ascending order, the 
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Figure 11. TMLA Ground Track Spacing Daily Flux 
Variations ( 1 -Day Dele y) 

difference between two adjacent equator crossings is comput- 
ed, and the result is assigned to the appropriate 0.1-km-wide 
bin. This process is repeated until spacing has been comput- 
ed for all 7157 longitudes (the minimum number for 5.6 km 
spacing). The number of points in each bin are then plotted. 

Ideally, all points would fall in one bin (between 5.5 
and 5.6 km or 5.6 and 5.7) to obtain 100 percent coverage 
and the plot would show one central spike. Perturbations 
cause errors in the spacing, thus leaving gaps and lowering 
the overall coverage. The resulting coverage for this run 
was 99.051 percent, meaning that 380 km total remain 
uncovered along the equator after one coverage cycle. 

Comparison of Results from Different Runs. The 
results of a series of runs were presented in Table 5 .  These 
results include runs at several altitudes, 5.8 and 5.6 km 
spacing, different flux levels, and constant or varying gains. 
The table gives a reference run number, spacing, DLONG, 
altitude, gains, orbital elements, solar flux, total delta-V, 
and resultant coverage. The runs showing "COMP" for the 
gain (computed by the program) and "DAILY 1" for the flux 
(daily flux with one day delay) represent the most realistic 
simulations. Other runs with predicted flux and constant 
gains are included for comparison. Run 8 is the one that 
was discussed in the previous section. 

Also included is a column indicating whether a frozen 
orbit was used for the run. Several runs were made to 
determine whether a frozen orbit would yield improved 
coverage over an arbitrary initial orbit. For a frozen orbit, 
the heights above the equator at each nodal crossing should 
show only slight variations over time, which may lead to 
better control of coverage at the equator. Comparing the 
runs in Table 5 indicates a small improvement in coverage 
with the frozen orbit. More details on the frozen orbit will 
be given in the next section. 

Table 5 also demonstrates the importance of choosing 
the correct value for DLUNG. For example, Runs 8 and 11 
were run with identical initial orbital elements but with 
values for DLONG that differ after the third decimal place 
(0.001 deg). The one case gives 99.051 percent coverage, 
while the other only 52.173 percent. 

Figure 12 shows the resulting distribution of ground 
track spacing for Run 11 and shows the peak occurring near 
2.9 km. This results in a large overlap between adjacent 
swaths of about 3.2 km on the average (0.2 to 0.4 km is 
desirable) leading to large gaps in coverage after 7 I57 nodal 
crossings. There were 155 coverage gaps averaging 123.6 
km each for a total of 19,158 krn uncovered along the 
equator. 

Table 5 also includes the total delta-V for each run. 
This total represents the total delta-V expended during one 
coverage cycle (3455 orbits for 5.8 km separation or 3578 
orbits for 5.6 km) and depends on the altitude and flux level. 
The flux levels for the Schatten prediction (PLO391) are 
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Run 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

No tss: 

Space 
DLONG 
Alt 
Gain 
RGain 
Elements 
Frozen 
Flux 

Delta-V 
Cover 

Space 
(kml 

5.8 

5.8 

5.8 

5.8 

5.8 

5.6 

5.6 

5.6 

5.6 

5.6 

5.6 

5.6 

Table 5. 

DLONG Alt 
(degl (kml 

22.81 65345 339.9 

22.8165345 336.6 

23.0762551 391 .O 

23.0762551 387.7 

23.0762551 391 .O 

23.0775680 391.1 

23.0775680 387.8 

23.0775680 391.1 

23.0775680 387.8 

23.0766006 391.1 

23.0766006 391.1 

23.0772455 391.1 

Comparative Results of GMA S Runs 

Gain RGain 

0.050 0.023 

0.050 0.023 

0.025 0.001 

0.025 0.001 

COMP 0.001 

0.025 0.001 

0.025 0.001 

COMP 0.001 

COMP 0.001 

0.025 0.001 

COMP 0.001 

COMP 0.001 

Elements 

67 18.1400 
0 .oooo 1 
96.81 34 

671 8.1 495 
0.00 1 41 9 
96.8134 

6769.2400 
0.000001 
97.01 16 

6769.2493 
0.001 398 
97.01 16 

67 69.2400 
0.00001 
97.01 16 

6769.3400 
0 .oooo 1 
97.01 16 

6769.3400 
0.001398 
97.01 16 

6 7 6 9.3 400 
0.00001 
97.01 16 

67 69 ~ 3 400 
0.001 398 
97.01 16 

6769.3400 
0.00001 
97.01 16 

6979.3400 
0.00001 
97.01 16 

6769.3400 
0.00001 
97.01 16 

Frozen 

N 

Y 

N 

Y 

N 

N 

Y 

N 

Y 

N 

N 

N 

Flux 

PL0391 

PL0391 

PL039 1 

PL0391 

DAILY 1 

PL039 1 

PL039 1 

DAILY1 

DAILY 1 

PL039 1 

PL0391 

PL039 1 

Ground track spacing (km) 
Longitude difference between successive crossings (deg) 
Initial altitude at ascending node (kml 
Displacement gain (COMP = computed b y  program) 
Rate gain 
Osculating orbital elements (semimajor axis, eccentricity, inclination) 
Frozen orbit (YeslNo) 
Solar flux used: PL0391 = Schatten + 2  sigma prediction from March 1991 

Total delta-V (m/sec) expended during one coverage cycle 
Percent coverage at equator 

DAILY 1 = Daily varying flux w i th  1 -day delay 

Delta-V 
(m/sacl 

83.57 

83.28 

39.42 

37.55 

21.73 

40.76 

40.59 

23.78 

23.65 

40.75 

40.72 

40.71 

cover 
( % I  

98.229 

99.283 

99.032 

99.653 

98.776 

99.1 15 

99.590 

99.051 

99.610 

52.234 

52.173 

50.987 
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generally higher than those used for the daily f lux runs 
(DAILY 1) and, therefore, show higher delta-Vs. The delta- 
V will change if the spacecraft mass and area are altered 
from the values used in this studv. 
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Figure 13. TMLA Delta SMA Per Maneuver Initial OSC 
iSMA = 6769.34 kml 

The expected fuel use during one cycle can be computed 
from the rocket equation and is given in Table 6 for each 
run assuming specific impulses of 250 and 600 sec. Also 
given is the percentage of orbits on which maneuvers 
occurred (100 percent means a maneuver is performed on 
every orbit). Figure 13 presents a sample maneuver profile 
using data from Run 8, showing the semimajor axis change 
at each maneuver. This case required 2568 maneuvers (two- 
bum Hohmann transfers) in 4OOO orbits; that is, maneuvers 
were performed at 64.2 percent of the nodal crossings. The 
changes in semimajor axis ranged from 1 to 79 rn with an 
average change of 18.26 m. 

i 
Table 6. Summary of Delta-V and Fuel Requirements 

Orbit. With 
Run Maneuven 

83.57 

39.42 3.67 

4 3755 3 50 1 46 75.6 

Frozen Orbit 
As mentioned previously, the use of a frozen orbit was 

examined to determine whether any benefits existed for 
TMLA. The concept of a frozen orbit is detailed in Refer- 
ence 3. In a frozen orbit, the argument of perigee remains 
in the vicinity of 90 deg (the north point of the orbit), and 
the altitude above a given latitude remains nearly constant, 

Figure 74. TMLA Height at Nodes 
{Mean SMA = 6759.62 km) Frozen and Nonfrozen Orbits 

assuming maneuvers are performed to counteract the effects 
of atmospheric drag. This has advantages for an Earth- 
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observing spacecraft with a repeating ground track, in that 
each time the spacecraft passes over a given landmark, it 
will be at nearly the same altitude. This point is illustrated 
in Figure 14, which shows altitudes above the ascending and 
descending nodes for frozen and nonfrozen orbits with the 
same mean semimajor axis. The data were generated by 
Runs 3 and 4 (see Table 5). 

The initial altitudes at the ascending and descending 
nodes are 391.03 and 384.46 km, respectively, for the 
nonfrozen orbit. As the orbit evolves in time, the differenc- 
es between ascending and descending nodal heights increase 
until the heights differ by almost 19 km. The height 
differences then decrease to zero and the cycle repeats. The 
amplitudes of successive cycles, however, decrease with 
time, which is due to the maneuvers done at the nodal 
crossings to maintain the orbit. The orbit is slowly evolving 
to the frozen condition as a result of the maneuvers but may 
take several ground track cycles to reach that point. The 
frozen orbit starts with both ascending and descending node 
altitudes at 387.7 km. As this orbit evolves, the differences 
in height at the nodes never exceeds about 2.5 km. 

The results of the analysis of a small number of cases 
indicate that the frozen orbit improves the total ground track 
coverage slightly and greatly improves altitude control over 
a given part of the orbit. Controlling the altitude in this 
manner may have advantages for operating the laser or 
processing laser data. 

6. CONCLUSIONS 
This paper described an algorithm for a simple autono- 

mous ground track controller for the TMLA mission, using 
orbit determined from GPS data and a fixed-reference 
ground track spacing at the equator. Analysis of computer 
simulations using the control algorithm, with all orbit 
perturbations including daily solar flux variations, resulted 
in the following conclusions: 

More than 99 percent coverage at the Equator is obtain- 
able in one cycle of Earth coverage (220 to 230 days) 
with a 6-km sensor swath width and 5.6 or 5.8 km 
ground track spacings, in a range of orbit altitudes 
between 340 and 390 km. A high probability exists that 
100 percent coverage will be obtained in a 3-year 
TMLA mission. 
The percent coverage is critically dependent on the 
combination of nominal altitude and delta longitude 
between ascending nodes selected for the mission. A 
difference of 0.001 degrees in delta longitude, with the 
same nominal altitude, can make a 47 percent difference 
in the coverage. 
An orbit that is initially frozen offers a slight improve- 
ment in total coverage, compared with an arbitrary near- 
circular initial orbit. The maintenance maneuvers 
generated by the algorithm preserve a frozen orbit. A 

near-circular orbit becomes a frozen orbit after the 
passage of time. 
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ABSTRACT 

We present results for two real-time filters prototyped for the Compton Gamma Ray 
Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background 
Explorer (COBE), and the next generation of Geostationary Operational Environmentai 
Satellites (GOES). Both real and simulated data were used to solve for attitude and gyro 
biases. These filters promise advantages over single-frame and batch methods for missions 
like GOES, where startup and transfer-orbit operations require quick knowledge of attitude 
and gyro biases. 
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1. INTRODUCTION 

Mishaps of the distant past have prevented sequential filters from becoming part of the operational ground 
support systems in the Flight Dynamics Facility (FDF). Experience gained over the past few years with 
prototype filters for several spacecraft, however, bolsters the conviction that sequential filters have a place in 
real-time attitude and gyro bias estimation in the FDF. 

Two very different filters, filter QUEST and the Real-Time Sequential Filter (RTSF), both show themselves 
to be reliable alternatives to the original single-frame QUEST for real-time systems. As long as attitude is 
continuously observable, divergence does not appear to be a problem, and the filters work over a wide range of 
tuning parameter values. 

This article provides an account of recent attitude and gyro bias filtering experience using data from COBE, 
GOES, GRO, and EUVE. The filters perform well and provide attitude and gyro bias solutions in less time 
than would be necessary to obtain a batch estimate. 

2. FILTER QUEST 

Filter QUEST is a sequential version of the q-algorithm as implemented in the widely used QUEST software 
(Reference I). The q-algorithm only estimates attitude, but for the sake of accuracy, it is almost essential that 
gyro biases be estimated as well. In order to make filter QUEST satisfy the demand for gyro biases, a bias filter 
was added to run in parallel with the attitude filter. 

The bias filter takes the attitude predicted using gyro measurements q( - ) and compares it to the attitude 
updated using sensor measurements Zj( +). First, the difference between the two attitude quaternions is 
computed: 

Then, this difference is transfo$ed into a rotation vector A; and divided by the time step At to provide an 
observation of the gyro bias Ab: 

These observations are averaged using the same fading memory parameter, a, as is used for the attitude 
(Reference 2). The fading memory parameter is a scalar between 0 and 1 .  

- 4 ASn b, = bn-,  -t (1 - a)- 
At (3) 
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The enhanced filter QUEST was originally applied to COBE where the spin (X-axis j gyro bias is of primary 
concern. The COBE Fine Attitude Determination System (FADS) found the X-axis gyro bias to be 14.4 
degrees per hour (degbr) for these data. Figure 1 through Fi,pre 3 show [he filter QUEST bias solutions for 
different values oCa. An initial bias value of Odeg/hr was used. Figure I shows that a equal IO 0.9 is too low to 
filter out sensor noise. In Figure 2, the bias converges to within 1 deghr of the FADS bias in only 6 minutes. 
Setting a to 0.999 as in Figure 3 further reduces the noise but slows convergence. 

Figure 4 differs from the preceding figures in that the initial bias is close to the correct value. Filter QUEST 
with a equal to 0.999 shows variation in the estimated bias. The COBE X-axis gyro is known to be 
temperature sensitive, and the enhanced filter QUEST may be useful in studying this sensitivity. 

The COBE solutions were obtained by replacing the standard QUEST subroutines in the Coarse Attitude 
Determination Subsystem (CADS) with the new filter QUEST subroutines. All the data were synchronized in 
the Data Adjuster Subsystem (DA), and every data point was processed. The filter is updated every 
half-second. 

Filter QUEST has also been tested with simulated data for GOES. In this case, the standard QUEST routines 
were replaced with their filter counterparts in the Real-Time Attitude Determination System (RTADS). 
There, at most one data point can be processed for every 8 seconds (sec) of data, and the different data types 
may come from any time in that interval. These attributes of RTADS are clearly undesirable, but there has not 
yet been time to change them. 

Nonetheless, Figure 5 shows the filter QUEST roll and pitch bias solutions converging over the course of 
15 minutes (yaw is similar). The data were simulated to reproduce that expected during the GOES transfer 
orbit but without systematic errors other than gyro biases. The filter was started from initial estimates of 
0 deg/hr and was given an a value of 0.9999, which should slow the convergence. There are initial transients 
and oscillations in the bias solutions, but even with the less than ideal RTADS preprocessing and a fairly short 
data span, biases approach the batch estimated values. The filter solutions are within 10% for yaw, 30% for 
pitch, and 40% for roll. 

3. RTSF 

The RTSF is a scaled-down version of the extended Kalman filter originally prototyped for the Earth 
Radiation Budget Satellite (ERBS) (References 3 and 4). Whereas the 37-component state vector of the 
ERBS filter included various sensor misalignments and scale factors, the RTSF estimates a 7-component 
state vector consisting of the attitude quaternion and the three components of the gyro bias (Reference 5) .  The 
objective of the present study is to evaluate the RTSF in a real-time situation with its attendant data processing 
problems. To this end, we integrated the RTSF into current real-time attitude determination software and 
evaluated it using real telemetry data from GRO and simulated data from EUVE. 

The theory of the filter has been presented elsewhere (References 3 and 4) and will not be repeated here, 
except to note that the GRO RTSF updates the attitude quaternion using a multiplicative method. Thus, if 
(@, P p) are three small Euler angles representing corrections to the attitude estimate, the corresponding 
correction to the quaternion is specified by 
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Figure 3. Filter QUEST Gyro Bias Fading Memory Equal to 0.999 

Figure 4. Filter QUEST Gyro Bias Good a Priori Bias-Memory 0.999 
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and thc quaiernion is updated through: 

)6q - ’ 

GRO is an inertially fixed spacecraft. The attitude hardware consists of two fine Sun sensors (FSS); two 
three-axis magnetometers (TAM); two fixed-head star trackers (FHST); and an inertial reference unit 
containing three two-axis gyroscopes. Although the onboard computer (OBC) uses the full sensor 
complement, the GRO RTSF does not process the more accurate FHST data; thus, we take here the OBC’s 
attitude estimate as the truth model. A different scheme was used to evaluate the RTSF gyro bias estimation, 
since (1 )  the OBC’s estimates of the biases were not readily available in telemeuy, and (2) batch estimates 
showed that the real biases were comparable to the noise in the RTSF estimates (0.5 to 1.0 d e w ) .  Biases 
were introduced into the gyro rates before they were input to the filter, and these were taken as the truth model. 
(Several different combinations of simulated biases were used, ranging in magnitude from 1 to 60 deg/hr). 
The attitude matrix for inertial-to-body transformation is described here by a 1-2-3 Euler angle sequence 
about rhe body X, Y, and 2 axes, respectively, and the respective Euler angles are denoted roll, pitch, and yaw. 

We present here the RTSF results using real telemetry data from GRO spanning a roll maneuver on April 9, 
199 1. The maneuver lasted about 2200 sec, during which only the roll gyro rate is nonzero and is maintained 
at about 0.06 deg/sec. The initial and final OBC estimates of the attitude Euler angles are, respectively, 
(146.27, 17.54, -11.00) and (-96.85, -17.96, -10.26) deg. 

Figure 6 shows the roll angle estimated by the RTSF. We see that, starting from an a priori roll estimate of 120 
deg, the RTSF converges to the OBC estimate in about 1500 sec (75 filter updates). It then varies about the 
OBC estimate with an error of about 2 deg. For this set of data, the FSS boresight was very close to the roll 
axis, so that the roll estimate is obtained essentially from TAM data alone. Thus, we attribute the relatively 
large error in the RTSF estimates as being due to the coarseness of the TAM data. 

The orientation of the FSS does not pose a problem for estimating yaw and, as shown in Figure 7, we see that 
the RTSF errors are now less than 0.5 deg. Note also the spikes in the estimate at about 7000 and 7500 sec; 
inspection of the data shows that abnormally large gyro data were received at those points. However, the filter 
recovers very quickly after the anomalies. Another interesting feature is the effect of the covariance matrix on 
the convergence rate of the RTSF. Whereas the a priori covariance matrix used to generate Figure 6 was large, 
the a priori matrix used to obtain the data of Figure 7 was the converged matrix obtained at the end of the run of 
Figure 6. Starting from an a priori value of -20 deg, the RTSF’s yaw estimate now converges within 500 sec 
(about 25 updates). 

An example of the GRO RTSF’s gyro bias estimation is presented in Figure 8. We see that, until the start of the 
maneuver, the RTSF recovers the true yaw bias of +2.4 deg/hr with an error of about 0.5 degbour. There is 
subsrantial noise during the maneuver-about 3.6 deg/hr or 0.001 deg/sec. We attribute this to a combination 
of an effective yaw component of the rate due to errors in the attitude estimate and greater noise in the 
high-rate gyro data during the maneuver. 

The EUVE sensor complement consists of two FHSTs, an FSS, two coarse Sun sensors, and two triaxial 
magnetometers. The EUVE RTSF performs real-time star identification by a direct match method enhanced 
by an attitude-independent dot-product check between the star and Sun vectors. 

Shortly after orbit insertion, EUVE will be spun up to 1.3 revolutions per orbit to allow its FHSTs to scan for 
acquisition stars. As stars move through the FHST fields of view, the filter solution shows discontinuities 
(Figures 9 and 10) due to small misalignments and biases in the simulated sensors. (The Kalman filter only 
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the gyro data input to the RTSF. The a priori bias estimate 
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EUVE:  RTSF (wi th  FIIST) 
R o l l  l a t e  = 1.3 rpo 
FSS biased 
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Figure 9. EUVE yaw angle determined by RTSF and single-frame QUEST. 
The dashed line marked “OBC” is the true yaw angle. 

EUVE: RTSF (with FHST) Roll Gyro Bias 
Roll rate = 1.3 rpo 

Tine (scc) 

Figure 10. EUVE RTSF solution for roll gyro bias. The dashed line indicates 
the true bias. 
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EUVE: RTSF ( w i t h  FHST) 
Inertial case 
Attitude noise less than 15 nrcsec ( 1 - 0 )  on all axes 
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Figure 11. EUVE RTSF solution for pitch angle. True pitch is constant at 
9.82 deg. FSS misalignment causes the 0.1-deg offset. 

EUVE: RTSF (with FHST) Gyro Biases 
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Figure 12. EUVE RTSF solution for the gyro biases. The true biases are 
all zero in this example. 
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filters out random noise, not systematic errors j .  The discontinuities in attitude are under 0.04 deg. They c:in 

be greatly reduced by tuning the filter for a l o r i ~ t ~  memory and increasins the sensor noise parameters to put 
less reliance on current incoming data. However. this leads to noisier solutions and longer bias conversence 
times. 

Figure 1 1  and 12 show a case where EUVE is irierlially pointing with the Sun in view of the FSS and an 
identified star in FHST-1. The attitude solution converges within 1 minute (the filter is updating once per 
second), with residual noise under 15 arcsec ( 1  -o). After 4 minutes, the gyro bias errors are under 0.2 deg/hr 
(1 -u) and still decreasing. 

4. CONCLUSIONS 

Adding a simple gyro bias estimator to filter QUEST gave COBE andGOES biases within 1 to2 deg/hr of the 
batch estimator values. This filter proved stable under a wide range of memory length parameter values. 
Increasing the memory parameter slowed response and smoothed the time history but did not affect the final 
result. The COBE data used were all clean and synchronized. The GOES data were simulated and clean but 
not synchronized. Attitude was continuously observable for both spacecraft. 

For the GRO RTSF, using real data provided a useful test of the filter’s performance in a real-time situation. 
The attitude errors using FSS and TAM data depended upon Sun observability by the FSS and ranged from 
0.5 to 2 deg; the gyro bias errors varied correspondingly between 0.5 and 20 deg/hr. 

The GRO RTSF proved to be robust in the presence of gyro data anomalies. However, its solutions for roll 
angle and roll gyro bias are relatively noisy and slow to converge due to the limitation to only FSS and 
magnetometer measurements (the Sun being close to the roll axis). The inclusion of FHST data in the EUVE 
RTSF greatly improves the solutions. The EUVE RTSF solutions were subject to offsets and small 
discontinuities due to misalignments and biases. This problem is expected to affect the early stages of any 
mission until the full ground support system estimates these systematic errors. 
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ABSTRACT 6 
For many practical spacecraft applications, algorithms for determining spacecraft attitude must combine 

inputs from diverse sensors and provide redundancy in the event of sensor failure. A Kalman filter is 

suitable for this task, however, it may impose a computational burden which may be avoided by sub 

optimal methods. A sub optimal estimater is presented which was implemented successfully on the Delta 

Star spacecraft which performed a 9 month SDI flight experiment in 1989. This design sought to minimize 

algorithm complexity to accommodate the limitations of an 8K guidance computer. The algorithm used is 

interpreted in the framework of Kalman filtering and a derivation is given for the computation. 

INTRODUCTION 

Historically, satellite attitude determination has 

relied on simple deterministic calculations for 

batch processing of telemetry data because real- 

time recursive algorithms such as Kalman filters 

imposed an impractical computational burden. 

This burden has become less daunting with 

advances in flight-qualified microprocessors, 

however, simple algorithms remain important for 

maintaining the reliability and controlling the 

development cost of real-time software. 

This paper examines the algorithm used to 

estimate attitude for Delta Star. This algorithm 

applies deterministic gains to measurement 

data. Nonetheless, it is desirable to perform an 

statistical error analysis. The attitude estimation 

problem is cast as a Kalman filtering problem 

such that the performance of the sub optimal 

deterministic gains can be quantified. As a 

convenient byproduct, the Kalman gains implicit 

in this setup provide an alternative estimation 

procedure with only a modest increase in 

computations. 

DELTA STAR BACKGROUND 

The SDlO sponsored Delta Star spacecraft 

operated on-orbit for nine months during 1989. 

Its objectives included multi-spectral observation 

of low earth orbital phenomena against various 

earth and space backgrounds. Numerous 

pointing and tracking guidance modes required 

modest but reliable, knowledge of spacecraft 

attitude. 

The spacecraft consisted of two sections: a 

guidance and propulsion section and a sensor 

section. Each was controlled by separate 

processors designated guidance computer (GC) 
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and flight processor (FP) respectively. All 

primary GN&C functions resided in the GC. 

Because the guidance and propulsion section 

was based on the Delta launch vehicle second 

stage, the GC was a Delco Magic 352 guidance 

computer, featuring 8K of random access 

memory to accommodate data, program 

instructions and a resident operating system. In 

addition to GN&C functions, the GC flight 

program sequenced discretes to control avionics 

subsystems, processed telemetry and uplinks 

from the ground, and provided a protocol for 

communication with the FP. The limited memory 

budgeted for attitude determination made a 

simple design imperative. 

vectors which obey the right-hand rule. A 

change of basis is specified by a rotation or 
direction cosine matrix TF defined by 

Y. =T,BY, (1 .) 

where 

are the same vector expressed in I and B 

coordinates. 

The rotation matrix TF can be represented by a 

quaternion q .  the quaternion is a globally 

nonsingular mapping of the rotation matrix. The 

set of attitude quaternions is defined as 

3 2  Q = [ (q ,  ,qV ) E  FH X R  :Q, +Is. i2 = 1 ; ~ .  2 0) 

1 
where the first condition is the unit quaternion 

normality constraint and the second is a 

convention to eliminate the ambiguity of sign 
which arises because (qs,qv) and ( - ~ , , - 9 ~ )  

represent the same attitude. With these 
conventions, TF can be computed from the 

quaternion q by the formula 

Figure 1. Delta Star Spacecraft 
where for a €  FH3 , RJ is defined as 

QUATERNION CONVENTIONS 

In this section notation and conventions are 
developed for the quaternion q.  The two 

primary coordinate frames of interest in this 

report are an inertial reference frame I, and a 

spacecraft body-fixed frame B. A coordinate 

frame is given by a triad of orthonormal basis 

for a , b ~  R3. Quaternion multiplication is 

defined as follows: 
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Quaternion multiplication is important because it 

corresponds to compositions of quaternion 

rotations. That is, for coordinate frames A,B,C, if 
q1 rotates A into B and q 2  rotates B into C, then 

q 3  = 4192 rotates A into C. 

(5.) 
Cs = asb s- [av, bv] 

C=(C . ,CV)EQ 

The quaternion q .  representing T:, evolves in 

time according to the equation 

where o is the instantaneous angular velocity of 

the B-frame with respect to the I-frame specified 

in B coordinates. 

The inverse of q is denoted q* which is also 

called the conjugate of q [3] and is defined by 

q* = (q.,-q), and qq* = 9.4 =(IO) 

1 
Finally, a vector V I  e%3 in I coordinates is 

transformed into v8 E s3 in B coordinates by 

(0,~s) = q'(0,vr)q = (0,T;~r) 
DELTA STAR ATTITUDE DETERMINATION 

The attitude sensors on Delta Star spacecraft 

consisted of five sun sensors and a dual conical 

scan horizon sensor. The five sun sensors were 

configured to provide omni-directional sun 

coverage. The horizon sensor had a 26Ox26" 

field of view. These sensors provided attitude 

measurements for comparison against on-line 

(8.) 
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ephemeris. The FP edited sensor data for wild 

points and compensated horizon sensor data for 

earth oblateness before passing unit vectors for 

sun and nadir across a communication interface. 

Modern earth sensors are equipped to provide 

such compensation using embedded 

microprocessors. The Delta Star Attitude Filter 

(DSAF)design is shown in Figure 2. 

Traditional deterministic methods which compute 

a direction cosine matrix from a pair of 

independent measured vectors, such as the 

TRIAD algorithm (21, offer extreme simplicity but 

suffer from several deficiencies, 

1. Only the current vector pair 

factor into the attitude estimate (i.e. 

noisy measurements are not averaged). 

2.  Nearly collinear measured 

vectors produce dubious solutions 

3. The two vectors of a pair must 

be synchronous for a solution and cause 

complications i f  they arrive 

asynchronously. 

4. Measurements from different 

sensors cannot be weighted to reflect 

relative noise levels. 

A Kalman filter will eliminate these deficiencies. 

However, the computations required by such a 

filter were considered prohibitive for the Delta 

Star application. The design shown in Figure 2. 

also eliminates these deficiencies, but without 

the matrix computations required by the Kalman 

filter to propagate a covariance matrix and 

compute a gain as a function of the covariance. 

The constants a and B are design parameters 

used to control noise rejection and to weight 

measurements from sun and horizon sensors 

with respect to each 0ther.A method for 

preforming a statistical error analysis of this 

design is presented below. Sub optimal gains 

are derived in terms of a and p.  A statistical 

interpretation of these gains is given which 

provides considerations for selecting a and B. 

In Figure 2., a running estimate of attitude is 

maintained by integrating angular rates from 

gyros according to (6.). This running estimate 
denoted by 4 differs from ,-, as a result of gyro 

drift and initial condition errors. 

A sun sensor produces two measurements from 

which the sun vector in B-coordinates can be 

derived. An earth nadir vector is similarly 

derived from the outputs of an horizon sensor. 

Specification of this processing will not be given 

here. These computations were performed by 

the FP for Delta Star are not formally considered 

a part of the DSAF design. 

We will distinguish between observation vectors 

and measurements of these vectors. An  
observation vector will be denoted by e:k E ~3 

for time tk where A is a tag denoting the type of 

observation (S:sun,N:nadir}.and C denotes the 

coordinate frame in which the vector is 

expressed. 

A measurement =Ak € ~ 3  of etk is derived 

from sun and horizon sensors. For our 
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purposes, the former is a “noisy” version of the 

latter. 

The vectors and esk are available from an 

on board ephemeris calculator. From these 
reference vectors estimates of e i k  denoted by 

p are computed by 
B k  

The discrepancy between and 4 is then 

estimated from the discrepancy between ,sik 
and In Figure 2., we note that the 

discrepancy between 6gk and is captured 

in the form of the cross product of these two 

vectors which is used to compute a corrective 
rate by which to improve the estimate q . 

The discrepancy between 

defined by 

and 4 will be 

Because w, can be computed from wv using 

the normality constraint in (2.), ss; will be used 

to define the attitude error. In the statistical error 

analysis below, we investigate the behavior of 

p=cov(w,) for the DSAF given specified 

statistical assumptions. 

In the following, we derive a measurement 

sequence and matrix sequences 

{*k ,Hk ,Kk};=, such that under specified 

conditions the following error propagation and 

update equations apply for the DSAF: 

{ f I;=, 

where ,,,;1 is considered gaussian white noise 

with covariance matrix p Given 4, we can 

define hf:%3 + % 3  from (11.) by 
k 

The Jacobian matrix of hf ,913 + 913 is given by 

where 0 is the derivative operator, f i  is 

computed from (2.) and e = 6: 

Then 

8 

This is the linearized observation equation. 

By (5.) and (9.) if & = o  over the interval 

[ t k , t & + l )  
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This is the linearized state provides cpk and 

gives the linearized state equation Finally, 

p- k + l  - - p+) .  k If R; is constant, which we shall 
assume, then it is easy to see thanG; is also 
constant. 

SUN 

To first order this is equivalent to the Extended 

Kalman Filter (EKF) update scheme defined by 

the procedure 

Then to summarize , (1 6.) ,( 17.) and (1 9.) provide 

an a set of propagation and update equations in 

the same form as (1 1 .) with 

(22.1 K: =mf;, 
K,N = P T ~ ; , S S ~ ; S = ~ ~ ~  -S 

This signal generation model enables us to 

analyze the behavior of the covariance 

pk = C o v ( W v k )  . (23.1 

The covariance for this setup propagates 

according to 

Pk+i = FtPk ( F;)T + Gf 

) 

where 

F,* = ( 1  - K,AH;); G,A = K,AR;(K;)' 
By (1 7.) we need not distinguish between pre- 
update and pst-update covarances (i.e.. 

HS Field of 
View 

FIGURE 3. Solar Inertial Geometry 

To understand the significance of a, and in 

(22.), consider the simple geometry shown in 

figure 3.. The sun vector lies in the orbit plane 

and intervals of sun sensor and horizon sensor 

usage are as shown. Define the set of basis 

vectors s , & , B ~  where s is the sun vector and 

B ~ , B ~  are chosen to form a right handed 

orthonormal triad or coordinate frame. We will 

call this coordinate from the 1'-frame. 

The vectors are all eigenvectors of 
s , with eigenvalues is ,heel, iBz such that 

Fk 

(25.1 hs = 1  
A& =h& =l-aT 

The matrix F; modifies the covariance 

according to (24.) when sun sensor data is 
processed. If wv is expressed in I '  

coordinates, then by (24.) 

222 



where 
2 

2 
(Is& = P 1 , l b  ; Ys = G 1 , l b  

GB,& = P2.2r  ; YB,  = G2.2,  

CB,& = f3 ,3*  ; ye2 = G3,3 ,  

and it is assumed that G,A is constant. The 

behavior of the variances defined in (26.) is 

simple to understand in terms of the difference 

equations. The error around the sun vector 

increases at a constant rate (in terms of 

variance) at a rate determined by the sensor 

noise and the gain a. The orthogonal 

components decay to a steady-state value as 

the corresponding eigenvalues are less than 

unity. The steady-state residual can be 

computed using the Final Value Theorem for Z- 

transforms. The decay rate is exponential and 

easily determined from h8, ,;182 . A design value 

for a is achieved by establishing acceptable 

values for error growth around the sun vector, 

and steady-state residual and decay rate for 

error about the orthogonal vectors. and trading 

off one for the other for an "optimal" compromise 

The horizon sensor gain can be selected 

similarly. 

ERROR ANALYSIS 

The covariance propagation above is limited 

because only the effects of sensor noise are 

considered. To investigate the effects of other 

errors such as a constant gyro drift, the method 

described in [l J is used. The basic idea is shown 

in Figure 4. 

Att. Det. 
Filter 

Truth Model 
Covariance Covariance 

H R I " I  P 

FIGURE 4. Error Analysls Method 

For the geometry shown in Figure 3 this method 

was used to generate a covariance history 

assuming that, 

Rf = Diagl3.05 x 1 O6 ,3.05 x 1 O4 ,3.05 x l o 4 ]  
Rf = Dlagi8.46 x 1 O4 ,8.46 x 1 04,8. 46 x 10" J 
f f  = Dlagl7.61 x 1 0-7, 7.61 x 1 0-7 ,7.61 x 1 0-7] 
Qk = Dlagi6. 53 x 1 0-13, 6.53 x 1 0-13 ,6.53 x 1 0-13] 
a = 0.01 
J3 = 0.06 

where Q& is the covariance of the constant gyro 

bias error in radians per second, quaternion 

error is dimensionless but, approximately half of 

angular error in radians and sensor error is 

similarly approximately half of the angle error 

produced by sensor noise given in radians The 

factor of two comes from the definition of 

quaternion in terms of rotation angle and rotation 

vectorf31. The resutt is shown in Figure 5. 
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FIGURE 5. DSAF Covariance Analysis 

For comparison, the gains in (22.) are replaced 

by Kalman gains computed using 

(27.) 
The result is shown in Figure 6 

In each of these cases, the spacecraft begins by 

processing sun sensor data. The error around 

the sun line slowly increases, and the orthogonal 

components are reduced. At approximately 

11 00 seconds, an horizon sensor update occurs. 

On the time interval (1200-4000), no sensor data 

is processed and pure gyro drift is observed. At 

Time (sec) 
FIGURE 6. Kalman Filter Covariance Analysis 

~ 

Kalman filter performs better with respect to 

orthogonal components of error during horizon 

sensor updating. Note that no attempt is made 

to estimate gyro drift from the sensor data. 

d 

HS Field of 
View 

FIGURE 7. Nadlr Pointlng Geometry 

4000 seconds sun sensor data is processed 

again and a new cycle begins. We observe that 

the convergence rates are faster for the Kalman 

filter, that the Kalman filter variances converge 

to  sma l le r  va lues  and that  

the 

We see that for the scenario described by Figure 

4. the DSAF compares favorably with the 

Kalman filter without having to propagate a 

covariance or compute a Kalman gain. The 

Kalman filter does, however, afford an 

advantage which is not evident in the above 

analysis. The DSAF will not work if only horizon 
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sensor data is available. Clearly, such a presented, and performance is compared 

capability is desirable for attitude determination 

reliability in the event of a sensor failure, The 

Kalman filter does have this capability. For the REFERENCES 

same statistical assumptions as above, but 

using only horizon sensor data for the geometry 

shown in figure 7. we obtain the covariance 

history shown in Figure 8. 

against a Kalman filter. 
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CONCLUSION 

This paper has presented a simple filtering 

algorithm DSAF for determining spacecraft 

attitude from vector observations. This algorithm 

was used successfully on-orbit for the Delta Star 

SDlO flight experiment in 1989. It offers several 

advantages over simple deterministic methods 

such as TRIAD, but does not require as mgJCh 

computation as a Kalman filter mechanization. If 

a Kalman filter is required or desired for an 

application, the DSAF is easily extendible to a 

Kalman filter by means of a more elaborate gain 

computation. The design parameters of the 

DSAF are motivated, an error analysis is 

225 





Improvements in ERBS Attitude Determination 
Without Gyros 

D. Chu, J. Glickman, and E. Harvie 
) . )  ’ ,q& , COMPUTER SCIENCES CORPORATION (CSC) . .  

1 /. 

ABSTRACT 

Previous papers have described the modification of the Earth Radiation Budget Satellite 
(ERBS) Attitude Determination System (ADS) to overcome the impact of onboard gyro 
degradation and failure on attitude ground support of the mission. Two approaches were 
taken: implementing a Kalman filter in place of the batch-least-squares attitude estimator to 
account for the propagation error produced by high-noise gyro data, and modeling the E M S  
attitude dynamics to restore rate information in the case of gyro failure. Both of these 
methods had shortcomings. In practice, the filter attitude diverged without complete sensor 
observability; and accurate dynamics modeling required knowledge of disturbance torque 
parameters that had to be determined manually. These difficulties have been overcome by 
improved tuning of the filter and by incorporating dynamics parameter estimation into the 
ERBS ADS. 

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space flight 
Center (GSFC), Greenbelt, Maryland, Contract NAS 531500. 
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1. INTRODUCTION 

During the past 2-1/2 years, considerable effort has been devoted to overcoming the impact of 
gyro degradation and failure in Flight Dynamics Facility ground support of the ERBS mission. The ERBS 
Fine Attitude Determination System (FADS) is a batch-least-squares algorithm designed to use ~JTO 

measurements of spacecraft motion for propagating one-orbit attitude histones, which are critical for ground 
support activities such as sensor bias determination. Fine Sun sensor data for computing accurate 
single-frame attitudes are typically available for only 20 percent of one orbit. Propagation is especially 
important for yaw, which is directly observable only with the Sun sensor. At present, four of six channels 
have failed completely. Prior to each failure, there was an extended period (up to 16 months) when the 
accuracy of the gyro-propagated batch attitudes was degraded by high gyro noise. Reference 1 summarizes 
the ERBS gyro performance over the mission and the impact of gyro degradation on attitude determination 
accuracy. 

Two approaches have been taken by the ERBS attitude support team to cope with the loss of accurate gyro 
data. Reference 2 describes the implementation of a Kalman filter recursive attitude estimation algorithm in 
the ERBS ADS to account for high gyro noise that caused up to 0.7-degree errors in standard batch attitudes. 
The filter was found to improve pitch and roll in the case of the high gyro noise, but yaw diverged due to 
incomplete sensor observability. To restore rate information when the gyros failed completely, attitude rates 
were modeled in the ADS and used for propagation in the standard batch FADS (References 3 and 4). Results 
of the dynamics modeling were good, but several torque parameters had to be determined manually-a 
timeconsuming process that made operational use of the model impractical. 

Continued efforts have improved the performance of both alternative attitude determination methods. This 
paper describes the improvements and evaluates the accuracy of each method. 

2. ERBS BACKGROUND 

The ERBS is a three-axis stabilized, Earth-oriented spacecraft, launched in 1984 into a near-circular orbit 
with an altitude of 600 km and an inclination of 57 degrees. Attitude is referenced to a geodetic coordinate 
system with pitch defined about negative orbit normal (y-axis), yaw about the local nadir vector (z-axis), and 
roll approximately along the velocity vector (x-axis). Attitude is controlled to plus or minus 1 .O degree on 
each axis. The control system used for normal flight consists of apitch axis momentum wheel that maintains a 
strong angular momentum bias and controls pitch, two differentially driven horizon scanners mounted with 
their axes in the y-z plane to control yaw, and electromagnetic dipoles to control roll and manage pitch axis 
angular momentum. Requirements for ground attitude determination accuracy are 0.25 degree on each axis. 
This accuracy was to be achieved using gyros, horizon scanner measurements, and digital fine Sun sensor 
data, which are usually available for only 20 percent of one 97-minute orbit. At present, the pitch and roll 
channels of both redundant gyro packages have failed. 

3. THE ERBS KALMAN FILTER 

The software moMications to convert the batch FADS to a recursive Kalman filter are minimal, as many 
computations in the two algorithms are identical (Reference 2). In practice, the relative merits of each 
estimator must be considered when using them under different conditions. Batch algorithms offer robusmess 
with respect to sensor error, but are strongly dependent on the accuracy of the propagation model. Arecursive 
estimator is less dependent on the accuracy of the propagation model, but is sensitive to sensor error and 
difficult to tune. Gyro-based propagation in a batch estimator gives good results as long as the gyro data are 
accurate. However, there is a point at which propagationerror degrades the accuracy of batchattitudes enough 
that, even with its limitations, the Kalman filter performs better. 
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One-orbit batch and filter attitudes are compared in Fi,wes 1 through 6, where the time span is from a period 
in the mission when the gyro data were accurate and had low noise (0.003 deg/sec root-mean-square WMS] 
standard deviation on each axis). The reference attitude is a single frame Quaternion ESTimator (QUEST) 
solution computed using fine Sun sensor data. Single-frame QUEST attitudes computed with fine Sun sensor 
data are accurate to within 0.05 degree for roll and yaw and are considered an absolute reference for those 
axes. Due to the close alignment of the pitch axis and Sun line for the full Sun sensor coverage geometry, the 
QUEST pitch solution is based mostly on horizon scanner data and is accurate only to withm about 0.2 degree. 
To simulate typical sensor observability conditions in the batch ‘and filter runs, 80 percent of the Sun sensor 
data have been manually flagged and are not used in the estimation process. The timespan is chosen so that 
Sun sensor coverage occurs at the beginning and end of the orbit. The filter pitch and roll (Figures 1 and 2) 
follow the sensor observations closely and remain within 0.3 degree of the reference QUEST pitch and roll. 
The filter yaw generally diverges when Sun sensor data are lost through the middle of the orbit. However, 
trial-and-error tuning can postpone divergence until Sun sensor data are reacquired (Figure 3). The batch 
attitude (Figures 4 through 6) diverges from the QUEST solution by up to 0.3 degree. Departures of the batch 
solution from the reference are attributed to a nonoptimal value of the epoch state, owing to the dependence on 
the less accurate horizon scanner data, and to a random walk in the gyro propagation that exists even for 
low-noise gyros. 

Figures 7 through 12 show batch and filter comparisons from a period in the mission when the pitch and roll 
gyro noise was very high (0.012 deg/sec RMS). The batch pitch and roll (Figures 7 and 8) diverge by up to 0.7 
degree. Pitch and roll propagation shows little correlation with real attimde motion. Even the batch yaw 
(Figure 9), with lower gyro noise (0.005 deg/sec RMS), is degraded through coupling of the large roll error 
into yaw. The Kalman filter (Figures 10 through 12) clearly performs better than the standard batch FADS in 

-0.5000 

- O  3 0 0 G 1  
Ess 1 FSS 

I ........... I I 1 ....... .. .. 

Figure 1. One-orbit pltch comparisons for the filter solution using accurate gyro 
data for propagation (solid line) and the single frame QUEST reference 
solution (points) 
(Periods of fine Sun sensor data availability for this timespan are 
denoted by the dashed line.) 
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Figure 2. One-orbit roll comparisons for the filter solution using accurate gyro 
data for propagation (solid line) and the single frame QUEST reference 
solutlon (points) 
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Figure 3. Oneorbit yaw comparisons for the filter solution using accurate gyro 
data for propagation (solid line) and the single frame QUEST reference 
solution (po in ts) 
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Figure 4. One-orbit pitch comparlsons for the batch solution using accurate gyro 
data for propagation (solid line) and the single frame QUEST reference 
solution (points) 
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Figure 9. One-orbit yaw comparisons for the batch solution using high noise gyro 
data for propagation (solid line) and the single frame QUEST reference 
solution (points) 
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Figure 10. One-orbit pitch comparisons for the filter solution using high noise gyro 
data for propagation (solid line) and the single frame QUEST reference 
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this example. However, the value of the process noise covariance matrix (the principal tuning parameter of the 
filter) that removes the divergence in yaw is inconsistent for different time spans. This difkulty may be 
overcome by determining different process noise terns for various levels of gyro noise, but it limits the 
usefulness of the filter for routine attitude determination. 

4. DYNAMICS ESTIMATION - BACKGROUND 

An alternative to gyro propagation altogether has been implemented in ERBS attitude support (References 3 
and 4). Euler’s equation for rigid-body motion was solved for the angular velocity using spacecraft control 
system telemetry data for computing the control torques and mathematical models for computing the 
disturbance torques. Using these modeled rates forpropagation in the standard batch FADS, matches to within 
0.2 deg of accurate gyro-propagated solutions were obtained. However, modeled attitudes of this accuracy 
require the use of several uncertain parameters tocompute the pitch axis disturbance torque. These parameters 
were identified as the spacecraft x-z product of inertia, In, important in the pitch component of the gravity 
gradient torque; and the x and z residual dipole moments, m, and m,, important in the pitch axis magnetic 
disturbance torque. Values for these parameters were found to be inconsistent for different data spans and had 
to be determined manually for each run by trial and emor. 

To make routine use of the dynamics model practical, an automatic method of determining the uncertain 
torque parameters is necessary. The original batch FADS offers a convenient framework for estimating these 
parameters. The original FADS solves for a nine-dimension state vector consisting of the epoch attitude, gyro 
drift rate biases, and gyro scale factors. In the dynamics estimator, the three gyro scale factor state vector 
elements are replaced with the dynamics parameters I,, m,, and m,. (Adding more state vector elements to 
the nine-dimension state would require extensive software modifications, and the gyro scale factor is not 
strictly applicable to the modeled rates anyway.) In the modified FADS, the epoch attitude estimation method 
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is unchanged; however, the epoch rate biases now correspond to the initial angular velocity in the integration 
of Euler's equation and are estimated slightly differently (a priori values for the three rates are taken as zero for 
roll and yaw, and the one-revolution-per-orbit rate for pitch). The only changes in the estimation are the partial 
derivatives of the attitude with respect to the new state parameters. To obtain a correct nonlinear solution of 
the dynamics parameters, the Euler solution is performed inside the FADS differential correction iteration 
loop (the new estimates of the torque parameters change the modeled rates for each iteration). 

The following is a discussion of the modifications to the FADS estimation process. The partial derivatives of 
the current attitude error, AZ, with respect to the state parameters (epoch attitude, ASo, epoch angular 
velocity, A&, and A 6  comprising the dynamics parameters) are 

There are two linearized differential equations governing the propagation of attitude and angular velocity 
error. 

(2) dAz - = - CiAZ + A 6  
dt 

The primed angular momentum fi' is the total angular momentum, including both that of the body 
(I@ + A$) and the wheel g. (The tilde denotes the antisymmetric matrix construction of a vector.) 

Gf = 1(6 + A$) + (4) 

The vector Afi  is the error in the torque used to propagate the attitude. The columns of the torque derivative 
matrix are 

-- 'As - (0 - B, B,)T 
a b ,  

-- '" - (- B, B ,  O)T 
a b ,  (7) 

where p is the gravitational constant, r is the distance to the center of the Earth, and 
geomagnetic field in body coordinates. 

The solutions to the attitude and angular velocity error equations have the following form 

is the measured 

A<(t) = $(t)A&, + q(t)AGo (8) 

A6(t) = c(t)AG0 + y(t)Ac (9) 
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If the coefficient matrices can be considered constant over a short time, the state transition matrix (+) is the 
matrix exponential of the coefficient matrix. 

COOT Q = cosot[l] + (1 - c0sot)- - sinot- @ = e-6it II 112  II I1 
The variational matrix (Y) is the integral of the state transition matrix. 

sin ot D o o T  
I) (t) = @(z)dz = I(,[l] + (cosot - 1)- - (sinot - wt)11,(12 (11) 

0 i II II 

Such closed-form expressions are not now available for the angular velocity error (equation 3). These will be 
approximated by the first few terms of the power series expansion for the matrix exponential 

where 

Over long time spans, when the coefficient matrices may not be constant, these equations can be solved 
recursively. The closed-form expressions and truncated series approximations above can be used over the 
short individual time steps to update the previous solution values. 

where 

Ei = e% 

and 

Lf the partial derivative of the torque with respect to the dynamicsparameters is almost constant over the short 
time step, it can be brought outside of the integral. This last expression then can be approximated as follows: 
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The accumulated matrix for the attitude error is 

The accumulated matrix for the angular velocity error is 

aAZi aAZi- aAZi aAGi aAZi-, -- + 7- = @ i T  + visi  JAG^ - +'X aaoiaao0 aao, 

where 

The accumulated mamx for the product of inertia and residual dip~c:  moments is 

ri is computed recursively as follows: 

where 

Combining these results, the partial derivative matrix of current attitude error with respect to the epoch 
attitude and angular velocity errors and dynamics parameters can be computed 

F~ = + i ~ i - l  + vi 0: si : ri 1 (26) 

where 
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5. DYNAMICS ESTIMATION - RESULTS 
To evaluate the performance of the ERBS dynamics estimation algorithm, pitch attitudes computed using the 
manual trial and error method and the dynamics estimator are compared with the gyro-propagated reference 
pitch. Figure 13 shows the modeled-to-reference pitch attitude history with the manually determined values 
of I=, m,, and rn,. With the manual variation of parameters method, approximately 12 runs of the Euler 
solution and FADS subsystem by an experienced analyst ‘and about 2 hours of wall clock time were required to 
achieve a match of about 0.2 degree to the reference pitch. The modeled-to-reference pitch for the dynamics 
estimation is shown in Figure 14. Automatic estimation of the dynamics parameters was accomplished in five 
differential correction iterations and in a wall clock time of only 5 minutes. Table 1 gives the values of the 
parameters for each run, together with the RMS standard deviation of the fit to reference pitch and the 
weighted observation residuals. Not only does the automatic estimation greatly increase the efficiency of the 
dynamics determination process, but it also results in a better fit to the sensor measurements than was 
accomplished manually. Roll and yaw from the dynamics estimator solution, shown in Figures 15 and 16, 
match the gyro reference to within 0.1 degree RMS. 
It is possible that the improvement in modeled pitch is due to the increased degrees of freedom in estimating 
the pitch axis disturbance torque and that the actual perturbations may be other than those modeled as gravity 
gradient and magnetic. However, these two disturbance torques are expected to be dominant for pitch. 

Knowledge of the dynamics parameters may also be used to improve the onboard control system 
performance. For example, a momentum wheel bias voltage could be uplinked to offset the constant gravity 
gradient pitch torque from the non-zero I, inertia product, or a dipole bias could be uplinked to offset torques 
produced by the residual magnetic dipole moment if consistent values were observed. Trend analysis of the 
dynamics parameters is also possible. Table 2 shows estimated values of In, m,, and m, from recent mission 
data. 

Figure 13. 
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-42.8 0.93 2.64 1.13 

Table 2. Dynamics Parameter Trends 
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6. CONCLUSIONS 
Two strategies to overcome the loss of accurate gyro data in ground attitude determination support of the 
ERBS mission have been implemented. Both methods involve a modification of the existing ADS, taking 
advantage of existing software to minimize development effort. 
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Although the Kalman filter performs better than the batch estimator for very high gyro noise, the filter yaw 
solution is very sensitive to the process noise. Divergence in the filter yaw may be reduced by appropriate 
tuning of the process noise terms, but the tunins was found to be inconsistent even for time spans with the 
same gyro noise levels. This inconsistency in yaw behavior makes routine use of the filter impractical. An 
adaptive Kalman filter that determines the process noise automatically would be more suitable for the 
application to E M S  attitude determination, where the propagation noise has varied widely over the course of 
the mission. 

The dynamics estimator is a viable solution to the problem of gyro failure for ERBS attitude ground support. 
Modeled rates can be used to propagate one-orbit attitudes to an accuracy within the 0.25-degree requirement 
with no a priori knowledge of disturbance torque parameters. Values of the dynamics parameters determined 
in the estimation process are also useful for analysis of control system performance. The dynamics estimator 
is currently being evaluated for operational use to restore full Flight Dynamics Facility attitude ground 
support of the ERBS mission. 
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POLAR DECOMPOSITION FOR ATTITUDE DETERMINATION 
FROM VECTOR OBSERVATIONS 
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Abstract 

This work treats the problem of weighted least squares fitting of a 3D 
Euclidean-coordinate transformation matrix to a set of unit vectors measured in the 
reference and transformed coordinates. A closed-form analytic solution to the problem 
is re-derived. The fact that the solution is the closest orthogonal matrix to some 
matrix defined on the measured vectors and their weights is clearly demonstrated. 
Several known algorithms for computing the analytic closed form solution are 
considered. An algorithm is discussed which is based on the polar decomposition of 
matrices into the closest unitary matrix to the decomposed matrix and a Hermitian 
matrix. A somewhat longer improved algorithm is suggested too. A comparison of 
several algorithms is carried out using simulated data as well as real data from the 
Upper Atmosphere Research Satellite. The comparison is based on accuracy and time 
consumption. It is concluded that the algorithms based on polar decomposition yield a 
simple although somewhat less accurate solution. The precision of the latter 
algorithms increase with the number of the measured vectors and with the accuracy of 
their measurement. 

*Professor, member Technion Space Research Institute. 
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1. INTRODUCTION 

The problem of attitude determination from vector observations is as follows. A 
sequence, bi, i=0,1,2, ... K of unit vectors is given. These unit vectors are the 
result of measurements performed in vehicle body axes of the directions to known 
objects. The sequence, ri, i=0,1,2, ... K of unit vectors, is the sequence of the 
corresponding representation of these directions with respect to some reference 
coordinate system. We wish to find the attitude matrix, A, such that the cost 
functional p(A) defined as follows 

i =  1 

is minimized. This problem, which is basically a least-squares fit problem for the 
attitude matrix, A, was posed in [l] and is generally known as Wahba’s problem. This 
problem has been treated extensively [see, e.g. 2-11]. 

In the next section we derive an analytic solution to Wahba’s problem, then in 
Section 111 we show, in a rather simple way, that this solution is actually the 
closest orthogonal matrix to a matrix defined on the reference and measured unit 
vectors ri and bi respectively, and on their relative weight. Several algorithms for 
computing the attitude matrix are considered in that section. The connection between 
polar decomposition of matrices and the solution to Wahba’s problem is then discussed 
in Section IV. Two algorithms for computing the solution, which are based on the 
polar decomposition, are considered. A numerical comparison between these algorithms 
and other suggested ones, using simulated as well as real satellite data, is 
presented in Section V. The conclusions of this work are finally presented in Section 
VI. 

11. DIRECT SOLUTION OF WAHBA’S PROBLEM 

Since only the relative value of the weights, ai, matter, we may, with no loss 
of generality, normalize the weights to give 

i = l  
It can be shown [2] that 

T p(A) = 1 - tr(AB ) 

where tr denotes the trace of a matrix and 

B = K T  1 aibiri 
(3) 

i = l  

We seek the orthogonal matrix, A, which minimizes p(A). Obviously, that matrix 
maximizes tr(AB ). Using the method of Lagrange multipliers, we can incorporate the 
orthogonality constraint on A into the maximization problem of tr(AB ) by defining 
the new functional p*(A) 

T 
T 
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p*(A) = tr(BAT) + tr[iL(AAT - I)] (4) 

where I is the 3x3 identity matrix. The matrix L is a matrix of Lagrange multipliers 
scaled to enable the inclusion of the one half factor which is added for simplicity 
of the ensuing derivation. Also note that with no loss of generality, we may choose L 
to be symmetric. The new cost function, p*(A), can be written as follows 

Use now the directional derivative to maximize p*(A). To accomplish this, express A 
as follows 

A = A. + eH (6) 

where A. is the A matrix which maximizes p*(A), e is a scalar variable, and H is any 
3x3 real matrix. Note that A in (6) is expressed as a sum of the maximizing matrix, 
Ao, and a "step", e, in the "direction" of H. Also note that any real 3x3 matrix can 
be expressed in this way. Substitution of (6) into (5) gives 

p'(e) = tr(B(A, + eH)T + L[(Ao + eH)(Ao + eH)T - I])  (7) 

Next differentiate p'(e) with respect to e to obtain 

de- dp'(e)  - tr[BHT + LH(A;f + eHT) + L(Ao + eH)HT] 

A necessary condition for p'(e) to have a maximum at A. is 

wIezo = 0 for all H 

Applying (9) to (8) yields 

tr[(B + LAo)HT] = 0 for all H 

The latter can exist only if 

B + LAo = 0 

or, assuming L is non-singular, 
1 A. = L- B 

Using (1 1) in the orthogonality constraint on A. and making use of the fact that L is 
symmetric we obtain 

1 T - 1  A ~ A ~  = L- BB L = I 

which yields 
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T 2  BB = L 

T The matrix BB is a positive definite matrix thus it can be decomposed as follows 

2 2 2  B B ~  = v d i a g ( ~ 1 , ~ 2 , ~ 3 ~  vT 
2 2 2  2 2  2 where diag(P1,P2,P3} is a diagonal matrix whose elements are p1,p2 and p3. 

Consequently 

T L = %BBT)1/2 = V diag(kpl, kP2, kP3] V 

Substitution of (12) into (1 1) yields 

A. = T(BBT)-li2B = V diag(fPl,  fp2 ,  f P 3 )  VT B (13) 

It can be verified that to obtain maximum of p*(A) we need to choose the plus signs 
in (13). We designate it by choosing the plus sign in front of (BB1)li2; that is 

I I 

which is the sought solution of Wahba’s problem. 

discussed next. 
The expression given in (14) is also the solution of another problem as 

111. THE CLOSEST ORTHOGONAL MATRIX 

Consider the following problem. Given a real matrix, B, what is the closest (in 
the Euclidean-norm sense) orthogonal matrix to it? To solve this problem denote the 
square of the Euclidean norm of the difference between B and any same order real 
matrix, A, by $A); that is 

s(A) = 1 ( B  - AI l 2  
(where I I. I I denotes the Euclidean-norm) and find the 3x3 orthogonal matrix, A, which 
minimizes s(A). It can be easily shown that 

s(A) = tr[(B - A)(B - A)T] 

thus 

S(A) = t r ( ~ ~ ~  - B A ~  -  AB^ + A A ~ )  

Using the fact that A has to be orthogonal and the properties of the trace operation 
it can be easily shown that 

T Obviously, that A which minimizes s(A) is the A which maximizes the term tr(AB ). An 
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inspection of (2) reveals that this particular A is also the solution to Wahba’s 
problem. This result can be stated as follows. The closest orthogonal matrix to B, 
where B is as defined in (3), is the solution to Wahba’s problem. Indeed if we 
proceed with finding that orthogonal A which minimizes (15), we will obtain the 
result given in (14); namely, 

T -1/2B A. = (BB ) 

Consequently, any solution to the closest orthogonal matrix problem is also a 
solution to Wahba’s problem. This conclusion will be exploited in the ensuing. 

The solution expressed in (16) to the closest orthogonal matrix problem was 
obtained and investigated quite extensively in the past [12 - 191. The solution of A. 
using (16) is cumbersome. Various iterative solutions have been investigated [15 - 
191. 

Another solution to the closest orthogonal matrix problem, and hence to Wahba’s 
problem, makes use of the singular value decomposition (SVD) of Ao. This solution is 
presented next. It is well known [20] that any matrix, and therefore also B, can be 
decomposed as follows 

T B = USV 

where U and V are 3x3 orthogonal matrices and S is a diagonal matrix whose elements 
are the nonnegative square roots of the eigenvalues of B B. It can be shown that T 

T A. = UV 

The latter was used in [21] to solve Wahba’s problem. 

IV. POLAR DECOMPOSITION 

It is well known [22] that B can be decomposed as follows 

B = PH (17) 

where P is orthogonal and H is symmetric. This decomposition is known as polar 
decomposition (PD). It was shown [23] that P is precisely the orthogonal matrix 
closest to B; that is, P of the polar decomposition is the solution to Wahba’s 
problem when B is as defined in (3). We can write therefore 

B = AoH 

(where A. is, of course, the closest orthogonal matrix to B). This yields 

1 A. = BH- 

We wish now to utilize the PD concept for solving Wahba’s problem. We consider two 
cases as follows. 

IV. 1: The Error Free Case 

Assume now that both sequences of vectors bi and ri i=1,2,3, ... K are error free. 
We can then write bi=Ari. Substitution of this equation into (3) yields 
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K T  K K T  B = 1 aibiri = 1 aiArirT = A 1 a.r .r .  
1 1  1 

i = l  i = l  i = l  
Define now the matrix R as follows 

R = K T  1 airir 

i = l  

then from (19) we obtain 

where R is a symmetric matrix. Comparing (21) with (17) it is easy to see that in 
this case (21) is the PD of B where A=P and R=H. It is clear then that Ao=A. In this 
case A. can be found as follows 

(22) 1 A. = BR- 

provided that in constructing R, according to (20), we use at least 3 non-collinear 
vectors. (This assures that R is invertible.) 

IV. 2: The Actual Case 

In practice the vectors bi are contaminated by measurement noise. However, since 
the position of the body and the time of measurement are known within a high degree 
of precision, the error in the determination of the ri vectors is negligible. Denote 
the error in bi by ni then we can write that 

bi = ni + Ari 

Using the last equation in (3) we obtain 

T B = 1 ai(ni + Ari)ri 
K 

i = l  
This can be written as 

T B = 1 ainirT + 1 aiAriri 
K K 

i = l  i = l  
which yields 

T 
1 1 1  1 1  i 

K K 
B - 1 a.n.rT = A 1 a.r.r 

i =  1 i = l  
Using (20) we obtain from the last equation 

248 



(23) 
J 

We can now use the last equation to obtain the "best" estimate of A. We note that B 
contains all measured information, therefore we compute A, the "best" estimate of A, 
as the conditional expectation of A given B [24]. Performing the conditional 
expectation on both sides of (23) yields 

A 

J 

It is assumed that the measurement errors are unbiased, therefore 

E(ni /B]  = 0 ( 2 5 )  

(The latter assumption is based on the premise that the measurement biases have been 
removed or else are very small. If this is not the case, there is no way to obtain 
the correct attitude from the biased measured vector no matter what algorithm is 
used.) Substitution of (25) into (24) yields 

E(-) = B R - ~  

thus 
I I 

where B and R are computed according to (3) and (20) respectively. 
Note that this result was first obtained by Brock [13, eq. ( 5 ) ]  in a way 

unrelated to the notion of polar decomposition and with no consideration of the 
randomness of n.  

If ni are very small or the number of measurements is large such that the 
particular realization of ni has a negligible mean, which complies with the 
assumption in (25), then the computation of A according to (26)  yields an accurate 
estimate of A. When this is not the case, the estimate can be quite erroneous. It is 
interesting to note that when Kc4, A zeros the cost function of Wahba's problem which 
is given in (1) as follows 

A 

A 

i = l  
A 

A A A 
even if A is not equal to A. This is a result of the approximation bi=Ari which was 
made in the derivation of A. However, while A drives p(A) to its minimal value, A is 
not necessarily orthogonal. (Recall that we seek the orthogonal matrix which 
minimizes p(A)). We can correct the non-orthogonality of A by the application of one 
orthogonalization iteration as follows [ 17, 181 

A 

A A - T  A 
A' = 0S(A + A) 

A 
This operation yields a close to orthogonal matrix, A', which is usually also closer 
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A? = o . ~ ( B - ~ R  + B R - ~ )  

V. NUMERICAL COMPARISON 

(28) 

Five possible solutions to Wahba’s problem are considered as follows. 

(1) QUEST 

Use the algorithm QUEST 161 to obtain, q, the quaternion which corresponds to 
the solution matrix of Wahba’s problem, and then use q to compute the solution 
matrix itself which we denote by Aqst. 

(2) ITERATIVE ALGORITHM (IA) 

Apply the iterative orthogonalization algorithm [17, 181 starting with the 
computation of B according to (3) and then continue with 

A. = B (29.a) 
A 

A 
= 0.5(kT + i.) 

Aj+ 1 J J 
(29.b) 

which converges to the solution of Wahba’s problem given in (13). We denote the 
final matrix by Aitr. 

(3) SINGULAR VALUE DECOMPOSITION (SVD) 

Apply the SVD algorithm to decompose B into 
T B = USV 

and compute 

T 
Asvd = UV 

(30.a) 

(30.b) 

As explained in Section 111, Asvd too is the solution of Wahba’s problem. 

(4) FAST OPTIMAL MATRIX ALGORITHM (FOAM) 

Use the FOAM algorithm E251 to obtain the solution matrix to Wahba’s problem. We 
denote the computed solution by Afom. 

(5) POLAR DECOMPOSITION (PD) 

Compute the matrices B and R, the latter according to (20), and then calculate 
the estimate of the solution to Wahba’s problem according to (26) 
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A 1 A = BR- 

(6) IMPROVED POLAR DECOMPOSITION (IPD) 

Compute an improved estimate of the solution to Wahba's problem by performing 
one orthogonalization iteration on the preceding estimate. The overall algorithm 
is as in (28) 

A' = o . ~ ( B - ~ R  + B R - ~ )  (28) 

V.l Results with Simulated Data 

The five algorithms were tested with simulated data. The importance of tests 
with simulated data stems from the fact that using real data we do not know the 
correct attitude. This constitutes a major difficulty since the difference between 
algorithms may be smaller than the difference between the correct attitude and the 
computed ones. Only when we use simulated data can we observe the difference between 
the computed attitude and the correct one. The simulated measurements of vectors in 
body axes were obtained by transforming the reference, ri, vectors to body axes using 
A, the correct attitude matrix, addition of a noise component to each component of 
the transformed vector and normalization of the resultant vectors. The added noise 
components had a zero mean and a standard deviation value of 0.144. Typical 
simulation results are shown next for four and three measured vectors. Three cost 
values were computed in order to evaluate the accuracy of the results. The cost p is 
Wahba's cost function computed according to (3) for the particular solution matrix. 
The cost f is the Euclidean norm of the difference between the particular solution 
matrix and the correct attitude matrix. Finally, the cost J is a measure of the 
non-orthogonality of the solution matrix. It is the Euclidean norm of the matrix 
XX -I where X is the particular solution matrix. 

V.l . l  Four reference vectors 

T 

.267261 - .666667 .26726 1 - .4472 14 

,801 784 -.333333 
r1 = [ s M ~ z ~ ]  r2 = [-.666667] r3 = [-.801784] S34522 r4 = [ .m 3944271 

Four "measured" body vectors 

315399 -3722 14 .290203 -.118959 
bl  = [ S ~ ~ W I ]  b2 = [-,0752801 b3 = [ - . 2 0 ~ 9 ]  

b4 = [ - .679197] .706940 - .033975 .483296 .934528 

Four weights 

al = ,100000 a2 = .300000 a3 = .400000 

The correct attitude matrix 

a4 = .200000 

.764744 -293558 S73576 
.486370 .59W90 

-.822963 558660 1 
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Solutions 

.770135 .274589 .575754 
-.629265 .474889 .615228 
-.lo4485 -.836111 S38518 

A. = 
Itf 

*svd = 

.761290 .266299 .591204 
-.639697 .457436 A17689 
-. 105948 -.848432 .5 18593 

.761290 .266299 .591204 
-.639697 .457436 .617689 
-.lo5948 -.848432 .518593 

1 .770135 .274589 .575754 
-.629265 .474889 A15228 
-. 104485 -3361 1 1 S385 18 fom 

1 .770556 .263 174 S61689 
-.654729 .455528 .628148 
-.143061 -.851596 S51271 

1 .768038 .263582 S84080 

-.115625 -.840565 .530461 
.473739 .615274 

A 

V.1.2 Three reference vectors 

r1 = [ .267261 S M ~ Z ]  r2 = [::EE?Zq 
.80 1784 -.333333 

Three "measured" body vectors 

.815399 -.872214 
b2 = [-.075280] .483296 bl = [ . 5 7 7 ~ 1 ]  

- .033975 

Three weights 

a l  = .125000 a2 = .375000 

= .44078E-03 
f = .37578E-01 
J = ,20588E-06 

pqst 

qst 
qst 

= .22933E-03 
fitr = .67264E-01 
Pitr 

Jit, = .19037E-06 

= .22933E-03 
f svd = .67264E-01 
Jsvd = .18014E-15 

psvd 

= .44078E-03 horn 
ffom = .37578E-01 
Jfom = .86667E-16 

p = .67846E-04 
f = .75595E-01 
J = .11190E+00 

p' = .33350E-03 
f '  = .52240E-01 
J' = .253 19E-02 

.267261 
'3 = [-::;:;;;] 

a3 = SO0000 
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The correct attitude matrix 

.764744 .293558 .573576 
.486370 .599090 

-.lo3103 -.822963 S58660 

Solutions 

.76773 1 .27645 1 S78069 
-A31488 .479442 .609392 
-.lo8683 -332893 S42658 

A. = 
1 tr 

.758264 .271018 S92946 
-.643834 .454336 .615676 
-.lo2537 -.848604 .518997 

.758264 .271018 .592946 
-.643834 .454336 .615676 
-.lo2537 -.848604 .5 18997 

Asvd 

A 
A =  

.76773 1 .27645 1 578069 

.63 1488 .479442 -609392 

.lo8683 -.832893 S42658 

.739265 .275664 3 6 7 8 4  
-.664499 .459428 .635984 
-.172692 -.839769 ,575035 

I .753716 .268839 .600058 

-.I3 1702 -.833708 ,539069 
-.645610 .483007 .593789 

A 

= .5 5 8 84E-03 
f = .29705E-01 
Pqst 

qst 
Jqst = .67617E-07 

= .23600E-03 
fitr = .67219E-01 
Pitr 

Jitr = .32845E-06 

= .23600E-03 psvd 
fsvd = a67219E-01 
Jsvd = .11102E-15 

= S5884E-03 Pfom 

Jfom = .30626E-15 
f fom = .29705E-O 1 

p = .11783E- 14 
f = .97131E-01 
J = .1664OE+OO 

p’ = .60457E-03 
f ’  = .53687E-01 
J ’  = .53638E-02 

We observe that, as expected, Ai& and Asvd are practically identical. We also 
observe that as expected, for three measured vectors (K=3) Wahba’s cost, p, for A is 
practically zero. The single normalization cycle which generates A’ improves the 
orthogonality (reduces J) considerably. ThisAcomes at the expense of an increase in 
p. For four measured vectors (K=4), p for A is similar in value to that of the other 
algorithms, and again, the single normalization cycle improves orthogonality 
considerably at the expense of Wahba’s cost. 

A 

A 
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V.2 Results with UARS Data 

The following are results of the application of the five algorithms to data 
measured on-board the Upper Atmosphere Research Satellite (UARS). UARS was deployed 
on September 15, 1991 at 04:23 GMT by the shuttle spacecraft Discovery which was 
launched on September 12,1991, at 23:12 GMT. The data were measured on September 30, 
1991 at 18:32:31.206749916 GMT. The f i s t  vector corresponds to the Sun Sensor, the 
second to the triad of Magnetometers, and the third to the Infra-Red Horizon Sensor. 

The reference vectors 

- .992324 - .8 141 77 .543 295 
r3 = [-3426201 . W 6  19 = [-.113458] r2 = [ .550862] 

-.049192 -. 183487 

The measured body vectors 

-.810765 -.455867 .002528 
bl = [-.294952] 

b2 = [ -.870291 .186491] b3 = [ .003031] .999992 -.411403 

Three weights 

a l  = .243291 a2 = BO2506 a3 = .754203 

Solutions 

= .96423E-03 Pqst .826549 .178850 -.533694 
.178119 316336 S49426 
.533939 -.549189 642885 ] Jqst = .20183E-06 

= .89246E-03 I Jitr = .15599E-07 

.832537 .172669 -.526372 

.180280 314010 S52166 

.523814 -.554593 .646564 

Pi tr 

= .89246E-03 psvd .832537 .172669 -.526372 
.180280 314010 S52166 
.523814 -.554593 .646564 1 Jsvd = s9700E-15 

Asvd 

= .96423E-03 P fom 

Jfom = ,46516E-15 

.826549 .178850 -.533694 

.178119 316336 S49426 

.533939 -.549189 .642885 ] Afom 
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p = .13611E- 12 I J = .28575E+00 

-818163 .211577 -.510709 
.182985 .778550 SO8996 
.466235 -.700019 .572641 

A 

Aforn A 

p’ = .39206E-02 I J’ = .16305E-01 

337978 .176650 .5 1793 1 

SO3300 -.622646 .a6208 
.217866 .767101 .613477 

A 

A 
A ’  

Here too we observe the identity between Aitr and Asvd. As before, we also 
observe the reduction in J at the expense of an increase in p when a single 
orthogonalization cycle is applied to A to generate A’. 

V.3 Time Consumption Analysis 

A A 

Three  
measured 
v ec tor s 

Four 
measured 
vec to r s  

A computation-time measurement was performed on all five algorithms using the 
simulated three and four measured vectors. The runs were made on a VAX 92 10 computer 
employing the VMS Version 5.4-2 operating system. The time measurement routine used 
the internal machine clock at a resolution of 10 msec. In order to increase the 
resolution, the runs were performed over 5oooO successive solutions and the total 
time was then divided by 5oooO. The results are presented in Table I. 

Table I: Algorithm Computation Time (msec). 

0.0890 

0. 1060 0 . 0 7 0  

Ai  t r  

0.068 0 .094  

0.790 

0.694 

*svd 
~ 

0.548 

0.526 

0 . 0 6 0  1 0.058 1 0 .084  

I I 

I I 

Note the decrease in computation time of Aiu when the number of measured vectors 
increased from 3 to 4. This is due to the fact that in the four vector case the 
convergence criterion was met after only 7 iterations whereas in the 3 vector case 8 
iterations were performed until the same convergence criterion was met. In all our 
tests it was found that when a fourth measured vector was added, less iterations were 
required. This stemmed from the fact that when a fourth measured vector is added the 
orthogonality of B increases provided the fourth vector is not a linear combination 
of the other three. The decrease of the computation time of Asvd with the increase of 
the number of measured vectors is not consistent. It depends on the number of 
iterations needed for the completion of the SVD calculations. 
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VI. CONCLUSIONS 

It was shown that the solution to Wahba's problem is the closest orthogonal 
matrix to B where B is defined on the measured vectors and on weights associated with 
their measurements. The weights signify the confidence assigned to the measurements. 
The matrix B includes all the information contained in the measurement. 

Once it was established that the sought solution is the orthogonal matrix 
closest to B, algorithms for computing that orthogonal matrix were considered, and an 
algorithm was discussed which is based on the polar decomposition of matrices into 
the closest unitary (in our case: orthogonal) matrix and a Hermitian (in our case 
symmetric) matrix. The accuracy of the algorithm increases with the accuracy of the 
measurements and with their unbiasedness. If the measurements are error free the 
algorithm yields the exact solution. 

When only three measured vectors are used the new algorithm yields a solution 
which zeros Wahba's cost; however, the solution is not necessarily orthogonal. An 
application of one orthogonalization iteration to the solution matrix constitutes a 
modified algorithm which yields a better solution. Although the latter algorithm 
generates a matrix which increases Wahba's cost. The new matrix is closer to 
orthogonality. We note that the same iteration cycle if applied repeatedly to B 
itself, yields eventually the optimal solution as shown in the examples; however, 
since B is usually quite far from orthogonality, it takes several iterations to 
obtain the solution. 

The advantage of the algorithm is in its simplicity which enables its use for 
obtaining first cut solutions using "back-of the envelop" like programs such as 
MathCAD. Another advantage of the first new algorithm is its ability to indicate the 
precision of the measurements. This stems from the fact that generally the closeness 
of the solution matrix to orthogonality is indicative of the precision of the 
measurements. It is interesting to note that the fact that the two PD algorithms 
yield the exact solution in the noise-free case is analogous to the fact that the 
largest eigenvalue of the 4x4 K matrix used in the QUEST algorithm is precisely 1 in 
the noise-free case. 

The two PD algorithms were tested vis-a-vis other popular algorithms using 
simulated and real UARS data. 
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ATTITUDE ANALYSIS IN FLATLAND: 
THE PLANE TRUTH 

Malcolm D. Shuster 

The  Johns Hopkins University Applied Physics Laboratory 
Laurel, Maryland 20723-6099 

Many results in attitude analysis are still meaningful when the attitude is re- 
stricted to rotations about a single axis. Such a picture corresponds to attitude anal- 
ysis in the Euclidean plane. The present report formalizes the representation of atti- 
tude in the plane and applies it  to some well-known problems. In particular we study 
the connection of the “additive” and “multiplicative” formulations of the differential 
corrector for the quaternion in its two-dimensional setting. 

Introduction 

Icall our world Flatland, nol becnuse we call it so, but 10 make 
its nature clearer to you, . . . who ase privileged lo live in Space. 

--A. Squure iri Flatland 

The  treatment of attitude, because of the non-linearity and non-commutivity of the compo- 
sition rule, is much more difficult to  treat than position, for which components may be com- 
bined by simple addition. The  complexity of the attitude composition rule leads to virtually all 
attitude problems being intrinsically three-dimensional or, in the case of the quaternion, four- 
dimensional. There is, however, a class of attitude problems which a re  much simpler, namely, 
single-axis problems, and the study of these will in many cases illuminate the more complex 
problems. The present report attempts to formalize such a treatment. 
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Attitude in Flatland 

Having amused myserf iiI u late hour wid1 my fuvouriie recre- 
ation of Geomefty, I liad refired IO rest wirli an unsolved prob- 
lem in my mind. 

Let us imagine that the world, Flatland, has only two dimensions and a constant isotropic 
Euclidean metric. Such a world was imagined by Edwin Abbott Abbott [ 1 1, with the intent of 
satirizing the social and political foibles of his day as much as  of clarifjing the concepts related 
to  the dimensionality of space. Our interest here is more limited than Abbott’s. We develop 
the mathematical structure of Flatland somewhat further in order to better understand those 
aspects of attitude which d o  not depend on  the dimensionality of space. The quotations which 
appear in this report a re  from [ 1 I. Following Abbott we will refer to our  three-dimensional 
world as Space. 

In Flatland, vectors are, of course, two-dimensional 

v =  [::I 
The “dot” product takes the usual form 

while the “cross product” is now a scalar 

There is, therefore, no  veclor product, and as alternate names to scalar and vector products we 
might prefer symmetric and asymmetric products. The  lack of a meaningful vector product in 
two dimensions was ultimately the cause of many years of grief €or Hamilton [ 2-41. 

The altitude m a r k  in two dimensions is a 2 x 2 proper orthogonal matrix, A, which trans- 
forms column vectors in the usual way 

with 

A ‘I’ i t  = Alii T = I ,  

det A = + 1 ,  

where I denotes the 2 x 2 identity matrix, 

Ir [:, ;I. (7) 

It is a simple matter to show that in two dimensions the attitude matrix may be represented 
as 

- sin 8 COS 8 ’ 1 A = [ cos8 sin I )  
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and 8 is the angle ofrotation. If we define the matrix J according to 

J = [ *  -1 0 ‘1 ’ 
L J 

which satisfies 
2 J = - I ,  

(9) 

then Euler’s formula becomes simply 

A = c o s B I + s i n B J ,  (11) 

which is much simpler than the three-dimensional form [ 5-10]. Note that J acting o n  a vector 
always generates a vector perpendicular to it. The matrices I and J in Flatland have an  impor- 
tance similar t o  that of the 3 x 3 identity matrix and the Levi-Civita symbol in Space. They are, 
in fact, the representations of these objects in two dimensions. 

If we define now 
[ [ ( I ] ]  = (iJ, ( 12) 

which again is much simpler than the three-dimensional variant, and Euler’s formula becomes 

A = exp [f t?]] , (14) 
as in Space. 

Corresponding to the quaternion in Space, in Flatland we must be content with the bkrnion 
(pronounced “by-Ernie-on” and named in honor of Ernest P. Worrell, the character portrayed 
by Jim Varney). The  biernion is delined as 

cos (e/ a) 
for which 

q T q =  1 .  

We continue to  use the notation 
the equations in Space. 

(rather than 6 )  in order to retain a greater resemblance to  

In terms of the biernion Euler’s formula becomcs 

A(Q)  = (sf - q;)l t 242 (11 J (17a) 

(1%) 

(17c) 

( ( IS  - d ) l  t 242  1141 I J  
= (yl I + q2 Ji’. 

The  biernion may be extracted from the attitude matrix in a manner similar to the method for 
extracting the quaternion from the attitude matrix in Space, 

1 
2 

qz = - JTTGX, 
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where 

Biernion composition follows directly from the trigonometric formula and reads 

trA E A,, + A,,  . ( 19) 

(20a) 

= { $ } q =  { q h  - -', (20b) 

q)' = q/ @ q 

where 

Note that biernion composition is commutative, as is the multiplication of attitude matrices in 
two dimensions. 

The Gibbs scalar or Rdrigues scalar is given by 

g = y1/y2 = tan(B/2). (22) 
Thus, 

1 
d T q  [:I ' 

q =  

and Cayley's formula takes the familiar form 

T h e  composition of Gibbs scalars is given by 

It Y' + 9 g =--- 
1 - g'g l 

in complete analogy to the formula for the Gibbs vector in Space. 
The Cayfey-Klein parameters are  

a q? + i q l  = et'/' and 13 E q? - i q l  = e-1'/? - - a = ,  

and the superscript c denotes complex conjugation. These obviously satisfy 

ap = I 

A =  - (a2+p2)1+-(cu' -p2)J.  
It follows that 

1 1 
2 2i 

Attitude Kinematics in Flatland 

Restraining my impatience-for 1 was now under a strong 
temptation to rush blindly at my visilor andpr-eci$itate him into 
Space . . . 

The kinematic equation for the attitude matrix is given as usual by 
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which, in fact, defines w( t ) .  If we define the biernion analogue, 

wr [;I , 

then the kinematic equation for the hiernion is simply 

- Q ( t )  d = p ( t ) @ q ( t )  1 = , f l ( w ( t ) ) c l ( t ) ,  I 
dt 

where 
Q ( w )  = w J 

Likewise, we can partition { q 1 defined by equation (21) in terms of column matrices as 

which leads to  

and 

The kinematic equation for the Gibbs scalar becomes finally 

while that for the angle of rotation is just 

d H  
dt  

= w .  - 

Euler's equation for rigid-body dynamics is simply 

clw 
rl t 

I -  = N ,  

(34a) 

(34b) 

(37) 

where N ,  the torque, is a scalar and I ,  the momeizl of inerlia, another scalar, is given by 

Attitude Errors in Flatland 

I f  Fog were non-exkleni, all lines would appear equally and 
indistinguishably cleur: 

The representation of attitude errors in Flatland follows that in Space, with obvious simpli- 
fications. The error in the attitude matrix, since il has only a single degree of freedom, can be 
written as 

A* = ( S A )  Atrue , (39) 
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with A' a random variable, usually an attitude estimate, and 6.4 is the (multiplicative) attitude 
error, 

611 = ex\){[[ At]]} I + [ [At ] ]  , ( 40) 

with At ,  the attitude error angle, generally an inh i tcs imal  quantity assumed to have zero 
mean. The attitude variance is defincd to be 

where E{ } denotes the expectation. 
The  modeling of vector measurement errors follow a similar pattern. We write 

where t is a zero-mean random variable with variance cr&. In linear approximation this may 
be written as 

W = A V + S W ,  i 43) 

and we have defined [ [v]]  with vector argument to be 

[ [v ] ]  = J v  = [:':,,I . 

Thus, 

7, 7' [ [ l l ] ]  v = -u x v = -u [[VI], 

[[ V ] j Z '  v = 0 ,  

I[ ~l lTI[v1l = u . v 1 

Batch Attitude Determination in Flatland 

I answer that tliougli we cannot see ungks, we can infer them, 
and this with great precision. 

(45) 

We can now examine some well-known algorithms in their Flatland setting. These a re  the 
DYAD algorithm, the two-dimensional analogue or the TRIAD algorithm [ 11-12], and the 
BEST algorithm, the two-dimensional analogue of the QUEST algorithm [ 121. T h e  develop- 
ment o f  these algorithms in two dimensions is very similar lo that of their forbears in Space. 
As can be expected, the results are much simpler in the smaller dimcnsion. 

264 



Tlie DYAD Algotdhm 

For the DYAD algorithm we seek an attitude matrix which satisfies 

w = A V ,  (47) 

where V and W arc  arbitrary vectors. In  a space o f  1 2  dimcnsions, 7i - 1 linearly independent 
vector measurcmcnts arc  rcquircd to uniquely determine thc attitude matrix [ 131. In two 
dimensions, therefore, a single measurement sufliccs. (In one  dimension, zero measurcrnents 
a re  suficient.) 

To construct the attitude matrix we first construct orthonormal dyads of  reference and ob- 
servation vectors as  

and F.) = J i., , (#a) 
v 

rl = - 
191 

and 

and a ,  = J i l  
w 

s ,  = __ 
P I  

From 
7 J = - J .  

it follows that 
?’ J .,1 J = ,-I . 

Hencc, 

Defining now orthogonal matrices (lahclcd by thcir columns) 

S , = t t i . , .  i = 1 , 2 .  

it follows that 

whence 

(49) 

(53) 

(54) 
The  development of the DYAD attitudc variance follows almost identical steps as  in the  cal- 
culation of the TRIAD attitudc covariance in Spacc I 121 with the rcsult 

f L Y A I 1  = Oil. . (55 )  

‘The BESTAlgorithm 

The BEST(Biernion ESTimator) algorithm in Flatli i~d is oniyslightly lcss complicated than 
the QUEST algorithm in Spacc. As usual, wc seek an attitude matrix which minimizes [ 12, 

. 7 1  
14 1 

(56) 
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where the a,, i = 1, . . . , 71 > 2, are  a sct of positive weights, whose sum, we will assume, is 
unity. As in the Space we define a gain function, g( A ) ,  such that 

(57) g ( A )  = 1 - J ( A )  = t r (UTA),  

which is a maximum when J ( A )  is a minimum, and, a s  bcfore the attitude profile matrix is 
given by 

i =  1 

Substituting equation (17a) in equation (57) lcads straightliirwardly to  

where 

s t r ( B T )  = trf l  = I?,, t B,?, 

tr( JB7) = -tr( J B )  = ill, - 2 . 

with 

The  maximization of g( q )  leads to the familiar eigenvalue problem 

but in Flatland X,,,,, can be calculated in closed h r m  ;is 

and 
1 q* = 

Jz' t (A,,,,, t s)" [La: t SI . 
T h e  attitude variance of the BEST algorithm is calculated most easily from the Fisher informa- 
tion matrix using the fact that the BEST algorithm is a maximum-likelihood estimator [ 15 1. 
Assuming the errors to have a Gaussian distribution, the calculation is straightforward and 
leads to  

,l 

(66) 
1= I 

The optimal angle of rotation can also be computcd directly b y  noting that the gain function 
can be written in the form 

g ( 8 )  = s cosH t 2 sin 0 ,  (67) 
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which is obviously a maximum when 8 = 8*, with 

We write the solution of equation (68) more conveniently as 

8’ = arctan?(s ,s) ,  (69) 

where arctan, is the same function as ATAN2 in FORTRAN. Equation (68) leads directly to 
a solution for the optimal attitude matrix, namely, 

Substitution of  equation (65) into equation (17) leads somewhat less directly to  the same re- 
sult, which should be compared with the conslruclion ol the optimal attitude matrix in Space 
developed by Markley [ 161. Marklcy’s FOAM algorithm [ 171 carries over with little change 
into Flatland and yields ncccssarily the same result as cquation (70). 

General Comments on Attitude Estimation in Flatland (arid Space) 

I am about to appear very inconsistent. 

There seems to be some confusion concerning the USC o f  representations in attitude estima- 
tion, which we will now attempt to  muddy further. Typically in attitude determination, one  is 
given a set of measurements, {z, , . . . , z N } ,  from which one  wishes to infer the attitude, which 
we will denote without reference to a rcprcscntation by A. The  space of A we know from long 
experience is an  nz-dimensional manifold, wherc 172 = 1 in Flatland, 171 = 3 in Space, and 
rn = 6 in worlds so unfortunate as to be four-dimensional. An important milestone in ev- 
ery probabilistic estimate of the attitude is the construction of the probability density function 
(pdf) of the measurements as a function oC the attitude, p,, , .,. , z N  (z;, . . . , zh; A),  where the 
primed variables denote the values taken by the (unprimed) random variables, and the attitude 
manifold is assumed to  be simply a parameter space rather than a space of random variables. 
If A is also a random variable then the pdf of interest is p,, , ,,, r , N ,  A ( ~ i ,  . . . , zh, A’). When 
one  constructs a square loss function, one  is, in fact, constructing part of  the appropriate pdf 
assuming Gaussian random noise. 

The  maximum-likelihood estimate is simply thc valuc of A (or A’) which maximizes the 
appropriate pdf [ 181. In mathematical notation we can write* 

*In the particular case where A is a random variable one usually speaks of a maximum aposferiori estimate. 
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according to whether or not A is a random variable, and the maximum is taken over the man- 
ifold of A (or  A’). Likewise, in the special case that d is a random variable, we can define a 
minimum variance estimate o f  the attitude as 

that is, as the conditional expectation of A. This form of the minimum variance as given by 
equation (72) is not meaningful, generally, unless the representation of A has minimum di- 
mension. Otherwise, the conditional expectation will usually lead to a value which is not o n  
the manifold, and, therefore, unacceptable as a solution. It is dificult, in general, to  calculate 
the minimum variance estimate except in the case where the probability distribution of the 
measurement noise is Gaussian, in which case the minimum-variance cstimate is identical t o  
the maximum-likelihood estimate. 

T h e  general method of solution by maximum-likelihood estimation to an  attitude estimation 
problcm given ii set  of measurements and ii probabilistic mcasurcment model is t o  write the 
negative-log-likelihood function 

where for definiteness we consider the case that A is ;I random variable. The negative-log- 
likelihood function is a minimum at the maximum-likelihood cstimatc. The  procedure is 
thus to minimize the expression in equation (73) by an  iterative method, such as the  Newton- 
Raphson method. Thus, if A: is the i-th iteration we write 

A/ = A@) I/ A’, , i 74) 

where A@) denotes the general attitude iis ii function ofp, which is one  of the many minimum- 
dimensional representations of the attitude which is Euclidean a t  the origin and for which A( 0 )  
is the identity rotation. Expanding A a s  a function o f  p leads to 

and minimizing this expression keeping tcrms only up t o  second order in p leads to the next 
iteration 

This procedure will generally converge t o  a minimum of  the negalive-log-likelihood function. 
In well-defined attitude problems this minimum is usu:rlly unique and hence, 
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In the limit that the amount of data is infinite the attitude covariance matrix can be written as 

If the measurement errors a re  Gaussian, then within the linearization approximation, equa- 
tion (79) will be true even for small samples. 

Treatment of the BierniodQuaternion in Attitude Estimation 

I t  is high time lhat I shouldpass from these brief and discursive 
notes about things in Flatland to the central event . . . 

Several schemes have been proposed [ 191 for mechanizing the Kalman filter update for the 
quaternion. The  effect of these and other schemcs has becn studied via numerical examples 
by Bar-Itzhack, Deutschman and Marklcy [ 20, 21 1. Thcsc latter authors make a distinction 
between the update step of the Kalman filter using what they call the additive as  opposed to  
the multiplicative update. This distinction is artificial and misleading, as we shall now show. 

Let us write the relation bctween the updated and predicted quaternions/biernions as  

( I k (  + ) = ( I k (  -) + Aq,( t ) 7 (80) 

which Bar-Itzhack et al. call the additive approach. The  components a re  all resolved with re- 
spect to inertial axes. Let us examine the same equation expressed with respect t o  the predicted 
spacecraft body frame, Le., we express all rotations as rotations from the predicted spacecraft 
body frame. Denoting the quaternionslbiernions of rotation with respect t o  this frame by q’ 
where 

(81) 
-1 q;  = (/I& 2 y,, [ - ) .  

it follows that 
&.(+I = 1 t A&.t), 

where = [ 0 0 0 1 I T  for quaternions, and I = [ 0 1 1’ for biernions. If we write now 

which is the so-called multiplicative correction. Thus, the distinction between the additive and 
the multiplicative formulations of the Kalman filter is not one  of the fundamental mechaniza- 
tion of the filter but simply the frame in which i t  is desired to compute the update. These 
two formulations a re  present in Reference [ 191, where they arc given the names “truncated 
covariance representation” and “body-fixed covariance representation.” Admittedly, the pre- 
sentation by those authors gave the appearance of there being one  more distinct formulation 
of the Kalman filter than was actually the case. This has cven led one  careful study to  test both 
formulations, as if they were distinct [ 221. 

Where the important distinctions d o  lie is in how Aij, or  A& is calculated, and conse- 
quently, whether 6q( +) has unit norm. From thc carlicr discussion it is clear that a correct 
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approach is obtained by expressing this quantity in terms of some representation of the  atti- 
tude of minimal degree. In this case it  is clearly advantageous to work from the spacecraft 
body frame so that this minimal-dimensional representation will be far from a singularity, and 
it will be most revealing to compare the results of References [ 191 and [ 20,211 in that  frame. 
The results of [ 20,211, however, a re  not directly comparable to  [ 191 because the former rests 
o n  the attitude Kalman filter of Bar-Itzhack and Oshman [ 231. However, many points of corn- 
monality will be apparent. 

Consider now the estimation of a constant biernion from scalar measurements of the form 

where i j k  is a known direction in the Spacecraft body and W ,  is some vector measured in the 
body frame. We assume that wk is relatcd to a representation of the same vector in the inertial 
frame according to 

where A is the attitude matrix and v, is white Gaussian noise. We wish to compute the batch 
attitude estimate from these measurements, using an good approximate estimate of the atti- 
tude as a point of departure. 

w, = i l V , + V , ,  (86) 

If we write now 
..I = ( h . 4 )  A,, , (87) 

where A ,  is the approximate valuc o f  the optimal attitude estimate, then the measurement 
equation becomes 

where Wo,k = A o V k r  the expected value o f the  measurement in the body frame. 6 A  is now an  
infinitesimal rotation, which we shall parameterize in terms of the additive biernion error  as 
in equation (82). Recalling equation (17c) it  is a sirnplc manner to expand zk t o  lowest order 
in Aq with the result 

where X,,k is the valuc of the measurement with Aq = 0, v, is the scalar white Gaussian noise 
term appearing in equation (88) and thc 1 x 2 scnsitivity matrix Ii, is given by 

,?  

Zk = ii; (6.A)w",L + i i lv , ,  (88) 

I / ,  E 2, - :u,L = 11, Aq + v, , (89) 

T h e  maximum likelihood cstirnatc o f  A(/ (for the additive biernion correction, which is not 
constrained to  preserve the norm) is given by 

AL,, = pqy P > (91) 

where the covariance matrix, P(lq, and thc information vector, p, are given by 

r N 1 - l  N 

For the multiplicative correction (which is norm-preserving) the estimate for the same data  is 

A -* 'I1 ,1111111 = L 1 1 1  ?'I 5 
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with 

r~ 1 -‘ 

N 

(93a) 

(93b) 
k= 1 

so that p, is just the first component of p. Note that we have written unnecessary (but not 
incorrect) transpose signs and not commuted symbols, even between scalars, to  preserve the 
resemblance with the equations of Space. We can find a relation between the additive and the 
multiplicative corrections to the biernion by solving for p in terms of &ldd and using the value 
of p ,  in equation (93). 

This leads to  
Aq;,mult = Aq;,add i- (p&l)L,i (pG’ A 6 , a d d  . ( 94) 

We will return to this equation soon. 
The  additive correction, AijZdCl, allows us to  construct an optimal biernion, qzdd, 

Because it does not necessarily have unit norm, qd;,,(l docs not without further effort have a n  un- 
ambiguous connection to  the attitude. Howcvcr, we note that although I & ~  is not a “biernion 
of rotation,” i t  is a sufficient statistic [ 181 for the  attitudc, certainly within the linear approx- 
imation of equation (89). It is, in fact, an estimate of the biernion of rotation, and we know 
also that were the measurement noise covariance to vanish (perfcct measurements), q&,d would 
have unit norm and be  the desired biernion. Thus,  denoting the desired biernion of rotation 
by fj, we have that 

G i I i  = i j  + AV,,M 7 (95) 

and 
A7j,&, N A(( 0. / I q , ,  ) . 

Hence, the negative log-likelihood function o f  qt;,l(, givcn 71 is 

and the maximum-likelihood estimate of i j  is simply 

where, since we know that the true bicrnion must lie on the manifold of unit four-vectors, we 
must maximize the negative log-likelihood subject to  the norm constraint. 

We handle the constraint in the usual way, using Lagrange’s method of multipliers, and 
optimize 

1 
J ( Q , f d d  I q ) +  ,xr?7’q 
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without constraint and then choosing the value of thc Lagrange multiplier, A, for which the 
constraint is satisfied. Differentiating the above expression with respect to  f j  and setting the 
derivative equal t o  zero leads to 

and X is a solution of 

We expect XPqq to be small. Therefore, i t  will usually be sufficient to calculate X using one  
iteration of the Newton Raphson mcthod with vanishing initial value. Thus, 

To first order 
d c L l  ~l:,ld = 'L 1 V ?  . 

Hence, 
= (KoJ;2i -lY, . 

Substituting this in equation (99) leads t o  lowest order in  A(/z<i,l 

The first component of the desired optimal bicrnion is simply (to this same order) 

But 
- 

so that, in fxt ,  comparing equation (106) with ctluiltion (94) wc have 

Since the other cornponcnt must also agrcc to linear order in A(/,;l,,,L, i t  lollows that 

Thus, the additive correction to the biernion, followed by the normalization correction dictaled 
unurnbiguously hy fhe muximion fikeliliood criteriot1, is identical (at least up to  linear terms in 
Aq*) to the so-called multiplicative correction. I t  is h i id  to imagine that any other answer 
could bc possible. It is obviously less burdensome t o  calculate thc multiplicative correction 
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directly. Identical arguments hold for sequential correction o f  the bicrnion as in the Kalman 
filter. 

Discussion 

. . . my Lord tias shewn me llir intestines of all my  countiymrn 
in the Land of Two Dimensions . . . 

The representation of attitudc in two dimensions has been described in detail. Two-dimen- 
sional analogues have been presented (or the well known T R I A D  and QUEST algorithms. 
General properties of attitude estimation in two and thrce dimensions have been discussed. 
The  question of whether the multiplicative o r  additivc corrcction to  the quaternion is t o  pre- 
ferred has been has a clear answer in Hatland. 

The  additive correction, if done corrcctly, is idcntical to the multiplicative correction but is 
much more burdcnsome. The  first commandment of  bicrnion correction (and, one  can show, 
also for quaternion correction in Spacc), thcrcforc, is t o  multiply. We emphasize that this 
result is not the product of  some hcuristic argument or  arbitrary procedure to  be justified by 
experiment but thc unavoidable conclusion t o  which onc is Icd unambiguously and rigorously 
by the maximum likelihood criterion. 
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Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude 

determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm 

[Shuster] exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge 

of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to 

synthesize vehicle rate using some form of lead-lag filter, and then use it for vehicle stabilization. Many situations arise, 

however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper 

presents two methods for determining spacecraft angular rates from vector observations without apriori knowledge of the 

vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic 

model representing the motion of the observed LOS vectors. The second approach uses a "differential" TRIAD algorithm to 

compute the incremental direction cosine matrix, from which vehicle rate is then derived. 

1.0 INTRODUCTION 

The development of small, light-weight, low-cost spacecraft that are reasonably complex requires an attitude 

determination and control system (ADCS) design in which the ADCS hardware supports more than a single operating mode 

or function. For example, a three axis magnetometer can be used in aiding reaction wheel desaturation and in support of 

coarse attitude determination; reaction control jets can be configured to provide both delta-V and control torques; and a 

horizon scanner that can be locked in place can support both spinning and 3-axis stabilized modes of operation. 

The primary motivation for the work reported in this paper came from applying this principle to the following 

problem : Given a zero-net momentum ADCS that includes a 4x Sr sun sensor (used in a sun-seek safe mode), a 3 axis 

magnetometer (used in reaction wheel desaturation), and reaction control system (RCS) jets (used during orbit raising); 

provide a capability to detumble the spacecraft following large launch vehicle separation transients. Normally, this problem 

would be solved by adding a gyro package to the suite of ADCS hardware. The gyro data would be used to measure body 

rates that would be fed back to the RCS jets to detumble the spacecraft. However, to keep costs and weight down the gyro 

package is undesirable. The alternate solution that was developed was to use the existing hardware to measure the motion of 

the sun vector and the Earth's magnetic field vector and use this motion to (approximately) determine the vehicle's inertial 

rate. One way of accomplishing this would be to use an algorithm such as the TRIAD algorithm [Shuster] to compute the 

vehicle attitude and then determine rate with a lead-lag filter. However, this would require both a current vehicle ephemeris 

and an orbit propagator since the direction of the sun and magnetic field vector in a non-rotating earth-centered frame is 

required. The methods presented in this paper provide alternatives which do not require either an ephemeris or orbit 

propagator. 
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A secondary motivation for this work comes from recent gyro-failure problems on the Hubble Space Telescope. 

Currently, the redundant gyros on HST are working and will probably be used to stabilize the spacecraft for shuttle-capture 

during the upcoming repair mission. If the redundant gyros were to fail, however, a method of stabilizing the spacecraft 

using only star tracker data may be needed. The work presented in this paper could be used to stabilize a spacecraft using 

star tracker data without performing the complex star identification process. 

The remainder of this paper is organized as follows. Section 2 develops a standard extended Kalman Filter (EKF) 

approach to the problem of estimating spacecraft rate using LOS vector observations without apriori knowledge of the LOS 

reference directions. Section 3 presents an alternative approach which is less accurate but computationally more efficient. 

This approach is based on the TRIAD algorithm and is called DTRIAD for "differential" TRIAD. Section 4 presents several 

simulation results using both methods and compares the rate determination accuracy and vehicle stabilization capability for 

the two methods. Finally, section 5 presents conclusions and suggestions for further work. 

2.0 EXTENDED KALMAN FILTER (EKF) 

The EKF approach applies the standard EKF equations [Gelb] to a system whose state is defined as the body- 

referenced angular rate vector, w, augmented with the body-referenced vectors pointing to the n reference objects that are 

potentially observable, ei, i = J ... n. The next two sections develop the state and covariance propagation and update 

equations . For clarity of presentation in the following, assume that n = 2. 

2.1 

The nonlinear state dynamics are derived from Euler's equations and the well known expressions for the motion of 

vectors in a rotating frame. They are : 

(2) ei =--Wxei  i = 1 . .  . n 

where N e ,  is the vector of external torques applied to the vehicle, J is the vehicle's inertia mamx and h ,  is the stored 

momentum in reaction wheels (I includes the the inertias of the wheels; see [Wertz]). The implicit assumption in Eq. 2 is 

that the ei are fixed in a non-rotating inertial reference frame. 

At time rk the EKF propagation step requires that these equations be integrated from time rk to rk+l using the 

updated estimate at time fk as a starting point. Numerous integration methods are available (Runge-Kutta, 

FonvardDackward Euler, Trapezoidal) each with its own merits (e.g., see [Hildebrand]). When the sample rate is fast and 

the magnitude of of o is small, the simplest method is Forward Euler or rectangular integration. This method will be used in 

Section 4.0 to demonstrate results. 

In addition to propagation of the state vector, the EKF must propagate the state covariance matrix. The typical 

approach is to assume small deviations of the state from the estimate between fk to 'k+]. This implies that the linearized 
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equations of motion adequately represent the error dynamics and can therefore be used to form the Lyapunov equation that 

represents the dynamics of the covariance matrix. For this problem, the linearized dynamics are : 

(3) 

or 

where, 

and where we have assumed a diagonal inertia matrix, I. The extension to nondiagonal inertia matrices and to n > 2 is 

straightforward. The 3x1 process noise vector, w ,  is assumed to be a zero mean white Gaussian noise process with 

covariance matrix Q. It is intended to represent the uncertainty in Nexf but is also used to represent expected errors in the 

integration process for state propagation. 

Given the linearized perturbation equation (3), the covariance propagation equation is the standard Lyapunov 

equation : 

(4) dPldt = AP + PAT + BQBT 

where P is the covariance matrix of perturbation state 6x and A and B are evaluated at i ( k )  . This can be solved by any 

number of methods. A common simple approach [Jazwinski] that works well in practice is to discretize (3) and use the 

discrete Lyapunov formulation, viz. 

( 5 )  P - ( k + l )  = F P+(k)  FT + GQGT 

where F = I + AA, G = BA, P- (k+ l )  is the covariance matrix at time f k + l  before updating with measurements at time 'k+], 
P + ( k )  is the covariance matrix at f k  after updating with measurements at time tk and A = - f k  Another simple approach 

is to integrate Eq. (4) using forward Euler integration. 
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2.2 

The second step in the EKF approach updates the state estimate based on measurements and requires an observation 

equation that relates the measurements to the states. The actual observation equation depends on the type of sensor being 

used. For example, a vector magnetometer directly measures the earth's magnetic field vector resulting in the simplest 

measurement equation 

where v is the measurement error.' A two-axis sun sensor or a star tracker, however, produces two measurements that are, in 

general, a nonlinear function of ei (e.g., two components of the orthogonal projection of ei onto an image plane). In these 

cases, it is a straightforward matter to derive the general nonlinear observation equation 

(7) y = h(ei) + v 

and to determine the Jacobian matrix H = 8y/6ei. The standard EKF update equations are then 

P + ( k )  = {P-(k) - '  + HTR-lH}-l 

K = P+(k)  HT R-' 

i ( k ) =  2 ( k ) + K [ y - h ( z i ( k ) ) ]  

where X(k) is '-.e result of integrating Ex& 's (1) and (2) forward from tk-2 to ik starting at i(  ) are the 

reference vector components of Z ( k ) ,  and R is the covariance matrix of Y. The inverse formulation for the covariance 

matrix is used here to avoid numerical problems in the subsequent simulations. It is not the fastest implementation (e.g., see 

[Bierman]). Further work is needed to establish the best scaling and covariance update method for this problem. Note that 

the option of transforming the nonlinear measurements into a vector observation and then employing (6) as the measurement 

equation was not considered since the correct corresponding value of R is singular. When R is singular, P+ can become 

singular, [Gelb] and K can not be calculated. If the transformation method is used, an approximate nonsingular R matrix 

should be used (e.g., R;; = arcsine( angle error ) ). 

* Strictly speaking, the earth's magnetic field violates the assumption that the vector c i  be fixed in a nonrotating inertial frame since the direction varies as h e  
spacecraft orbits the earth. The resulting rate errors are insignificant in several applications. 

278 



The EKF as described above must be initialized with a state and covariance estimate. The method described in the 
next section is an excellent and simple way to obtain an initial state estimate. Further work is needed to derive the 
corresponding initial covariance estimate corresponding to this state-initialization method. 

Choice of sample rate, A, depends on accuracy requirements and is influenced by the magnitude of the vehicle 
angular rate, a, and applied torques, Next and by processing resources. 

While Q is normally used to represent uncertainty in Next it should also account for the errors made in integrating 
the state equations ( 1 )  and (2). As with most EKFs, it is likely that some degree of tuning of the parameter Q will 
be needed. 

The covariance update equation (8) as written requires inversion of a 3n+3 x 3n+3 matrix. As mentioned, this is 
not the most efficient propagation equation. The experience gained so far with simulation of this approach suggests 
that the covariance matrix P and hence the Kalman gain K converge to steady state values that are a function of the 
problem geometry (angle between the vectors e l  and e2). The rate of convergence appears to be dependent on 
vehicle rate. These results suggest that for constant problem geometry a constant gain EKF (which does not require 
on-line covariance propagation or update ) might provide satisfactory performance. 

While it is clear that the angular rate vector is not completely observable when n = 1, the EKF equations can still be 
executed in this case. If a good estimate of o is initially available, then the result should be that the component of 
the rate estimate that is aligned with elhas a random walk error behavior. This is a convenient feature in cases 
where sensor dropouts occasionally occur. 

Measurement biases and sensor misalignments will not affect rate determination accuracy (for this method or the 
one presented in the next section) since neither affects the chanrre in LOS measurements from one time to the next. 

DIFFERENTIAL TRIAD APPROACH 

While the EKF approach described in Section 2 provides near-optimal solutions and can operate, with reduced 

accuracy, when n=l, the computational complexity of the algorithm can be relatively large for the current generation of 

spacecraft flight computers. The approach discussed in this section provides a simpler alternative. 

The idea for this approach comes from the basic strapdown equations of motion for the direction cosine matrix, A, 

[Weml, 

Assuming that o is constant over the interval ‘k to f k + ] ,  

(13) 
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which implies that knowledge of the direction cosine matrix representing the transformation from the vehicle attitude at time 

tkto time (A? is sufficient for determining w. 

The TRIAD algorithm [Shuster, Wertz] is a well known method for determining the direction cosine mauix from 

vector observations assuming that the direction of the vector observations in some arbitrary reference frame is known. If this 

reference frame is the vehicle's attitude at time tk then it is clear that the TRIAD algorithm produces the matrix A' from 

which the vehicle body rate can be derived. Let elm(&), i=1,2 be the measured vectors to two reference objects at time k. 

The "Differential TRIAD" (DTRIAD) approach to rate determination is as follows : 

(Step I )  Form the ''reference" matrix Arfrom 

(Step 2) Form the ''observation" matrix 

(Step 3 )  Compute A *  = A, A,?'. 

(Step 4 )  Solve (1.3) for w. if the magnitude of Am is suficiently small, then the identity 

(16) A' = I  + Q(w)A 

makes this step straightforward. As the magnitude of Aw increases, one can expand (13) in the standard power series and 

solve the polynomial equations that result; or one can reduce A until acceptable accuracy is achieved with (16). These steps 

arc repeated at every ik . Recognizing that A,.(&) = A,(&-I) , we see that at each time tk,  only steps 2 - 4 need to be 

repeated. 

The performance of the DTRIAD algorithm, like the performance of TRIAD, depends on problem geometry. The 

accuracy of the rate estimate in the direction which bisects the two reference vectors is the least accurate and can be 

estimated using standard methods. Like the EKF, performance will degrade with large values of Am. Unlike the EKF, 

however, degradation of the estimate will also occur when large external torques are applied. Also, like the EKF, 

measurement biases and sensor misalignments will not affect the rate determination accuracy. 

4.0 SIMULATION RESULTS 

This section presents two simulation cases to demonstrate performance of the two algorithms. The first case 

assumes that the vehicle is tumbling at a relatively high rate (say -10 dedsec resulting from an open loop despin operation 
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following an SRM firing) and that continuous measurement of the Earth's magnetic field and the solar vector are available. 

For this case, we show both the accuracy of the two rate determination methods and the resulting tumble recovery capability 

assuming a feedback control law using reaction control jets. The second case assumes that the vehicle is slowly tumbling 

(say -Ideg/sec as the result momentum accumulation due to external disturbances and wheel run-down following the failure 

of primary attitude control gyros) and that continuous tracking of stellar objects from a star tracker are available. In this 

case, we show the rate stabilization capability using both methods and reaction wheels for control. In all cases the EKF is 

initialized by adding a small error to the true state. In practice, the EKF is initialized using the DTRIAD algorithm. All the 

simulations presented herein are full nonlinear 3 degree of freedom simulations that use 6th-order Runge-Kutta integration 

to solve Eq. 1 along with the slandard quaternion kinematic equations. 

4.1 

For the purposes of this simulation, we assume that both the sun sensor and the magnetometer provide 

measurements of reference vectors (i.e., Eq. (6) applies). It is assumed that the sun vector measurement is corrupted by a 

constant bias corresponding to a 1 degree rotation of the true sun vector and a white noise whose magnitude corresponds to 

0.25 degrees error (is., R = ( . 2 5 * ~ / 1 8 0 ) ~ * E ,  where E is the identity matrix). The magnetic field vector measurement is also 

corrupted by a 1 deg rotation bias and a white noise with a standard deviation of 9 nano Tesla (about 1 part in 25 for low 

earth orbits). The 1 degree bias error in the 

magnetometer vector includes errors due to electronic bias and misalignments of the sensor. The sun sensor bias error 

includes electronic bias, misalignments and Earth albedo effects (albedo effects are significant only for non-imaging cosine- 

law sun detectors ). 

The sensor errors correspond to commonplace sensor capabilities. 

Figure 1 shows the body rate profile and EKF-estimated rates for a vehicle with diagonal inertia matrix I = 

diag([156 85 1861) kg-m2 and a 10Hz update rate (A=O.I). Figure 2 shows the corresponding EKF and DTRIAD rate errors. 

The EKF produces superior results due to the inclusion of a dynamic model which allows filtering to take place.* 

20 

- 20 
0 IO 10 30 4 0  50 €4 70 M 00 100 

Tim. (UC) 

Fig. 1 - Actual and EKF-Estimated Body Rates; 
Next = 0, A=O.1 

* This result is somewhat artificial since a dynamic model can be used to form a simple filter (Kalman or otherwise) with the D7711AD rate estimates used as 
"measurements". 
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Fig. 2 - EKF and DTRIAD Estimation Errors For Fig. 1 Rates. 

Figure 3 shows the result when the EKF-determined rates are fed back to a reaction control system to stabilize the 

vehicle. In this simulation, it is assumed that the control system operations at a sample rate of 2Hz and that the reaction 

control jets are pulse-width-modulated using the standard impulse-matching algorithms. The thruster torques available in 

each axis are 1.1Nm in roll 0.86Nm in pitch and 0.23 Nm in yaw. The jet pulse times are quantized in 2Omsec increments. 

Figure 4 shows the feedback response using the DTRIAD algorithm with all other parameters the same as for Fig. 3. The 

EKF is substanitally better than DTRIAD in this case because it includes a dynamics model that allows it to predict 

spacecraft motion based on applied RCS jet torques. 
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--.I 
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Fig. 3 - Actual and Estimated Rates during 
Tumble Recover EKF Feedback. AzO.5, 
Next = gw. 

$ 
1 1  n I 

Fig. 4 - Actual and Estimated Rates during 
Tumble Recovery with DTRIAD Feedback. 
AzO.5, Next = gW. 



.. . 4.2 : 
In this simulation we assume that the star trackers provide reference vector measurements (Eq. 6 applies again). 

Two "guide star" measurements are used. They are separated by 5 deg and corrupted by a 6 arcsec noise-equivalent angle 

(typical values). For these simulations, the spacecraft inertia properties correspond to a large platform (I = 

diag([ 1000;1000;2000]) kg-m2) and control is provided by large reaction wheels (0.8Nm torque capability). In all 

simulations a 2 Hz sample rate is used and the initial total angular rate is 0.5 deg/sec. 

Figure 5 shows the magnitude of the vehicle rate and the rate errors using the DTRIAD algorithm. The 0.5 deg/sec 

rate error is damped in about 50 seconds and the RMS residual rate is between 0.0o01 and 0.002 deg/sec per axis. Figure 6 

shows the rate magnitude and rate errors using the EKF. The damping time constant is the same as DTRIAD (the control 

gains are the same) and the RMS residual rate is between O.ooOo3 and .0002 deg/sec, much smaller than DTRIAD. The 

smaller residual rate is due to the better rate prediction accuracy which is due to the incorporation of applied torques in the 

EKF rate prediction algorithm. 
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Fig. 5 Actual Rate and DTRIAD Errors for Star Tracker Simulation; 
A = 0.5 and Next = go. 
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Rate Magnitude using EKF with Star Data 

g 10-1 

> 
4 10-4 

m 
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EKF Rote Determ. Errors with Stor Data 
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time (sec) 
Fig. 6 - Actual Rate and EKF Errors Errors For Star Tracker Simulation; 
A = 0.5 a n a e x t  = gw. 

5.0 CONCLUSIONS 

Two methods of computing the body-referenced angular rate vector from vector observations without knowledge of 

thc LOS vector directions in inertial space have been presented. The EKF approach is based on spacecraft dynamics models 

and the rotational kinematics of the observed reference vectors. The DTRIAD approach uses the TRIAD algorithm to 

compute incremental direction cosine matrices from which approximate rate is derived. The EKF is computationally more 

complex but produces superior estimates, especially in the presence of large control torques. Further work is needed to 

provide analytic bounds on accuracy for both methods, to determine the best covariance update implementation, and to 

dctcrmine the feasibility of using a constant gain EKF. 
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ABSTRACT 
I 

The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support 
System (FDSS) bas been developed in an effort to minimize the costs of ground support 
systems. Unlike single-purpose ground support systems, which attempt to reduce costs by 
reusing software specifically developed for previous missions, the multimission support 
system is an intermediate step in the progression to a fully generalized mission support 
system in which numerous missions may be served by one general system. The benefits of 
multimission attitude ground support system extend not only to the software design and 
coding process, but to the entire system environment, from specification through testing, 
simulation, operations, and maintenance. 

This paper reports the application of an MTASS FDSS to muttiple scientific satellite 
missions. The satellites are the Upper Atmosphere Research Satellite (UARS),  the Extreme 
Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer 
(SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) 
concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set 
of attitude sensors. This paper centers on algorithm and design concepts for a multimission 
system and discusses flight experience from UARS. 

* Thisworkwassupported bythe National Aeronauticsand Space Administration (NASA)/Goddard Space RigM Center 
(GSFC), Greenbelt, Maryland, Contract NAS 531500. 
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1. INTRODUCTION 

In 1987 the Upper Atmosphere Research Satellite ( U A R S )  Attitude Ground Support System (AGSS) was 
being specified for Goddard Space Flight Center (GSFC). At this time the specifcations support started for 
another mission, the Extreme Ultraviolet Explorer (EUVE). During the initial requirements analysis for 
EUVE, it was realized that UARS and EUVE were very similar in both hardware configuration and support 
requirements. The decision was made to generalize the UARS software specifications to include the EUVE 
support requirements. 

Flight Dynamics Division (FDD) attitude support falls into three categories: attitude determination, attimk 
sensor calibration, and prediction of flight dynamics-related parameters that are used for mission and science 
planning. A typical AGSS is composed of many functions, but can be broken down into six areas: telemetry 
processing, data adjustment, attitude determination, sensor calibration, sensor monitoring, and planning aids 
prediction. 

Data come into the system as spacecraft telemetry. The telemetry processing function unpacks and time tags 
the data and passes them to the next function, data adjustment. The data adjustment function corrects the data 
for known misalignments and biases and applies validation tests to reject bad data. The adjusted data are then 
ready for the attitude determination and sensor calibration functions. 

There is usually more than one attitude determination function to support different levels of accuracy and 
response time. Also, there is a sensor calibration function for eachcalibration parameter being computed. The 
attitude determination and sensor calibration results are usually delivered to the spacecraft control center for 
uplink to the spacecraft in support of onboard attitude determination. The sensor monitoring function is an 
analysis aid that supports sensor performance evaluations. 

The planning aids prediction function is a collection of functions for the production of mission and science 
planning aids. Some of these planning aids are mission-unique, but many are meant to meet similar 
requirements for a variety of missions. The common planning aids include guide star interference predictions, 
antenna contact times, spacecraft range predictions, and solar array position predictions. 

The multimission concept is an intermediate step in the progression to a generalized mission support system 
in which numerous missions may be served by one general system. Multimission systems are useful when 
generalized systems are not available or cannot be fully achieved. The benefits of multimission systems 
extend not only to the software design and coding process but to the entire system environment, from 
specification through testing, training, operations, and maintenance. 

The Multimission Three-Axis Stabilized Spacecraft @ITASS) Flight Dynamics Support System (FDSS), 
referred to as MTASS in the remainder of this paper, is an institutional system that provides key functions 
required for spacecraft attitude ground support (see Reference 1). The AGSS for a specific mission is 
composed of mission-specific functions in combination with mASS. 

2. SYSTEM DEVELOPMENT 

This section deals with the specification and design aspects of the MTASS systems development process. 

2.1 Specifications 

In the requirements analysis and functional specifications phase, the inherent commonality of the UARS and 
EUVE modular attitude determination and control systems influenced our approach. Since the EUVE AGSS 
was regarded, to first order, as a subset of the UARS AGSS, the UARS requirements and functional 
specifications were generalized to include the EUVE requirements. 
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During the generalization of the UARS specifications, it became clear that, with minimal extra effort, the 
specifications could be generalized much further than simply necessary to support two missions. During 
every step of the specifications support, ways were investigated to generalize the system as far as possible. As 
an example, spacecraft attitude is usually represented as a set of roll, pitch, and yaw angles with respect to 
some reference coordinate system. The most straightforward approach to producing a two-spacecraft system 
would be to spec@ an “If UARS ...if EUVE...” type of construction to define the coordinate system. This 
method is obviously a dead-end that does not allow for other mission def~t ions .  Instead, the specifcations 
allow the user to speclfy the transformation Euler sequence and the reference coordinate system. This 
approach makes the system confgurable and usable for any mission. Through this approach to 
generalization, MTASS was born. 

To go beyond the reuse seen in previous ground systems, it was recognized that reuse on the subsystem level 
was required. Each of the functions described above have traditionally been implemented as separate 
subsystems; however, each subsystem was coded to be mission-specific with, at best, reuse of low-level 
software units. The MTASS concept was to organize the generic and mission-specific functions into separate 
subsystems, thereby allowing reuse of higher-level functions and entire subsystems. MTASS specified only 
generic algorithms for a given subsystem and thereby built up generic subsystems. Those algorithms that 
were unavoidably mission-unique were segregated into separate subsystems. 

2.2 Design Considerations 
This section reviews MTASS design considerations and shows that the design is sensoraiented, MTASS is 
table-driven, the files are sensor-oriented, and the design is extensible. 

2.2.1 MASS Design Is Sensor-Oriented 

The traditional functional approach to the design of MTASS was supplemented successfully with 
sensor/actuator-oriented thinking and software partitioning. Although object-oriented design techniques 
were not employed, the design partitioning was conceived with sensors as the design objects within each 
major functional partition (i.e., subsystem). The sensar-oriented partitioning lies along the intermediate level 
in that each subsystem contains software packages for each type of sensor and actuator appropriate to the 
subsystem function. 

For example, the data adjustment subsystem @A) is a major functional partition that prepares the engineering 
data for attitude determination and other functions by applying calibration parameters (biases and 
misalignments), smoothing, and performing a few cross-sensor validation checks. The major portion of the 
DA is the application of calibration parameters. This function is partitioned by sensor type, resulting in a 
separate software package for the fine Sun sensor ( F S S ) ,  the three-axis magnetometer (TAM)/magnetic 
torquer assembly (MTA), the inertial reference unit (IRU), etc. 

Table 1 contains an entry for each of the MTASS subsystems. Each entry includes the subsystem function, 
operating mode, and selectable subfunctions. 

2.2.2 MTASS Is Table-Driven 

Each MTASS subsystem has user-supplied configuration parameters that spec* which sensors are present 
on a particular spacecraft, in a particular telemetry format, or needed for a particular operational scenario. 
Using these parameters, subsystems can be configured to support any three-axis stabilized spacecraft that 
contains a subset of the currently supported hardware and for which the engineering data are suppfied in the 
MTASS formats. The one restriction is that IRU data are required for attitude determination using the MTASS 
coarse and fine attitude determination subsystem (CFADS), which employs a differential correction 
least-squares fit and uses body rates from the JRU data to propagate. Th~s restriction will be alleviated when a 
new single-frame attitude determination subsystem, which employs the QUEST algorithm, is completed. 
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Table 1. MTASS Subsystems and Selectable Subfunctions (1 of 2) 

SUBSYSTEMS 

ATmUDE DETERMINATION SYSTEM (ADS) EXECUTIVE 
(ADSEXEC) 

DATA ADJUSTMENT (DA) 

STAR IDENTIFICATION (STARID) 

COARSWFINE ATTITUDE DETERMINATION (CFADS) 

DATA SEGMENTER (DS) 

DEFINITIVE ATTITUDE DETERMINATION (DADS) 

GRAPHICS USER INTERFACE (GUI) 

ATTITUDE VALIDATION (ATWAL) 

INERTIAL REFERENCE UNIT CALIBRATION (IRUCAL) 

FINE SUN SENSOR, EARTH SENSOR, FIXED-HEAD 
STAR TRACKER CALIBRATION (FERAL) 

FUNCTION 

ALLOW SELECTION OF INTERACTIVE ADS SUBSYSTEMS: 
MISSION SPECIFIC TELEMETRY PROCESSOR (TP), DA. 
STARID, OS, CFADS, DADS (ALSO OPERATES IN BATCH 
MODE) 

APPLY MISALIGNMENTS AND/OR BIASES TO: 
(A) COARSE SUN SENSORS (UP TO 2 CSSs) 
(B) EARTH SENSOR ASSEMBLIES (UP TO 2 ESAs) 
(C) FIXED HEAD STAR TRACKERS (UP TO 2 FHSTs) 
(D) FINE SUN SENSOR (UP TO 1 FSS) 
(E) INERTIAL REFERENCE UNIT (UP TO 1 IRU) 

OPTIONALLY INCLUDING EFFECTS FROM MAGNETIC 
TORQUER ASSEMBLIES (MTAs)) 

(F) THREE-AXIS MAGNETOMETER (UP TO 2 TAMS, 

OPTIONALLY SMOOTH BODY RATES FROM IRU 

OPTIONALLY VALIDATE DATA USING DOT PRODUCT 
CHECKS 

USE TRIPLET, DOUBLET, SINGLE MATCH (STARID) 
HIERARCHY TO IDENnM STAR OBSERVATlONS FROM 
FHST AGAINST STAR CATALOG 

DETERMINE SPACECRAFT ATTITUDE USINGBATCH 
LEASTSOUARES DIFFERENTIAL CORRECTION 
TECHNlQUE (NOTE: REWIRES IRU) 

PRECISION OF ATTITUDE SOLUTlON IS DETERMINED BY 
SELECTION OF SENSOR DATA ADJUSTED BY THE DA 

OPTIONALLY CALCULATE TAM BIASES 

OPTIONALLY WRITE ArmUDES AT AN EPOCH TIME 
AND/OR A SPECIFIED DELTA TIME, AND/OR WRITE 
AlTmJDE RATES AT THE SPECIFIED DELTA TIME 

DETERMINE OPTIMUWSUITABLE TIMESPANS TO ENSURE 
IRU DATA ARE AVAILABLE AND LOCATE RIST 
OBSERVATIONS NEAR BATCH BOUNDARIES K I R  BEST 
PRECISION IN CFADS 

USE AlTlllJDE PROPAGATION AND CORRECTION TO 
FORCE MULTIPLE SEQUENTIAL BATCHES OF CONTINUOUS 
ATTITUDES TO MATCH AT BATCH BOUNDARIES FOR 
CONTINUOUS ArmUDES 

ALLOW SELECTION OF INTERACTIVE CALIBRATION AND 
ATTITUDE VAUDATION SUBSYSTEMS 

MAINTAIN AND REPORT CALlBRATlON PARAMETERS FROM 
SENSOR CALIBRATION FILES 

MANUALLY LOG AND REPORT MESSAGES IN ACTNITIES 
LOG FILE(S) 

COMPARE PAlRWlSE THE OBCCOMPUTED ATTITUDE, THE 
PREDICTED ATTITUDE, AND THE GROUNDDETERMINED 
ATTITUDE 

EXAMINE ATTITUDES FROM INDIVIDUAL SOURCES 

CALIBRATE IRUs BY CONFIGURATION 

CALIBRATE FSSs, ESAs, FHSTs 
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Table 1. MTASS Subsystems and Selectable Subfunctions (2 of 2) 

HIGH-GAIN ANTENNA, TDRSS CONTACT PREDICTION 
(HGA) 

GUIDE STAR OCCULTATION PREDICTION (GSOC) 

ORBIT VALIDATION (UTEP) 

SUBSYSTEMS 

FINE SUN SENSOR FIELD OF VIEW CALIBRATION 
(FSSFOV) 

PREDICT POTENTIAL CONTACT TIMES BETWEEN HGA AND 
TD RSS 

0 PREDICT WHEN GUIDE STARS ARE OCCULTED BY M E  
EARTH, MOON, AND PLANETS 

CONVERT OBCDEFERMINED SPACECRAFT POSITION TO 
STANDARD CODE 500 EPHEMERIS FILE FORMAT FOR 
SUBSEQUENT COMPARISON WITH GROUNDDETERMINED 
AND PREDICTED ORBIT VECTORS USING INSTITUTIONAL 
SOFIWARE 

THREE-AXIS MAGNETOMETER CALIBRATION (TAMCAL) 

PRODUCT DELlV ERY FORMATTING (D ELFORM) 

BATCH MODE SUBSYSTEMS 

PACK DELIVERY RECORDS INTO STANDARD CODE 550 
PRODUCT DELIVERY FORMAT 

(UARS) STS ATTACHED MONITOR (UMON) 

I FUNCTlON 
CALIBRATE FSS FIELD OF VIEW 

CALIBRATE TAMS 

FOLLOWING SUBSYSTEMS ARE OPERATED IN BATCH 
MODE ONLY AND ARE INDIVIDUALLY SUBMllTED FOR 
EXECUTION 

GENERATE DISPLAY FOR CCTV DISTRIBUTION OF 
SPACECRAFT PARAMETERS INCLUDING ONBOARD 
AlTITUDE AND STS PARAMETERS DURING DEPLOYMENT 
FROM STS 

PREDICT ATTJTUDES 1 

I I CALIBRATION DELIVERY FORMATTING (CALFORM) SELECT AND CONVERT CALIBRATIONS FOR FORMATTING I (ULTIMATE USE AS UPLOAD TO OBC) 

2.2.3 M A S S  Files Are Sensor-Oriented 

Another crucial aspect of the MTASS design is the organization of the primary data interfaces. They are the 
engineering data sets data base O S ) ,  processed engineering data sets data base (PEDS), attitude history files 
(AHFs) ,  and sensor calibration files (SCFs). Table 2 contains a functional description of each of the major file 
types unique to MTASS. MTASS also uses the institutional spacecraft ephemeris, solar/lunar/planetary 
(SIP) ephemeris, activities log, report data base, MMS star catalog, and tracking station geodetics file types. 

The primary spacecraft data input to MTASS is through the EDS. The EDS is an MTASS-specifrc data base of 
spacecraft engineering data produced by a mission-specific telemetry processing (TP) subsystem. The EDS is 
a collection of engineering data sets tied together by an EDS directory data set. 

Each individual engineering data set contains batches of engineering data corresponding to one sensor or 
actuator. Each batch is user defmble, but nominally corresponds to the data processed in one session from 
one telemetry transmission. The user can delete and overwrite the oldest batches, add new batches, or 
concatenate data to the most recent batch. The directory data set contains summary information for each 
batch, including which sensors are in the batch. 

The specific subset of engineering data sets included in a given EDS is definable by the user when that EDS is 
initialized. Further, the specific sub-subset of engineering data sets included in a given batch is definable at 
run time. Using these options, an EDS can be initialized that can contain data from only those sensors and 
actuators that are desired for a specific operational scenario using a specific spacecraft telemetry mode. 
Alternatively, an EDS can be initialized that can contain data from all of the sensors and actuators on a given 
spacecraft, and a given batch can contain data only for those sensors involved in a specific operational 
scenario. 
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Table 2. MTASS Data Sets 

SUBSYSTEM 

AlTTUDE HISTORY FILE 

FUNCTlON 

QUATERNIONS, EULER ANGLE RATES 

ENGINEERING DATA SET (EDS) DIRECTORY FILE 

EDS FSS 

GENERAL DATA FOR EACH BATCH (HEADERS) 

FSS ALPHA, BETA ANGLE COUNTS 

~~ ~ ~ 

E DS TAM 

EDS IRU 

EDS ESA 

EDS FHST 

- ~ ~~ 

EDS ANALOG IRU 

EDS CSS 

ESA PITCH, ROLL ANGLES 

FHST H AND V COUNTS AND INTENSITY 

~~~~ ~~ ~ ~ 

EDS RWA 

EDS THRUSTER FIRING 

~ ~ 

MAGNETIC FIELD VECTOR 

, IRU ACCUMUIATED ANGLES 

FSS SCF 

IRU SCF 

ANALOG S U  RATE VECTOR 

CSS PITCH, YAW ANGLES AND SOUR PANEL ANGLES 

~ ~ 

HIGH-GAIN ANTENNA GIMBAL ANGLES 

MAGNETIC TORQUER DIPOLE MOMENT VECTOR 

ANGULAR MOMENTUM OF REACTION WHEELS 

FSS ALIGNMENT AND FOV CALIBRATION 

IRU ALIGNMENT, SCALE FACTOR, AND BIAS 

THRUSTER FIRING COUNTS AND PULSE WIDTH 

TAM SCF 

HGA GIMBAL MASK FILE 

EDS THRUSTER TANKS 

EDS OBC EPHEMERIS 

TAM ALIGNMENT, SCALE FACTOR, AND BIAS 

FILE DEFINING HGA MASK 

THRUSTER TANK TEMPERATURES AND PRESSURE 

OBC-DERIVED SPACECRAFT POSITION AND VELoClTy 

PROCESSED ENGINEERING DATA SET (PEDS) 
DIRECTORY FILE 

PEDS FSS 

GENERAL DATA FOR EACH BATCH (HEADERS) 

OBSERVED SUN UNIT VECTOR 

PEDS ESA 

PEDS FHST 

PEDS TAM 

OBSERVED EARTH UNIT VECTOR 

OBSERVED STAR UNIT VECTOR, REFERENCE STAR UNIT 
VECTOR, AND STAR MAGNITUDE 

OBSERVED MAGNETIC FIELD VECTOR 

PEDS IRU 

PEDS CSS 

~ ~~ ~~ 

OBSERVED BODY ROTATION RATES 

SUN UNIT VECTOR AND S O U R  PANEL ANGLES 

ESA SENSOR CALIBRATION FILE (SCF) 

FHST SCF 

~~ ~ 

ESA ALIGNMENT AND BIAS 

FHSTALIGNMENT 

Most of the attitude determination-related engineering data contained in an EDS are processed by the DA, 
which produces the PEDS. The PEDS are organized like and contain the same selectivity as the EDS. One 
siflicant feature specific to the PEDS is the commonality of data representation. For each appropriate 
sensor type in the PEDS, the processed engineering data are represented as a vector. The PEDS are the most 
central data storage point for the MTASS. PEDS batches are created by the DA. Numerous subsystems obtain 
data from the PEDS, although a few use EDS data directly. 

Each batch of PEDS data contains the complete set of calibration parameters applied to that data. The DA 
obtains these calibrations from the SCFs. One SCF exists for each type of sensor. Each SCF can contain the 
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calibration parameters for up to 10 of that sensor type. For each sensor represented in an SCF, a complete 
history of calibrations can be maintained. Additionally, the current default set of calibration parameters for 
each sensor is marked for easy retrieval by the DA, and every past default set of parameters is identified as 
such. 

When the DA retrieves a set of Calibration parameters, the current default can be selected, or the user can select 
the desired set from a list of all sets for the specific sensor in question. A separate maintenance function also 
exists that allows the user to delete obsolete sets of calibration parameters and change the default set. 

At several points in MTASS the spacecraft attitude is written to an AHF. The onbard computed (OBC) 
attitude can be written from the mission-specific TP, the coarse or fine attitude is written fiom the CFADS,  
and a definitive attitude series is written from the definitive attitude determination subsystem (DADS). 
Additionally, the CFADS can optionally write attitude rates with or without the accompanying attitudes. 

The MTASS AHF was defined as a new standard file for storing attitude information. The attitude is stored as 
a quaternion in the geocentric inertial (GCI) frame. The attitude rates are stored as angular rates about each 
spacecraft body axis. The data on an AHF are stored in batches. Each batch has a set of header records, 
optionally followed by a series of attitude data records. The header records contain an optional epoch attitude 
quaternionandanoptionalepochspacecraft orbitvector. Theattitudedata records hagivenbatchcancontain 
attitude quaternions, attitude rates, or both. 

The concept of generalized data structures was also applied to the defintion of delivery file formats for 
planning aids. If the delivered product is the same for each mission, there is no need for a different software 
system. The FDD negotiated with other NASWGSFC ground support elements for the acceptance of 
generalized fiie formats as standard PDD products. This standardization has been most successful for 
planning aids. 

MTASS uses the well defined GSFC Code 500 standard ephemeris (EPHEM) file format for spacecraft 
position vectors, and the SLP ephemeris file for positions of the Sun, Moon, and planets. 

As is t r a d i t i ~ ~ l  in GSFC Code 550 flight dynamics software, the FORTRAN NAMELIST technique is used 
for all user-definable configuration and control parameters. The NAMELIST files allow the user to override 
the hardcoded default values. These NAMELIST files are created or modified prior to the time of execution 
of MTASS. NAMELIST files can be set up for each operational scenario for each spacecraft to define each 
needed configuration. Most configuration and control parameter values can also be modified at execution 
time for those subsystems containing an interactive user interface. 

2.2.4 MTASS Design Is Extensible 

The list of sensors supported by WASS can be extended through enhancement development efforts. The 
spacecraft hardware currently supported by MTASS was defmed by the needs of UARS. The sensor-oriented 
design in MTASS, however, allows for the addition of other sensor and actuator types. Each appropriate 
subsystem would be modified to add a new software package to process data from the new hardware type, and 
corresponding configuration and control parameters would be added. 

An alternative approach was employed for the Solar, Anomalous, and Magnetospheric Particle Explorer 
(SAMPEX) spacecraft. The SAMPEX hardware was similar, but different from that supported by MTASS. 
Consequently, the SAMPEX telemetry processor (TP) contained special processing to convert the SAMPEX 
digital Sun sensor (DSS) data to comply with the MTASS FSS EDS format. The SAMPEX coarse Sun sensor 
(CSS) arrays were processed to produce MTASS CSS EDS data. Finally, SAMPEX does not contain an IRU, 
so the SAMPEX TP calculates body rates to store in the MTASS IRU engineering data sets (which are needed 
by the CFADS to propagate attitudes). Finally, the SAMPEX attitude needs to be reported in a special 
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Sun-based reference frame, so the SAMPEX AGSS contains an attitude postprocessor that converts the 
MTASS attitudes from the AHF into the desired form. This SAMF'EX AGSS is a good example of building a 
relatively small amount of extra processing in the front and back of the system in order toreuse entire MTASS 
subsystems. 

3. FLIGHT EXPERIENCE WITH MTASS 

At present, flight experience with MTASS consists primarily of experience with UARS, although some 
prelaunch spacecraft telemetry processing experience is now available from EUVE. Our discussions of 
MTASS flight experience are thus primarily directed to the UARS mission (see Reference 3). 

UARS flight experience with MASS can be divided roughly into nominal behavior and non-nominal 
behavior. Although the bulk of mission events to date fall into the class of nominal behavior, and although 
MTASS has performed in most respects like any other attitude support system created for the Mission 
Operations and Data Systems Directorate (MOBtDSD), such non-nominal behavior as has been observed to 
date is reviewed here with the objective of idenhfying any features of this behavior that could be traced to the 
multisatellite character of MTASS. Our finding is that the non-nominal behavior was not attributable to the 
muitisatellite character of MTASS. 

Areas of nominal behavior with MTASS identified to date in the UARS mission experience include the 
following: 

Phase Behavior 

Prelaunch Generating and transmitting FDF products 
Prelaunch readiness teshg  

Launch to Release Monitoring UARS attitude 
Monitoring solar array release 
Monitoring HGA deployment 
Fine attitude determination 

TAM bias determination 
Observing s o h  m y  thermal Snap 
IRU bias determination 
Monitoring ascent maneuvers 
Monitoring yaw maneuver 
Monitoring roll maneuver 
Monitoring orbit adjust 
Preliminary OBC validation 

Early Mission Monitoring UARS release 

An example of MTASS nominal behavior is found in the results of OBC validation. Ground solutions for roll, 
pitch, and yaw angles, including corrections for all known calibration errors, were determined from 
911028.0150 to911028.0328, with anestimateduncertaintyoflessthan 10arc-secondsineachof theangles. 
The root-mean-square differences of the OBC and the ground angles over this interval were found to be 8 
arc-seconds in roll, 21 arc-seconds in pitch, and 5 arc-seconds in yaw. At all times the OBC knowledge was 
within the required 60 arc-seconds. The root-mean-square differences between ground solutions and the 
desired or target attitudes over this interval were 35 arc-seconds in roll, 41 arc-seconds in pitch, and 34 
arc-seconds in yaw. The differences, which are a measure of the accuracy of OBC control, were at all times 
within the required 108 arc-seconds for pitch and yaw. The roll angle accuracy exceeded the requirement 
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approximately 1 percent of the time and is related to the solar snap phenomenon. The good agreement of 
ground-determined attitudes, OBC-determined attitudes, and control attitudes provides an excellent example 
of the nominal performance of the combined MTASS and flight systems. 

Areas of non-nominal behavior with MTASS identified to date in the UARS mission experience include the 
following: 

Phase Behavior 

Launch to Release 

Early Mission 

TP timing problem 

FHST attitude propagation problem 

The telemetry processing problem consisted of errors in unpacking data when a UARS minute boundary was 
being crossed. The problem was traced to a requirement to handle data gaps of any length of time. A 
workaround was developed to remove the original calculation of the UARS minute counter and replace it with 
calculations dependent on the engineering minor frame counter. 

The fixed-head star tracker (FHST) attitude propagation problem was manifested by several sympoms: the 
star clumps were spread out, the residuals were high, and the attitude solution did not match the OBC 
solution. The problem was traced to an erroneous counts-to-angles field-of-view (FOV) scale factor in the 
FHST. 

Neither of the problems discussed above arose from the innovative multisatellite features of MTASS; they 
could have arisen in any system. On the whole, MTASS performance with UARS was as good as or better than 
experienced with previous ground systems. 

4. BENEFITS 

Multimission flight dynamics ground support systems like MTASS are being developed to achieve 
si@icant cost reduction. Unlike single-purpose ground systems, which achieve a much lower level of reuse 
and thus a lower level of cost saving, the multimission attitude support system is an intermediate step to a 
generalized system in which numerous missions are served by one general system. The benefits of 
multimission attitude ground support systems extend not only to the software design and coding process but 
to the entire system environment, fiom specification through testing, simulation, operations, and 
maintenance. 

4.1 Benefits for Specifications 

As described in Section 2.1, there were sigm.fkant advantages to raising the level at which reuse occurred 
from low-level reuse to subsystem reuse. Thus, entire areas of fhctionality were generalized. The benefit is 
that specifications do not need to be reworked at such a fme level of detail for each new satellite. Additional 
benefits were realized by segregating mission-specific algorithms into separate subsystems. 

4.2 Benefits for Software Design and Coding 

The cost of software development from the software design phase through the acceptance testing phase is 
strongIy related to the size of the system, where the cost for verbatim reused software is approximately 
20 percent of the cost of newly developed software. The cost to develop AGSSs for EUVE and SAMPEX has 
been greatly reduced by reusing MTASS. Based on this success, the development of the Total Ozone Mapping 
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Spectrometer (TOMS) AGSS has begun and similarly plans to satisfy sigmficant major functions with 
MTASS. Additionally, plans are being made to base the AGSSs for the International Solar-Terrestrial Physics 
(ISTP) Solar and Heliospheric Observatory (SOHO) and X-ray Timing Explorer (XTE) missions on MTASS. 
Using the relatioashp between software development cost and system size, the relative cost savings for 
EUVE and SAMPEX can be inferred from Table 3. This table shows total source lines of code (SLOC), new 
SLOC. and reused SLOC for UARS, EUW, and SAMPEX. The reused SLOC for EUVE and SAMPEX is 
primarily reused from MTASS. The reuse for UARS is primarily existing utility packages. 

~ 

MISSION 

UARS 

Table 3. System Size for AGSSs Using M A S S  

TOTAL SLOC (K) NEW SLOC (K) REUSED SLOC (K) 

335.4 294.8 40.6 

I EUVE I 273.5 I 4 .8  I 224.5 I 
I 176.1 I 24.1 I 152.0 1 

~~ ~ ~~ 

ISAMPEX 
Note: Size is measured in 1000 SLOC. 

4.3 Benefits for Testing, Simulation, Operations, and Maintenance 

UARS and EUVE combined acceprance resting provided a good example of test systems that could not only 
benefit from a high degree of commonality but could be operated in a single test environment. That is, from 
the beginning UARS and EUVE testing was conceived and implemented by a single acceptance testing 
process group. Personnel already familiar with the pattern of UARS tests readily adapted to requirements for 
EUVE-specific tests and readily applied the techniques and methods that had proved successful for UARS 
tests also to EUVE tests. Thus, methods of test evaluation and scoring, test tracking, and scheduling used for 
UARS could be adapted almost without change to EWE. 

In a manner similar to testing, the high requirements and software commonality for UARS and EUVE 
exhibited by h4TASS supported the simulation phase. Thus, personnel already familiar with the setup and 
conduct of UARS mission simulations quickly adapted their methods and skills to the generation of EUVE 
simulations. On the other hand, the MTASS system, as adapted to UARS, or, alternatively, EUVE, with 
mission-specific job control language (JCL) and input data, tended to diverge with time, thus diluting some of 
the benefits observed during the earlier stages of the cycle. 

Similarly, the entry of the mission-tailored systems into the operations phase tended to further dilute some of 
the benefits because of differences in the details of mission operations support; for example, differences in the 
single, Earth-pointing control mode of UARS and the multiple, survey and inertial-pointing modes of EUVE 
were reflected in the number and frequency of predictions required for the two missions. Moreover, the 
intensified effort and staffing peak required by the actual launch and deployment of UARS tended to compete 
with an ongoing demand for EUVE support and resultedultimately in separate management arrangements for 
UARS and EUVE flight dynamics support. 

The benefits accruing to maintenance from multisatellite systems like MTASS follow from the fact that 
corrections and enhancements originating from experience with one satellite, say UARS, usually apply to the 
other satellite, say EUVE. In this way, maintenance effort is streamlined. 

5. ISSUES 

Our experience with developing and implementing a three-axis stabilized multisatellite flight dynamics 
support system raises several issues. These issues concern performance, testing, maintenance, and 
configuration management. 
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5.1 Performance Issues 
The increased generality in some MTASS algorithms results in some increased execution time and memory 
requirements for some program steps. The necessary provision of some mission-specific modules for several 
satellites in MTASS could also increase code storage requirements. In practice, the actual savings are 
determined by competition among conflicting trends. For MTASS, the execution time of some program steps 
has not been as small as desired: for example, under certain conditions attitude determination has not occurred 
in near-real time. Moreover, the MTASS code storage requirement, measured in numbers of SLOC, has been 
larger than for previous systems, but is offset by the need to store only one copy of the MTASS code. 

5.2 Testing lssues 
Another issue concerning MTASS is whether, and to what extent, the benefits of a multisatellite capability 
that were realizedin the specification and development phase extend also to the testing phase. It is well known 
that testing can address only a small subset of the total number of possible paths through the software system: 
consequently the question arises whether test cases generated for one satellite in the multisatellite system are 
representative of the program paths that will be used for all satellites, or whether test cases specific to every 
satellite must be used. 

About 80 percent of MTASS consists of requirements and software common to UARS and EUVE. Thus, the 
pathway through the programs exercised by a UARS-specifc acceptance test often exercises the pathway that 
would have been exercised in a comparable EUVE test, and thus separate UARS- and EUVE-specific tests 
were unnecessary and redundant. In th is  way, sigDlficant economies were realized in the combined 
acceptance testing of the multisatellite system. 

In the 20 percent of the system where no overlap existed, separate UARS-and--specific test cases were 
executed. For example, in the case of antenna contact predictions, the EUVE case involved test cases io two 
control modes (sumey mode and inertial pointing mode), whereas in the UARS case only one control mode 
(Earth pointing) was tested. 

The common pathway approach was also utilized in the acceptance testing of the UARS and EUVE telemetry 
simulators, which served as test drivers for the telemetry processing programs used with MTASS. Although 
the telemetry processing programs are not considered part of MTASS proper, it is nonetheless instructive to 
consider the approach used. Although a single, multisatellite telemetry simulator might have been desirable, 
in fact a separate EUVE telemetry simulator was developed through a high degree of reuse of the UARS 
simulator. In testing the EUVE simulator, it was found possible in some cases simply to operate the simulator 
with UARS input and identify the expected results with the corresponding output from a previously accepted 
UARS simulation. 

Apart from the benefits to testing that accrued from a large UARS/EUVE requirements and software 
commonality, a common management structure fully exploited the potential benefit of a multisatellite 
development environment. The acceptance testers, test coordinators, and task leaders for the testing of both 
satellites belonged to a single administrative unit under a single manager. This arrangement followed through 
on the promise and potential of the multisatellite approach and achieved signit’tcant economies andefficiency. 

5.3 Maintenance Issues 
Issues connected with the maintenance of muitisatellite ground support systems are potentially more severe 
than issues connected with acceptance testing. The reason is that the maintenance phase of the software 
development life cycle is closer in time to the actual satellite launch, when the multisatellite system is more 
fully adapted to the idiosyncrasies of each satellite. For example, product delivery requirements and data set 
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size requirements dctated different tailoring of associated software, such as JCL and command lists 
(CLlSTs), for EUVE than for UARS. Thus, as the fully adapted systems approach satellite launch, the 
systems tend to diverge in detail and the maintenance efforts tend to lose the benefit of overlap. Moreover, 
because of the high concentration of effort with the approach of launch and the existence of separate project 
teams for the different satellites, there is pressure for separate, dedicated launch support organizations to 
form, and with this development some of the benefits of a common management smcture may be lost. La the 
case of UARS and EUVE, however, we were fortunate to have the same nucleus of software maintenance 
personnel for both satellites in the critical prelaunch maintenance phases, thus simplrfying our efforts. 

5.4 Configuration Management Issues 
MTASS is maintained under a single configuration management structure and changes originating from one 
satellite or another are managed as a general case. Moreover, changes are instituted simultaneously without 
regard for the fact that in practice one satellite will go to the launch phase before another satellite. 

Configuration management issues arise from several sources. For example, the need for change may arise 
first in, say, a UARS launch simulation and pressures of time and budget may tempt implementation of the 
change in a way that is not at first sufficiently general to cover EUVE and SAMPEX. Or, a EWE simulation 
may uncover the need for a change that can impact the already-launched UARS, but the routine operations 
organization for UARS may prefer to defer the change. For reasons such as these, the configuration 
management of MTASS raises issues that do not arise in conventional single-satellite systems. 

6. TRENDS 

A s  mentioned above, plans are in place to use MTASS to satisfy significant major functions for the flight 
dynamics support of TOMS, ISTP SOHO, and XTE. Other potential missions to reuse MTASS will be 
examined. The one major limitation of MTASS is that the spacecraft be three-axis stabilized. Since there is 
lately a resurgence of spin-axis stabilized spacecraft with the ISTP/Global Geospace Science (GGS) Project 
Interplanetary Physics Laboratory (designated WIND) and Polar Plasma Laboratory (designated POLAR) 
missions and the SMEX-2 Fast Auroral Snapshot Telescope (FAST) mission, the usefulness of a 
multimission FDSS for spinning spacecraft was recognized. Consequently, the multimission spin-axis 
stabilized spacecraft (MSASS) FDSS was born (see Reference 2). It is currently completing development to 
support both WIND and POLAR, and plans are in place to satisfy sigmfkant major functions for the SMEX-2 
FAST mission. 

The trend to use MTASS and MSASS for upcoming missions will continue until a more generalized, mission 
configurable system replaces them. 
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15 9 ‘/”// What Is The RelationshiD Between Altitude 
And Weisht In A Model Rocket? 

Abstract: N9 3 -  247.232 1: - 
This experiment was designed to find a function of payload 

weight fo r  altitude. The same rocket was launched a repeated 
number of times with the same engine and varying amounts of 
weight. After performing experimentation, it was calculated that 
the al2itude in meters could be predicted with the equation 
A=2.8W -70.6W+310.3, with weight expressed in the unit ounces. 

EDITOR’S NOTE: The author of this paper is Mr. Jonathan Betz, 
a freshman at Thomas Jefferson High School in 
Falls Church, Virginia. 
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Introduction: 

Aerodynamics, the science with which this project deals, is 
the study of the forces acting upon an object as it moves through 
a fluid, such as air. Most often, aerodynamics is applied to 
studying heavier-than-air craft, such as airplanes. 

The four main forces acting upon such an object are lift, 
gravity, thrust and drag. Lift is the force acting on an object 
perpendicular to its velocity vector. Gravity is the force which 
pulls an object towards the center of the earth. For a rocket, 
thrust is the force which propels an object along its velocity 
vector. Thrust is opposed by drag, the force which slows an 
object moving through a fluid. 

Governing most of the work done in aerodynamics are the laws 
of motion developed in the seventeenth century by Sir Isaac 
Newton. A l s o ,  his concept of a fluid's resistance to motion, 
known as viscosity, has an effect on work concerning 
aerodynamics. 

In 1738, Daniel Bernoulli applied Newton's laws of motion to 
fluids. In his work he formulated what is known as Bernoulli's 
Law, which states that the sum of the dynamic pressure and the 
static pressure must always equal a given constant value, without 
regard to frictional losses. A bit more simply stated, this 
means that if the outward, or static, pressure of a fluid 
decreases, the dynamic pressure, or pressure against an object 
blocking the flow of the fluid, must increase enough that their 
sum remains the same. This brings us to the main point of 
Bernoulli's Law, that if a fluid speeds up, some of the static 
pressure must be traded off to allow for the increase in dynamic 
pressure. 

An airfoil, the cross-sectional shape of an airplane wing, 
utilizes this in order to achieve flight. An airfoil is shaped 
like this: 

A I R F L  

This shape is used in order to increase the speed of the airflow 
over the top of the airfoil. When this happens, the air pressure 
on the underside of the airfoil exceeds the air pressure on the 
upper side of the airfoil. This creates an imbalance in pressure 
which is what causes lift. 
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Purpose : 

The purpose of this experiment was to find a mathematical 
equation for predicting the altitude that a model rocket will 
attain with any given weight. More importantly, this experiment 
outlined a procedure for finding such a relationship for any 
model rocket. 

Hmothesis: 

While conducting background research, no reference to any 
relationship between altitude and weight in a heavier-than-air 
craft that accounted for all factors could be found. However, 
information from Estes Model Rocket Co. contained formulas f o r  
predicting altitude which did not account for aerodynamic drag or 
air resistance, and these formulas showed that qualitatively, a 
relation between altitude and weight would be parabolic in 
nature. However, a quantitative hypothesis as to the 
relationship between altitude and weight could not be made. 

Procedure: 

To find a relationship between altitude and payload weight, 
an Estes Nova Payloader model rocket was launched 6 times with 
each of 7 different payload weight values. Then, using the 
average values, an equation was derived to represent the average 
rocket behavior. The engines used in the rocket have a thrust 
range between 0.56 and 1.12 Pound-Seconds. For further 
information on the materials and methods, refer to Appendix 3 .  

Results: 

For the data collected in the experiment, refer to Appendix 
1. These data are displayed in various ways in Appendix 2. 

Figure 1 in Appendix 2 shows the average altitude for each 
of the weights for the first day, the second day, and a combined 
average. The fourth bar shows an average using only values that 
fall within 1 standard deviation value. Interestingly, this 
graph shows that on the first day there was an altitude increase 
between 3 and 3.5 ounces. Most likely, this is due simply to 
chance. Figure 2 is very similar, but shows only the values for 
combined and combined adjusted averages. The discrepancy 
mentioned about day 1 flights is no longer evident when the 
values are averaged with values from day 2 flights. Figure 3 is 
just a simple line graph showing the values for the combined 
adjusted average. This graph is what first suggested that a 
relation between altitude and weight would be parabolic in 
nature. Figure 4 shows both the combined adjusted average and 
the parabolic curve fit to the combined adjusted average values. 
Figure 5 shows the combined adjusted average of the flight 
altitudes and calculated flight altitude using calculations from 
Estes Model Rocket C o .  
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Conclusions: 

A s  I hypothesized, there seemed to be a parabolic 
relationship between altitude and weight as suggested by Figure 
3 .  Using the data from maximum, medium, and median weights, I 
was able to find that when launching a Nova Pavloader model 
rocket with a B4-4 engine, the aititude of the rocket can be 
predicted by the equation A=2.8W -70.6W+310.3, where A is the 
rocket's altitude in meters and W is the weight of the rocket in 
ounces. This equation yields about an 11% margin of error. This 
margin of error can possibly be attributed to experimental error 
and uncontrollable variables such as weather conditions and 
engine thrust consistency. 
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Data 

303 



MODEL ROCKET TEST DATA 
F L I G H T  T R I A L  ALTITUDE VS. GROSS WEIGHT 

Set tl, Total Rocket Weiqht = 2.0 0 2 .  

Launch Day 1 Day 2 
1 1 4 3 . 5  189.0 
2 156-0 179 . 5 
3 209 .5  198 . 5 

R a n g e  6 6 . 0  1 9 . 0  
A v e r a g e  1 6 9 . 3  1 8 9 . 0  
S T D  DEV 35 .0  9 . 5  
+/- 1 SDU 
ADJ AVE 

Set #2. Total Rocket Weiqht = 2.5 0 2 .  

L a u n c h  Dav 1 Dav 2 
1 198 .5  156.0 
2 101 .0  143.5 
3 1 3 7 . 5  137.5 

Range 97.5 1 8 . 5  
A v e r a g e  145.5 1 4 5 . 7  
STD DEV 49.3 9 . 4  
+/- 1 SDU 
A D J  AVE 

Set / t 3 ,  Total Rocket Weiqht = 3.0 0 2 .  

Launch Day 1 Dav 2 
1 109.0 127.0 
2 81.5 113 . 0 
3 101.0 113 - 0 

Range 2 7 . 5  1 4 . 0  
A v e r a g e  97.2  117.7 
S T D  DEV 14.1 8 . 1  
+/- 1 SDU 
A D J  A V E  

Combined 

66.0 
179.3 
25.3 

204.6 : 154.0 
180-7 

Combined 

97.5 
145.6 
31.7 

177.3 : 113.9 
143.6 

Combined 

27.5 
107.4 
15.2 

122.6 : 92.2 
109 I O  
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S e t  # 4 ,  T o t a l  Rocket  Weiqht = 3 . 5  02. 

Launch 
1 
2 
3 

Day 1 Dav 2 
109.0 90.5 
113.0 101.0 
90.5 84.5 

Combined 

R a n g e  22.5  
A v e r a g e  1 0 4 . 2  
STD DEV 12.0 
+/- 1 SDU 
A W  AVE 

16.5 28.5 
92.0 98.1 
8.4 11.4 

109.5 : 87.1 
97.8 

S e t  $ 5 ,  T o t a l  Rocket  Weiqht = 4 . 0  O z .  

Launch 
1 
2 
3 

Day 1 
66.5 
42.5 
42.0 

R a n g e  2 4 . 5  
A v e r a g e  5 0 . 7  
S T D  DEV 1 4 . 0  
+/- 1 SDU 
ADJ AVE 

Day 2 
57.5 
44.5 
42.5 

15.0 
48.2 
8.1 

S e t  # 6 ,  T o t a l  Rocket  Weiqht = 4 .5  0 2 .  

Launch Day 1 Dav 2 
1 3 2 . 5  40.5 
2 37.0 40.5 
3 37.0 39.0 

R a n g e  4 . 5  
A v e r a g e  35.5  
S T D  DEV 2 . 6  
+/- 1 SDU 
ART AVE 

1.0 
40.0 
0.9 

S e t  # 7 ,  T o t a l  Rocket  Weiqht  = 5 . 0  O z .  

Launch Day I Day 2 
1 22-5 37.0 
2 23.5 31.5 
3 1 0 . 5  32.5 

R a n g e  13.0 
A v e r a g e  1 8 . 8  
S T D  DEV 7 . 2  
+/- 1 SDU 
ADJ AVE 

6.0 
33.6 

2.9 

Combined 

24.0 
49.3 
10.3 

59.6 : 39.0 
45.8 

Combined 

8.0 
37.8 
3.0 

40.8 : 34.8 
38.8 

Combined 

27.0 
26.2 
9.5 

35.7 : 16.7 
27-5 
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Weiqht 

2.0 oz 

2.5 0 2  

3.0 oz 

3 . 5  oz 

4.0 oz 

4.5 0 2  

5.0 oz 

MODEL ROCKET TEST DATA 
AVERAGE ALTITUDE VS. GROSS WEIGHT 

Combined Standard Adjusted 
Averaqe Deviation Averaqe 

179.3 25.3 180.7 

145.6 31.7 143.6 

107.4 15.2 109.0 

98.1 11.4 97.8 

49.3 10.3 45.8 

37.8 3.0 38.8 

26.2 9.5 27.5 
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Materials 
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1 Estes Nova Pavloader model rocket 
1 Estes Altitrak altitude finder 
44 Estes B4-4 model rocket engines 
2 Estes A 8 - 3  model rocket engines 
2 Estes B6-4 model rocket engines 
3 packages of Estes model rocket recovery wadding 
6 packages of Estes model rocket igniters 
1 roll of masking tape 
1 scale 
1 Estes launch pad 
1 Estes model rocket launcher and safety key 
7 5  meters of twine 
2 tent pegs 
1 level 
8 packages of lead fishing sinkers 

1. A- semble Nova Payloader model rocket 
2 .  A semble Altitrak altitude finder 
3 .  Ws ich out 6 sets of weights, beginning with 1/2 ounce and 

4. M.a-;ure 75 meters of twine, attaching a tent peg to each end 
5. P-o:eed to launch site, Manassas battlefield picnic area 
6. S ?t up launch site: 

a) set launch pad down and check launch rod to be 

b) hammer one tent peg into the ground by the launch 

c) stretch twine out until taught and hammer second peg 

d) station one observer at the far end of the twine 

e) prepare launch controller for launching 

a) insert 3 crumpled squares of recovery wadding into 

b )  insert and tape an igniter into a rocket engine 
c) insert engine into rocket 
d )  roll parachute and insert into body of rocket with 

e) insert nose cone and payload section into body tube 

ct ntinuing to 3 ounces, in 1/2 ounce increments 

vertical 

Pad 

into t h e  ground 

with altitraker 

7. ,>r-npare the rocket for launch 

the rocket 

shock cord 

of rocket 
8. Petermine the best rocket engine for use in experimentation 

a) launch rocket twice with each of the B6-4, B4-4, and 
A 8 - 3  engines, once with no payload, once with 
maximum payload 

b )  record altitude of each launch 
c) using this information, decide on the best engine to 

use 
9 .  :onduct experimentation 

a) for each flight, prepare the rocket as in step 7 
b) launch the rocket 3 times with no payload 
c) launch the rocket 3 times with each premeasured 

payload 
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d) record the altitude and launch time of each flight 
e) record weather conditions every hour while launching 

rockets 
10. Repeat steps 4-7 and 9 at a later date 
11. Calculate relationship between altitude and weight 
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Nonlinear Techniques for Forecasting Solar 
Activity Directly From Its Time Series* 
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ABSTRACT 

This paper presents numerical techniques for constructing nonlinear predictive models to 
forecast solar flux directly from its time series. This approach makes it possible to extract 
dynamical invariants of our system without reference to any underlying solar physics. We 
consider the dynamical evolution of solar activity in a reconstructed phase space that 
captures the attractor (strange), give a procedure for constructing a predictor of future solar 
activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and 
attractor dimension. 

1. INTRODUCTION 

1.1 Review of Solar Activity 
Need for Solar Flux Prediction. Solar flux F10.7 [radio flux emitted at a wavelength of 1 = 10.7 centime- 
ters (cm)] is the best indicator of the strength of ionizing radiations, such as solar ultraviolet and X-ray 
emissions, that directly affect the atmospheric density and thereby change the orbit lifetime of satelIites. 
Thus, accurate forecasting of solar flux F10.7 is crucial for orbit determination of spacecrafts. 

Sunspots and Solar Flux. The strong correlation between sunspots and the solar flux F10.7 is probably due to 
the enhanced radiation from limited areas of the Sun where sunspots are active. Sunspot activity depends on 
the wavelength of radiated solar flux. For waves shorter than 3 cm, the intensity is steady. From 3 to 60 cm, 
often called the decimeter range, the intensity occasionally increases for a few minutes. Rising from the 
vicinity of active sunspot regions, decimeter intensity also tends to exhibit a 27-day period associated with 
solar rotation (Reference 1). 

The dynamics of sunspots and their formation are still a mystery. They are often more than 1000 degrees 
Kelvin cooler than the surrounding photosphere. Although many explanations for sunspot cooling have been 
proposed (the Biermann field inhibition mechanism and the superadiabatic downflow mechanism), the huge 
difference in temperature between sunspots and their surroundings suggests a similarity With solitons of 
multilevel turbulence. One may think of sunspots as solitons in a fluid turbulent Sun (Reference 2). Orbit 
lifetime is a function of atmospheric drag, which is a function of atmospheric density, which in turn is a 
function of solar flux. For this reason, spacecraft orbit determination requires accurate forecasting of solar 
flux. 

Thiswork wassupported bythe National Aeronauticsand Space Administration (WSA)/GoddardSpace flight Center 
(GSFC), Greenbelt, Maryland, Contract NAS 531500. 
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Nonlinear Structure in Solar Flux. Until recently, we had little reason to doubt that weather is in principle 
predictable, given enough data. Recently, a sttiking discovery changed our perspective: simple determinis tic 
systems with only a few degrees of freedom can generate random behavior. When a system exhibits apparent 
random behavior that is fundamental to its dynamics, such that no amount of information gathering will make 
the system predictable, the system is considered to be chaotic. Much evidence supports our assertion that solar 
flux signal falls in this category (References 3 through 11). Perhaps paradoxically, chaos is generated by fmed 
rules that do not themselves involve any element of chance. Theoretically, the future of a dynamic system is 
completely determined by present and past conditions. In practice, however, amplification of small initial 
uncertainties makes a system with short-term predictability unpredictable in the long term. 

Many people speak of random processes as though they were a fundamental source of randomness. This idea 
is misleading. The theory of random processes is an empirical method to deal with incomplete information; it 
does not attempt to explain randomness. As far as we know, the only truly fundamental source of randomness 
is the uncertainty principle of quantum mechanics;.everything else is deterministic, at least in principle. 
Nonetheless, we call many phenomena, such as solar dynamics, random, even though we may not ordinarily 
think of them in terms of quantum mechanics. Historically, scientists have assumed that randomness derives 
solely from complication. In this paper, we will take the practical position that randomness occurs to the 
extent that a system’s behavior is unpredictable. We believe that randomness is subjective and a matter of 
degree; that is, some systems are more predictable than others (e.g., solar activity is more predictable than 
geomagnetic activity). 

Solar Activity Prediction. Interest in solar activity has grown in the past two decades for many reasons. 
Some reports claim a correlation between solar activity and weather on Earth (Reference 12), although a 
correlation has not yet been convincingly established (Reference 13). We have some evidence for the 
coincident occurrences of the Maunder minimum (a period of little or no solar activity occurring from 1645 to 
1715) and the ‘little Ice Age” (a period of abnormally cold weather) (Reference 14). Perhaps most 
importantly for flight dynamics, solar activity changes the atmospheric density, which has important 
implications for spacecraft trajectory and lifetime prediction (Reference 15). The seemingly random nature 
of solar flux has misled us for many decades, causing us to assume that the underlying physics must 
necessarily be complex as well. Therefore, researchers have generally used statistical models to predict solar 
activity (Reference 16). However, new developments inchaos and nodhear dynamics allow us to model the 
behavior of a system in terms of some invariants directly extractable from system dynamics, without 
reference to any underlying physics. Using chaos theory, we can predict short-term activity more accurately 
than with statistical methods; however, chaos theory imposes a fundamental limit on long-term predictions. 

1.2 Brief Review of Chaotic Dynamics 

Self-Organization and Attractors. Imagine avery simple system: a pendulum. The pendulum exhibits two 
fundamental degrees of freedom: position and momentum. However, in its stable periodic state (limit cycle), 
the pendulum can be described by only one degree of freedom, the phase angle. Here, the dynamic is attracted 
to a lowerdimensional phase space, and the dimension of this reduced phase space is equal to the number of 
active degrees of freedom in the self-organized system. 

Attractors are not limited to zero dimension (fmed point) or one dimension (knit cycle), but for nonlinear 
systems they could be high dimensional and in some cases even fractional or b c t a l  (strange amctors). 

Nonlinear Dynamical Systems. Anything that moves or evolves in time is a dynamical system. (If it does not 
move, it is a dynamical system at a fmed point.) Mathematically spealang, a dynamical system can be 
represented by a state space (phase space) RM and an evolution operator y that defines how the state of the 
system evolves in time. M is the number of degrees of freedom in the dynamics; y can be visualized as the 
physics of the system. 
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The attractor A of a dynamical system is the subset of phase space toward which the system evolves: 

An initial condition zo that is sufficiently near the attractor will evolve in time so that yft (K) gets very close 
to the set A as t +a. 

Phase-Space Construction Directly From a Time Series. When confronted with a complicated physical 
system, an experimenter normally measures at regular and discrete intervals of time the value of some state 
variable (e.g., flux F10.7) and records the time series f(Q), f(tl), f(t2), ..., Withf(ti) E R and ti=to+iAt. From the 
observed time series, the experimenter attempts to infer something about the dynamics (Le., the physics) of 
the system. The measure f(t) represents a projection n from RM to R: 

71: RM -t R. 

Because the time series is one-dimensional, it is an incomplete description of a system during a time 
evolution. Nonetheless, many features of the dynamics can still be inferred from the time series alone. From 
timedelayed values of the scalar time series, Takens (Reference 17) and Packard et al. (Reference 18) have 
shown that one can embed the time series into a higher dimensional space. Vectors are created with 
components as 

f(t> = [f(t>, f(t - z>, ... f(t - (m - l)z>lT, 

wherez (time delay) and m (the embedding dimension) are parameters of the embedding procedure. Here f (t) 
represents a more complete description of dynamics than f(t) and can be thought of as a mapping: 

Xm:RM-+ Rm. 

An embedding dimension of m > 2D+1, where D is the fractal dimension of the attractor, almost always 
ensures the construction of the topology of the atbractor ("&ens' theorem, Reference 17). 

If unlimited infinitely precise data are available, almost any delay time z and embedding dimension m > D 
will work, at least in principle. However, choosing the optimal parameters for real data is a nontrivial process. 

For example, ifz is too large then the components f(t) and f(t+(m-l)t) of the reconstructed vector f will be 
effectively uncorrelated, which will inflate the estimated dimension. On the other hand, if (m-l)t is too small, 
then thecomponents f(t), ...$( t+(m-1)t) will allbevery nearly equal, and the reconstructed attractor will look 
like one long diagonal line. Generally, z must not be less than some characteristic decorrelation t h e ,  and 
(m-1)tmust not be much greater than this decorrelation time. One suchcharacteristic time is the local minima 
of the autocorrelation function R(z) = ((f (t)-(f))(f(t+z)-(f))), where ( ) represents average over time. 

+ 

1.3 Some Invariants of Dynamical Systems 
Lyapunov Exponent. In a chaotic system, the adjacent points of the time series become separated under the 
action of a map; in our case, fn is the value of solar flux measured daily. 

fm+ 1 = Wfd, 
-.. 

which leads to satic motion. The Lyapunov exponent h( fd measures this exponential separation, as shown in 
Figure 1. 

Therefore, 

em(&) = IMN (f, + E,J - MN (fo)l. 
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Figure 1. Exponential Separation Measurement 

In the limit EO -+ 0 and N --+a, we get the formal expression for Lyapunov exponent h(fo): 

The Lyapunov exponent also measures the average loss of information. 
Invariant Measure. The invariant measure e(f) determines the density of the iterates of a map over the unit 
interval and is defined to be 

N 

Kolmogorov Entropy. Kolmogorov entropy K describes the dynamical behavior at the strange amactor. K is 
the analog of thermodynamic entropy that measures the disorder in a dynamical system. For a 
one-dimensionalmap, it is just the Lyapunov exponent. The rate K (at which information about the system is 
lost) is equal to the average s u m  of positive Lyapunov exponents: 

where the superscript d is the dimensionality of our phase space. 
In most cases, the h are independent off, so 

K = ( f ) .  

K is, indeed, a useful measure of chaos. K becomes zero for regular motion. It is infiite for totally stochastic 
or random systems but is a constant larger than zero for chaotic systems (Figure 2). In higher dimensional 
systems, we lose information about the system (as shown in Figure 3). Here, a sphere of radiusa changes its 
geometry in phase to an ellipsoid as the system evolves in time. 

HausdorffDimension. One of the invariants of an attractor that can be extracted directly from the time series 
is called Hausdot$ Dimension D, an infinite set of dimensions D=Do, D1 , D2,, ... that describes the 
inhomogeneity of the attractor. It can be shown that D2 (which yields a lower bound on the Hausdorff 
dimension) and many other invariants of the system can be directly obtained from a time series: 

D2, that is, a lower bound on the Hawdorff dimension (D2 < D1) 
d, that is, the embedding dimension of the attractor 
The amplitude of the white noise on the signal; that is, separating the deterministic chaotic 
motion of the system from disturbing white noise 
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Figure 2. Kolmogorov Entropies for Regular, Chaotic, and 
Random Motions 

€0 

Figure 3. A Two-Dimensional Map of Small Circle Into an Ellfpse 

N 
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A lower bound on the Kolmogorov entropy; that is, determining “how chaotic” the signal is 
The Kaplan-Yorke dimension: c o ~ e c t s  the static structure of the attractor (as measured by 
D=Do, D,, D2, ...) and the dynamical behavior at the attractor (as measured by the Lyapunov 
exponents) 

Dimensions of a Strange Attractor. To characterize the inhomogeneous static structure of the attractor, we 
introduce an infinite set of dimensions Dn related to the nth powers of Pi via 

D, = 

n = 0 , 1 , 2  ,..., 

where Pi is the probability of finding a point of attractor in the cell number i [i=l , 2, ... Q (EO)]. Forn=O, we get 
the HausdorH dimension of the attractor D=Do; for n=1, we get dimension D=D1 (called the information 
dimension). It should be noted that for n + 00 , the dimension is still a finite number @,=finite), which in 
general is not an integer. 

Largest Lyapunov Exponent of Solar Flux Time Series. The s u m  of the Lyapunov exponents is the 
time-averaged divergence of the phase space trajectory; hence, any dissipative dynamical system will have at 
least one negative exponent. Any dynamical system without a fured point will have at least one zero Lyapunov 
exponent. 

A small positive Lyapunov exponent is an indication of chaos, and a very large positive Lyapunov exponent is 
an indication of a totally stochastic or random system. Therefore, the sign of the exponent provides a 
qualitative picture of a system’s dynamics-a positive exponent represents chaos, a zero exponent represents 
marginally stable systems, and a negative exponent represents periodic systems. Figures 4 and 5 show the 
actual solar flux data and the largest Lyapunov exponent, respectively, for more than 4OOO points. Here, we 
have used the well known technique of phase space reconstruction with delay coordinates (Reference 18). 
After embedding the solar flux time series in a state space using the Takens-Packard delay coordinate 
technique, one can “learn” the induced nonlinear mapping using a local approximation. This will allow us to 
make short-term forecasting of the future behavior of our time series using information based only on past 
values. The error estimate of such a technique has already been developed by Farmer and Sidorowich 
meference 19). 

where E = 

m =  
K =  
T =  
N =  
D =  
c =  

normalized error of prediction (0 S E I 1, where zero is perfect prediction and one 
is a prediction no better than average) 
order of local approximation 
Kolmogorov entropy 
forecasting window 
number of data points 
dimension of the attractor 
normalization constant 

Using the Farmer-Sidorowich relation, we can find the prediction horizon T for the zeroth order of local 
approximation. Any prediction above Tmax is no better than average constant prediction. 
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Figure 4. Actual Solar Flux Time Series 

Figure 5. Largest Lyapunov Exponent of Solar Flux Time Series of Figure 4 

Thus, for m = 0, K is the largest Lyapunov exponent A,. Therefore, 

In (N) 
Tm, - - KD em-N-'/D 1 or 
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Any prediction beyond the indicated horizons is no better than average value. The connection between the 
local and the global Lyapunov exponents has recently been found (March 1991) by Abarbanel et al. 
(Reference 20) in a form of power law as 

h(1) = h, + c 
1V 

N = 01, 

where h(1) = local Lyapunov exponent 
1 = length of observed data (observation window) 
V 

C 

& = well known global Lyapunov exponent 
0 = frequency of data points 

= a constant dependent to the dynamical system (0.5 < v I 1 .O) 
= a constant dependent to initial conditions of the system 

Because any data are finite length data, using the Abarbanel-Kennel power law and Farmer-Sidorowich 
relation, we can frnd Tmax as 

In(1o) 
Tmax - 

(k + ;) D * 

This means that as 1 increases linearly, T,, increases logarithmically to a certain asymptotic T because of the 
denominator c/lv (Figure 6). 
Therefore, our relation shows that at the asymptote T m a  =TO (Reference 11)  and dT,&ll= 0. Thus, we can 
find what observation window is required for forecasting up to Tm, within some confidence level. 

.(+a) 
dTmax - 0, thus No - e v ,  xo (6) > 2, dN 

Figure 6. Relationship of I to T,,, 
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where xo (6) is the solution to e-x (x - 1) = 6, and where 

is the scaled global Lyapunov exponent. 

This result shows that any observation window greater thanb = No/o will not improve our prediction horizon 
TO; so more data beyond this limit are not needed to understand adynamical system. This conclusion is indeed 
consistent with weather prediction and also with empirical results concluded from neural networks training. 

2. STRUCTURE OF THE COMPUTER PROGRAM 
Once we know the state space representation, the next goal is to f i t  a model to the data. There are several 
methods. The simplest method is to assume that the dynamics can be written as a map in the form 

fn+l = M(fD), 

where the current state is fn, and fn+l is a future state. Methods such as the polynomial method, rational 
approximation, radial basis functions, neural networks, and local approximations have been proved to be 
successful. Here we only introduce local approximation technique, which is the method used to structure the 
computer program. 

Local Approximation. The basic idea is to break up the domain of M into local neighborhoods and f i t  
different parameters into each neighborhood. This fit is generally better than global approximation, 
especially for large data sets. Most global representations reach a point of diminishing returns, at which 
adding more parameters or data gives only an incremental improvement in accuracy. After a certain point, 
adding more local neighborhoods is usually more efficient than adding more parameters and going to higher 
order. With local approximation, it is possible to use a given functional representation efficiently. The key is 
to choose the local neighborhood size correctly, so that each neighborhood has just enough points to make the 
Iwal parameter fits stable. The basic idea is shown in Figure 7 . 
Moving to representations of higher degree involves a tradeoff-higher degree representations promise more 
accuracy, but also require larger neighborhoods. A larger neighborhmd implies that the complexity of M 
increases. Finding &he best compromise between these two effects is a central issue in local approximation. 

An example of local approximation isfirsr order, or nearest neighbor, approximation. Look through the data 
set for nearest neighbor, v d  predict the Current state based on what the neighbor did at time T later. We 
approximate f(t + T) by f(t, T) = f(t‘ + T), where f(t’), is the nearest neighbor of f(t). That is, to predict 
tomorrow’s solar flux, we would search the historical record and find the solar flux pattern most similar to that 
of today, and predict that tomorrow’s solar flux pattern will be the same as the neighboring pattern 1 day later. 

---- 

Figure 7. Phase Space Trajectories 
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First order approximation can sometimes be improved by finding more neighbors and merging their 
predictions, for example, by weighting according to distance from the current state. If the data are noise, it is 
better to use a larger number of neighbors. This procedure can be improved by weighting the contributions of 
neighbors according to their distance from the current state. The beauty of linear approximation is that the 
neighborhood size grows slowly with the embedding dimension. The order of approximation may depend on 
factors such as the choice of neighborhoods, the dimension, or peculiarities of the data set. For low 
dimensional problems, a third order approximation is good. 

Nonstationary Behavior. If the trajectory is on an attractor, the data must be stationary, as long as the 
parameters are constant. However,parameter variationscan result innonstationary behavior. To deal with this 
problem, we include time as one of the state space coordinates. T i e  can be included in the metric, so that the 
search for nearest neighbors favors recent data. This approach takes into account the trends, other 
timedependent effects, and seasonality. 
Implementation of Local Approximation. Finding neighbors in a multidimensional data set is time 
consuming when considering many points. A straightforward method is to compute the distance to each 
point, which takes approximately N steps for N points. This can be reduced to roughly log N steps by 
organizing the data with a decision tree, such as a k-d tree (Reference 21). 

In this method, the data set is partitioned one coordinate at a time. We can take the coordinate with largest 
range and partition it at its median value. These values are stored in the tree as keys. It is now possible to 
eliminate many points form consideration when looking for the nearest neighbors. This way, we minimize 
processing time considerably. 

2.1 CHOICE OF THE EMBEDDING DIMENSION d 
Here we would like to determine the correct value of the embedding dimension d from the scalar time series 
x(n), n=l ,~,...,ND. We assume that there are enough data that we med not be concerned with statistical issues 
about numerical accuracy. We also assume that extrinsic noise is absent from the x(n) when we receive them. 
We further assume that by following Takens’ phase-space reconstruction tecbnique we have successfully 
captured the dynamics and embedded our time series. This requires a correct choice of z, which will be 
discussed in the next section. 
For now, let’s further assume we have a correct z to construct the attractor in the phase space. To establish 
dimension d, we need some characteristic of the attractor that becomes unchanging as d becomes large 
enough, thus indicating that the attractor can be embedded in Rd. This invariant characteristic of the attractor 
is the attractor dimension dA. One h~creases d until dA remains constant and identifies the minimum d where 
dA “saturates” as the embedding dimension. But computation of dA is difticult, so we use the correlation 
function D(r) proposed by Takens (Reference 17). 

where U(z) is just the unit step function U(z) = z<o . I 
For N large enough, the behavior of D(r,N,d) for r becomes independent of N and D(r,N,d) takes the form 

D(r, N, d) = @(r, d)rv(d) . 
If we plot D(r3.d) versus r we can single out the correct value of dimension d as in Figure 8. From Figure 8 it 
is concluded that the minimum value of d=3 is the right choice beyond which attractor dimension dA does not 
change or the slope of ow graph becomes constant. 
In the next section we study the correct choice of z to reconstruct the phase-space attractor. 
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Figure 8. Correlation and Attractor Dimensions 

2.2 Choice of the Time Shift TC 

The choice of time shifts t is not well agreed upon. If the underiying system is described by a differential 
equation and scalar variable x(t) were measured at discrete times x(n) =x(b + n At), then we would be, by the 
choice of lagged variables, trying to find a discrete replacement for the usual phase-space coordinates: 

The best choice for time shift z is a fraction of the time associated with the fust local minimum of the 
autocorrelation function 

1 \ x(t + r)x(t)dt . T 

We find that this choice, although somewhat arbitrary, works well in practice and gives a simple systematic 
way of determining t. 

3. RESULTS 
Figure 9 shows the daily observed values of solar flux F10.7 for about four solar cycles from February 1947 to 
November 1991. A close examination of this graph shows low daily variability at solar cycle minima and 
large daily variability at solar cycie maxima. Therefore, the challenge for solar physicists is to forecast solar 
flux in the regon of solar cycle maxima. 

Here forecasts are made in the region of solar cycle maxima, where the variations are as large as 150 units of 
solar flux, and in regions between a maximum and a minimum, where the variations are as large as 100 units 
of solar flux. Comparisons are made versus 27-day NOAA predictions, Schatten's monthly predictions, and 
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observed values of flux F10.7. Figure 10 shows 27-day predictions using chaos theory with undecoupled (raw) 
data. Predictions were made in the region of solar cycle maxima. Comparisons show clearly that chaos 
predictions are at worst 20 units off from observed values, whereas the best N O M  27-day predictions are 
about 40 units off from observed values, with a wrong phase on the 27-day local maximum. 

Here it is clear that chaotic long-term prediction is very close to the 81-day average of actual F10.7, which is 
useful for calculating exospheric temperature using the Jacchia-Roberts atmospheric density model. 

Figure 11 shows the same conclusion for predictions made for a 60-day span. Here it is very clear that N O M  
predictions (best updated values to the end of 60 days) do not carry any of the signrficant dynamical features 
of the observed values, whereas the chaos prediction does carry the inherent dynamical features. Figure 12 
shows a comparison of MSFC and Schatten's predictions. Figure 13 also shows comparisons of 81-day 
average F10.7, Schatten's predictions, and chaos predictions. 

Figure 14, which was made for a region between solar cycle maxima and minima, shows a 30-day prediction 
indicating that chaos prediction is at worst 20 units off from the observed values, but it should be noted that 
the signal-to-noise ratio characteristic of solar activity indicators are - 35 for F10.7, - 20 for sunspot numbers, 
and - 10 for sunspot areas. 

- ~ - -  -,-- I___ _ _ j  ~ 

' . ' ) ' I  I -__- I 

Figure 9. Daily Observed Values of Solar Flux F10.7 (Watt per m2'per Hz x 
IO-=) Versus Modified Julian Date 

Figure 10. 27-Day Chaos and NOAA Predictions Compared With Observed 
Solar Flux F10.7 From April 13,1990 
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Figure 14. 30-Day Comparison of Schatten’s Prediction and Chaos Prediction 
With Observed Daily F10.7 

Figure 15 shows chaos predictions for embedding dimensions 3 and 4, the Schatten mean, and +20 
predictions. Figure 15 clezly shows that, for long-term forecasting, the chaotic method carries all the 
inherent structures of Schatten’s method. Figure 16 shows that chaos prediction captures the cyclical behavior 
of solar cycles (the minimum of the cycle is very clear). Figure 17 shows the observed F10.7 and its 81-day 
average, and Figure 18 shows chaos prediction for about 50 months after November 1991 (the time of our 
analyis). Comparsions of chaotic predictions (Figure 16) with Schatten’s predictions show the chaos model to 
be predicting F10.7 even higher than Schatten’s +2a. Recently, the observedF10.7 have in fact beenhigher than 
Schatten’s +2u. As seen in Figure 17, after October the average flux is about 200, as is clear from the first 
couple of points in Figure 18. It is certainly possible to fme tune the model by adjusting the embedding 
dimension and the time shift T. Figure 19 shows predictions for various time shifts T, with D=3. Figure 20 
shows predictions for various time shifts 7, with embedding dimension D=4. 

4. CONCLUSIONS 

In this paper we presentednumerical techniques for constructing nonlinear predictive models to forecast solar 
flux F10.7 directly from its time series. Using this approach, we extracted dynamical invariants of our system 

w 
0 5 10 15 20 25 30 2-5 $0 45 50 

Months From Nov 1091 

Figure 15. Chaos Long-Term Prediction With Embedding Dimension D=3 and 
D=4 Compared With Schatten’s Mean and Schatten’s +2a 
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Figure 16. Predictions of Schatten and Chaos Theory for Solar Cycfe Minima 
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Figure 18. 50-Month Chaos Prediction With Embedding Dimension D=4 and 
lime Shift z = lo  Days 
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Figure 19. Variability of Predictions as a Function of Change in Time Shift z. 
Her8 Embedding Dimension Is Kept Constant (D=3), and z Is Varied 
by 8, IO, 17, and 21 Days 

Figure 20. Variability of Predictions as a Function of Change in Time Shift z. 
Here Embedding Dimension Is Kept Constant (D=4), and z Is Varied 
by 8,10,17, and 21 Days 

without reference to any underlying solar physics, thereby circumventing the complicated physics and 
modeling the system directly from data. 

Comparison of our prediction of solar flux activity using chaotic dynamics with conventional methods used 
by Schatten, MSFC, and N O M  demonstrated the validity of our approach to modeling solar activity using 
nonlinear dynamics. This approach could also be used to model other complicated systems, such as 
geomagnetic activity and atmospheric density, to name just two. 
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ABSTRACT 

This study investigates the reentry of the LifeSat vehicles into the WSMR. The LifeSat 
mission consists of two reusable reentry satellites, each carrying a removable payload 
module, which scientists will use to study long-term effects of microgravity, Van Allen belt 
radiation, and galactic cosmic rays on living organisms. A series of missions is planned for 
both low-Earth circular orbits and highly elliptic orbits. To recover the payload module with 
the specimens intact, a soft parachute landing and recovery at the WSMR is planned. This 
analysis examines operational issues surrounding the reentry scenario to assess the 
feasibility of the reentry. 
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1. INTRODUCTION 

The LifeSat program is envisioned to employ two reusable reentry satellites (RRS), each carrying a 
removable payload module (PM), to be used by scientists to study long-term effects on living organisms of 
microgravity, Van Allen belt radiation, and galactic cosmic rays (GCR). The effects of GCR are separable 
from those due to Van Allen belt radiation by orbit selection. Both highly elliptical polar and circular 
near-equatorial orbits will be used to provide the range of environments necessary to perform cl 

comprehensive study. Mission lengths of approximately 60 days will provide full lifecycle observation for 
some of the organisms. The spacecraft is returned to Earth at the White Sands Missile Range (WSMR) in New 
Mexico, U.S. for a soft landing to recover the PM containing the specimens intact, and allow the RRS to be 
refurbished for future missions. 

Four missions are currently planned: two highly elliptical orbit missions [200 x 20,600 kilometer (km)], each 
to place a single RRS in a polar orbit from the Western Test Range (WTR); and two circular orbit missions that 
will each fly two RRSs at differing altitudes. The circular missions will launch from the Eastern Test Range 
(Em) and will have altitudes of 350,700, and 900 km, with an inclination of 34 degrees. This paper focuses 
on the reentry phase for all four mission orbits. Operational issues such as burn sequencing, burn errors, range 
safety, and contingency operations are discussed. 

2. REENTRY 

WSMR will recover the LifeSat vehicles at the end of each 60-day mission. Execution of a controlled, soft 
landing and recovery will be done by performing a primary deorbit burn followed by a trim burn to correct for 
dispersions in the primary burn. Deployment of a parachute system at an altitude of approximately 50,000 feet 
will then slow the velocity of the spacecraft to allow an impact of less than 10 g's. The spacecraft position will 
be closely monitored, and with the aid of a homing beacon, ground recovery crews will retrieve the PM within 
two hours after impact. 

The analysis performed for this paper concentrates on both the deorbit and trim burn. The analysis of the 
primary deorbit burn begins by calculating the nominal delta-v for ballistic reentry of the four mission orbits. 
The effects of thrust and attitude errors on the deorbit burn are quantified to provide a landing footprint. The 
off-nominal cases for the deorbit burn are then remodeled with a trim burn to find the delta-v's required to 
readjust the orbit path to land at WSMR. The trim burn accuracy is then varied to generate a revised landing 
footprint which includes both off-nominal deorbit and trim burns. 

2.1 Nominal Deorbit Burn 

The nominal deorbit burn location is defined as the point in the mission orbit that is one half an orbit before 
passing over WSMR. This was chosen because it requires the minimum delta-v to reenter the spacecraft. 
Figures 2-1 and 2-2 show the burn points and the nominal reentry paths for the 900 km circular mission and the 
highly elliptic mission, respectively. 

The modeling of the burns and the orbit propogations are performed using the Goddard Mission Analysis 
System (GMAS). The bums are modeled assuming four 100-pound force hydrazine thrusters with a specific 
impulse (Isp) of 215 seconds. All bums are assumed to be performed in-plane (yaw angle = 0 degrees, pitch 
angle = 180 degrees) and are targeted to a landing site at WSMR located at latitude 33.1 degrees north and 
longitude 253.63 degrees east. Finite burn approximations and fuel consumptions were calculated in GMAS 
using the rocket equation. The burn data for each of the four mission orbits are listed in Table 2-1. 
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Figure 2-1. LifeSat Reentry Groundtrack 900 km Orbit North-to-South Trajectory 
to WSMR (Inclination equals 34 degrees) 
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350 km circular 79.8 

700 kin circular 174.6 

900 km circular 230.0 

Figure 2-2. LifeSat Reentry Groundtrack 200 x 20,600 km Orbit North-to-South 
Trajectory to WSMR (Inclination equals 90 degrees) 

63.9 11 8.9 

136.7 254.3 

177.8 330.7 

Table 2-1. Nominal Deorbit Finite Burn Data 

t 200 x 20,600 km 24.2 19.6 I 36.5 1 I 

I 
I 

I 
L 
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The deorbit burn which requires the lowest delta-v is the highly elliptic mission. Because the total change in 
semimajor axis is small, a delta-v of only 24.2 meters per second (m/sec) is neededfor spacecraft reentry. For 
the circular orbits, as the altitude of the orbit increases, the change in semimajor axis from the mission orbit to 
the reentry orbit increases, resulting in a much longer bum. The largest delta-v, 230.0 m/sec, occurs for the 
900 km orbit. 

2.1.1 Range Safety 

To land at WSMR, the RRS must meet various range safety criteria. The ground tracks of the reentry path and 
the associated altitudes were studied for the nominal cases. The footprints of various off-nominal cases were 
also analyzed and are presented in Section 2.2. 

The ground tracks of the reentry path are plotted to depict when the spacecraft travels over populated areas. 
Graphs depicting altitude versus downrange distance from WSMR are generated to be used in conjunction 
with the ground track plots. These graphs aid in determining safe avoidance of the regions surrounding 
WSMR as well as in determining the need for the Federal Aviation Administration (FAA) to restrict airspace. 

The circular orbit with the lowest reentry altitude is the 350 km case. A north-to-south trajectory was initially 
chosen for the reentry to avoid overflying Mexico (see Figure 2-1). A more detailed view of this reentry path is 
shown in Figure 2-3. The reentry path enters the U.S. over the northernmost part of Los Angeles. However, 
Figure 2-4 shows that at that point in the orbit, the altitude of LifeSat is 230 thousand feet (kft). Once over New 
Mexico, U.S., the spacecraft passes close to Truth or Consequences. However, although the city is near 
WSMR, the altitude of the spacecraft is approximately 120 kft. 

For the elliptic polar mission, Figure 2-5 shows that LifeSat will reenter from the north. This reentry path does 
not pass directly over any cities but does pass between Albuquerque and Santa Fe, a region of frequent air 
traffic. Figure 2-6 shows that the altitude of Lifesat is over 150 kft when passing between the cities. Since 
airplanes travel at an altitude, of at most, 40 kft, <an airspace conflict does not exist. For all cases, LifeSat will 
not begin to descend below 50 kft until directly over WSMR. 

I 
~~~ 

LEGEND 

0 LOSANGELES 0 USCRUCES 

0 PHOENIX 0 ELPASO 

0 TUCSON @ ALBUQUERQUE 

0 TRUTHOR 0 SANTAFE 
CONSEQUENCES 

Figure 2-3. Detail Reentry Groundtrack; 350 km Orbit North-to-South Trajectory 
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Figure 2-4. LifeSat Reentry Altitude vs. Distance; 350 km 
Orbit North-to-South Trajectory 
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Figure 2-5. Detail Reentry Groundtrack; 200 km x 20,600 km 
Orbit North-to-South Trajectory 
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DOWNRANGE DISTANCE (miles) 

Figure 2-6. LifeSat Reentry Altitude vs. Distance; 200 x 20,600 km Orbit 

2.2 Off-Nominal Deorbit Burn: Delta-V Errors 
One other major reentry issue is the size of the possible footprint and the accuracies that are necessary to land 
the spacecraft at WSMR. For LifeSat, the reentry will be performed by two burns: a primary deorbit burn and a 
secondary trim burn. This section presents the results of an off-nominal deorbit burn and the resulting 
footprint. Section 2.4 presents the trim burn calculations, which use the results of this section to model the 
burns necessary to recover from off-nominal deorbit burns. 

2.2.1 Circular Orbits 

For the 350 km mission orbit, a delta-v of 79.8 m/sec is required to reenter at WSh4R. A 3-sigma range of 
f 20 percent of the nominal delta-v was tested for the burn; however, only a range of +20 percent to -7 
percent reentered (Figure 2-7). If the burn is leaner than7 percent, the spacecraft skips out andreenters on the 
following orbit. 

The footprint extends from approximately 150 miles west of Los Angeles, California (+20 percent) to just 
northwest of her to  Rico (-7 percent). The state of New Mexico is included on the graph to show that an error 
of only 1 percent will cause the spacecraft to reenter in the neighboring state. In fact, accuracies of 
approximately 0.75 percent are required to contain the spacecraft reentry to New Mexico. 

Currently, no calibration burns are planned for the deorbit thrusters. Therefore, although a 20 percent error 
would be the maximum error expected, a 5 percent error is likely. If the thrusters are calibrated, a 1 percent 
error would still be expected, which would still result in a large footprint. 

Reentry from the 700- and 900-km orbits are even more sensitive to delta-v errors due to the increase in the 
nominal delta-v. For the 900-km orbit, the footprint extends about 30 miles farther west than the 350 case, but 
only reaches Miami, Florida for a cold burn. The east boundary is shortened because a burn error greater than 3 
percent cold will not reenter. Furthermore, a burn accuracy of f 0.5 percent is required to land in the state of 
New Mexico. 

2.2.2 Elliptical Orbit 

A nominal deorbit delta-v from the elliptical orbit is 24.2 m/sec. If the burn is 20 percent hot, the spacecraft 
will land due west of Denver, Colorado, as shown in Figure 2-8. A 10 percent hot burn will result in reentry in 
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Figure 2-7. Reentry Footprint Delta-v Errors; 350 km North-to-South Trajectory 

Longitudc (deg+E) 

Figure 2-8. Reentry Footprint Delta-v Errors; 200 x 20,600 km; 90 Degrees 

New Mexico. If the burn is cold, a -12 percent error is the limit at which the spacecraft will reenter. This 
extends the footprint into Mexico to a point just south of Guadalajara. 

For both the circular and elliptic cases, the size of the footprint may be reduced by reentering at a steeper flight 
path angle. This is accomplished by lowering the perigee in the reentry orbit. Therefore, to still reenter at 
WSMR, the deorbit burn must occur later than the current nominal position. In similar studies, such as the 
Earth Observing System (EOS) reentry analyses, reducing the perigee by 100 km decreased the size of the 
footprint by 43 percent. 

There are disadvantages to lowering perigee. The deorbit delta-v will increase due lo the larger change in the 
semimajor axis. Firing late also decreases the time between the deorbit and trim bums. This is crucial because 
of the time required to assess the deorbit burn and pkm the trim burn. Finally, the g forces experienced by the 
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spacecraft will increase because the flight path angle at the atmospheric interface will increase. Further 
analysis is needed on the alternative trajectories to be able to measure the various trade-offs. 

2.3 Off-Nominal Deorbit Burn: Attitude Errors 

ln addition to thrust errors, misalignments in the yaw and pitch angles were also analyzed. Figures 2-9 and 
2-10 show the results of yaw and pitch errors of f 3 degrees on the thrust vector for the 350 km and 900 km 
mission orbits. (The case of the polar orbit is not sliown because yaw and pitch errors of f 3 degrees do not 
perturb the spacecraft out of the missile range.) 

Figure 2-9. Reentry Footprint Yaw and Pitch Errors (Degrees); 350 km 
North-to-South Trajectory 

Figure 2-10. Reentry Footprint Yaw and Pitch Errors (Degrees); 900 km 
No rt h-to-Sout h Trajectory 
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In both cases, yaw angle errors (out of plane errors) of both f 3 degrees cause the spacecraft to impact in the 
identical position. This occurs because the out-of-plane component of velocity is not large enough to perturb 
the plane of the orbit and is therefore negligible. Consequently, the only effect on the spacecraft is a small 
reduction of the magnitude of the in-plane vector; thus, the impacts are the same for both f3 degrees. 
Furthermore, this result is comparable to a thrust error, because the only effect is to reduce the in-plane 
velocity vector. The effects are greater for the 900 km orbit because the nominal delta-v is larger. 

An error in the pitch angle rotates the line of apsides, causing an along-track error. This error is more 
predominant for the 350 km orbit than for the 900 km orbit. Although the delta-v is less for the 350 km orbit, 
the eccentricity of the reentry orbit is less. Consequently, the orbit is more sensitive to a change in the line of 
apsides. 

Both yaw and pitch errors affect the impact point only in the along track direction. The magnitude of the errors 
are also small in proportion to the delta-v errors previously discussed. For future analysis, a delta-v error will 
be applied to the nominal burn that is intended to encompass all three types of errors. 

The burn errors studied show twomajorresults. First, the accuracy of the deorbit burn is crucial in executing a 
landing at WSMR. Each of the footprints is large, and shows that the spacecraft is especially sensitive to cold 
burns. Therefore, a method must be developed to control the bum. One possible method is through the use of 
accelerometers. These instruments may be used to measure the burn to a high degree of accuracy and can be 
used to command the thrusters to shut off once the nominal value of thrust is reached. 

The second result of the analysis is the need for a trim bum. An accurate landing requires a near perfect bum. 
Despite all precautions, some alternative measurements of the success of the burn [such as a Global 
Positioning System (GPS) generated ephemeris solution] should be employed to model and assess the deorbit 
burn and to calculate the trim burn if necessary. 

2.4 Trim Burn 
Once the deorbit burn is completed, a new orbit solution must be computed to determine the success of the 
burn. If the burn was not acceptable, a trim burn will be executed using the attitude thrusters to correct the burn 
error. 

2.4.1 Burn Data 

In this analysis, the attitude thrusters are modeled using 30 Ibs of thrust with an Isp of 220 seconds. For the 
circular mission orbits, the trim burn is modeled 15 minutes after the deorbit burn. For the elliptic orbit, a trim 
bum is modeled 30 minutes after the deorbit burn. 

Tables 2-2 and 2-3 summarize the results for the trim bums that are needed to recover from various 
off-nominal deorbit burns. For all cases, a recovery is possible with one in-plane burn (yaw angle of 0 degrees) 
that is along the velocity vector (pitch angle of 0 or 180 degrees). 

Table 2-2. Trim Burn Recovery Data for the 200 x 20,600 km Mission Orbit 
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DEORBIT BURN YAW ANGLE PITCH ANGLE 
ERROR (DELTA-V, ATTITUDE) (DEGREES) (DEGREES) 

I I DV-5 Percent I 0 I 180 1 17.2 I 186.3 

DELTA-V BURN 
(M/SEC) LENGTH (SEC) 

DV t 5 Percent 

DV+I 0 Percent 0 0 34.5 372.3 

DV-20 Percent 0 180 67.5 722.8 
I I I I 

0 0 17.0 184.2 

DV+20 Percent 0 0 70.3 752.3 

0 180 0.6 6.5 

I Pitch+3 Degrees I 0 I 0 I 0.6 I 5.4 I 

Yaw+3 Degrees 

Pitch-3 Degrees 

As noted in the footprint analysis in the previous section, thrust and attitude errorscause impact to occur either 
before or after crossing WSMR along the orbit path. For cases where the impact occurs before reaching 
WSMR, the deorbit burn is greater than the nominal value. Therefore, the trim bum should occur opposite to 
the deorbit bum, or pitch angle equal to 0 degrees. If the impact occurs past WSMR, the deorbit burn is not 
strong enough, and more delta-v should be added with a pitch of 180 degrees. 

If a thrust error occurs during deorbit from the elliptical orbit, a trim burn could be executed to correct all 
cxpected dispersions. Table 2-2 shows that for the worst case scenario of a f 20 percent bun1 error, a trim 
burn would require 5 m/sec delta-v (54 seconds duration), which is an acceptable load on the attitude thrusters. 
For the circular missions, however, the size of the lrim burn is much larger. For the 900 km orbit (see Table 
2-3), f 5 percent burn error wouldrequire a trim burn of 3 minutes while a f 20 percent error recovery would 
last 13.5 minutes. 

0 180 0.6 6.5 

0 180 1.4 15.2 

The size of the trim burn increases proportionally to the size of the nominal deorbit bum. Therefore, the 
circular orbit cases could require larger trim burns than the elliptic orbit case. If the large errors occur in the 
circular missions, the trim burns may be too large for the attitude thrusters. Th~s again shows the need for a 
tightly controlled deorbit burn. 

2.4.2 Trim Burn Footprint 

The attitude thrusters used in the analysis are assumed to have been calibrated during the mission. Therefore, 
burn errors of f 5 percent were used to model worst-case estimates of both thrust and attitude errors. The 
results of the revised footprints are shown in Figures 2-1 1 and 2-12 for the elliptic mission and the 900 km 
c'it cular mission, respectively. 

The elliptic mission required a deorbit delta-v of only 24.2 mlsec. For a 20 percent error during the deorbit 
burn, the trim burn delta-v required is 5 m/sec. E a  5 percent error occurs during the trim burn, the delta-v lost 
is 0.25 rn/sec. Consequently, the footprint is expected to be small. In addition, LifeSat will reenter directly 
from the north. Since WSMR is aligned north-to-south, LifeSat has a large area in which to land. As a result, 
Figure 2-1 1 shows that the worst case scenarios of f 20percent and f 5 percent errors in the deorbit (primary) 
burn and trim burn, rcspcctively, will keep the landing of LifeSat at WSMR. 

Rccntry from the circular orbits require larger delta-v's in the deorbit bum, and potentially in the trim bum. 
Therefore, a larger footprint is expected for the circular orbit missions with the largest occurring for the 900 
k m  reentry. Figurc 2-1 2 shows that for the 900 km orbit, the footprint extends outside of New Mexico for large 
primary hum errors coupled with a 5 percent trim burn error. 
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Figure 2-11. Reentry Footprint with Trim Burn Error, Elliptical Mission 

Figure 2-12. Reentry Footprint with Trim Burn Error, 900 km 

In addition to the large footprints shown, the reentry path approaches WSMR from the west; this requires 
impact in the narrow region of WSMR. These factors combined indicate that the accuracy requirements for 
the trim burn are quite rigid. Sample accuracies were found for both the 350 km and 900 km circular orbits 
following f 5 percent deorbit burn errors. 

To recover from f 5 percent primary bum errors and land in WSMR (not including extensions), the trim burn 
must be within a 2 percent accuracy for the 350 km mission and 1 percent accuracy for the 900 km mission. As 
the deorbit bum error increases, the accuracy requirement of the trim burn will tighten. However, an error of at 
least 1 percent is still quite likely even if the attitude thrusters are fairly well calibrated. Therefore, these 

North-to-Sou t h Trajectory 
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preliminary results indicate that the deorbit bum accuracy must be well within 5 percent. This again shows the 
need f'cr a tightly controlled burn. 

3. LANDING CONTINGENCIES 

The dependency on favorable weather is a conccrn for the parachute landing and ground recovery team. 
Certain variables in reentry planning, Le., time of day and time of year, have been chosen to reduce the 
likelihood of unfavorable weather; however. some degree of uncertainty will always exist. Therefore, it is 
imperative to design a contingency plan for eniploynient in the event of a landing waveoff. 

Two elements were considered in the design of the contingency plan. First, since the waveoff cannot be 
preplanned, the duration of the delay from decision to execution will be variable. Therefore, the contingency 
plan needs to be flexible to allow a time for the next opportunity. Second, the spacecraft operates under rigid 
power constraints that require the next attempt to (xccur within a few days. Consequently. the contingency plan 
must allow for a second reentry attempt within I to 5 d:iys. With these restrictions, a contingency maneuver 
plan was developed. 

In addition to creating a contingency plan for waveoffs, one additional requirement levied by the project is the 
ability to command spacecraft reentry prior to 60 days. To accomplish this, an approxh similar to the waveoff 
plan may be used. For both contingency applications, reentry is not immediate. Once the contingency 
maneuver is planned and executed, a new orbi: solution must be obtained. From this solution. a new reentry 
plan may be developed. This process may require two or more days. 

3.1 Elliptic Mission 

3.1.1 Waveoffs 

The orbit of the highly elliptic mission is designed to place perigee over WSMR at the end of the 60 day 
mission If a waveoff occurs, LifcSat will travel near WSMR thefollowing day, however. the groundtrack will 
have shifted slightly. If the waveoff condition exists for several days, this shift will accumulate to a 
groundtrack error of over 4 degreer in 5 days. An out-of-plane burn would then be needed to correct the 
accumulated error; thiv is not feasible under the current fuel hudget. 

One approach to the problem is to maintain the groundtrack once it has reached the WSMR location. This is 
done by adjusting the semimajor axis to change the orbit period to create a repeating groundtrack. 
Operationally, after waveoff has occurred, a mmeuver executed at the perigee pass over WSMR will lower 
apogee by approximately 30 km. This will fix the groundtrack over WSMR once per day. 

Although this method will align the groundtrack to the proper location, it does not fix the perigee location. 
Due to the Earth's geopotential field, the perigee of the orbit will rotate northward. However, perigee will 
rotate 2 degrees in 5 days which should not impair reentry. 

3.1.2 Early Return 

A similar approach may be used in the event of an early return. The semimajor axis must be altered to align the 
groundtrack for a reentry attempt. The nominal mission orbit is designed such that the groundtrack will 
advance to WSMR after 60 days. If a return is necessary prior to 60 days, elimination of the difference 
between the current longitude of the groundtrack arid the longitude of WSMR must occur by lowering apogee 
to increase the groundtrack advancement. The rate of advancement will increase as the altitude of apogee 
decreases. Therefore, the magnitude of the contirtgency maneuver depends on the mission elapsed time and 
the urgency of the return. 
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In addition to the groundtrack advancement, the line of apsides must also advance to WSMR. As with the 
groundtrack, the natural rotation is planned for a 60 day mission. Therefore, the contingency maneuver must 
also rotate the line of apsides. Since the contingency maneuver will need to accomplish two goals on a limited 
fuel budget, an early return may not be possible for the early stages of the mission. Further analysis must be 
performed to determine how early a reentry is feasible. 

900 KM 

900 KM 

3.2 

1 743.8 

2 398.2 

Circular Missions 

900 KM 

900 KM 

3.2.1 Waveoff s 

3 511.3 

4 923.9 

In the event of waveoffs for the three circular missions, the semimajor axis could be adjusted to create a 
repeating groundtrack. However, the circular missions are inclined at 34 degrees. This causes a much greater 
shift in the groundtrack due to the precession of the nodes from perturbations by the second zonal harmonic, 
J2. As a result, the semimajor axis may need a larger change. Consequently, a slightly different approach is 
taken in the contingency plan. 

For the elliptic polar mission, a da ly  repeat ground track is the simplest method to employ. However, for the 
circular missions, a wider range of alternative solutions is needed. Repeat cycles of 1 to 5 days were 
determined for each mission for an eccentric orbit with apogee fixed at the mission altitude. In this way, a 
perigee lowering maneuver would occur in place of the deorbit burn followed by a small adjustment maneuver 
to place perigee over WSMR. 

The advantage of perigee lowering is that no additional delta-v is required. Recall that the function of the 
reentry burn is to lower perigee close to the earth so that the atmosphere can pull the spacecraft to the ground. 
If the deorbit burn from the mission altitude is done in two perigee lowering burns, the total delta-v for the two 
burns is equivalent to a single deorbit bum. 

Table 3-1 shows perigee altitudes needed to achieve a repeat cycle for each of the three mission altitudes. 
Lowering perigee to 312.1 km is apparently the best candidate for the 350 km mission orbit. This solution will 
allow for a reentry attempt every 2 days. A r e m  to WSMR after 1 day is not feasible. 

Table 3-1. Elliptical Repeat Groundtrack Cycles 

NUMBER OF DAYS PERIGEE ALTITUDE 
IN REPEAT CYCLE REQUIRED (KM) I MISSION ALTITUDE 

I 900 KM I 5 I 887.5 I 
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Both the 700 and 900 lun orbits can maneuver least to a 5 day repeat cycle. However, power requirements may 
riol last the full 5 days, thus a larger contingency maneuver may be required. For the 700kmorbit, the next best 
solution is for a 2 day repeat cycle; the next best solution for the 900 km orbit is a 1 day repeat cycle. For all 
contingency solutions, the rotation of perigee is not a concern. Perigee will rotate, on average, approximately 
1 degree in 5 days. 

3.2.2 Early Return 

An early return during the majority of the mission should be feasible because the groundtrack frequently 
passes near WSMR. A groundtrack correction maneuver is still necessary to adjust the groundtrack precisely 
over WSMR. In addition to the north-to-south crossings, reentry possibilities may be gained through the use 
of a south-to-north trajectory over the Baja region of Mexico. Future analyses should address the frequency of 
the early lariding opportunities based on the fuel budget of the 900 km mission orbit. 

4. CONCLUSIONS 

The reentry analysis concentrates on the deorbit burn for both nominal and off-nominal conditions. One of the 
LifeSat project Phase B reports suggests the use of a solid fuel deorbit motor. The present analysis shows that 
very small variations in the delta-v from the deorbit burn can cause extremely large variations in the landing 
footprint. Since it is not possible to control the burn of a solid fuel rocket motor, this suggests that: (1) a liquid 
fuel deorbit motor controlled by an accelerometer is needed, and (2) a trim burn using the attitude thrusters is 
also required. Since a trim bum is necessary, the tolerable variation in the trim burns that would allow LifeSat 
to safely reenter over WSMR was analyzed. 

The landing at WSMR must occur in weather conditions that meet certain criteria; therefore, a waveoff 
situation is quite possible and must be accommodated. Since the experiments and the spacecraft life support 
system operate within a fairly tight set of defined time constraints, this would require that the next reentry 
attempt occur within a few days. Consequently, contingency plans were examined that would allow another 
reentry within 1 to 5 days. A technique of adjusting the apogee to cause the groundtrack to repeat is proposed 
for the elliptical orbit. A perigee lowering maneuver is recommended to create a repeating groundtrack for the 
circular missions. Several scenarios are presented. 

Lf an emergency occurs requiring an early reentry, the orbit must be adjusted to allow for a reentry attempt. 
Similar maneuver strategies would be employed to align the groundtrack over WSMR. In addition, for the 
elliptic case, perigee would need to be positioned over WSMR. 
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TSIEN'S METHOD FOR GENERATING NON-KEPLERIAN TRAJECTORIES 
Part 11- The Question of Thrust to Orbit a Sphere 
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ABSTRACT P ,  / 5  
Tsien's method is extended to treat the orbital motion of a 

body undergoing accelerations and decelerations. A generalized 
solution is discussed for the generalized case where a body under- 
goes azimuthal and radial thrust and the problem is further simp- 
lified for azimuthal thrust alone. Judicious selection of thrust 
could generate either an elliptic or hyperbolic trajectory. This 
is unexpected especially when the body has only enough energy for 
a lower state trajectory. The methodology is extended treating the 
problem of vehicle thrust for orbiting a sphere and vehicle thrust 
within the classical restricted three-body problem. Results for 
the latter situation can produce hyperbolic trajectories through 
eigenvalue decomposition. Since eigenvalues for no-thrust can be 
imaginary, thrust can generate real eigenvalues to describe hyper- 
bolic trajectories. Keplerian dynamics appears to represent but a 
small subset of a much larger non-Keplerian domain especially when 
thrust effects are considered. The need for high thrust long- 
duration space-based propulsion systems for changing a trajectory's 
canonical form is clearly demonstrated. 

Nomenclature 

a 
A 
e 
E 
F 
g 
h 
P 
4 
V 
1: 
R 
t 

X , Y , Z  
CI 

e 

Semi-major axis 
Areal velocity 
Eccentricity 
Energy state 
Thrust acceleration 
Gravity 
Integration constant 
Semilatus rectum 
Spherical coordinate angle 
Gravity potential 
Radial distance between mass centers 
Earth radius 
Time 
azimuthal coordinate angle 
Cartesian coordinate variables 
Earth's gravitational constant 

a "The views expressed in this paper are solely those of the author 
and do not reflect the official policy or position of the Defense 
Intelligence Agency, the Department of Defense, or the U.S. 
Government. 
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Subscripts 

0 Initial or reference value 
az Azimuthal 
rd Radial 
e Earth reference value 

I. INTRODUCTION 

This paper is a continuation of efforts previously presented 
in Murad'. Some aspects from this reference are included for con- 
tinuity and the analysis is considerably expanded to treat more 
problems of general interest to the astrodynamicist. The original 
problem will be briefly addressed followed by a discussion that 
treats these other situations. 

There was a problem of interest concerning a missile event 
captured on photographic data. The data consisted of two streaks 
against a star background. Simple evaluations based upon the local 
sidereal time and the expected distance to the earth day-night ter- 
minator indicated that at least one and possibly both streaks were 
produced in total darkness, possibly by a missile. The problem was 
to place a trajectory through the streaks to define apogee and 
velocity which would be used to identify a specific missile system. 

Gauss' meth~d~'~ was used unsuccessfully to place a trajectory 
through both streaks. The method is adequate for either an ellip- 
tic or hyperbolic trajectory, however, it was expected that the 
missile energy was too low to reach hyperbolic velocities although 
the software implied that hyperbolic trajectories ought to match 
the spatial data alleviating any constraint on time. When an 
elliptic trajectory was considered, adequate spatial matches were 
obtained, however, the calculated time period was larger than re- 
quired to support the data. 

Clearly a contradiction exists. Assuming that the software 
was correct, under what conditions could a missile trajectory be 
defined by a hyperbola when the energy is insufficient to reach 
hyperbolic velocities? This paper partially examines this concern 
by evaluating the equations of motion for a vehicle in orbit having 
azimuthal thrust. A s  a consequence of treating this problem, sig- 
nificant insights were obtained that have more general applicabil- 
ity to other problems of interest. 

A. Background 

To correctly use Gauss' method, several assumptions are 
implied in the derivation of these orbits. Specifically; the body 
under investigation is not accelerating or decelerating from forces 
other than through the attraction of a central force field; bodies 
undergoing thrust or reentry clearly violate this assumption. 

Some words regarding the original data are noteworthy. 
Several hypotheses were tested concerning what caused the streaks. 
These hypothesis were used to explain reasons that would have 
allowed the data to be photographically captured. In the course of 
trying to match the data, it appeared that the streaks involved 
thrust creating lateral and axial accelerations or decelerations. 
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Thus, if these streaks were thrust related, Gauss' method is not 
applicable. 

This problem provided the initial motivation to develop the 
methodology. This effort's main theme is to present a rationale 
suggesting that the trajectory canonical form can be altered by 
thrust. 

B. Current Considerations 

There is additional motivation regarding the present paper. 
During a recent conversation with V. R. Bond', it was suggested 
that the time required for long space voyages can be reduced sig- 
nificantly by altering thrust to generate specific trajectories 
based upon suggestions from the author's original paper. This idea 
generated a different modus operandi. If Tsien's method simplified 
the problem of altering a spacecraft orbit using thrust, what other 
problems could be resolved? 

The original paper judiciously selected an analytical thrust 
term to reduce angular momentum simplifying the governing equations 
of motion. Admittedly biased, the thrust term allows the space- 
craft to fly either an elliptical, parabolic or hyperbolic traject- 
ory without any real stipulation on initial velocity. Could this 
approach treat more complex trajectory problems? 

This paper will show that an answer is mathematically tract- 
able, however, several issues should be briefly mentioned. Use of 
control thrust to alter interplanetary trajectories or for station- 
keeping was limited by technology developed during the sixties and 
the early seventies. Thrust from reaction control motors or launch 
boosters used either a single constant setting or several distinct 
settings; the latter demanded feedback to regulate flowrate of 
oxidizer or propellant. Inert structural weight of cooling sys- 
tems, fuel lines, turbines and engines, as well as large amounts of 
propellants created limitations that stressed launch booster 
capabilities. Weight and reliability kept propulsion systems to 
the bare essentials. Thus, altering thrust as a function of orbit- 
al parameters or time, was not technically feasible. Furthermore, 
instrumentation and interpretation of on-board inertial data to 
identify these parameters also stressed available technology. 

The advent of the Shuttle-@ and other large boosters such as 
the Soviet Energiya concepts and its many adaptations7 (i.e.: 
Buran-T Space Launch Vehicle, etc.), provides future designers with 
more flexibility in the design of spacecraft and subsequent 
payloads. However, chemical propellent mass fraction greatly 
limits the scope of any extraterrestrial exploration in the near 
future . 

The original paper implies and will be further demonstrated 
here, large thrust to weight ratios and variable time-dependent 
long-duration thrust profiles to meet future contingencies are 
clearly needed. Technology limitations have displaced such ideas 
only as subliminal thoughts due to the need for finding practical 
and timely solutions to contemporary problems. Chemical systems 
have their limitations, although several exciting high risk tech- 
nology approaches offer promise8-". These potential concepts 
include: nuclear propulsion, nuclear propulsion with electrical 
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hybrids, MHD, tachyon beam ejection, and space warp concepts. 
Gravity gradient or gravity potential drives with their analogues 
(i.e.: magnetic potential or magnetic gradient concepts) should be 
included to extend this list. 

Admittedly, these are far-reaching propulsion concepts yet to 
demonstrate technical maturity. Feasibility must parallel long- 
term serious funding efforts. Without political emphasis, present 
concepts will keep man bound to both this planet and solar system 
for a longer period limiting man's imagination and possibilities 
for growth. 

Realizing the thrust-to-weight problem may be unsolvable, 
there are solutions that are technically feasible that should be 
examined. Time-dependent thrust appears to offer advantages. 
Amongst these is the intuitive feeling that expended propellent can 
be used more efficiently than with constant thrust systems. Time- 
dependent thrust can be incorporated in liquid rocket chemical 
systems and hybrid propulsion systems. Hybrid rockets offer the 
advantage of half the plumbing of a liquid rocket propulsion system 
with the reliability of a solid propellent rocket motor albeit with 
a performance degradation. Furthermore, if thrust variation is 
gradual, a solid core nuclear rocket engine, such as NERVA, could 
be designed with this built-in feature. 

C. Preliminaries 

The equations of motion were examined and cast to account for 
thrust effects. In the classical derivation, a body in polar 
coordinates is moving about a much larger body located at the 
coordinate system origin. The angular momentum equation is simp- 
lified, applying Kepler's law, reducing the mathematical complex- 
ities. Subsequent substitutions provide an expression for the 
radius as a function of anomaly. If eccentricity is less than one, 
the trajectory reduces to an ellipse and if the eccentricity is 
greater than one, the solution describes a hyperbola. In both 
cases, foci of the conic represents the location of the larger body 
central force field. 

A brief review of the two-body problem followed by Tsien's 
approach will be presented as a frame of reference. This is 
followed by looking at the equations with both axial and azimuthal 
thrust with the specific example of examining azimuthal thrust and 
its effects. This problem is extended to a spacecraft with thrust 
orbiting a large body in two-dimensions to one in three-dimensions. 
Finally, the problem of a single thrusting spacecraft orbiting two 
large bodies will be examined by generating different canonical 
types of trajectories based upon extending further some earlier 
work by the author. 

C-1. The Classical Two-Body Problem 

The equations of motion in the radial and transverse dir- 
ections under 
potential are: 

the influence of a radial inverse gravitational 
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c -. 

the dot signifies time differentiation, r is the radial distance to 
the body measured from the center of the force field and 8 is the 
true anomaly. 

The integrals for the above ordinary differential equations 
are: 

r 2 0  = A  

where A, a constant value, is the areal velocity and the trajectory 
is Keplerian. By Keplerian, it is implied that the area swept by 
the radius vector from the central force field to the spacecraft is 
equal for similar time intervals along the spacecraft's orbit. The 
quantity E represents the sum of the spacecraft's kinetic and 
potential energy which remains constant throughout the trajectory. 

Substituting the second expression into the first, and chang- 
ing the independent variable from time to anomaly results in: 

( 3 )  
-"[+I [-$[+]+---I 1 Cr P O  
d e  r A 2  

The solution for this initial value problem has the form: 
P 

1 + e  cos ( e  - 0 , )  
r =  ( 4 )  

where p is the semilatus rectum and e is the eccentricity necessary 
to satisfy initial conditions. This equation represents an ellipse 
or a hyperbola depending upon the eccentricity which is based upon 
parameters such as the kinetic energy, E, to satisfy this initial 
value problem. 

C-2. Tsien's Approach 

Battin'gives an excellent perspective concerning Tsien's 
contribution to the field of orbital mechanics with regard to non- 
Keplerian'two-body motion. Tsien in several classic 
examined two basic problems for predicting orbital change due to 
constant thrust directed either radially or tangentially along the 
flight path. Tsien's insights made these difficult problems math- 
ematically tractable and from these initial results, sensitivities 
resolving problems of practical interest can easily be formulated. 

Following Battin's development, Tsien included a constant term 
in the radial momentum equation signifying radial thrust acceler- 
ation. After an integration of the azimuthal momentum equation and 
substitutions into the radial momentum equation, an integration 

The definition of non-Keplerian used in this evaluation is that 
the areal velocity is no longer a constant. 
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provided a closed form solution for the velocity as a function of 
radius and acceleration for an initially circular orbit to reach 
escape velocity. 

or 

Various solutions are obtainable, Depending upon definition, 
the radial thrust problem is Keplerian because of the treatment of 
the azimuthal equation; the areal velocity is still constant. 

For tangential thrust, the case is entirely different. Here, 
the integration of the azimuthal equation results in an expression 
for the areal velocity which, even for constant thrust, is now a 
function of time. In this case, the trajectory should be consid- 
ered non-Keplerian. 

which yields various solutions, 
Although these examples treat constant thrust acceleration, 

there are many solutions involving variable thrust which will not 
be discussed here. Can other more general families of solutions be 
derived that have practical value to simplify the vehicle 
trajectory undergoing tangential thrust? 

A. The Two-Body Problem 

Examining the momentum 
having radial and azimuthal 

2 i .e  

The integral 

- t i 2  + ( r e  
In this equation, 

1 
2 

r L  .. + r e  = ax 

equations for a vehicle simultaneously 
thrust yields: 

for these equations has the generic form: 

' 0  
the vehicle's energy is no longer equal to the 

integration constant E, which includes the kinetic and potential 
energy at the initial state. The expression for spacecraft energy 
includes an additional quantity that depends upon the time- 
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dependent integration of the separate thrust components, As 
expected, thrust effects alter the vehicle's energy as a function 
of time or position within the trajectory, 

It is feasible to reduce these equations into other simpler 
forms. For a general class of solutions, let the azimuthal thrust 
term have the following generic form: 

which, when substituted into the azimuthal momentum equation 
produces : 

The B parameter is selected to eliminate terms defined at the 
initial state integration, 

There are many interesting classes of solutions as well as 
mathematical problems arising from these expressions. If the 
exponent n is equal to zero, the term within the integral, using 
the expression for the rate of change of anomaly, becomes: 

I 

/'a, r 9dt = B2 In {t-) 
10 

which represents an embedded logarithmic singularity within the 
energy integral. Similarly, when n is equal to 1, this term has 
the same form in the energy expression as the term generated from 
an inverse-square gravitational force field. If n is larger, the 
exponent will accordingly increase in the energy forcing function 
which alters the form of the resulting equation of motion. These 
higher-order problems require elliptical integral solutions or 
other more unorthodox approaches. 

Let us return to the more restrictive case for treating 
azimuthal thrust alone. The equations of motion are as follows: 

2 i 6  + r i i  = aaz 

Let us examine the situation for azimuthal thrust and assume 
a form that allows closure to reduce the azimuthal equation of 
motion to a quadrature: 

Clearly orbits described by this expression are nQn-Keplerian. The 
thrust term is non-conservative and alters the nature of the solu- 
tion. Here, the expression is simplified by judiciously selecting 
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the following integration factors: 
1 3 '  2 
2 0 0  B = - r  e 

resulting in: 

There is a need to explain the selection of the acceleration 
profile and how it satisfies the overall problem regarding the 
initial streak data. For the case when a missile accelerates 
toward the apogee ( i . e . :  boost) and decelerates moving away from 
apogee (i.e.: reentry/retro thrust), B is positive. The terms 
involving radius and the rate of change in anomaly are positive 
valued; they only change in overall magnitude but not in sign. The 
inclusion of the rate of change of radius with time, however, does 
change sign when the vehicle passes through apogee. The positive 
sense of this term represents positive thrust where a negative sign 
implies retro or reentry decelerations. It is assumed the 
accelerating/decelerating forces on the body act tangential to the 
flight path represented by the azimuthal term. 

By non-Keplerian, the implication is that areal velocity is 
not constant and the body governing the central force field may not 
be collocated with the geometric foci for either an ellipse or 
hyperbola. This is important in the analysis for the latter 
situation; the apogee must be the closest point to the foci while 
for an ellipse the apogee is the furthest from the foci at the 
center of the Earth for a surface-to-surface missile trajectory. 

When used with the radial equation of motion and integrated, 
the constant E term representing initial energy is not directly 
removed from the formalism as in the classic sense but remains 
throughout the derivation. This becomes: 

d {+} + P{+}  = y 

with a solution that takes either of the following forms depending 
upon whether lambda is real or imaginary: 
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where: 
Y = 2 8 p o + $ ]  1 

Baxter”derives a similar expression for the case of force 
field perturbations in the radial direction. Baxter suggests that 
the fundamental problem of Keplerian representations of real orbits 
is the failure to correctly account for the energy of the orbiting 
body. This could lead to in-track errors in Keplerian mean motion. 
Baxter compensates by using perturbation terms in the gravitational 
potential to remove in-track drift. Furthermore, the method can 
produce Xeplerian trajectories in a non-Keplerian environment by 
inclusion of these radial terms where orbital elements are changed 
to include perturbative quantities. For example, energy is 
directly included in these expressions and is not treated as a 
secondary term through the definition of eccentricity. 

The change in the form of the trajectory relies principally 
upon the nature of whether lambda is real or imaginary. Values for 
B depend upon location along the trajectory where thrust is applied 
and as the value of B increases, the sense of lambda becomes more 
negative. When the magnitude of this term is equal to 2 . 0 ,  the 
equation is parabolic. When larger than 2 . 0 ,  the equation is 
hyperbolic. This is independent of energy considerations which 
enters the problem only through eccentricity. 

If the coefficients are altered to reflect when this express- 
ion is identical to the classically derived equation, an interest- 
ing analogy develops. For specific initial conditions defining B 
and the azimuthal thrust profile, a thrusting trajectory could be 
derived having the same spatial-time dependency as a Keplerian 
trajectory. Thus it is entirely feasible, with caveats, that an 
inefficient trajectory, using thrust, could be replaced by a 
trajectory without thrust. 

B .  The Problem of a Bpacecraft Orbiting a Bpherical Body 

The equations of motion for a spacecraft orbiting a spherical 
body are: 

1 av r e  + 2 i i  - r $ ’  sine m s e  = - - - r ae 

where: @ is the out-of-plane angle required for a spherical coor- 
dinate system. The gravity gradient can have the simple form: 
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These expanded equations include terms in both the radial and 
azimuthal momentum equations as well as a third equation describ- 
ing momentum in a second angular plane. These three-dimensional 
spherical coordinate equations more accurately predict trajector- 
ies for non-thrust situations due to gravity potential variations 
acting outside of the original plane of motion. 

If the out-of-plane angle phi is constant regardless of orbit 
inclination, or if the time rate of change of this angle is zero, 
terms in the first two equations are zero and the third equation 
vanishes. Here, the problem reduces to two dimensions. Similarly, 
if the angular rate of change of phi is constant, these additional 
terms may still appear although the third equation is greatly simp- 
lified. If it is assumed that the gravity potential consists only 
of terms involving radial and azimuthal variations, the constant 
term creates a rate of change in either radial or azimuthal vari- 
ables or both. 

Here, the last equation reduces to: 
d - (rsin e )  = 0 
dt 

This is consistent with the two-dimensional case and may provide 
another 'integral' to reduce the equations of motion. Again, this 
is still without looking at thrust effects. 

The emphasis will require examining out-of-plane thrust and 
subsequent effects on the spacecraft's trajectory. One can assume 
thrust components can be defined as a gradient acting in similar 
directions as the gravity potential gradient for example: 

VV'= V V +  V F  
The following insights can be gained from these equations with 

thrust. Out-of-plane thrust impacts both radial and azimuthal 
momentum adding to the non-linear mathematical coupling of these 
expressions. Clearly, the spacecraft's radius and its rate of 
angular rotation are dependent upon this thrust component as it 
alters the time rate of change of phi. Thrust in either radial and 
azimuthal directions have either little influence on the out-of- 
plane momentum or no influence if there is no time variation in 
phi. 

Obviously, these equations are difficult to solve in closed- 
form. There are two alternatives. Can these equations be reduced 
to those in two dimensions or can the thrust term be selected such 
that either the coupling or non-linearities are reduced or removed? 

B-1. Reduction of the Spherical Orbit Problem to Two-Dimensions 

The solution is straight forward. In both of the radial and 
azimuthal momentum equations, select the thrust term to exactly 
cancel the additional terms induced by the second angular coor- 
dinate variable: 
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This reduces the first two equations to identical expressions 
of a spacecraft moving about a body with no thrust. By standard 
definitions, the orbits are Keplerian within the plane of motion. 
However, due to the third equation of motion and the rate of change 
of all variables, the rate of change of phi may not vanish. If 
this is so, then azimuthal thrust should be selected such that 
angular acceleration disappears and the remaining terms are compen- 
sated by the third thrust vector component. 

* d  aF 
a4J dt 

- - (rsin q2 - - -  

Note that all of these thrust components depend upon #; they 
also contain the expression identified in equation (21). 

B-2 .  Removal of Coupling Terms 

In a similar fashion using superposition, thrust components 
are selected to cancel the coupling terms. Angular momentum 
effects from out-of-plane motion are prevented from influencing the 
momentum in the remaining coordinate variables. Here, the 
equations of motion, based upon the two momentum integrals, are 
rewritten to define the force comDonents: 

* df I av 
f a +  r sin ;d + 2 4  dt = - - - 

where k = r 6 and f = r sin 8 . 2 

C .  The Restricted Three-Body Problem 

In an earlier effortI7, the thesis was presented that a potent- 
ial of motion could be defined which reduced the coupling and 
complexity of the two-dimensional equations of motion governing a 
spacecraft in motion about two larger bodies. The potential was 
not a Hamiltonian in the purest sense and required several mathe- 
matical restrictions in its definition. 

First, the potential has to be analytical in a complex 
variable context. Second, the potential would satisfy rules of 
partial differentiation, and third, the potential possesses an 
integration property that did not violate energy considerations. 
If this potential is admissable, pseudo-analytical terms can be 
defined that allow for the principle of superposition This 
accounts for effects from gravity potential perturbations or the 
influence of additional larger bodies at considerably far dis- 
tances. The problem is extended to consider thrust. 

By psuedo-analytical, the functions solve a similar relation- 
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ship as the Cauchy-Reiman conditions for analytical functions. 
They do, however, represent solutions to the inhomogeneous Laplace 
equation. Briefly, psuedo-analytical functions consist of analy- 
tical functions which are solutions to Laplace's equation and may 
be multiplied by a complex function based upon the inhomogeneous 
source term, cross-product term(s), or first-order derivatives; 
they represent solutions to elliptical partial differential 
equations. 

The equations of motion in three-dimensional rotating 
Cartesian coordinates for a spacecraft having thrust moving about 
two larger bodies are: 

where acceleration components are: F,, Fv and F,. The gravity 
potential for the two large primaries, located on the x axis, is 
defined as: 

(1-P) - E rI2 = (x-x, )2+ y 2 +  22 
V ( x , y , z )  = - - r l  r 2  ' rZ2 = ( x - x 2 ) 2 +  y2 + 22 ( 2 7 )  

and the energy integral for no thrust accelerations is defined as: 

(28) 
E = - 1 ( X 2  + y 2  + i2) - 2 1 (x2+y2)  + V ( x ,  y, z )  

2 
C-1. The Two-Dimensional Case Without Thrust 

Accordingly, a potential may be defined such that: 

j ( = -  dx = V x ,  and y = -- dY - - w, 
dt dt 

where the potential is a perfect differential which means the 
cross-derivatives are equal. The derivative is defined as: 

( 3 0 )  dW = W,dt + W,dx + W,dy 

then the cross-derivatives imply: 

Y 
Y x 

.. 
X V,, = w,, or - =  - - 

and 
x - + y -  d x  dY = o  

dt dt 
When this is integrated, the results reveal the kinetic energy 

portion of the energy integral and a constant of integration that 
is a function of both potential energy and the gravity potential. 
Thus, this definition possess both mathematical properties and also 
satisfies energy considerations. Results satisfy the energy integ- 
ral requirement and compatibility suggesting that the expression is 
admissable. 
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The potential is a function of both spatial variables and 
time. The second derivative or acceleration in the x direction can 
be defined as: .. 

(32) 
x = w* + x w m  + yvxy = w,, + wxwxx - wyw, 

with a similar expression for acceleration in the y component. 
Substituting these terms into equations (26a) and (26b), with 

no force components, these equations are further differentiated and 
when combined, the resulting equation has the form: 

v2w = w x x +  vyy = - v x y  ( 3 3 )  

This resulting equation is elliptical in the canonical partial 
differential sense and suggests this transformation is a psuedo- 
analytical function. Due to superposition, the potential can 
consist of an analytical function and an inhomogeneous term 
accounting for the gravity potential. This additional term can 
also be a pseudo-analytical function. A general solution to this 
equation has the form: 

Y' ( X t  Y )  = - Jl G ( 6 , ~ ;  X, Y)Vg,,dtdq + . . . ( 3 4 )  
D 

where additional terms satisfy boundary conditions and G(k,q;x,y) 
is the Greens function: 

log Io(-x,-r>2 + (Y-'1l21 (35) 
(1 - PI G (5,q; x, y )  = - ~ 

log [(X-X2-O2 + (y-?)21 
2rc c1 - -  

2n 
These two terms represent point source distributions. The Greens 
function retains the mathematical behavior near the origins of the 
primaries. Integration should be performed over the domain bound 
by the zero-velocity curves. No contributions are added to this 
expression from the region beyond the zero-velocity curve because 
the spacecraft can not cross into this forbidden zone on the basis 
of energy considerations. Thus there is consistency between the 
mathematics and physics of the problem. 

C-2. No Thrust in Three-Dimenaionm 

The potential for this problem is defined such that: X = v, 9 = - wy and 2 = w, Using similar substitution into eqs (34a) -(34c) and 
cross-differentiation results in several partial differential 
equations: 

Note that (36a) is the same as previously derived. The latter two 
equations are additional expressions that show the gravity potent- 
ial drives the motion. 
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C-3. Thrust in Two-Dimensions 

With such simplifications, the problem is reduced to altering 
the partial differential equation form by specifying thrust. This 
eliminates coupling appearing in the momentum equation in a given 
direction or removes coupling in another momentum equation. 

Results are shown in Table I for several forms of thrust 
components. Basically, the elliptical canonical nature of these 
expressions is preserved. For the third case, the results is 
equivalent to motion in a simplistic linear potential field and 
there is no clearcut way of accurately predicting the spacecraft's 
motion. In the last case, thrust is selected to nullify force from 
the gravity potential reflecting earlier comments regarding large 
sustained thrust-to-weight ratios. Consequently in this situa- 
tion, the potential is truly analytical. 

Table I 
k Y Fx FY Functional Form 

W X  - w Y  + 2 x  - 2 y  w,, + 2w, + Ym = - v,, 
W X  * % - 2 i  +2y w,, - 2 w, + ww = - vxy 
W X  -w ,  + 2 y  - 2 x  vv = 0. 

YX - w, v y - x  v , - y  w , ,+ \vw=o.  

Depending upon the judicious selection of thrust, the 
governing equations are reduced to an equation having the form: 

(37) 
2 v w +YV,, + 4 V  = 4, 

where the constants depend upon the transformation function and 
thrust terms. 

C-4. Analytical/Pseudo-Analytical Functions 

Another means of solving the equation (37) would be to intro- 
duce a direct relationship between the velocity potential and 
gravity potential. This expression can be expanded to include a 
potential representing the thrust components. A direct relation- 
ship can be defined between the velocity and gravity potentials in 
a Beltrami equation: 

W, = aV, + SV, 

w, = 6V,+ yv, . 
Note the similarity with the Cauchy-Reimann equations governing 
complex variables. The problem is to determine the value of the 
constants to define the desired potential. 

Inversely, when certain derivatives are taken, the resulting 
equation reduces to the inhomogeneous equation. However, when 
these derivatives are taken in reverse order, the resulting expres- 
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sion is a hyperbolic canonical partial differential equation that 
is a two-dimensional wave equation. 

With these thoughts, define the psuedo-analytical function as: 

- 
X 1  0 1 0 0  

= o  0 0 
Y 2  0 - 2  1 0  

1 0 0 2  d '2 

dt Y i  
- 

(39) 
1 w, = - + x  - 2 v,. 

If different cross-derivatives are taken, the results yield 
partial differential equations that depend upon the gravity 
potential: 

X 1  0- 0 

x2  " x  F X  
1 .  Y l  - 0  - 0  

Y2 v y  F Y  

To a degree this explains why these equations tend to demonstrate 
an elliptical and hyperbolic nature. For example, a spacecraft's 
trajectory near the zero-velocity curve domain tends to resemble 
mixed characteristics in the sense of a Tricomi partial differ- 
ential equation. 

Since this activity focuses upon finding a means for changing 
the nature of the spacecraft's trajectory, it is not clear how 
changes in the canonical form of the partial differential equation 
produces change in the spacecraft's trajectory. The above is pro- 
vided only to demonstrate that the governing equations can be 
altered to result in real as well as imaginary characteristics 
which influence the type of spacecraft orbit. 

A more lucid approach is available. Here the governing equa- 
tions are reduced by phase-space notation into an inhomogeneous 
vector-matrix equation. The gravity potential represents the 
inhomog.eneous expression which will be referred to in a similar 
sense as a control vector. 

Using the following definitions: 

x i  = x Y l  = Y  
x, = x l  = x Y,= Y , = Y  ( 4 1 )  

This transforms equation(26a) and (26b) into: 

or the vector-matrix equation: 
c - -- 

x = A X + ~  ( 4 3 )  

The dot denotes time differentiation and the matrix has constant 
coefficients. A bar denotes a vector and a double bar signifies a 
matrix. 

This vector-matrix equation is subject to boundary conditions 
as a function of the control vector. Due to the elliptical nature 
of some orbits, one should expect periodic solutions. The solution 
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of this equation has the form: 

0 

0 
Fx 

F Y  

- 
where the vector, x,, represents initial conditions. To evaluate 
the degenerate kernel in the integral, let: 

0 0 0 0  X1 

I P o  Pl P 2  P3 . x2 
- 0  0 0 0 Y l  

6 0  61 6 2  63 Y2 

where the constants are determined by the eigenvalues of the cons- 
tant matrix. For this particular matrix, the eigenvalues are 
repeated according to the following characteristic expression: 

A'+ 2k2+1 = o men: 1 = ki ,  * i  ( 4 6 )  

Since the eigenvalues repeat, the problem is to solve for the 
coefficients in: 

2 
where I is the identity matrix. 

theorem, the final matrix becomes: 
After finding the coefficients and using the Cayley-Hamilton 

cos t sin t 0 0 
sin t cos t 0 2 sin t 
0 0 cos t sin t 
0 -2 sin t sin t cos t 

I 

e*' = 

Subsequently, the resultingmatrix has the desired features of 
periodicity due to the embedded circular functions within the 
kernel displaying an elliptical nature. However, to examine 
changes to the 'type' of trajectory with thrust, eigenvalue 
decomposition is necessary. If the vector defining thrust is 
provided as a function of the initial state vector (i.e. : thrust as 
a function of either position or velocity), the matrix is altered 
by including additional coefficients to those within the A matrix. 
Here, the thrust acceleration term can have the form: 

( 4 9 )  

The resulting characteristic equation has the form: 

k4 + y0x3 + (2+y , )  h2 + y 2 h  + y3 = 0. ( 5 0 )  

This provides several interesting insights. For real solu- 
tions, coefficients of the odd powers of the eigenvalue should not 
vanish. This eliminates eigenvalue multiplicity. If these parti- 
cular terms are negative, eigenvalues are no longer imaginary but 
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real. Solution for these real eigenvalues results in hyperbolic 
sine and hyperbolic cosine terms as a function of time. Similar 
changes could provide eigenvalues producing parabolic solutions. 
In this fashion, changing thrust can produce trajectories which can 
linearly vary as a function of time, or vary in a hyperbolic 
fashion. Again, as mentioned earlier in the original analysis, the 
form of the equation can easily be altered without a strong 
dependency upon an initial velocity constraint. 

111. CONCLUSIONS 

This generalized approach demonstrates that Tsien's method 
leads to a class of solutions where thrust and other acceleration 
effects change the trajectory classification. In addition to 
explaining deviate behavior when viewed from the classical sense, 
constraints placed upon a trajectory based upon energy considera- 
tions may no longer be valid under certain thrust applications. 
The zero-order solution, without consideration of thrust, for 
classical Keplerian dynamics should be viewed as a small subset of 
a much larger non-Keplerian domain. 
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Abstract: 

This paper is a presentation of some practical aspects of orbital transfer from 
Geosynchronous Transfer Orbit (GTO) to close, near-circular orbits of the Moon. The 
intent is to identify the important parameters affecting the problem and to bound 
(approximately) the range of required AV for a spacecraft that has been placed in GTO. 
The basic geometric relationships are described and the dynamics are simulated by use 
of the Zero-Sphere-of Influence Patched Conic method. It is found that the inclination 
of the transfer orbit to the Earth-Moon plane is relatively unimportant while the 
position of the line of apsides with respect to the Moon's orbit is the main geometric 
parameter of interest. It is shown that this parameter can be controlled by selecting the 
time of day for launch and that two launch windows of approximately 45 minutes 
duration are available each day of the year if use is made of the recommended phasing 
orbit transfer. The phasing orbit transfer not only provides twice-daily launch 
windows, but also provides a mechanism for efficacious correction of GTO injection 
errors. AV penalties for out-of-plane transfer and for late launch are evaluated and the 
method is recommended for use as an affordable means of achieving lunar orbit. 

Introduction: 
It is not generally recognized that daily launch windows are available for launch to GTO that are 

compatible with reasonably efficient transfer from GTO to lunar orbit. This study described in this 

paper (Reference 1 ) was undertaken for a private company that has compelling reasons for minimizing 

the funding requirements for the launch vehicle. The study revealed that transfer from GTO to lunar 

orbit is not only viable but that it  may be the most affordable means of such transfer because of the 

relatively high traffic to GTO. The recent renewal of interest in lunar exploration suggests the need for 

a wider distribution of the study results. 

It is pointed out that the correct relationship between the transfer orbit line-of-apsides and the Earth- 

Moon plane can be established by waiting in GTO until the Earth's oblateness rotates the orbit into 

position. For some initial orientations, this wait is not practical as the rotation proceeds at only about 

0.8 degrees per day. I f ,  however, the daily launch windows are chosen as suggested in this paper, i t  is 

possible to define realistic GTO waiting periods (10 to 20 days) that permit near minimal energy 

transfer from GTO to lunar orbit that extend the twicedaily launch windows. 
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One of the concerns for the viability of this mode of transfer is the possibility of radiation damage to 

the spacecraft during repeated passages through the Earth's radiation belts as the orbit rotates into 

position for final insertion into the lunar transfer orbit. This effect may be one of the major tradeoffs in 

mission design for some missions and it is suggested that it is important to weigh the requirements for 

radiation shielding against those for propulsive adjustment of the perigee position to account for launch 

time variations. 

It is recommended that the propulsion system be a restartable bipropellant hydrazine/NTO system (or 

the equivalent) so that the transfer impulses can be applied at various points on the GTO and phasing 

orbits . Lunar orbit insertion is accomplished using about 850 m/s of AV to yield a near circular orbit 100 

km above the lunar surface with any inclination in the range 30" < i < 150" to the lunar equator. 

It is suggested that orbit sustenance requirements will be at least 100 m/s per year due to the uncertainty 

in our knowledge of the lunar gravity field for close, high inclination orbiters. The judicious use of this 

impulse to adjust the eccentricity and argument of perilune may yield a "frozen" polar lunar orbit that 

will not only provide stability but will aid in discrimination between the various models of the lunar 

gravity. 

Geometry of the Earth-Moon System: 

Figure 1 is a diagram of the geometry of the Earth-Moon system showing the pertinent relationships 

between the various orbits required for transfer from GTO to lunar orbit. The figure is an edge-on view 

of the Earth-Moon system and shows the (dark) GTO, the lighter shaded geosynchronous orbit (GSO), 

the lightest Earth-Moon plane, and the unshaded phasing and lunar transfer orbits. The GTO is 

assumed to be inclined to the Equator (shown by the GSO) by about 7" which is compatible with a 

typical launch on the Ariane launch vehicle. It is assumed that the perigee of the GTO is within about 

5" of the Earth-Moon plane so that, with a reasonable waiting period (10 to 20 days), the orbit can be 

allowed to precess into a favorable alignment for initiation of the phasing orbit and then the lunar 

transfer orbit. The figure shows the line of apsides of the phasing and translunar orbits along the line 

of intersection of the equator and Earth-Moon plane. It is not necessary to have this alignment but it is 

most probable because the perigee of the GTO will be near the equator. In case it  is required to wait 

while the GTO precesses until its line of apsides is near the Earth-Moon plane, the orientation could be 

quite different from that shown in the figure. What is important is that the transfer from GTO to 

phasing orbit be done when their common perigee is near the Earth-Moon plane. 
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Fig. 1 Geometry of GTO to Lunar Orbit Transfer 

The Moon's orbit plane is inclined about 5.14" to the ecliptic and, because of the solar gravitational 

perturbations, its node (on the ecliptic) regresses about 20" per year. This regression causes a change in 

the inclination, 774, of the Earth-Moon plane to the Earths equator. This inclination varies between 

about 18.5" and 28.6" with a period of about 18 years. In the early 1990's, the inclination q' is about 

midway between these extremes at about 24". Thus, a GTO orbit with an inclination of 7" to Earth's 

equator will have an inclination, q, with respect to the Earth-Moon plane of no less than about 17" and 

no more than about 31". It is recommended that this inclination be a free variable in preliminary 

analyses because its effect on the total AV required to achieve lunar orbit is less than 75 m/s. If the 

transfer orbits and vehicle sizing exercises use the larger value of 31", then launch may be accomplished 

on any day of the year with varying degrees of payload margin. 

The Phasing Orbit: 

Use of an intermediate phasing orbit is recommended so as to provide the capability for launching any 

day of the month and to eliminate the need for a plane change maneuver. I t  also provides the 

capability to make midcourse corrections at near-optimal positions. For the "nominal" case, it is 

assumed that transfer from GTO to the phasing orbit is made at perigee (of both orbits) and at a time 

when perigee is in the Earth-Moon plane. The period of the phasing orbit is chosen so that, after an 

integral number of revolutions in that orbit, a second impulse is applied at perigee to place the 

spacecraft on the lunar transfer orbit (LTO) at a time which will insure intercept with the Moon when 

the spacecraft reaches the Moon's orbit. I t  should be noted that the impulse to go from GTO to the 
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phasing orbit is not “wasted”, i t  is an impulse that would have to be added in any case to effect the 

complete transfer from GTO to the LTO. Then, after the proper timing has been established by selection 

of the period of the phasing orbit, the remainder or the GTO to LTO impulse is applied at perigee of 

the phasing orbit and the lunar encounter is assured. 

LTO \ 

d Orbit 

L u n y  OrbJt -/ 
(Inclined 18 to 31 to page) 

Fig. 2 Two-Impulse Lunar Transfer 

Fig. 2 is a diagram of the GTO, the phasing orbit and the LTO. The impulse AV1 takes the spacecraft 

from GTO to the phasing orbit and AV2 provides the transfer from the phasing orbit to LTO. Later 

studies will probably reveal an optimal split between these two impulses but, for these studies, it is 

sufficient to require only that their sum equal the AV required to go from GTO to LTO. Assuming that 

GTO is a typical Ariane-launched orbit, (200 km x 35975 km with an inclination of 7’ and an argument of 

perigee of 178’ wrt the equator) and that the LTO has a semi-major axis of 198,000 km (C3 = -2.013 

km2/s2), we obtain for the total of the two impulses the difference between the perigee speeds of the 

initial and final orbits, that is, 

= q/E-JF] a m  
I 

where rp represents the common perigee radius of the two orbits, %TO and aLTO represent their semi- 

major axes, and p is the gravity constant (GM) of the Earth (=398600.5 km3/9). Using the typical 

values quoted above and taking the equatorial radius of the Earth as 6378.14 km, we obtain, 

AV1 + AV2 = 0.675 h/~, 

to be applied so as to ensure lunar encounter near apogee of the LTO. 
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The Zero-Patched Conic Method: 

One of the most powerful and simple methods for estimating the energy during Moon passage is the zero 

sphere of influence or point to point patched conic method. It can be shown that this method conserves 

the Jacobian integral in the restricted three-body problem and is capable of predicting the Moon- 

relative energy at perilune to within terms of the order of the MoodEarth mass ratio and the ratio of 

the passage distance to the Moon's distance from the Earth. For preliminary analysis of an orbiter 

mission, it yields the excess speed of the lunar encounter hyperbola to within a few percent and permits 

estimation of the orbit insertion requirements to the same level of accuracy. 

The method is basically the same as that used by Professor Rutherford in his famous analysis of the 

nuclear scattering problem except, in the orbital case, there is no appreciable recoil and, therefore, no 

need to transform to "laboratory" coordinates. The essence of the method is to determine a Keplerian 

ellipse that goes from the launch point to the center of the Moon in some desired transfer time 

(Lambert's problem). The Keplerian velocity at encounter is transformed to a Moon-centered frame and 

that transformed velocity is taken to be the hyperbolic excess velocity of the Moon-passage trajectory. 

This method cannot yield any information about the lunar passage distance and the transfer times will 

be in error by several hours but the Moon-relative energy is surprisingly accurate. This technique is used 

for most preliminary lunar and interplanetary transfer studies. 

Let VM represent the velocity vector of the Moon at the time of encounter ( when the spacecraft is 

assumed to have the same position as the center of the Moon) and let VA represent the Earth-relative 

velocity vector on the Keplerian transfer orbit at encounter. The Moon-relative excess velocity, V, , is 

simply 

where the bold quantities represent vectors. In the nomenclature of spherical astronomy, if q represents 

the inclination of the Keplerian transfer orbit to the Earth-Moon plane, and y is the elevation path 

angle of the Keplerian velocity vector at encounter (see Fig. 11, then 

The excess speed is related to the selenocentric energy (the vis-viva energy of the spacecraft with 

respect to the Moon) as 
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where p~ is the gravitational constant (GM) of the Moon (= 4903.2 km3/s2) and v and r represent the 

speed and radial distance of the spacecraft with respect to the Moon during the encounter. 

Now, with an accurate estimate of the Moon-relative energy, i t  is a simple matter to determine the 

orbit insertion requirements. Assume that the lunar transfer orbit has been targeted for a closest 

approach distance, rp, of 1838 km (100 km above the lunar surface). This targeting is achieved by 

selection of launch time and does not appreciably affect the value of V, given above. The Moon- 

relative speed at closest approach, then, is 

and the (circular) orbit insertion impulse required is 

For a typical value of V, of 0.85 km/s, we obtain 

A V c  = ( (0.8512 + 2. (4903)/1838 }'I2 - (4903/1838]1/2 = 0.828 km/s. 

Fig. 3 shows the orbit insertion AV as a function of V- throughout the range of values to be expected for 

a GTO to lunar orbit mission. 

0.75 0 .77  0 . 7 9  0 .81  0.83 0 .85  0 .87  0 . 8 9  0 . 9 1  0 .93  0 . 9 5  

Selenocentric Excess Speed (km/s) 

Fig. 3 Circular Orbit Insertion AV vs Hyperbolic Excess Speed 
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Sensitivity of Requirements to Launch Window: 

I t  is important in studies of this type to identify the sensitivity of the performance to various 

parameters that may have to change from the nominal situation during an actual mission. Perhaps the 

most important of these is the time of launch. It is recommended that the launch vehicle contractor be 

asked to provide a launch to GTO at a time of day that will place the perigee of the orbit within 5" of 

the Earth-Moon plane anytime within 15 days after launch. If there were no other constraints, this 

could be accomplished twice per day by launching just before the GTO injection point crosses the Earth- 

Moon plane. But for a shared launch, there will be constraints on launch windows as a result of 

requirements placed by the primary payload such as solar aspect angles at injection or apogee passage. 

Primary payload constraints may eliminate one or both of the lunar transfer options during certain 

times of the year and should be the subject of more careful consideration than given here. Because of 

this kind of interaction between primary and secondary payload constraints, it is of interest to evaluate 

the penalties associated with launch at non-optimal times and to consider practical (near-optimal) 

strategies for correcting the effects of variations in the initial argument of perigee with respect to the 

Earth-Moon plane. 

Fig. 4 shows the positions of the relevant planes as they will be in Jan of 1993. The best time to launch 

is just before the GTO injection point ( which can be assumed to rotate with the Earth) reaches the 

Earth-Moon plane. This can be accomplished twice per day (see Reference 2), once near the ascending 

node of the Earth-Moon plane on the equator or just prior to crossing the descending node about 12 hours 

later than the situation shown in Fig. 4. During the 1990s, the ascending node of the Earth-Moon plane 

never gets far from the vernal equinox as it oscillates from about -13" to +13" in Right Ascension. In the 

early 1990's the ascending node of the Earth-Moon plane on the equator regresses from about -7" relative 

to the vernal equinox (in Jan 1990) to its minimum at about -13" (in Jan 1993). The node then advances 

from -13" to -7" during the next three years and will not cross into positive longitudes until near the turn 

of the century. Thus the optimum injection point in Jan 1993 would have a celestial longitude of -15" 

(that is 15 degrees West of the vernal equinox) which would allow for about 2" of perigee advance or 

about 2.5 days of waiting time until the oblateness rotates the perigee into the Earth-Moon plane at 

which time the spacecraft could be injected into the phasing orbit. 
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Desired Injection 0.15 Deg 
Before Lunar Node Crossing 

Ascent Trajectory 
(Fixed to Earth) 

Earth-Moon Plane 

Fig. 4 Geometry of the Earth-Moon System in Jan 1993 

But launch windows are not instantaneous and should be about 45 minutes wide to account for weather 

and other types of delays and still provide a reasonable probability of launch. Notice that the text of 

Fig. 4 calls for a 15' window. This corresponds to a one hour launch window ending with an injection 

exactly at the Earth-Moon plane. However, in the example above, the launch window should open 

about 45 minutes before the example time or about 11.25 degrees of Earth rotation earlier than the 

optimum which is to say that the launch window should open at a time which yields a GTO injection 

point whose celestial longitude is -26.25'. Then, in case the vehicle is launched at the beginning of the 

window, there would be a waiting time of about 16 days (approximately 13.25" / 0.816' per day) while 

the oblateness rotates the perigee into the Earth-Moon plane (see discussion of correction method 1 

below). The other launch window (near the descending node of the Earth-Moon plane on the equator) 

would open at a time which would yield an injection celestial longitude of about 180' - 13.25' = 166.75' 

East of the vernal equinox. Either option would yield a 45 minute launch window ending with a 

trajectory whose perigee point is about 2' out of the Earth-Moon plane and approaching it. Thus, even 

for a launch at the end of either window, there would be about 2.5 days of waiting while the perigee 

advanced to the Earth-Moon plane. This would give ample time for orbit trim, orbit and attitude 
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determination, and spacecraft checkout and maneuvers prior to insertion into the phasing orbit. The 

example above is for illustrative purposes. It is recommended that the trajectory requirements be stated 

as in a previous section, i.e. that the GTO perigee shall be within 5" of the Earth-Moon plane at some 

time within 15 days of GTO injection. The exact values of these requirements may change but the 

method of specification leaves nothing to the imagination. 

Correct ion Strategies: 

The first method using the simplest strategy, as suggested earlier, is to wait until the Earth's 

oblateness rotates the perigee into the Earth-Moon plane. Such a strategy would involve no direct 

performance penalty except perhaps a few meters per second for orbit maintenance. But this strategy 

may require six or seven month waiting periods in the worst cases. As such a wait would almost 

certainly be unacceptable because of the long time spent in the Earths radiation belts, it seems wise to 

investigate alternate techniques. The rates of the orbital ascending node and argument of perigee with 
respect to the Earths equator for an orbiter under the influence of the Earths oblateness parameter, 12, 

are given by (see e.g. Ref. 3) 

where R and o are the longitude of the ascending node and argument of perigee, n is the orbital mean 

motion ( n  = ~ L / U ~ ) ~ / ~ ) ,  a and e are the orbital semi-major axis and eccentricity, i is the equatorial 
inclination, Re is the Earths equatorial radius, and J2 is the Earth's dynamical oblateness parameter 

( J 2  = 1.082 x lom3). For a GTO with a 7" inclination (see Ref. 4), these rates are 
di2 d o  
- = - 0.413 deg/day , a d  - = + 0.816 deg/ day. 
dt dt 

Because the perigee advances (moves in the direction of spacecraft motion) it is better to launch early 

than late with respect to the Earth-Moon plane crossing. 

A second method for adjusting the argument of perigee with respect to the Earth-Moon plane is to seek a 

large phasing orbit that is strongly perturbed by the gravitational perturbations of the Sun and Moon in 

such a way as to move the line of apsides into the Moon's orbit plane. This may be quite a complex 

solution because if the perturbations are strong enough to rotate the orbit quickly, they will also change 

the shape and probably the energy of the orbit. Such a solution to extend the launch window could 

alleviate any radiation problems associated with remaining in GTO for long periods of time. A large 

phasing orbit could be selected so that the spacecraft spends most of its time outside the severe 
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radiation, and an optimal multi-impulse transfer be selected to complete the transfer to the TLO. It is 

suggested that this possibility be investigated in more detailed studies as a possible means of 

improving overall performance in case margins are considered inadequate or if the radiation dose is 

considered excessive as the mission plan and spacecraft system become more mature. 

The third technique considered is the brute force method in which the spacecraft propulsion is used to 

correct for the effects of an early or late launch on the argument of perigee. 

2500  

2 4 0 0  

2300  

2200  

2 1 0 0  

2000  
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1700  
0 4 8 1 2  1 6  2 0  

Perigee Offset from Earth-Moon Plane tdeg) 

Fig. 5 Total AV versus Angular Perigee Offset 

Fig. 5 shows the total AV required to transfer from GTO (200 x 35975 km) to a 100 km circular lunar orbit 

as a function of the perigee offset from the Earth-Moon plane. The perigee offset is the angle from the 

Earth-Moon plane (measured along the orbit) to perigee of the phasing orbit at the time of injection into 

the phasing orbit. It is assumed that perturbations acting on the phasing orbit itself are negligible and, 

therefore, the perigee of the phasing orbit and the LTO are at the same point in space. In the 

calculations, it is assumed that the inclination of the phasing and lunar transfer orbits is 31" (the 

greatest possible) and that 200 m/s AV budget has been allocated for transfer orbit corrections and lunar 

orbit sustenance maneuvers. The calculations for Fig. 5 also include the assumption that the Moon's 

orbit is circular at 384,000 km from the Earth. This corresponds to the mean distance of the Moon from 

the Earth which varies by f 5% during any month. The strategy used to compensate for perigee offset is 

to increase the size of the LTO by a small additional impulse applied at perigee. The additional 

impulse is just that required to increase the radial distance from the Earth at the largest node on the 
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Earth-Moon plane. This increase exactly compensates for the decrease in radial distance caused by the 

angular offset of the perigee at injection. Although this is not necessarily the optimal strategy, i t  is a 

practical one and the figure shows that offsets of 4 to 6 degrees are probably tolerable as they can be 

accounted for by the use of less than 100 m/s. Of course, such a strategy would increase the moon- 

relative excess speed and some (small) additional AV would be required for lunar orbit insertion. The 

point here is that there are many transfer strategies available that will permit an adequate launch 

window for achieving the objectives of both the primary and secondary payloads on the launch 

vehicle. 

Preliminary Mass Calculations: 

It is instructive to estimate the amount of payload mass that can be delivered to lunar orbit for various 

levels of required AV as estimated above. Fig. 6 shows the net payload delivered to end of mission 

assuming a single on-board propulsion system with a specific impulse of 310 seconds and for stage 

propellant mass fractions from 0.65 to 0.85. (This is the ratio of the mass of propellant to the total wet 

mass of the stage not including payload). The performance is given as payload mass as a percent of the 

spacecraft liftoff mass. This is the mass of the spacecraft after separation from the launch vehicle and 

jettison of any adaptors or extra mass that will not be accelerated by the spacecraft propulsion system. 

The analyst should be forewarned that stage propellant mass fractions of 0.85 are not generally 

achievable with very small spacecraft (< 100 kg). The minimum mass of existing valves, tanks, and 

other necessary propulsion system hardware dictate a stage propellant mass fraction of the order of 

0.65 to 0.70 for spacecraft in the 50 to 100 kg range. As improvements in small spacecraft propulsion 

systems become available to the general user, these values will improve but, for current studies, it is 

suggested that the performance be calculated using the masses of the propulsion system component parts 

that are actually available for use. 

Preliminary studies of optimal staging indicate that very little is to be gained by going to a two-stage 

propulsion system in the cases of the larger propellant mass fractions. The flexibility afforded by a 

restartable, single-stage system will probably turn out to be the deciding factor in selection of the 

propulsion system. For smaller spacecraft systems, it may prove wise to use a small solid for one of the 

larger maneuvers. Based on these preliminary deliberations, it appears that an on-orbit payload mass 

of from 50% to 20% of the mass in GTO can be expected, depending upon the exact time of launch, 

vehicle size, and final strategies selected. 
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Fig. 6 Payload Fraction vs. Total Impulse 
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ABSTRACT 

Missions 

Precursors for Solar System Exploration Initiative (SEI) missions may require long period 
elliptical orbits about a planet. These orbits will typically have periods on the order of tens 
to hundreds of days. Some potential uses for these orbits may include the following: 
studying the effects of galactic cosmic radiation, parking orbits for engineering and opera- 
tional test of systems, and ferrying orbits between libration points and low altitude orbits. 

This report presents an approach that can be used to find these orbits. The approach con- 
sists of three major steps. First it uses a restricted three-body targeting algorithm t~ deter- 
mine the initial conditions which satisfy certain desired final conditions in a system of two 
massive primaries. Then the initial conditions are transformed to an inertial coordinate 
system for use by a special perturbation method. Finally, using the special perturbation 
method, other perturbations (e.g., sun third body and solar radiation pressure) can be eas- 
ily incorporated to determine their effects on the nominal trajectory. 

An algorithm potentially suitable for on-board guidance will also be discussed. This algo- 
rithm uses an analytic method relying on Chebyshev polynomials to compute the desired 
position and velocity of the satellite as a function of time. Together with navigation 
updates, this algorithm can be implemented to predict the size and timing for AV correc- 
tions. 

1.0 Introduction 

During the summer of 1991 the authors were approached (by NASA-JSC) to assist in a 
trajectory design problem for the “Life Sat” mission. The objective of Life Sat is to deter- 
mine the biological impact of deep space radiation on the cells of living animals. Data 
gathered from this mission will be used to estimate the effects of deep space radiation on 
human beings. Such effects must be well understood prior to sending humans on the nec- 
essarily long transfer trajectories to explore Mars. 

A major problem in the experiment is that the data can be corrupted by another type of 
radiation, found in the Van Allen radiation belt region, relatively near the Earth. The tra- 
jectory should therefore be designed such that the spacecraft is near the Earth for rela- 
tively small amounts of time compared to the time spent in deep space. The ideal trajec- 
tory design requirements that would maximize scientific return are: 
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1.The spacecraft must remain outside the Van Allen region for 60 days. 
2.The spacecraft should enter the Van Allen region only twice - once for 

3.The cost of the mission (Le. AV) must be mininuzed. 
departure and once for the return 

This report describes an approach for finding a deep space geocentric orbit which will sat- 
isfy the above stated requirements. A key element to this approach is the use of the Double 
Lunar Swing-by technique first proposed by Farquhar and Dunham (198 1). Using this 
technique the gravitational force of the moon is a significant perturbation to the solution. 
However, it was found that the moon is of some benefit to mission performance since i t  
can be used to increase the energy of the outbound leg while decreasing the energy on the 
inbound leg. 

A second goal is to present a guidance algorithm, possibly suitable for on-board computa- 
tions, which keeps the vehicle on the prescribed trajectory even in the presence of other 
perturbations (e.g. solar third body effects). This algorithm uses a Chebyshev polynomial 
approach to analytically estimate the desired state as a function of time. This state is then 
compared to the navigation state and AV corrections are applied to maintain the desired 
trajectory. 

2.0 Restricted Three Body Analysis 

This section is provided in two parts. First, a description of a restricted three body target- 
ing algorithm which solves the problem of: Given two position vectors and the flight time 
between these positions find the initial velocity. This is a two point boundary value prob- 
lem which in the two-body theory is called Lambert’s problem. However, since the strong 
perturbation of the moon must be accounted for, we started with the equations of motion 
in the restricted three body problem and then solved for the trajectory between the two 
specified position vectors. The solution is more difficult than in the two-body case since 
numerical integration is required. The technique for finding a solution is well known 
(D’Amario and Edelbaum, 1973; Bond and Fraietta, 1991) and will be used in this report. 
The second part describes how the restricted three body targeting algorithm is used to 
determine a double lunar swing-by solution suitable for the Life Sat mission. 

2.1 Targeting Algorithm 

The differential equations of the restricted three body theory are given in a coordinate sys- 
tem whose origin is at the center of mass of the primaries, ml and m2, and is rotating with 
the line (Le., the x-axis) connecting the primaries. The z-axis is normal to the plane of 
motion of ml and m2, and the y-axis lies in the plane of motion. The x-axis rotates about 
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the z-axis at a angular speed which is the mean motion of the primaries. This system 
appears in Figure 1. 

m3 
n Thc z axis is normal to the x,y planc 

Figure 1 - Rotating (x ,y)  system 

An inertial (X, Y, Z) system remains fixed with respect to the rotating system and is 
depicted in Figure 2. 

A 
m2 

X 
The z and Z axes are normal to the x,y plane 
q = mean motion of m1 and in: 

Figure 2 - Rotating (x,y) system in relation to an inertial (X, Y) system 

The nonlinear differential equations describing the motion of m3 (assumed to be massless) 
in the restricted three body system are given by (Szebehely, 1967) 

Where the force function Q (x, y, z) is 
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and 

2 2 2  r l =  ( x - p ) 2 + 4 ’  +z 
r 2 =  2 ( x + l - p ) 2 + y  2 2  + Z  

An approximate targeting solution, specified by the initial conditions (ro, v,) at to, is 
used as a first guess for solving the restricted three body system of differential equations. 
The initial velocity is then corrected according to the equation 

where rp the final or target position is specified. The solution is then recomputed with Y: 
instead of yo.  The matrix $12 is a sub-matrix of the transition matrix 

which is associated with the differential equations of motion of the restricted three body 
problem. The matrix @ , 2  is found via numerical integration of the differential equations 

where M is the matrix of second partials 
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and J is 

The initial conditions for the transition sub matrices are 

This procedure continues iteratively until the computed final position vector 
( r  (9 to, Y o )  becomes arbitrarily close to the specified final position vector (rf) , that is 

ITf- r ($3 I,, Y o )  j -+ 0 

2.2 The Double Lunar Swing-by 

A typical trajectory for a double lunar swing-by requires the vehicle to fly by the moon's 
eastern limb on the outbound leg. The lunar encounter changes the velocity of the vehicle 
such that a second lunar encounter is achieved after a specified time interval. The second 
lunar fly by on the inbound leg, occurs on the western limb which acts to decrease the 
vehicle velocity prior to encountering the earth. 

In their paper Farquhar and Dunham (198 1) used a closest approach to the moon of 
approximately 16,000 kilometers. Adopting this value the restricted three body targeting 
algorithm is employed to find a solution targeting from the east limb of the moon to the 
symmetrical location on the west limb given a 60 day flight time. The vehicle motion is 
restricted to the Earth-Moon plane. After convergence the state required at the east limb of 
the moon that would attain the target conditions on the west limb 60 days later is known. 

The next step is to determine the initial conditions required to depart a 400 kilometer alti- 
tude circular orbit at the earth (orbit lies in earth-moon plane) such that the state vector at 
the moon would exactly match the solution found above for the east limb. It is desirable 
that no additional AV corrections be necessary beyond that required for the Trans-Lunar 
Injection burn. This is essentiaIly a patched solution in the restricted three body system. 
Again, the restricted three body targeting algorithm was used to determine the solution. 
However, this problem requires iteration to obtain the solution using two parameters 
namely, the longitude of the departure orbit and the time of flight to the patch point. 
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As a result of the symmetry found in the restricted three body system it was not necessary 
to patch the inbound trajectory from the moon tu the earth since it is the mirror of the earth 
to moon trajectory. The complete double lunar swing-by trajectory in the rotating system 
is displayed in Figure 3. 

~i ~~ ~ +- . ~- .- c -- 

W 

I 
YI) 

-1.50oJ 1 
-1.500 -1.200 +).900 -0.600 -0.34) 0 . W  0.300 0.600 0.- 1.200 : 

Rotating x (KM) 110 

Figure 3 - Double Lunar Swing-by Trajectory 

The Earth departure conditions specified by the targeting algorithm are depicted in Figure 
4. As shown by the figure the Trans-Lunar Injection (TLI) burn required a AV of 3.1 19 
kilometers per second at a longitude of 100.11 degrees with a transfer time of about 2.66 
days to the patch point. Using these initial conditions, with no other additional AV, the 
vehicle will arrive at the moon with the required position and velocity for the 60 day moon 
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to moon transfer. It should be noted that the TLI AV is very near the Hohmann (minimum 
energy) value. 

+ "7 

-1.200.~ 

- 1 . m  

+ --- --* ~ 

Earth Departure From 400 KM Parking Orbit 
Longitude of departure was 100 11 Degrees 
AV = 3.119 km/sec 

a. 
h 

Transfer time between 
Earth and Moon - 2.66 Days 

d 

The vehicle trajectory in the vicinity of the moon is displayed in Figure 5. As shown both 
lunar encounters have a closest approach to the moon at a relatively safe distance of 
16,000 kilometers. The lunar encounter during both flyby's assists the vehicle perfor- 
mance. On the outbound leg the vehicle experiences a net gain in velocity, provided by the 
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lunar gravity, which propels it onto a very large elliptical orbit. On the inbound leg the 
vehicle experiences a net loss in velocity which is desirable prior to earth encounter. 

. ~ _ _ _  - . 
Note: A 60 Day Transfer from Moon to Moon was used 

-1 .ma 

-18,000 KM 

/ 

KM , 
/' 

\. 
-' ._ 

'00 

Rota t ing  x (KM) 
Figure 5 - Outbound/Inbound Lunar Fly b y  

Preliminary analysis has shown that relatively small amounts of AV (about 5 meters per 
second), applied during the lunar encounter on the inbound leg, would suffice for re-tar- 
geting for a specified entry interface (Le. altitude and longitude). Entry velocities would be 
similar to those encountered during the Apollo missions (i.e. -36,000 fps). 

3.0 Perturbed Two-Body Analysis 

From this point on the problem will be considered as a perturbed two-body problem. Solu- 
tions will be found by the special perturbation program, known as BG14, described in 
Bond and Fraietta (1991). There are several reasons for this change in point of view. For 
example, navigation, guidance and communication studies are more amenable to standard 
inertial coordinate systems. Also, even though the most significant perturbation, the moon, 
is included in the restricted three-body analysis, other significant perturbations such as the 
solar gravitational perturbations, high order gravitational fields of the Earth and moon, 
solar radiation pressure are not. 

3.1 Transformation to Inertial Coordinates 

Once the solution in the restricted three body system is determined the next step is to com- 
pute the initial state vector in the inertial coordinate system suitable for use in perturbed 
two-body analysis. The transformation from the rotating system to the inertial system is a 
two step process: (1) translate the position vector from the center of mass to the center of 
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the earth and (2) rotate the state vector into the Earth-Moon plane for a particular date. 
This translation and rotation is given by 

The mamx M provides the rotation into the Earth-Moon plane. For our analysis we used 
the J2000 inertial system. 

3.2 Lunar Perturbation Only 

Prior to investigating the effects of other perturbations, the method was first verified by 
duplicating the results found in the restricted three body system in the perturbed two-body 
system. To this end a circular lunar orbit, consistent with the computed initial conditions, 
was implemented in BG14 as a perturbation. The initial conditions were then integrated 
for the desired flight time (about 65.32 days) in the presence of the lunar third body pertur- 
bation. The trajectory, as viewed in the X-Y inertial plane, is displayed in Figure 6. 

p :  

-l.Ja, 

Vehicle Trajectory 

' - , . yL ,N  Lunar Orbit 

lst Lunar Flyby 
2nd Lunar Flyby 

inbound Leg 

. ._-_ _.___A 

Inertial X KM 
Figure 6 - Double Lunar Swing-by In Inertial Coordinates 

Outbound Leg 

- I . W  6.m -0.320 - 0 . ~ 6 0  0.- 0.2- 0 . m  0.780 i.040 

As shown by the figure the trajectory experiences a significant bending on both the out- 
bound and inbound legs as a result of the lunar swing-by. 



3.3 Lunar and Solar Perturbations 

Analysis performed during the preparation of this report has shown that the effects of the 
solar third body perturbations can not be ignored (especially for elliptical orbits with large 
semi-major axes.) It will therefore be necessary for the vehicle to periodically apply AV 
corrections to maintain the nominal trajectory. In an effort towards solving this problem a 
simple guidance control law using Chebyshev polynomials has been developed. This con- 
trol law is then applied to the problem described in Section 3.2 with the addition of the 
third body perturbation due to the sun. 

3.3.1 Chebyshev Guidance Algorithm 

A guidance algorithm using Chebyshev polynoniials, which can be expressed as 

with starting values 

T ,  (x) = 1 

T ,  (x) = x  

has been developed. Using the recursive nature of Chebyshev polynomials, this algorithm 
analytically provides the required state vector in the restricted three body coordinate sys- 
tem as a function of time using coefficients generated for a particular trajectory. Since for 
the restricted three body system the motion was restricted to the Earth-Moon plane, only 
the IC-y components of the state vector are required. The restricted three body state vector 
is then transformation to the 52000 inertial system (in an identical manner to that 
described in Section 2.3). Once in the inertial system the actual state of the vehicle, as pro- 
vided by navigation, can be compared to the desired state as provided by the Chebyshev 
polynomial solution. AV corrections are then applied at appropriate intervals to maintain 
the vehicle on the nominal path. 

Using the entire earth to earth trajectory to compute the coefficients for the Chebyshev 
polynomials, it was found that the accuracy of the approximate state compared to the 
numerically computed state is a strong function of the number of Chebyshev coefficients 
used in the approximation. Figure 7 shows the maximum RSS position error between the 
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Chebyshev approximation and the numerically integrated state as a function of the number 
of Chebyshev coefficients. 

Figure 7 - Maximum RSS Position Error as a function of 
the Number of Chebyshev Coefficlents Used 

Note that the RSS position errors are dramatically reduced as the number of coefficients 
used increases. For example, as shown by the figure, the RSS position errors are reduced 
by about a factor of 5 by doubling the number of coefficients. Although not shown the 
velocity error behaves in a similar fashion. 

3.3.2 Guidance Algorithm Results with Solar Perturbations 

The Chebyshev guidance algorithm presented in Section 3.3.1 was implemented in BG14 
along with a function to compute the solar third body perturbation. BG 14 was then exe- 
cuted (with the same initial conditions and flight times as described in section 3.2) using 



both lunar and solar third body perturbations with periodic AV corrections being applied 
by the guidance algorithm. The required AV is displayed in Figure 8. 

Time In Days 
Figure 8 - AV vs Time With Sun Perturbations 

As shown by the figure the AV required to maintain the nominal trajectory during the 
lunar flyby’s approaches several hundred meters per second. These large values do not 
seem reasonable and are atmbuted to the fact that the Chebyshev approximation is not 
doing an adequate job in this region. However, once past the lunar encounter the total AV 
cost (a linear function in time) is only about 182 meters per second during the 60 day 
moon to moon transfer. It should be noted that it is on this part of the trajectory where the 
solar perturbation effects are largest. 

Although time did not permit it for this study, it is felt that instead of fitting the entire earth 
to earth transfer with one Chebyshev fit it might be better to break up the trajectory into 
three different legs (Le. earth to moon, moon to moon and moon to earth). A Chebyshev fit 
could then be provided for each leg. It is hoped that this technique would provide the accu- 
racy required for the lunar encounter, thereby reducing the excessively large AV’s shown 
in Figure 8. 

4.0 Summary 

An approach for finding long period elliptical orbits has been presented. The approach 
uses a targeting algorithm to solve the two point boundary value problem in the restricted 
three body system. The resmcted three body solution found by the targeting algorithm was 
then transformed to the J2000 inertial system for use in a special perturbation method. 
This method allows modelling of other perturbations (due to for example the solar third 
body and solar radiation pressure) which are not easily modelled in the restricted three 
body system. 
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The approach was then used, in conjunction with the Double Lunar Swing-by technique, 
to obtain a candidate trajectory for the Life Sat mission. The candidate trajectory satisfies 
ideal trajectory design requirements which would maximize scientific return. 

Finally, an estimate of the AV required to keep a vehicle on the desired trajectory in the 
presence of the solar third body perturbation was provided using a Chebyshev guidance 
algorithm. The algorithm was found to work well on the long elliptical trajectory once past 
lunar encounter. A suggestion for improving the performance of the guidance algorithm 
during lunar encounter was offered. 
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ABSTRACT 
,,* // *] 

Spacecraft in orbit near libration point Li in the Sun-Earth system are / 
excellent platforms for research concerning solar effects on the terrestrial 
environment. One spacecraft mission launched in 1978 used an L i  orbit for 
nearly 4 years, and future L i  orbital missions are also being planned. Orbit 
determination and station-keeping are, however, required for these orbits. In 
particular, orbit determination error analysis may be used to compute the 
state uncertainty after a predetermined tracking period; the predicted state 
uncertainty levels then will impact the control costs computed in 
station-keeping simulations. Error sources, such as solar radiation pressure 
and planetary mass uncertainties, are also incorporated. For future missions, 
there may be some flexibility in the type and size of the spacecraft's nominal 
trajectory, but different orbits may produce varying error analysis and 
station-keeping results. The nominal path, for instance, can be (nearly) 
periodic o r  distinctly quasi-periodic. A periodic "halo" orbit may be 
constructed to be significantly larger than a quasi-periodic "Lissajous" path; 
both may meet mission requirements, but perhaps the required control costs for 
these orbits are provably different. Also f o r  this spacecraft tracking and 
control simulation problem, experimental design methods can be used to 
determine the most significant uncertainties. That is, these methods can 
determine the error sources in the tracking and control problem that most 
impact the control cost (output); it also produces an equation that gives the 
approximate functional relationship between the error inputs and the output. 

INTRODUCTION 

In one formulation of the problem of three bodies, when the mass of one of 
the bodies is sufficiently small (infinitesimal) so that it does not affect the 
motion of the other two bodies (primaries), the "restricted three-body problem" 
results. Five libration (Lagrange) points can be found as particular solutions of  
the equations of motion governing the path of the infinitesimal mass moving within 
the gravitational fields of the primaries. These equilibrium points are defined 
relative to a coordinate system rotating with the primaries. One Lagrange point, 
Li, is located between the primaries and is the libration point of interest here. 

Three-dimensional, periodic and quasi-periodic orbits are currently being 
studied for upcoming missions. Periodic "halo" orbits in the vicinity of 
libration points have been studied since the late 1960s. Robert Farquhar coined 
the term "halo" to describe a three-dimensional, periodic orbit near a libration 
point on the far side of the Moon in the Earth-Moon system. These orbits were 
designed to be large enough so that the spacecraft would be constantly in view of 
the Earth and thus would appear as a halo around the Moon. Alternatively, the 
variations in size and shape that a quasi-periodic orbit can exhibit may add 
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valuable flexibility for mission planning. This type of bounded, 
three-dimensional libration point trajectory is called a "Lissajous" orbit since 
specific planar projections of these quasi-periodic trajectories may look like a 
special type of Lissajous curve. 

Howell and Pernicka have developed a numerical technique for determination 
of three-dimensional, bounded libration point trajectories of arbitrary size and 
duration. Their numerical algorithm uses an analytic solution as a first 
approximation and then constructs a trajectory continuous in position and 
velocity. Their method is used in this study to define nominal paths in the 
Sun-Earth+Moon problem. The notation "Earth+Moon" means that the Earth plus the 
Moon are treated as one body with mass center at the Earth-Moon barycenter. The 
numerical data is then curve fit using a cubic spline routine, although the use of 
other curve fit methods is possible. The assumed dynamic model is the elliptic 
restricted three-body problem (ER3BP1, where the primaries move on known elliptic 
paths. The force model used here includes solar radiation pressure , the 
gravitational attractions of the Sun and the Earth+Moon barycenter, and the 
centrifugal force associated with rotation of the system. 

The forces affecting the spacecraft orbit have differing levels of 
uncertainty, and, unfortunately, the spacecraft will drift from the nominal path. 
Both range and range-rate tracking also include inaccuracy in measurement. The 
accumulated error in the spacecraft's position and velocity relative to the 
nominal path after a predetermined period of tracking can be computed. This 
error, or uncertainty, in the spacecraft state is measured through simulations, 
commonly referred to as orbit determination error analysis, and is presented as 
a vector of standard deviations of the states. In this work, the state vector 
includes three position and three velocity states. The state uncertainty computed 
in the error analysis can then be input to a station-keeping algorithm that 
computes control manuevers to return the spacecraft to the vicinity of the nominal 
path. The algorithms incorporate certain minimal constraints for time between 
manuevers, control magnitude, and distance from the nominal path before a control 
manuever is input. For these algorithms, variations in orbital shapes and sizes 
may have some effect on the station-keeping costs. 

2 

3 

4 

BACKGROUND 
Coordinate Systems 

The coordinate systems used 
in this analysis have a common 
origin at the primaries' center 
of mass. Primaries with masses 
mi and m2 such that mi h m2 are 
assumed here. The infinitesimal 
mass is denoted as m3.. These 
masses ( m i  ,m2,m3) correspond to 
particles situated at points Pi, 
P2, and P3, respectively. The 
barycenter is denoted as "B," 
and the resulting arrangement is 
shown in Fig. 1. The rotating 
coordinate system is defined as 

is identified as XIYIZI. 

G 

XRYRZR, and the inertial system PI 

Fig. 1 Coordinate Systems Used 



Note that both coordinate systems are right-handed, and the X and Y axes for both 
systems are in the plane of motion of the primaries. The rotating XR axis is 
defined along the line that joins the primaries and is directed from the larger 
toward the smaller primary. 

Equations of Motion 

The equations of motion for m3 (the spacecraft) relative to B as observed in 
the inertial reference frame are now formulated. The sum of the forces on m3 
resulting from both the gravity fields of masses mi (the Sun) and m2 (the 
Earth-Moon barycenter) and from the solar radiation pressure can be used to 
produce the following second-order vector differential equation: 

kS ) a. mi - m2 - = - G  (y-) d - G  (7 ) r + ( -  
d r d3 

ff - 
p 

The overbar denotes a vector, and primes indicate differentiation with respect to 
dimensional time. All quantities are dimensional, as appropriate, and the 
quantity "G" is the universal gravitiational constant. The scalars "d" and "rl' in 
Eq. (1) denote the magnitudes of vectors 3 and F, respectively, depicted in Fig. 
1. The dimensionless scalar "k" is the solar reflectivity constant, and "S" is 
the solar radiation pressure constant . The position vector E is written in 
rotating components as 

5 

Three scaled equations of motion fo r  P3 can be derived using the following 
definitions: the sum of the primary masses is one mass unit, the mean distance 
between the primaries is one distance unit, and the universal gravitational 
constant is equal to one unit by proper choice of characteristic time. The 
equations of motion can then be simplified and scaled by also introducing the 
nondimensional mass ratio p ,  "psuedo-potential" U, and the scaled solar radiation 
constant s: 

( 4 )  
m2 ' = mi + m2 

where the dot denotes the derivative with respect to characteristic time. Then 
the vector magnitudes, "d" and "r," are written in terms of scaled quantities as: 

( 6 )  

(7) 

The three second-order differential equations that result can be written in 

(8) 

2 2 112 d = [ ( x + p R R )  + y 2 + z 1  , 
r = [(x - R + p R I Z + y 2 + ~ I  . 2 112 

terms of characteristic (scaled) quantities as 
au x - 2 0 j ,  = - + e y = u x  + e y, ax . .  au .* j; + 2 e x = - - e x = uY - e x, 
aY 

(9) 

= uz. (10) 

These three equations can then be used to propagate the spacecraft state forward 
in both the error analysis and station-keeping simulations. 

au - -  
82 z 
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Curve Fitting the Nominal Path 

2 A numerical integration method developed by Howell and Pernicka is used to 
generate a set of reference points at specified times for both position (three 
states) and velocity (three states), relative to the libration point of interest. 
The method computes numerical data in a reference frame that is centered at the 
libration point (in this case L I )  and rotates with the primaries. However, the 
state estimation techniques and station-keeping algorithms used in this work 
require access to a continuous nominal path of acceptable accuracy. In one study, 
Pernicka6 found that station-keeping costs f o r  a libration point orbit were 
sensitive to the accuracy of the curve fit. A cubic spline interpolation routine 
was selected to model the reference trajectory here; the results of using other 
methods are summarized in the station-keeping section of this effort. 
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Examples of Experimental Design (DOE) Methods 

DOE methods are used to purposefully change the most important inputs to a 
process in order to analyze the output. The inputs are coded and alternately set 
at predetermined values for each experimental run so that the design is 
orthogonal; the relative contribution of each input can thus be judged 
independently. The output of interest may be the mean response and its variation, 
with the ultimate goal being to hit an output target value and minimize the output 
variability. However, the results from the set of experimental runs also 
determine the estimated function that relates the inputs to the output(s1. 
Experimental design methods are also used to reduce the required number of runs o r  
screen out relatively unimportant input variables. When only three inputs at two 
different input levels are considered, a two-level, "full-factorial" design 
consisting of every possible combination of input factors would require 2 = 8 
total runs. This design allows the experimenter to obtain the full model with all 
possible interactions. However, if 7 inputs in a 2-level design were used, 
2 = 128 individual runs would be necessary. These 128 runs may be expensive in 
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terms of both time and money. As a result, fewer runs may certainly be desired. 
A full-factorial two-level design will include all input variables and their 
interactions in the output equation model, but this may not be required. If some 
interactions are known to be relatively unimportant, a fractional-factorial' 
design consisting of a fraction of the number of runs required in a full-factorial 
can be constructed. For instance, for 3 inputs, a full-factorial would 
necessitate 2 = 8 runs, while one type of fractional-factorial would require as 
few as 4 runs to determine the significance of main effects (modeling no 
interactions). 

In a recent work by Garrett , several simple, yet educational, examples of 
the use of W E  are described. A similar example is included here: it is assumed 
that the area of a rectangle can be measured precisely, but the functional 
relationship between area and the length and width is not known. This example is 
truly hypothetical, but it can be used to illustrate simple DOE computations. The 
"design space" (where the computed model can be considered a good approximation to 
the true system) is defined by 1 5 width 1 2 meters and 1 s length 1 3  meters. 
Here, "w" is used for width and ".!" for length. Runs are accomplished at the 
extreme values of the input variables, with w = 1 or 2 meters and .f! = 1 or 3 
meters; however, first these measurements are generally coded. The data is coded 
by using the averages of both measurements and their ranges (highest value minus 
lowest). With I?(.!) = range of e ,  R(w) = range of w, w = average of the w 
extremes, and z = average of the .f! extremes, the coded settings are wc and ! c :  

3 

8 

- 

wc=2[G], ec=2 (&&I . 

When coded, the extreme values become +1 and -1 for each input, and these values 
are more simply denoted as "+' I  and " - ' I ,  respectively. A balanced design with 4 
runs then yields a design matrix of 

RUN 
1 
2 
3 
4 

The experiment is conducted using 
areas of the rectangle (outputs) 

these high and low settings, and the measured 
are 1, 3,  2, and-6 square meters for runs 1 

through 4,  respectively. Schmidt and Launsb/ discuss interesting hand 
computational methods to determine the output equation; however, simple least 
squares methods also provide identical results. The prediction equation for the 
output is assumed to be 

(12) 

where a = estimated area and the coefficients are computed using a least squares 
method with 

2 = bo + bi wc + b2 l c  + b3(wc)(&) 
A 

1 -1 -1 

C = [ i -! -: I!] and = [ i ]  in r l i  

T E = (CTC)-' CTz = [bo bi bz b31 . 
This method yields 

(13) 

(14) 

A similar method could be used to derive a prediction equation for the variance 
(or the natural logarithm of the standard deviation) of the output7. The 

A a = 3 + wc + 1.5 l c  + .5 (WC)(.!C). 
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resulting model in Eq. (14) is normally checked by completing test (confirmation) 
runs at extreme values and at the midpoint of the design space. For this example, 
that could mean using values of +1 for both wc and for an extreme run or 0 for 
both inputs for the midpoint run. Suppose a confirmation run was conducted at the 
extreme values and the resulting output was a = 6 meters. Using Eq. (141, the 
predicted output is 

$ = 3 + 1 + 1.5(1) + .5(1)(1) = 6 meters. 

For a confirmation run at the midpoints, the measured answer is a = 3 meters. 
Using Eq. (141, the predicted output equation is 

A a = 3 + 0 + 1.5(0) + .5(0)(0) = 3 meters. 

Hence, the confirmation runs verify the model; a significant disagreement would 
require further investigation. (In fact, this is the exact functional model--it's 
just coded.) When noise in the system exists, statistical tests are used to 
test confirmation. The coded Eq. (14) can now be converted to use uncoded inputs 

This example was simplified because we obviously knew the actual output 
equation. In manufacturing or engineering problems, the relationship between 
inputs and outputs is only generally known, and DOE can be used to gain problem 
insight. In the next section, the orbit determination error analysis methods used 
in this effort are summarized. The following section describes the 
station-keeping methods derived for this work and summarizes the control-cost 
comparisons of halo and Lissajous orbits. Finally, modeling the inputs of the 
station-keeping routine in an experimental design is presented. 

ORBIT DETERMINATION ERROR ANALYSIS 
Complete, exact knowledge of the state of a spacecraft in orbit is generally 

not possible. Available measurements are usually some function of the state 
variables and are not precise. For instance, a spacecraft in a libration point 
trajectory in the Sun-Earth system may be tracked using range and range-rate 
measurements containing random errors. The spacecraft may be affected by forces 
inadequately represented in the dynamic model, and model parameters may be 
uncertain. By definition, the linearized system of equations used to model the 
nonlinear system is a further approximation. These sources of error make 
knowledge of the spacecraft state uncertain. Computation of the most likely 
current state of the spacecraft in the presence of measurement and model 
uncertainty is the focus of orbit determination. 

Error analysis involves an investigation of the impact of various error 
sources on orbit determination. The outputs of this error analysis are the 
standard deviations of the states. These outputs could then be used to predict 
how an improvement in measurement accuracy, for instance, would lessen state 
uncertainty. One benefit of more accurate knowledge of the state might be a 
reduction in station-keeping costs. A mathematical procedure can be developed to 
combine all information about the spacecraft state, filtering this observed data 
based on the varying degrees of uncertainty, to obtain a "best estimate" of the 
state and an estimate of the resulting state variable uncertainties. 

The measurement and dynamic models are first summarized, three error analysis 
methods are briefly discussed, and then results are summarized. The three error 
analysis methods used here are $hel Kalman filter, batch weighted least squares , 
and consider covariance analysis . Each technique computes a covariance matrix 
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at a specified epoch, and the positive square roots of the diagonal entries are 
indicators of state uncertainty levels. 

Measurement and Dynamic Models 

The measurement and dynamic models used in the filter derivations are 

Zk = Mk Zk + Jk, 
N 

Measurements: (15 )  

Dynamic Model: %k+l = @(tk+l,tk)?k = @(k+l,k)Zk, (16) 

where 2k is the measurement residual vector at time step k; ?k is the residual 
state vector at time step k; Mk is the measurement matrix that is linearized about 
the nominal path; @(k+l,k) is the state transition matrix at time step k+l 
relative to time step kL-;nd Vk is the measurement noise vector with assumed 
statistics E(Vk)=ir and E(VkVk)=Vk, where "E" is the expectation operator, 0 is the 
zero vector, and Vk is the measurement noise covariance matrix. Range and 
range-rate measurements are assumed; the matrix, M, is then a time-varying matrix 
of dimension 2x6 ,  evaluated along the nominal path. 

- 

Error Analysis Methods Used 

Early work in this area was designed to compare the error levels obtained 
here to those found in other works and to determine error levels for use in 
follow-on station-keeping simulations. Three methods of orbit determination error 
analysis (using covariance analysis) were formulated: Kalman filter, batch 
weighted least squares, and consider covariance analysis. The results of Kalman 
and batch weighted least squares filters were virtually identical, as expected, 
but nonetheless helped to confirm the analysis. Both methods were formulated to 
compute state uncertainty after a predetermined number of tracking updates, 
simulating range and range-rate measurements with associated error statistics. 
Consider covariance analysis also uses a batch weighted least squares formulation 
but includes parameter uncertainty. Model parameters that were initially 
considered uncertain in this work were the planetary masses (through the 
dimensionless mass parameter p ) ,  the locations of the tracking stations, and the 
solar reflectivity constant. In general, at the epoch of interest, the state 
uncertainty is considered the consequence of the accumulated uncertainties in the 
model, the parameters of interest, and the measurements 5,9-11 

Orbit Determination Error Analysis Results 

A survey of input error levels used in similar error analysis studies serves 
as a valuable introduction. The values of these uncertainties may be used to 
compute diagonal entries of input covariance matrices for an error analysis, or, 
alternatively, may be used as error sources in a station-keeping simulation. 
Table 1 lists the input error levels assumed in several error analysis studies. 
The errors are denoted by the symbols generally used in the derivation sections of 
this work. The solar reflectivity constant is k; the tracking site location 
uncertainty is S and is input as an equal uncertainty level for each of the site 
coordinates XS, ye, 2s; range tracking is R; range-rate tracking is RR; and the 
uncertain mass parameters are pe for Earth, C(S for the Sun, and p n  for the Moon. 
The last column contains the uncertainty in dimensionless mass parameter p that 
would be "equivalent" to the errors listed for the individual mass parameters. 
(Recall that C( = (pe + p m ) / ( p s  + pe + p) for the three-body system of interest in 
this work.) The approximate value of s ( p )  (standard deviation of p )  is calculated 
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from extensive (10,000) Monte Carlo trials for each of these studies. An entry in 
Table 1 of "--" means the particular study did not indicate if an uncertainty of 
this type was used. 

I ONE STANDARD DEVI ATION LEVEL, S OF S TATE ERR ORS 

x (km) y (km) z (kml (mdsec) $ (mm/secl (mm/sec) 

.550 1.600 4.450 .430 .775 

- 
2.250 

STUDY - 

iist ret ta' 

1 4  loyce 

15,17 I f  ron 

todriguez- 

Canabal 16 

17 .ongusk i 

:his Work 

Table 1 
SURVEY OF ERROR ANALYSIS INPUT ERRORS 

k 

- 
15% 

1 0% 

10% 

-- 

13% 

13% 

- 

S 
(km) - 
-- 

.002 

.002 

.OlO 

. 000: 

.OlO 

_I 

NE STA 

R 
(km) 

- 
~~ 

.OlO 

.015 

.015 

,015 

.OlO 

.015 
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RR 
(m/sec 

.007 

.002 

.002 

.003 

.OOl 

.003 

[ATION ERRORS 

P= Ps P m  

( f km3/sec2 1 

1.000 

.3986 

.3986 

-- 
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.3986 

3.08 

x106 

x ~ ~ 4  

x 1 ~ 4  

1.327 

1.327 

-- 

4030.7 

1.327 

lo4 

.0726 

.0490 

.0490 

-- 
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.0490 

U ( p )  
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Table 3 
ERROR LEVELS PRODUCED FROM CONSIDER COVARIANCE ANALYSIS 

~ ~~ 

One Standard Deviation Levels 

Coordinate Halo-Type Orbit Lissajous Orbit 

x (km) 1.46 1.25 

y (km) 2.64 3.35 

z (km) 4.81 3.19 

G (mm/sec) 1.40 1.25 + (mm/sec) 1.85 1.41 

k (mm/sec) 2.49 2.51 

It certainly may be of great interest to compare the error levels found in this 
effort with the results of other investigations involving spacecraft in halo ( o r  
halo-type) orbits near the interior Sun-Earth libration point. Table 4 lists the 
results of four studies that do not include solar reflectivity as an error source 
and have small differences in the nominal paths and force models. 

Table 4 
COMPARISON OF ERROR ANALYSIS RESULTS FROM SEVERAL SOURCES 

One Standard Deviation Error  Levels 
II 

Coordinate Rodriquez-Canabal' Sim6I8 ~im6'' This Work 

x (km) 2.7 1.5 1.73 1.46 

y (km) 3.9 2.5 2.24 2.64 

z (km) 3.4 15.0 5.48 4.81 

& (mm/sec) 2.4 1.0 1.41 1.40 + (mm/sec) 3.5 1.0 1.41 1.85 

ii (mm/sec) 1.3 3.0 2.45 2.49 

The differences in error levels listed in Tables 3 and 4 may not be 
statistically significant; that is, station-keeping costs, determined throu h 
simulations using these error levels, may or  may not differ statistically . 
The results using one derived control scheme and the data in Table 3 are 
summarized in the next section. 

5,15 

STAT ION-KEEP ING SIMULATIONS 

For a collinear libration point orbit, a small deviation from the(unstable1 
nominal trajectory can lead to rather large drift from the path in a short time. 
In effect, a station-keeping algorithm must combat both the current drift from the 
path in addition to the exponential increase in the drift that is expected if no 
correction is implemented. Any delay in the control actuation may allow the drift 
to increase and thus compound the station-keeping problem. The goal of the 
station-keeping routine is then to keep the spacecraft "close enough" to the 
reference trajectory. The allowable deviations may depend on the simulation 
experience with a given control algorithm and on mission constraints, including 
the propellant cost that can be tolerated and the minimal time between control 
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inputs. When the spacecraft is "near" the nominal trajectory, it is reasonable to 
model the deviations from the reference path using a linear analysis. 

Derivation of Method 

For the linear control scheme developed here, the state transition matrix is 
partioned into four 3x3 submatrices as 

A 5 input (a 3x1 vector), with magnitude denoted as Av, is assumed to be added at 
a time t0. The 5 (delta-velocity) is added to the initial velocity states in the 
numerical integration routine in order to change the deviation of the spacecraft 
from the nominal path at some future time. In this derivation, pk is the position 
deviation (a 3x1 vector) and vk is the velocity deviation (a 3x1 vector) of the 
spacecraft from the nominal path at time tk, with k = 1, 2, 3 and 4. If 70 is the 
residual velocity (a 3x1 vector) and F0 is the residual position (a 3x1 vector) 
relative to the nominal path at time t0, then a 5 input at t0 could be used to 
predict Fk for k = 1, 2, 3 and 4. For instance, when the initial position 20 
includes an initial velocity perturbation 70, a delta velocity hv, and an initial 
position perturbation F0, the state propagation equation results in 

- 

?k = I:] = @(tk,t0) 20 = @(tk,t0) 

The cost function used to derive this control scheme is 

(18) 

where Q is a positive definite weighting matrix and R, Rv, S, SV, T, Tv, U, and UV 
are positive semidefinite weighting matrices. The cost function can be written in 
terms of hv by using substitutions for Fk and zb with k = 1, 2. 3, and 4, derived 
from E q s .  (17) and (18). The minimum is then Av = 

-[Q+BTRBi + B;SBz + BjTB3 + BauB4 + DIRVDI + DkvD2 + DgTvD3 + D:UvD4]-' 
x (BTRBi + BkBz + B$TB3 + BfTB4 + DTRvDi + DaSvDz + DjTvDs + DfUvD4 )70+ 
(BTRAi + BkAz + B$TA3 + BdUA4 + DTRvCi + DaSvCz + D ~ T v C ~  + DfUvCi 1501. 

A simpler version of this controller can be used by setting, for instance, the 
weighting matrices U and UV equal to the 3x3 zero matrix. This modified 
controller is the one used in the following section. 

Comparison of Halo-Type and Lissajou8 Orbits 

The cost of maintaining the spacecraft in orbit for 2 years is selected as 
the comparison value. For each simulation run, tracking updates, with assumed 
error levels listed in Table 3, are input every 20 days. Solar radiation pressure 
uncertainty is also input as an error source with magnitude listed in Table 1. 
The errors are modeled as zero-mean Gaussian random variables. Each simulation of 
the station-keeping algorithm will be a random trial with the random variable of 
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interest being the total magnitude of the station-keeping costs (AVT) for the 
2-year simulation. A sequence of 30 Monte Carlo station-keeping simulations 
produces a random sample of 30 random variables. Sample statistics, such as means 
and standard deviations, can then be calculated, and statistical tests can be 
conducted to compare the mean control costs f o r  halo-type and Lissajous 
orbits . Table 5 contains the results of one set of simulations using 30 Monte 
Carlo trials for each type of orbit. 

Table 5 
COMPARISON OF STATION-KEEPING COSTS 

Lissajous Orbit Halo-Type Orbit 

Avg AVT Std Dev Range Avg AVT Std Dev Range 
(m/s 1 (m/s) (m/s) (m/s) (m/s) (m/s 1 

5,12 

.8450 -1603 .57 - 1.15 .8124 .1233 .62 - 1.08 
Statistical hypothesis tests conclude that the 2-year mean control cost, using the 
two nominal paths and this particular controller, are equal. The conclusion of 
equal station-keeping costs f o r  all nominal paths near this libration point and 
any control scheme cannot be drawn from this work. 

Comparison of Station-Keeping Costs for Different Curve Fitting Options 

Various curve fitting methods have been developed to model the nominal paths. 
While cubic splines are used here, least squares curve fits f o r  a trigonometric 
series and linear interpolation routines have also been tested. The data in Table 
6 summarizes efforts to date. The curve fits are indexed by the number of terms 
included in the Fourier series. The cubic spline and linear interpolation schemes 
are indexed by the time between points. 

Table 6 
COMPARISON OF CONTROL COSTS BY CURVE FITTING TECHNIQUES 

Cubic Spline Average 2-Year Cost (meters/sec) 

Days between points = 3, 6, 9 1.234, 1.801, 10.324 

Fourier Series 

Terms Used = 28, 91, 121, 161 9.577, 8.147, 1.419, 1.414 

Linear Interpolation 

Days between points = . S ,  1, 2, 6 1.290, 1.307, 1.333, 38.604 

EXPERIMENTAL DESIGN RESULTS 

The process of interest here is station-keeping for a 2-year halo-type 
Lagrange point orbit in the Sun-Earth+Moon elliptic restricted three-body problem. 
The input variables include tracking errors (track), solar radiation pressure 
(SRP) and mass ratio (mass) uncertainties, orbit injection errors (inject), and 
thruster (thrust) errors. The outputs of interest are the 2-year control cost 
(AVt) and its variance. Other inputs could be considered, and additional outputs, 
such as the number of AV inputs required o r  the average separation time between 
control inputs, could also be evaluated in future efforts. The relationship of 
the inputs, the process, and the outputs is depicted in Fig. 3. 
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INPUTS PROCESS OF INTEREST OUTPUTS 

> MASS PARAMETER UNCERTAINTY (MASS) 

ORBIT INJECTION ERRORS (INJECT) 

TRACKING ERRORS (TRACK) 

SOLAR RADIATION PRESSURE UNCERTAINTY (SRP) 

STATION-KEEPING 

2-YEAR 
CONTROL 
COST IdVt) 

AND ITS 
VARIANCE (S2(dVt 1 )  

> 

,I THRUST INPUT ERRORS (THRUST) 
I 

Fig. 3 Process of Interest 

For this analysis, a fractional factorial two-way design was selected in 
order to limit the total number of runs. A fractional factorial Z5-l design 
allows use of only 16 runs to pick out contributions of the 5 main inputs and 10 
two-way interactions. The design matrix, with only the main effects listed, is 
depicted in Fig. 4. 

7 

RUN INPUT VARIABLES - 
a b C d e=abcd 

TRACK T H R U S T  S O L A R  U A S S  I N J E C T  
+ - - - 1 -  

2 -  - - 
3 -  - - - 
4 -  - 
5 -  + 
6 -  + + + 
7 -  + + 
8 -  + + + 
9 +  

10 + 
11 + 
12 + 
13 + + 
14 + + 
15 + + + 
16 + + + + + 

- + 
+ 
+ + + 
- - - 
- 

+ - 
- 

- - - - 
+ + 

+ 
- - 

- + 
+ + 

- 
- - 
+ - - 
- + - 

- - 

Fig. 4 Design Matrix 

A full factorial would enable analysis of 5 main effects, 10 two-way 
interactions, 10 three-way interactions, 5 four-way interactions, and 1 five-way 
interactions. Generally, interactions above two-way are not significant 
contributors to a model . The modeled interactions not depicted in Fig. 4 are ab, 
ac, ad, ae? bc, bd, be, cd, ce, and de. Note also that the main effect “inject” 
is aliased with the abcd four-way interaction. The full factorial two-level 
design would allow analysis of all possible interactions that could affect the 
output. It would not allow curvature analysis (quadratic effects), but theve 
could be analyzed using a sequential central composite design approach . 
Investigation of quadratic effects would be necessary only if confirmation runs 
indicate poor agreement at the midpoint of the design space. The design space is 
determined by the extreme values selected for each input. That is, the low and 
high settings for each input determine the region over which the approximate 

7 
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output equations are defined. A large range for an input will also have a great 
bearing over whether it will be found significant. For this design, the low and 
high settings for each input are depicted in Table 7 .  

Table 7 
LISTING OF DESIGN INPUTS AND SETTINGS 

Input - 
Track 

Y 

x dot 
y dot 
z dot 

X 

z 

Settings 

Low ( -1  High (+ )  

1KM 3KM 
2KM 10 KM 
4KM 15 KM 

.0010 m/sec .008 m/sec 

.0015 m/sec .010 m/sec 

.0020 m/sec .015 m/sec 

11 Solar 2.5% 15% 11 Mass 1 . 2 3 1 ~ 1 0 - ~  5. O O O X ~ O - ~  

Inject 
Each position coordinate 1 . 5  KM 50 KM 
Each velocity coordinate .001 m/sec .05 m/sec 

Thrust (each direction) 2.5% 10% 

These input settings are representative of those used in other orbit 
determination error analysis and station-keeping studies. (See Tables 1 and 4 . )  
The resulting output equations for the predicted AV (here denoted as A01 and 
natural logarithm of the output variance ( denoted as ln(e)) are 

A 0  = 2.9348 + 1.3627 Track + .2953 Thrust + .0263 Solar + .0028 Mass 

- .0904 Track-Thrust -.0605 Track-Solar -.0215 Thrust-Solar 

- .0103 Track-Mass - .0065 Thrust-Mass + .0395 Solar-Mass + 

- .0090 Solar-Inject + .OS51 Thrust-Inject + .0094 Mass-Inject 

- .0299 Track-Inject + .OS Inject, (20) 

ln(2) = 0.2027 + 0.5948 Track + .2334 Thrust + .1221 Solar + .0567 Mass 

- .1614 Track-Thrust -.0959 Track-Solar + .0093 Thrust-Solar 

+ .OS17 Track-Mass + .0074 Thrust-Mass - .0297 Solar-Mass 

- .0339 Solar-Inject - .0394 Thrust-Inject 

+ .0238 Mass-Inject - .0127 Track-Inject + .0292 Inject. (21 1 

Additional experimental runs showed that the output model confirmed at the design 
midpoint and at both extremes. Often, this sort of model is used to determine 
optimal input settings: in order to minimize both AV and ln(S) in Eqs. ( 2 0 )  and 
(211, all inputs should be set at the minimum settings. However, a more realistic 
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use of these equations is for sensitivity analysis: the size of the coefficient 
of each input is a measure of that variable's influence on the output. These 
results show that tracking and thrust input errors are responsible for a large 
portion of the control cost. By reducing these two errors to their minimum, 
nominal savings on the order of 50% are predicted. 

CONCLUSION 

With the continuing importance of solar research, the use of libration point 
orbits between the Sun and the Earth is both an interesting and valuable area of 
effort. The need for orbit determination error analysis in conjunction with 
pre-mission station-keeping simulations was the original driving force behind this 
work. The results of three error analysis methods were compared with other 
similar libration point studies. The outputs of the error analysis were the six 
states' standard deviations. These error levels could then, in turn, be used as 
error sources in Monte Carlo simulations of derived station-keeping routines. 
With nominal paths that could be constructed as nearly periodic halo-type, o r  
distinctly quasi-periodic and smaller Lissajous trajectories, the error analysis 
and station-keeping results may differ by the type of orbit selected. Statistical 
tests for the equality of the average 2-year control costs using halo-type and 
Lissajous paths strongly suggest that there is no difference in mean 
station-keeping costs. It should, however, be noted that the results are 
presented for only one particular control algorithm and for two specific nominal 
trajectories. Experimental design methods are then used to determine the 
approximate functional relationship between the input uncertainties and the output 
2-year control cost. This type of functional relationship seems more useful than 
a series of tabular entries of control costs, each corresponding to a different 
set of input error levels. 
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ABSTRACT 
This paper categorizes the qualitative behavior of the Command and Control 
Segment (CCS) differential correction algorithm as applied to attitude 
estimation using simultaneous spin axis sun angle and Earth cord length 
measurements. The categories of interest are the domains of convergence, 
divergence, and their boundaries. 

Three series of plots are discussed that show the dependence of the estimation 
algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. 
Common qualitative dynamics to all three series are tabulated and discussed. 

Out-of-limits conditions for the estimation algorithm are identified and 
discussed. 



INTRODUCTION 

This paper outlines the approach taken to determine the qualitative behavior of 
the attitude estimation algorithm used by the Command and Control Segment 
(CCS) system at the Air Force Consolidated Space Test Center (CSTC). For the 
purposes df this paper, determining the qualitative behavior means defining the 
regions of convergence and divergence in terms of the Earth, sun, and 
spacecraft attitude parameters. 

This study is an outgrowth of the Information Processing and Analysis System 
(IPAS) project undertaken by Test Support Complex-1 (TSC-1) at CSTC. The 
purpose of this project was to evaluate the feasibility of incorporating 
commercially available hardware and software into an operational mission 
control center (MCC) design. The result of IPAS was a prototype for a telemetry 
monitoring system employing a real-time expert system that performs out-of- 
limits checking and recommends appropriate actions for telemetry anomaly 
resolution. 

This paper supports a follow-on project that determines requirements for an 
autonomous real-time orbit and attitude estimation expert system prototype that 
would supplement the telemetry monitoring system. Creating a knowledge base 
for the estimation expert system requires defining out-of-limits criteria for the 
estimation algorithms used. This is the motivation for researching the qualitative 
behavior. 

As a first step to understanding the equations that govern the out-of-limits 
criteria, an attitude estimation package that graphically shows the affects of 
geometry on attitude estimation was prototyped using Mathematica software on 
a Sun SPARCstation 1. This analysis tool could also be used for mission 
planning as well as training. 

Work in progress is to mathematically support the visual conclusions drawn 
from the plots about the relationships between the Earth, sun, and attitude 
geometry to convergence or divergence of the estimation algorithm. These 
results will in turn be used as input to the estimation expert system knowledge 
base. 

QUALITATIVE DYNAMICS 

The Algorithm. The estimation algorithm chosen to be studied is as follows: 
t - 1  t 

with Ax the state vector correction, by the residuals vector, and P is the matrix of 
measurement partials with respect to the state variables. The sum is with 
respect to the ith time point in the measurement set. For simplicity, this paper 
considers the case of just one measurement in time consisting of an Earth cord 
length and a sun angle. For this case, the algorithm reduces to: 

414 



- 1  
Ax = P .[x By[x ] 

k k k 
The following standard notation is used: 

A is the spacecraft attitude 
x = {a, 6 1 is A in spherical coordinates 
y = { SZ , p ) is the measurement vector 
R is the earth cord length 
q is the nadir angle 
p is the sun angle 
y is the sensor cant angle 
p is the apparent earth radius 
E is the earth vector 
S is the sun vector 

To reduce the number of parameters needed to specify the Earth, sun, and attitude 
geometry, construct the {el ,  62, e3) vehicle centered coordinate system as 
follows: 

el = 
e2 = e3 x el 

E 

In this system, specifying the sun and Earth position requires only two 
parameters (the sun Earth angle w and the vehicle radius r) as compared to five 
(sun and Earth right ascensions and declinations as well as vehicle radius) in 
the standard vehicle centered coordinate system. 

In the {el , e2, e3) coordinate system the following relationships hold: 
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cos[R/2) = cos[ p] - cos[q] cos[yj 
sin[q] sin[y] 

cos[q] = cos[ a-v] cos[S] 

cos[ /3] = cos[ a] cos[ S] 

Out-Of-Limits Criteria. The estimation out-of-limits criteria are based on the 
existence, uniqueness, and convergence behavior of the algorithm. The 
existence and uniqueness are well defined in terms of the geometry, leaving the 
convergence behavior for study. The following paragraphs briefly summarize 
each. 

ence. The algorithm will exist whenever P is invertible. It is easily seen that 
P is not invertible for the following geometries: 

Attitude, sun, and Earth vectors are coplanar. When this happens, 6 is zero and 
the last matrix in the above equation becomes singular. 

Attitude has a k 90 degree declination. For this geometry, the right ascension is 
undefined and therefor not recoverable. Again, this makes the last matrix 
singular. 

The Sun and Earth are coplanar. This makes the rows of the second matrix 
dependent and thus singular. 

The nadir angle is such that it maximizes the Earth cord length measurement. 
This causes the first matrix to be singular. 

eness, The algorithm solutions are not unique. Since one Earth cord 
length corresponds to two possible nadir angles, simultaneous Earth cord 
length and sun angle measurements define four cones of possible attitude 
solutions. These cones will intersect in two and possibly four points. Therefor 
there are two and possibly four choices for the attitude vector that will give zero 
residuals, resulting in convergence. 
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C o n v e r w  The estimation algorithm studied here is an iterative algorithm 
and is therefor susceptible to complicated dynamics. An estimation expert 
system needs to be able to recognize when divergence will occur due not only 
to the type of geometry that would make the algorithm not exist, but also due to 
the choice of algorithm itself. When this occurs, the expert system should know 
to automatically switch to a better algorithm. 

In order to develop the appropriate knowledge base, convergence criteria in 
terms of the geometry need to be established. For this paper, convergence is 
defined to be when the arc length of the correction is less than a prescribed 
tolerance value. Divergence is defined to be when the algorithm doesn't exist or 
when convergence hasn't occurred within a prescribed number of iterations. 
The k+l iteration arc length correction 6 is defined as: 

6 = arccos[ cos[ 6 ] cos[ 91 + sin[6 ]sin[ bk ] cos[ a - ak] ] 
k+l  k + l  k+ 1 k+ 1 

The work in progress is to rewrite this expression solely in terms of constants and the k-th itera 
0. 

The Analysis Tool. In order to gain insight into this rewrite problem, an 
analysis tool was prototyped using Mathematica software on a Sun 
SPARCstation 1 that graphically shows the affects of geometry on estimation. 
User inputs to this tool are the Earth cord length and sun angle measurement, 
the vehicle and sun position, the Earth horizon sensor cant angle and the 
choice of positive or negative declination hemisphere. 

The output of the tool is a plot showing a colored disk. This disk represents 
attitude right ascension and declination pairs {a, 6)  for the chosen hemisphere 
as shown below. 

417 



Each {a, 6)  pair is input to the estimation algorithm and then colored according 
to what it converged to. The coloring algorithm was Hue[ac/360] and 
Brightness(l-&/380], where {ac, 6c} are the converged values. If the algorithm 
didn't converge, then {ac, 6c) were set to (360, loo}, corresponding to the 
darkest regions in the plot. With this tool, regions that converge to the same 
value can be easily spotted and the size of the convergent region can be 
visually estimated. 

Due to memory and time constraints, the plot resolution is limited to two 
degrees. 

Results. In order to understand how each geometric parameter affects 
estimation, three series of plots were made. Each series tries to hold all 
parameters fixed except for one. All plots chose the negative declination 
hemisphere (the brighter colors were chosen since they show more contrast 
when rendered in black and white). In Figures 1-3, the values for n defined 
below increase from left to right. 

The plots in Figure 1 were made with these inputs: 

yJ = 90; 

r = 8000 + n 500 km: n=0,4; 

A = (45, 45); 

Sun €art h am se ries, The plots in Figure 2 were made with these inputs: 

y~ = n 20: n = 4,8; 

r = 8000 km; 

A = {45,45}; 

Attitude se ries The plots in Figure 3 were made with these inputs: 

I+/= 90; 

r = 8000 km; 

A = (5 + 10 n, -5 n"2 + 40 n + 5): n = 59;  

CONCLUSIONS 

Plot Features. There appear to be several features common to all the plots. 

418 





The diveLgent Each plot has a divergent region at the declination 
poles that is shaped like a figure eight. The size of this region appears to only 
depend on the vehicle radius and increases as the radius increases. The 
direction of the long axis lines up with the Earth vector, suggesting th i t  this 
affect is independent of the sun geometry. 

250 

200 

Jhe c o n v e r m  Each possible attitude solution has a convergent region 
around it. The size and shape of this region appears to be affected by all the 
geometric parameters, since it vanes throughout all the series. 

: 

- 

versnt re- There appears to always be a convergent I(* 

region 180 degrees away in right ascension from the possible attitude solutions. 
This region is typically smaller than the region containing the attitude solution. 

The Farth De r pend icular diveraent rea i u  The line perpendicular to the Earth 
vector has very unstable behavior. Attitudes arbitrarily close to each other 
converge to different solutions. Figure 4 shows an example of this. Here 
declination is plotted against the converged right ascension for the input 
attitudes (0, 6). The geometry is from n=l in the vehicle radius series. 

Figure 4. Declination vs converged right ascension. 

The dynamics of the topology for each series is difficult to determine 
from only a two degree resolution. However, there always appears to be 
alternating layers of convergent and divergent regions, with only the relative 
size and shapes varying. This suggests that even though the geometry might be 
in a region far away from the region where the algorithm doesn't exist, the 
algorithm might still diverge due to the iterative dynamics. 

AREAS O F  FUTURE RESEARCH 

The Analysis Tool. In order to apply this visualization approach to other 
estimation problems, the analysis tool needs to be extended to estimation 
problems with more than two variables. For instance, orbit position and velocity 
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estimation would require plotting a six dimensional variable against another six 
dimensional variable. To get around this plotting difficulty, the dimension of the 
estimation problem must somehow be reduced. Translating the analysis tool 
into 'C' code is also planned to make the prototype more operational (ie faster). 

More than one measurement. Future work includes extending the results 
here to the case of more than one measurement in time, or batch estimation. 
This is the more common case for the algorithm studied here. 

Convergence criteria. Work is currently in progress to develop closed form 
convergence criteria in terms of the geometric parameters. These criteria will 
then be converted to out-of-limits conditions for the estimation algorithm for 
input to an estimation expert system knowledge base. Rules will also be 
developed to determine what algorithm to substitute when out-of-limits 
conditions occur. 

Algorithms. A robust estimation expert system will have several algorithms to 
choose from, so similar analysis of other estimation algorithms is planned. 

SUMMARY 

An analysis tool that graphically shows the affects of geometry on attitude 
estimation has been made. This tool can be used during the readiness phase 
for a satellite mission to validate or define operational requirements. This tool 
can also be incorporated into a training program for those needing a high level 
view of attitude estimation. 

Visual inspection of plot output from the analysis tool has lead to an increased 
understanding of the qualitative behavior of the estimation algorithm. This 
understanding is currently being quantified mathematically for input to an 
estimation expert system knowledge base. 
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ABSTRACT 

This paper summarizes the on-orbit performance to date of the three Hubble Space Telescope Fine Guidance 
Sensors (FGS's) in Fine Lock mode, with respect to acquisition success rate, ability to maintain lock, and star 
brightness range. The process of optimizing Fine Lock performance, including the reasoning underlying the 
adjustment of uplink parameters, and the effects of optimization are described. 

The Fine Lock optimization process has combined theoretical and experimental approaches. Computer models 
of the FGS have improved understanding of the effects of uplink parameters and fine error averaging on the 
ability of the FGS to acquire stars and maintain lock. Empirical data have determined the variation of the 
interferometric error characteristics (so-called 'Is-curves") between FGS's and over each FGS field of view, 
identified binary stars, and quantified the systematic error in Coarse Track (the mode preceding Fine Lock). On 
the basis of these empirical data, the values of the uplink parameters can be selected more precisely. 

Since launch, optimization efforts have improved FGS Fine Lock performance, particularly acquisition, which 
now enjoys a nearly 100 percent success rate. More recent work has been directed towards improving FGS 
tolerance of two conditions that exceed its original design requirements. First, large amplitude spacecraft jitter 
is induced by solar panel vibrations following dayhight transitions. This jitter is generally much greater than 
the FGS's were designed to track, and while the tracking ability of the FGS's has been shown to exceed design 
requirements, losses of Fine Lock after dayhight transitions are frequent. Computer simulations have 
demonstrated a potential improvement in Fine Lock tracking of vehicle jitter near terminator crossings. 

Second, telescope spherical aberration degrades the interferometric error signal in Fine Lock, but use of the FGS 
two-thirds aperture stop restores the transfer function with a corresponding loss of throughput. This loss requires 
the minimum brightness of acquired stars to be about one magnitude brighter than originally planned. 

1. INTRODUCTION 

The Hubble Space Telescope (HST) Fine Guidance Sensors (FGS's) serve the dual functions of providing an 
absolute pointing reference to the telescope pointing control system (PCS), and, as a goal, serving as an 
astrometry instrument. The FGS's have been used extensively since the telescope was launched in April, 1990. 

The FGS's are capable of tracking stars in two modes: Coarse Track, and Fine Lock. This paper reviews FGS 
performance in Fine Lock, the more accurate of the tracking modes, and discusses the methods by which Fine 
Lock performance has been and is continuing to be improved. 



Section 2 provides an overview of FGS design and function, while Section 3 summarizes on-orbit Fine Lock 
performance to date. A discussion of the Fine Lock optimization processes is given in Section 4. Finally, Section 
5 presents a brief summary. 

2. FGS DESCR1I"ION 

The descriptions of the HST Fine Guidance Sensors in References 1 and 2 are summarized here. 

2.1 Optical/Mechanical Description 

In the HST, there are four Radial Bay Modules, three of which containing an FGS. An optical schematic is given 
in Figure 1. Light from the outer portion of the HST field of view, 10 to 14 arcminutes from the optical axis, 
strikes the FGS pickoff mirror and is collimated and directed through apertures in a pair of star selector servos. 
The beam then passes through beamsplitters and Koester prisms before reaching four photomultiplier tubes 
(PMT's). The angular positions of the servos determine which 5 by 5 arcsecond portion of the FGS field of view 
enters the fieldstops of the PMT's. 

2.2 FGS Control and Modes of Operation 

The Fine Guidance Electronics (FGE), an electronics box that includes two microprocessors, controls the FGS. 
The FGE receives commands, accepts pulse trains from the four PMT's, and receives data from the servo 
encoders. FGE algorithms define a set of complex operating modes. Among the FGE commands are those that 
set the values of 38 uplink parameters, which are used to adapt the system to specific mission requirements or 
special operating conditions. The FGE also outputs data, such as PMT counts, servo encoders, and status 
bits. 

The FGS modes relating to acquisition, pointing and tracking are Search, Coarse Track, and Fine Lock. In 
Search, the servos define a spiral scan of a region of the FGS field of view, until the target star image enters the 
PMT fieldstops. When the summed output (counts) of the four PMT's exceeds a commanded threshold, the FGS 
autonomously terminates Search Mode and enters Coarse Track. In Coarse Track, the FGE commands the servos 
to move the images of the target star in circular paths (called nutation circles) about the PMT fieldstops. The 
Coarse Track algorithm monitors the total output of the four PMT's and adjusts the centers of the nutation circles 
until the circles are centered on the fieldstops. 

About 70 percent of all observations are done with the guidance FGS's in Coarse Track mode. The remaining 
observations require the low jitter provided by Fine Lock. Also, to achieve the positional accuracy required by 
astrometry observations, Fine Lock is necessary. 

While Search and Coarse Track modes use the sum of the outputs from all four PMT's as feedback, Fine Lock 
uses the PMT's as part of a unique Koester prism interferometer (Figure 2). Fine Lock creates a two-axis 
position control loop that drives the interferometer to null. 

To acquire a star in Fine Lock, the FGS line of sight, as determined by the servo positions, is offset from the 
center of the Coarse Track nutation circle, the center being the best estimate of the star position in Coarse Track. 
The servos are then stepped along a straight path toward the star (Figure 3). When the servo positions are within 
about 0.040 arcseconds of interferometer null along an axis, the error signal increases above a preset threshold, 
and the FGE reduces the speed of the "walk" toward the star. For each axis, if the error signal exceeds the 
threshold for 3 consecutive samples, that axis is "locked"; that is, closed-loop operation of the servos is initiated, 
with the interferometric error signal as position feedback. When both axes are locked, the Fine Lock acquisition 
is complete, and the servo loop acts to maintain the pointing error at null. 
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3. FGS ON-ORBIT PERFORMANCE 

References 2 and 3 reported on-orbit FGS performance, and compared that performance to the original design 
requirements. FGS performance that is related to Fine Lock acquisition, pointing and tracking is summarized 
below. 

3.1 Fine Lock Acquisitions 

The original FGS design requirements included a star brightness range of 9 to 14.5 Mv for guidance and 10 to 
17 Mv for astrometry. However, as a result of spherical aberration in the telescope, it is necessary to operate 
the FGS’s with the two-thirds aperture stop in place. While this aperture stop improves the Fine Lock error 
signal, there is a reduction in the number of photons reaching the PMT’s for a given star, and, consequently, the 
limiting star magnitude is one Mv brighter than originally expected. 

Operating within the above brightness constraint, the FGS’s have accomplished a high success rate in Fine Lock 
acquisitions, at least 93 percent in both guidance and astrometry. 

3.2 Moving Target Tracking 

Due to solar panel vibrations following daylnight transitions, the spacecraft jitter velocities and accelerations 
greatly exceed the original FGS specifications. In Fine Lock, the FGS’S maintain lock through about 70 percent 
of the transitions. 

3.3 Dynamic Pointing Error 

Dynamic pointing error refers to pointing errors that vary over an observation interval and degrade the point 
spread function of the target image. Dynamic pointing error of the HST has been shown to meet the original 
requirement of 7 milliarc-seconds, rms, during quiescent periods, with the guidance FGS’s in Fine Lock, This 
result indicates indirectly that the FGS’s contribution to dynamic pointing error meets requirements. 

Temperature-induced deformations of internal FGS components affect the dynamic pointing error over long-term 
observations. Temperature measurements of those FGS components that affect pointing stability have indicated 
that longduration dynamic pointing error would also meet requirements, were it not for disruptions from vehicle 
jitter near terminator crossings. 

4. FGS FINE LOCK ON-ORBIT OPTIMIZATION 

4.1 Optimization Methods 

The Fine Lock optimization process has combined theoretical and experimental approaches. Computer analyses 
and simulations have improved understanding of the effects of uplink parameters and other commands and have 
been used to evaluate proposed changes. In addition, certain measurements have characterized the on-orbit 
environment and have been essential to improving FGS performance. 

4.1.1 Computer Analyses and Simulations 

Several computer-based FGS analyses and simulations have been used before and after launch of the HST. 

An analysis of the probability of successful acquisition in Fine Lock, as a function of the relevant uplink 
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parameters (such as acquisition threshold, s-curve scale factor, walk duration and step size), s-curve degradation, 
star brightness, PMT responsivity and noise, background illumination, the length of the PMT averaging interval, 
and spacecraft drift rate, was exercised extensively before and during the ground testing of the FGS's. This 
analysis helped establish baseline parameter settings, which have been changed only slightly to adapt the FGS's 
to on-orbit conditions, and verified changes that were made to FGE firmware before launch. 

Monte Carlo FGS simulations were used to evaluate probabilities of Fine Lock acquisition and Fine Lock 
maintenance. The acquisition simulation verified the analysis described in the preceding paragraph. The loss-of- 
lock simulation was used to set uplink parameters and verify changes to the FGE firmware. It also showed that 
loss of lock would not occur unless precipitated by a large disturbance, cosmic rays in particular. On-orbit, 
cosmic rays have not been a problem, but losses of lock are caused by the South Atlantic Anomaly and vehicle 
jitter following dayhight transitions. 

A detailed FGS simulation/emulation was developed and used extensively throughout the development, ground 
testing and on-orbit optimization of the FGS's. This software combines simulations of FGS optics, servo 
mechanics and electronics, and the HST Pointing Control System with a complete emulation of the FGE 
firmware. The simulation/emulation is used for problems that require a highly accurate FGS model, but, due 
to its computational speed, is not suitable for long runs or large numbers of runs, as in Monte Carlo simulations. 

Finally, a simple, fast-running Fine Lock simulation, described in more detail in Section 4.3.2, was developed 
to investigate optimization of FGS tracking performance. Frequency-domain analyses, based on the model used 
in this simulation, were also developed. 

4.1.2 Measured Data 

Collecting and cataloging on-orbit data have been essential to the process of optimizing Fine Lock. These data 
have included s-curves as functions of FGS number and field position, Coarse Track bias errors, vehicle jitter 
resulting from terminator crossings (daylnight transitions), the identification of binary stars, the effects of the 
South Atlantic Anomaly, sky background illumination, and PMT output and noise vs. star brightness. 

4.2 Fine Lock Acquisition Optimization 

The most common Fine Lock acquisition failures fall into two general categories. First, the acquisition threshold 
may fail to be exceeded three samples in succession, and, as a consequence, closed-loop operation may not be 
initiated in one or both axes. Second, the threshold may be exceeded by noise ("false lock") before the lobes of 
the s-curve are reached, and the star will drift out of the PMT fieldstops and be lost. When acquisition uplink 
parameters are adjusted, the probability of one type of failure will increase, while the other decreases. A 
compromise is therefore required. 

4.2.1 Uplink Parameter Adjustment 

A block diagram of Fine Lock acquisition (Figure 4) shows the most important acquisition uplink parameters. 
The Fine Error Signal (FES) is calculated at the end of a PMT averaging period as follows: 

FESX = KOX + KlX*QX 
FESY = KOY + KlY*QY, 

where KOX, etc., are uplink parameters and QX and QY are calculated from the PMT counts, AX, BX, AY, and 
BY from the equations 
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QX = (AX - BX - DIFFX)/(SUMX) 
QY = (AY - BY - DIFFY)/(SUMY). 

(3) 
(4) 

The quantities DIFFX, DIFFY, SUMX and SUMY are the initial sums and differences of the PMT counts 
measured over an interval at the beginning of Fine Lock mode, before the "walk", and held constant until Fine 
Lock is terminated. 

A plot of QX or QY against true FGS pointing error has the shape of the "s-curve" shown in Figure 2b. (The 
DIFF terms in equations 3 and 4 are assumed to be zero in Figure 2b.) With reference to Figure 2a, a true 
pointing error of zero (interferometer null) corresponds to an incoming wavefront being parallel to the face of 
the Koester prism. At null, each PMT receives equal illumination, and the output of PMT A equals the output 
of PMT B; therefore QX or QY is zero. For a small wavefront tilt (true pointing error slightly nonzero), 
constructive and destructive interference is set up in the Koester prism, such that the illumination entering one 
PMT is increased and illumination entering the other PMT is decreased. Thus the difference (A - B) and 
consequently QX or QY are nonzero. For larger pointing errors, interference no longer occurs and the PMT 
outputs are about equal. QX and QY are nominally zero for pointing errors greater than about 0.04 arcsecond. 

In a nominal configuration, the PMT counts are averaged over 0.025 second and the servo commands are updated 
at the same rate, If PMT averaging is commanded, this period is increased by a factor that is a power of two. 
For example, with "two-sample averaging", the PMT averaging and servo update interval is doubled to 0.05 
second. PMT averaging is used to reduce PMT photon noise with dim stars during astrometry acquisitions. 

The most important acquisition parameters are KlX, K1Y and KZ. The first two scale the s-curve to compensate 
for variations in the s-curve shape and are selected to calibrate the FES; that is, the slope of the scaled s-curve 
is adjusted to unity. KZ sets the acquisition threshold. Pre-launch analyses, Monte Carlo simulations and tests 
established the best value of KZ to be 60 percent of the scaled s-curve peak. However, on-orbit, it was soon 
found that 50 percent resulted in a significantly improved acquisition success rate. Since sky background 
illumination and the resulting PMT noise were smaller than assumed prior to launch, the threshold could be 
lowered without a risk of "false lock". 

In general, KZ has been held constant, and KlX and KIY have been adjusted to correct the s-curves, as much 
as possible, to a "standard" shape. Different FGS's are assigned different values, but the adjustment for star 
brightness is small. Since the s-curves vary over the FOV of an FGS, KlX and K1Y should ideally vary over 
the FOV as well. However, for practical reasons, this is not done; rather, the values of K1X and K1Y are 
determined for the s-curve having the smallest modulation. 

Parameters KOX and KOY can correct bias in the s-curves; however, this correction has not been made (KOX = 
KOY = 0) ,  since the bias is generally not known a priori. The limiters K3X and K3Y have been set slightly 
above the highest s-curve peak to clip noise. These parameters do not affect Fine Lock acquisitions, as long as 
the products, KlX*K3X and KlY*K3Y are greater than KZ. 

The geometry of the Fine Lock walk is determined by parameters KD (step size), K10 (servo rate command 
gain), KO5 (total number of steps) and KB (offset of start point from the center of the Coarse Track circle). 
Together, KD and K10 determine the actual step size, which is usually different from the value of KD itself. 
Selection of KD and K10 is another compromise. A large step size (rapid walkdown) is desirable, as it reduces 
susceptibility to noise; however, if the step is too large, too few samples of the FES will be taken in the lobes 
of the s-curves, and the peaks may be missed. The current values of K10 and KD are selected to give an actual 
step size of about 0.006 arcseconds, per axis. This step size is less than the pre-launch value of 0.009 arcsecond 
and reflects the fact that PMT noise on-orbit is lower than expected, as noted above. The walkdown rate relative 
to the star also depends on spacecraft drift; however, drift rate is not known beforehand, and is therefore not 
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compensated. 

The starting and ending points of the Fine Lock walk are determined by KB, K05, and the actual step size 
established by K10 and KD. Knowledge of the Coarse Track bias error, the difference between the steady-state 
center of the Coarse Track nutation circle and the Fine Lock null, is necessary to set KB and K05. During early 
attempts to acquire stars in Fine Lock, shortly after HST launch, it was observed that FGS number 1 would 
frequently fail to acquire. Data analysis revealed a large Coarse Track bias in the x axis, and it was necessary 
to increase KB from about 0.6 arcsecond to about 1 arcsecond to compensate. It was also necessary to increase 
KO5 to prevent the walk from terminating before the null was reached. 

It is also possible to reverse the direction of the walk, i. e., start the walk in the third rather than first quadrant, 
by changing the signs of KB and KD. This capability may help acquisitions with certain types of asymmetric s- 
curves, but it has not yet been utilized. 

4.2.2 The Effect of the South Atlantic Anomaly on Acquisitions 

The charged particles present in South Atlantic Anomaly (SAA) increase PMT counts. Consequently, the PMT 
noise level and the probability of false lock increase. While partial compensation may be achieved by increasing 
KZ, in practice acquisitions in the SAA are avoided when observations are planned. 

4.3 Optimization of the FGS’s Ability to Maintain Fine Lock 

After Fine Lock Acquisition is complete, the FGS, under FGE control, functions as a position control system (the 
“Fine Lock Loop“), with feedback from the Koester prism interferometer. This control system has a closed-loop 
bandwidth of about 9 Hz (-3 db), when the interferometer error is in the linear region of the s-curve, the relevant 
uplink parameters are set at nominal values, and PMT averaging is not in effect. Since the error characteristic 
is nonlinear, a large disturbance to the position loop can potentially create errors beyond a lobe of the s-curve, 
and Fine Lock can be lost. In practice, the only disturbances that cause loss of Fine Lock are 1) vehicle jitter 
caused by terminator crossings (solar panel vibrations), 2) the South Atlantic Anomaly, and 3) vehicle slews, with 
rate feedforward provided to the FGS’s by the PCS. The success of vehicle slews depends on the quality of the 
feedforward commands and is not discussed further in this paper. 

4.3.1 Tracking Vehicle Jitter Caused by Terminator Crossings 

A simplified block diagram of one axis of the Fine Lock Loop is shown in Figure 5. The dynamic characteristics 
of the system, including bandwidth, are controlled by several uplink parameters: KlX, KlY,  K3X, K3Y, K13 
(proportional gain), K14 (integral gain), K15 (differential gain) and K31 (integral limit). Note that the FES is 
calculated in the same way as it is during acquisitions (Equations 1-4). Potentially, tracking through terminator 
disturbances can be improved by adjusting these parameters. 

In general, parameter adjustments that increase the bandwidth of the Fine Lock Loop should improve tracking 
of spacecraft jitter; however, FGS noise equivalent angle (NEA), servo motion in response to PMT photon noise, 
also increases with bandwidth. Thus, as in Fine Lock acquisition optimization, adjusting Fine Lock loop 
parameters involves a compromise. 

Since FGS dynamic pointing error, to which NEA is a contributor, has been low, it should be possible to 
significantly increase the bandwidth of the system and still have acceptable NEA. Furthermore, depending on 
the frequency content of the solar panel jitter, some parameter adjustments are more effective than others in 
improving tracking with an equal increase in NEA. 
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4.3.2 Predictions From Simulations 

To determine the effects of uplink parameters on tracking, a simple computer simulation of one axis of the Fine 
Lock loop was programmed. This simulation basically follows the block diagram in Figure 5 .  The following 
assumptions and approximations were made: 

1. PMT integration was approximated by averaging the pointing errors at the start and end of an integration 
period; 

2. The Pointing Control System (PCS) was not included in the simulation; 

3. The s-curve was approximated by a single cycle of a sine wave; 

4. The star selector servo was modelled as an ideal rate servo (integrator); and 

5. Quantization effects in the FGE were not included. 

Initial simulations were run with a spacecraft jitter of 0.1 arcsecond amplitude (zero to peak) and 0.6 Hz 
frequency. Jitter of this amplitude is sometimes observed near a terminator crossing. Furthermore, a solar panel 
vibration mode of about 0.6 Hz is frequently in evidence in the jitter. 

The simulations showed that increasing the bandwidth of the Fine Lock loop, by increasing the gains K13 
(proportional) and/or K14 (integral) reduced the amplitude of the steady-state FGS tracking error. (See example 
in Figure 6. )  Furthermore, certain parameter adjustments, particularly increased integral gain (K14), yielded 
lower tracking error for the same increase in NEA. Table 1 compares the effects of K13 and K14 on tracking 
error and NEA. The reason K14 was effective was that it boosted the open-loop gain at low frequencies (relative 
to the system bandwidth of 9 Hz, without increasing the crossover frequency as much as other parameter 
adjustments did. This gain increase reduced the tracking error for low frequencies, including 0.6 Hz. 

Fine Lock tracking performance with two-sample (0.05 second) PMT averaging, null by-pass on, was also 
simulated. (When null by-pass is on, the servos move according to their last rate command update during the 
PMT averaging period.) PMT averaging has the effect of "time scaling" the Fine Lock loop in proportion to the 
duration of the averaging period. Thus, the 8-10 Hz Fine Lock loop, without PMT averaging, becomes a 4-5 
Hz loop with two-sample averaging, and tracking performance is progressively degraded as the averaging period 
is increased. As shown in Table 2, it was necessary to reduce the jitter amplitude to allow the FGS to stay in 
lock at all. Note that K14 was not as effective in reducing the tracking error as in Table 1, since 0.6 Hz is not 
as low a frequency relative to the bandwidth. 

The values of differential gain, K15, that can be commanded were found to be too small to significantly affect 
tracking performance. 

4.3.3 Experimental Results 

The FGS's were operated with the integral gain, K14, increased to eight times its nominal value, on several 
occasions in late 1991 and early 1992. Since these experiments were not controlled, no definite conclusions can 
be drawn. However, a high percentage of the terminator crossings resulted in loss of Fine Lock, so there was 
no apparent improvement from increasing K14. Data from these tests is being analyzed to determine why no 
improvement was obtained. 

Two losses of lock with increased K14 have been analyzed to date. In the first example, the vehicle jitter, 
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obtained from gyro data sampled at 40 Hz, was seen to be dominated by a frequency near 1.4 Hz, rather than 
0.6 Hz (Figure 7). Thus, the conclusions of the preceding section, which were based on 0.6 Hz jitter, do not 
apply to this case. In the second example (Figure 8), 0.6 Hz was the dominant frequency, but the amplitude was 
very large, up to 0.25 arcsecond. Note that the FGS was apparently able to track 0.6 Hz jitter with an amplitude 
over 0.20 arcsecond, but not 0.25 arcsecond. Therefore, it should have been able to track more "typical" jitter, 
having an amplitude of 0.10 arcsecond. Since there was no experimental control, we cannot conclude that 
increasing K14 was ineffective in this case. 

Further analysis of jitter data is necessary to determine what terminator jitter looks like. Once this is done, the 
problem of determining the best settings of the Fine Lock Loop parameters can be re-visited. 

4.3.4 Effects of the South Atlantic Anomaly (SAA) on Loss of Fine Lock 

When the HST is in the SAA, charged particles increase the outputs of the FGS PMT's. The increases may be 
equal in all PMT's, or unequal, depending on how well each PMT is shielded from the particles. With reference 
to Equations (1-4), if a Fine Lock acquisition occurs in the SAA, the "SUM" quantities will be larger than 
normal, and the gain and bandwidth of the Fine Lock Loop will be reduced. Furthermore, one or both of the 
"DIFF" quantities may be large, leading to a large bias in the FES when the HST leaves the SAA. The 
bandwidth reduction and the bias increase the chances of a loss of lock caused by disturbances, such as spacecraft 
jitter . 

If a Fine Lock Acquisition occurs outside of the SAA, the "SUM" and "DIFF" terms are nominal. However, 
if the HST subsequently enters the SAA, the photon noise level increases. There may also be a bias in the FES 
if the PMT's are not affected equally. Again, the chances for a loss of lock are increased. 

Observations are scheduled to avoid operation in the SAA. 

5. SUMMARY 

The HST Fine Guidance Sensors have been performing well on-orbit and have met or performed better than 
original requirements relating to Fine Lock acquisitions, moving target tracking, and dynamic pointing error. 
A combined theoretical and experimental approach has been used to optimize Fine Lock performance. Prior to 
launch, analyses and simulations of Fine Lock, as well as ground tests, established the best estimates for Fine 
Lock uplink parameters. Since launch, further analyses, simulations and measured data have been used to refine 
these estimates. Table 3 lists the Fine Lock uplink parameters, with their before-launch and current values. 

Particular attention has been given to the effects of telescope spherical aberration and the effects of spacecraft 
jitter from terminator crossings. Measurements of the Fine Lock error characteristics (s-curves) have been used 
to set error gains and acquisition thresholds. The on-board two-thirds aperture filter has reduced the effects of 
spherical aberration on the s-curves; however, the loss of throughput to the PMT's requires that the minimum 
brightness of acquired stars be about one magnitude brighter than originally planned. As shown in Table 3, the 
values of interferometer parameters (KIX, KlY,  K3X, and K3Y) are set on the basis of measured s-curves, which 
vary between FGS's and over the field of view of an FGS. 

While FGS tracking capability has been better than originally required, computer simulations have demonstrated 
a potential improvement in Fine Lock tracking of vehicle jitter near terminator crossings, by adjustment of the 
control loop gains (K13, K14 and K15). Jitter data is presently being reviewed to establish the amplitude and 
frequency content of the jitter, so that the best parameter values may be selected. 

430 



6. ACKNOWLEDGEMENTS 

The work reported here was sponsored by NASA Marshall Space Flight Center, Huntsville, Alabama, under 
contract no. NAS-8-32700, and by NASA Goddard Space Flight Center, Greenbelt, Maryland, under contract 
no. NAS-8-38494. 

A very large number of individuals from Hughes Danbury Optical Systems, NASA, Lockheed Missiles and Space 
Company, and other organizations contributed to the design, fabrication, calibration, testing and operation of the 
HST Fine Guidance Sensors. The authors wish to acknowledge the extensive work of these contributors and 
would like to thank the organizations involved for the privilege of presenting this paper. In particular, we would 
like to thank Greg Andersen and Theresa Gaston of Jackson and Tull, Inc., and Darrell Story of the University 
of Texas, for their technical contributions. We would also like to thank Geralyn Fischer for her assistance in 
preparing the manuscript. 

7. REFERENCES 

1. G. S. Nurre, S. J .  Anhouse, and S. N. Gullapalli, Hubble Space Telescope Fine Guidance Sensor 
Control System, SPIE Technical Symposium, Orlando, Florida, March, 1989. 

2. D. Eaton, et al., On-Orbit Performance of the Hubble Space Telescope Fine Guidance Sensors, Space 
Optics for Astrophysics, Williamsburg, Virginia, November 18-19, 1991. 

3. D. Eaton, et al., Acquisition, Pointing, and Tracking Performance of the Hubble Space Telescope Fine 
Guidance Sensors, SPIE Aerospace Sensing Symposium, Orlando, Florida, April 20-24, 1992. 

43 1 



Teble. Simulated FGS Frnc Lock tracking performance, no 
PlclT avemging; shows tracking error as a function 

of m e t e r s  K, and K, 

UPLINK PARAMETERS 

Kl, K,, 
NOMINAL NOMINAL 

NOMINAL 2 X NOMINAL 

NOMINAL 6 X NOMINAL 

NOMINAL 8 X NOMINAL (MAX. 

.8 X NOMINAL 

1.5 X NOMINAL 

2 X NOMINAL 

COMMAND ABLE) 

8 X NOMINAL 

1.6 X NOMINAL 

2 X NOMINAL 

AMPLITUDE OF STEADY- NEA** INCREASE 
STATE POINTING ERROR WITH RESPECT TO 

(M.A.S.1 NOMINAL (PERCENT) 

LOCK LOST. 0 

16.6. 7 

7. 30 

4 67 

4 62 

12 42 

8 98 

*PLOTTED IN FIGURE 6. 
**NOISE EQUIVALENT ANGLE. INPUT JITTER: 100 M.A.S. AMPLITUDE, 0.6 HZ 

Table 2. Simulated FGS Fine Lock tracking perfonnance, two- 
sample PMT averaging; shows tracking m r  as a 

function of parameters K, and K,, 

UPLINK PARAMETERS AMPLITUDE OF STEADY - 
STATE POINTING ERROR 

Kl, K14 (M .A.S. I 
NOMINAL NOMINAL. LOCK LOST 

NOMINAL 1 2 X NOMINAL 1 LOCK LOST 

NOMINAL I 6 X NOMINAL I 14 

NOMINAL 10 X NOMINAL 7 

NOMINAL 16 X NOMINAL 4.5 

1.5 X NOMINAL 1 .6 X NOMINAL 14 

2 X NOMINAL 2 X NOMINAL 9 

NEA** INCREASE 
WITH RESPECT TO 

+NOMINAL SETTINGS ARE ONE-HALF THE NO-AVERAGING VALUES. 
**NOISE EQUIVALENT ANGLE. 

INPUT JITTER: 50 M.A.S. AMPLITUDE, 0.6 HZ 

432 



Table 3. Summary of Fine Lock uplink 
parameters and their values 

PARAMETER 

K-. K, 
Klx, Kl, 

&.I K, 
K, 

K, 

K I O  

K, 

KlS 

4. 
K,6 

K,l 

CURRENT VALUES 
ILSB'SI 

VALUE PRIOR TO HST 
NAME LAUNCH (LSB'SI 

Interferometer bias 0 

Interferometer scale factor 
Based on measured 
a-cuwes 

566 

Interferometer limit 

Radial offset for stan of Fine Lock 
walk 

Step size during walk 226.' 

Gain during walk 384 

Acquisition threshold 100 88 

Proponbnal geln 432 432. 

lnteorai gain 173 173. 

Oifferentiai gain 0 0. 

Integral limlt 41 1 41 1 

0 
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Figure 1. Simplified FGS schematic, showing star 
selector servos, Koester's prisms and photomultiplier tubes 
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Finure 2h. Measured FGS interferometer characteristic. 
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Figure 4. Simplified Fine Lock acquisition block diagram 
(one axis) 
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&ure S. Simplified block diagram of one axis of 
the fine Lock position loop 

4 . 0 1  I -0.01 I 

Fieure 6. Simulations showing the sensitivity of FGS tracking 
error lo increased bandwidth of the Fine Lock loop (via parameter K,,) 

Spacecraft jitter: 0.1 arc-second (object 
space) amplitude (zero-peak), 0.6 hz 
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&nure 7. First example of spacecraft jitter from 
solar panel vibrations near the terminator 

0.25 1 -7 

Figure 8. Second example of spacecraft jitter from 
solar panel vibrations near the terminator 
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The Hubble Space Telescope (HST) Fine Guidance System has set 
new standards in pointing control capability for earth orbiting 
spacecraft. Two precision pointing control modes are implemented in 
the Fine Guidance System; one being a Coarse Track Mode which employs 
a pseudo-quadrature detector approach and the second being a Fine 
Mode which uses a two axis interferometer implementation. The Coarse 
Track Mode was designed to maintain FGS pointing error to within 20 
milli-arc seconds (rms) when guiding on a 14.5 Mv star. The Fine Mode 
was designed to maintain FGS pointing error to less than 3 milli-arc 
seconds (rms). This paper addresses the HST FGS operating in the 
Coarse Track Mode. 

A n  overview of the implementation, the operation, and both the 
predicted and observed on orbit performance is presented. The 
discussion includes a review of the Fine Guidance System hardware 
which uses two beam steering Star Selector servos, four photon 
counting photomultiplier tube detectors, as well as a 24 bit micro- 
processor, which executes the control system firmware. 

Unanticipated spacecraft operational characteristics are 
discussed as they impact pointing performance. These include the 
influence of spherically aberrated star images as well as the 
mechanical shocks induced in the spacecraft during and following 
orbital day/night terminator crossings. Computer modelling of the 
Coarse Track Mode verifies the observed on orbit performance trends 
in the presence of these optical and mechanical disturbances. It is 
concluded that the coarse track pointing control function is 
performing as designed and is providing a robust pointing control 
capability for the Hubble Space Telescope. 
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Introduction 

The Hubble Space Telescope (HST) fine guidance control is 
performed by the Fine Guidance Sensors (FGSs) under the control of 
computer firmware which is implemented in the Fine Guidance 
Electronics (FGEs). For any given telescope observation, two of the 
three fine guidance systems provide pointing control such that the 
target being studied is maintained in the desired Science Instrument 
(SI) aperture. Figure 1 illustrates the HST Field of View (FOV) 
including the FGSs and the SI locations in that field. Selection of 
guide stars in any two FGSs can support three axis pointing control. 

FGS - Fine Guidance Sensor 
WFPC - Wide Field/Planetary 

Came r a 

HRS - High Resolution 
Spectrograph 

FOS - Faint Object 
Spectrograph 

FOC - Faint Object Camera 
HSP - HIgh-Speed Photometer 

I 

Figure 1. Hubble Space Telescope Field of View 

Guidance control is achieved by locking onto a dominant guide 
star with one FGS and then locking on the non-dominant guide star 
with a second FGS. The dominant guide star is used to control pitch 
and yaw while the non-dominant guide star is used to control roll in 
the telescope. The HST Pointing and Control System (PCS) orients the 
guide stars in the FGS FOV such that the line of sight of the 
telescope is coincident with the desired SI aperture. The FGSs then 
provide continuous guide star lock and periodic feedback to the PCS 
to maintain the telescope line of sight. This paper addresses one of 
the two FGS fine pointing control modes, the Coarse Track Mode. The 
Coarse Track Mode is designed to provide a pointing accuracy of 20 
milli-arc seconds (rms) when viewing a 14 .5  Mv star. This control 
mode was originally expected to be used for guidance in about 50 % of 
the HST science observations. In fact, it is now used for about 70 % 
of all HST science observations because of it's inherent ability to 
maintain lock under adverse dynamic disturbance conditions which 
occur during day-to-night and night-to-day orbital transitions. 
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Coarse Track Control Implementation 

Figure 2 shows the major functional components used to implement 
the Coarse Track Control Mode. The optical path includes a flat pick- 
off mirror located in the HST radial field which diverts a portion of 
the telescope FOV into the FGS Radial Bay Module optical path. An 
aspheric collimating mirror provides magnification and collimation of 
the beam. The beam is then relayed to the "A" Star Selector assembly 
which includes two flat deviation mirrors and a integral five element 
refractive corrector group. Next it passes through the four "B" Star 
Selector flat deviation mirrors and is directed to a Polarized Beam 
Splitter which produces X and Y orthogonal outputs. The orthogonal 
beams then pass through individual Koesters prisms and the resulting 
beams are re-imaged. Photon flux is measured using four 
photomultiplier tubes (PMTs); two in each axis. The PMTs and 
associated signal processing hardware convert the impinging photon 
flux into digital counts. The flux measurements in each of the four 
PMTs are then used to perform a pseudo-quadrature line of sight 
pointing error estimate and a feedback signal is generated to null 
out pointing errors. 

L INTERFEROMETER ASSEMBLY 1 COMMANDS 

Figure 2 .  Functional Optical Path Diagram for Coarse Track 

The Star Selector servos can be controlled in such a manner that 
the flux from any star in the FGS FOV can be directed to the fixed 
position PMTs. The control algorithms are executed in a 24 bit micro- 
computer located in the FGE. The FGE controls the initial guide-star 
acquisition following the coarse positioning of the telescope by the 
PCS hardware. The acquisition is accomplished during a Spiral Search 
Mode which creates an spiral search pattern in the proximity of the 
guide star. The FGE, by automatically monitoring the PMT counts and 
comparing them to the expected counts based on a priori knowledge of 
the guide star magnitude, accomplishes guide star detection. At this 
point a control mode transition occurs which establishes the Coarse 
Track Mode. 
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Figure 3 shows the fundamental relationships between the Star 
Selector servo rotational positions and the resulting pointing within 
the FOV. 

v3 

t 

Figure 3 Star Selector Servo Pointing Relationships 

Figure 4 illustrates the Search Mode to Coarse Track Mode 
transition as well as the coarse track guide star lock scenario in 
terms of the servo generated beam steering trajectories. The coarse 
track portion of the trajectory is controlled by the FGE and is 
basically an incremental nutation about the estimated line of sight 
of the guide star. 

1 I I I 

Figure 4 Search Mode and Coarse Track 
Guide Star Acquisition 

Coarse Track Control Algorithms 

The Caarse Track control algorithm operates in a manner similar 
to a quadrature detector in that it measures photon energy in four 
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q u a d r a n t s  as t h e  s t a r  image is n u t a t e d  i n  a c i r c u l a r  p a t t e r n  i n  and 
o u t  o f  t h e  s q u a r e  f i e l d  s t o p s  o f  t he  FGS PMT s e n s o r s .  F i g u r e  5 shows 
t h e  n u t a t i o n  p a t t e r n  which c o n s i s t s  o f  4 0  discrete p o i n t s  on t h e  
n u t a t i o n  c i rc le .  The p a t t e r n  i s  created once  per second  by commanding 
t h e  two FGS S t a r  S e l e c t o r  Se rvos  t o  s l e w  t h e  image from p o i n t  t o  
p o i n t .  Photon ene rgy  i s  i n t e g r a t e d  d u r i n g  each 25 m i l l i - s e c o n d  s e r v o  
slew, r e s u l t i n g  i n  a PMT coun t  "I" which i s  t h e  sum o f  t h e  f o u r  
i n d i v i d u a l  PMT v a l u e s .  These PMT measurements are u s e d  i n  t h e  e r r o r  
s i g h a l  c o n t r o l  e q u a t i o n s  t o  a d j u s t  t h e  FGS p o i n t i n g  a n g l e  toward  t h e  
l i n e  of s i g h t  o f  t h e  s t a r .  

COARSE TWCK 

TRAIECTORY 

FORTY NUTATkX 

PER SECOND 

5 ARSEC X 5 ARCSEC 

F i g u r e  5 Coarse  Track  N u t a t i o n  
T r a j e c t o r y  a t  N u l l  

The basis  f o r  g e n e r a t i n g  t h e  Coar se  Track e r r o r  i s  t h e  
p r e d i c t i o n  of  t h e  d i s p l a c e m e n t  of t h e  n u t a t i o n  c e n t e r  from idea l  and 
t h e  subsequen t  a d a p t a t i o n  of t h e  c e n t e r  p o s i t i o n  t o  a t t e m p t  t o  n u l l  
t h e  p o i n t i n g  e r r o r .  Equa t ion  1 i s  t h e  s t a t i c  e r r o r  e q u a t i o n  f o r  t h e  
X d i r e c t i o n  (Y i s  s imi l a r )  which goes  t o  z e r o  when e a c h  of t h e  f o u r  
q u a d r a n t s  have i d e n t i c a l  i n t e n s i t i e s .  

Where: I (X)  = - [ I ( l )  +... 1 ( 1 0 ) ]  + [I(ll)+ ... I (2O)I  
+[I (21) +. . . I(30) I - [I (31) +. . .I (40) I 

SUMA = [I(1) + I ( 2 )  +... I ( 4 0 ) l  

Equa t ion  2 i l l u s t r a t e s  t h e  dynamic u p d a t e  t o  t h e  i t e r a t i v e  e r r o r  
e q u a t i o n  which i s  done a t  each n u t a t i o n  p o i n t .  

Where: I (X)  is  t h e  computed I (X)  v a l u e  f o r  n u t a t i o n  p o i n t  4 
SUMA is  t h e  r e s u l t a n t  SUMA a t  n u t a t i o n  p o i n t  f o u r  
I ( 5 )  is the  I ( 5 )  from t h e  p r e v i o u s  n u t a t i m  c y c l e  
I ( 5 ) '  i s  t h e  c u r r e n t  I value measurement 
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The numerator is updated based on the difference between the previous 
I ( 5 )  and the current I ( 5 )  intensity. The SUMA value is adjusted to 
maintain a normalized error value. In a noise free system, the 
control algorithm will drive the X and Y errors to zero resulting in 
perfect alignment of the center of nutation with the guide star line 
of sight. 

The actual performance of the Coarse Track control mode is 
influenced and limited by both Poisson noise in the intensity 
measurements and the dynamics of the overall telescope assuming other 
error sources are small. Photon noise impacts the rms pointing error 
in proportion to the square root of the intensity I where I 
represents the average photon count for a specific star magnitude Mv. 
The error equation will always have a residual value and its rms 
amplitude will be a function of the intensity of the star image. The 
optimum operation of the algorithm occurs when the image spot size is 
small enough to permit 100% of the photons to fall at times 
completely inside or completely outside of the image detector field 
stops. This maximizes the signal-to-noise ratio as well as the 
quadrature signal discrimination. This optimum condition is currently 
not met in the HST due to spherical aberration of the star image (see 
figure 6) which in effect spreads the image intensity over a large 
spatial domain. This effectively diminishes both the signal to noise 
ratio and the quadrature signal discrimination performance. 

1 
DIFFRACTION SPOT 

0 01 

DAY 229 Kx: ( F S )  ARC SECONDS 

Figure 6 The Spherically Aberrated Image and Energy Distribution 

The coarse track algorithms also control dynamic servo 
system response performance. The predicted on orbit dynamic 
disturbances were expected to be minimal based on an evaluation of 
disturbance levels of the various moving parts on the telescope. In 
reality, significant thermally-induced mechanical vibrations or 
"shocks" occur in the orbiting telescope. These mechanical shocks 
impact coarse track performance in that the basic control recovery 
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can take up to ten to fifteen seconds or longer if the disturbance 
causes a temporary but significant change in the line of sight of the 
telescope. 

The Star Selector servo control implementation was designed to 
permit a limited amount of adjustment in the servo control loop 
performance characteristics. Two up-link parameters, KG (radius of 
nutation) and KJ(c1osed loop gain) are programmable. Figure 7 
illustrates the on-axis transfer function for various values of KG. 
Large KG values maintain a saturated error signal closer to the null 
region and offer higher gain in the null transition region. Large 
disturbances are corrected faster by the selecting a higher KG value. 
XJ controls the closed loop servo gain and transient response. Figure 
8 shows the closed loop transient response as a function of KJ with 
KG set to the default value of 2.68 arc seconds (object space). 
Increasing KJ much above 0.05 arc seconds results in close loop  
instabilities which must be avoided when attempting performance 
optimization. The nominal (default) settings of KG = 2.68 arc seconds 
and KJ = 0.026 arc seconds were selected for orbital use prior the 
HST launch. The KG value was selected to provide a radius of nutation 
which results in the star image being inside the field stops 50 % of 
the time and outside 50% of the time. This provides good signal 
discrimination in each quadrant. KJ was selected to provide a damped 
response to avoid extending the transient settling time caused by 
ringing when higher values are selected. The observed orbital coarse 
track servo performance is moderately degraded when compared to the 
predicted performance. The coarse track control sensitivity is within 
about 0.5 to 0.8 Mv of the diffraction limited performance. A 
computer model has been developed to verify that t h i s  decreased 
sensitivity is attributed to the aberrated star image. 

Figure 7 On Axis Open Loop 
Transfer Function 
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Figure 8 Close Loop Transient 
Response 
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Computer Modelling 

Figure 9 shows a top level flow diagram f o r  the coarse track control 
computer simulation model. User inputs include star magnitude, 
KG(radius of nutation), KJ (closed loop gain), nutation center 
offset, image spot size, and signal amplitude distribution. A 100 
point star image is used to simulate the image energy distribution. 
The program outputs include the nutation point (1-40) being operated 
on,”the PMT counts at each point, X and Y coordinate er ror  values, X 
and Y center values, X and Y rms squared error values, and graphical 
plots of selected parameters versus time. Using this model, 
simulations have been performed for both predicted coarse track 
performance and the on-orbit performance with a diffuse image. 

PROGRAM INPUTS INCLUDE: 

STAR MAGNITUDE 
KG - RADIUS OF NUTATION 
KJ - GAIN 
CENTER OFFSET 
SPOT SIZE 
SPOT ENERGY DISTRIBUTION 

PROGRAM OUTPUTS INCLUDE: 

NUTATION POINT (1- 4 0 )  
PMT COUNTS 
DELTA X 
DELTA Y 
CENTER X 
CENTER Y 
X RMS SQUARED ERROR 
Y RMS SQUARED ERROR 
NORMALIZED ERROR DENOMINATOR 
NORMALIZED X ERROR 
NORMALIZED Y ERROR 

Figure 9 Coarse Track Computer Simulation Model 
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F i g u r e  1 0  shows the  impact of t h e  d i f f u s e  s t a r  image on t he  open 
loop t r a n s f e r  f u n c t i o n .  E r r o r  s i g n a l  g a i n  i s  reduced  for a l l  v a l u e s  
o f  XG when compared w i t h  f i g u r e  7 . F i g u r e  11 i l l u s t r a t e s  t h e  impact  
o f  t he  d i f f u s e  s t a r  image on t h e  c l o s e d  l o o p  r m s  p o i n t i n g  e r r o r .  With 
a d i f f r a c t i o n  l i m i t e d  s p o t ,  there  are sharp c u t  o f f  p o i n t s  d e f i n e d  by 
t he  5x5 arc  second  f i e l d  s tops  i . e .  a t  KG s e t t i n g  of  less t h a n  2 .5 ,  
t h e  image c e n t e r  can  move w i t h i n  the  f i e l d  s t o p  and a t  t i m e s  p r o v i d e  
no e r r o r  feedback; l i k e w i s e  when t h e  r a d i u s  of n u t a t i o n  i s  greater 
t h a n  3.54 arc seconds  t h e  image can be o u t s i d e  o f  t h e  f i e l d  s t o p  
r e s u l t i n g  i n  l o s s  o f  f eedback .  For  a d i f f u s e  image w i t h  t h e  ene rgy  
spread o v e r  a la rger  area,  the  mode l l ing  shows a g e n e r a l  f l a t t e n i n g  
o f  r e s p o n s e  of t h e  p o i n t i n g  c o n t r o l  e r r o r  f o r  a l l  KG r a d i u s  v a l u e s .  
The r m s  e r r o r  i n c r e a s e s  under  these c o n d i t i o n s .  The r e l a t i v e l y  f l a t  
r e s p o n s e  s u g g e s t s  t h a t  per formance  cannot  be s i g n i f i c a n t l y  improved 
by a d j u s t i n g  KG, t h e  c o a r s e  t r a c k  r a d i u s  o f  n u t a t i o n .  T h i s  has been  
demons t r a t ed  by on o r b i t  t e s t i n g  (Bely and  L i u ) .  

1 ’  

. lMC.Kay)eKn ;] , , , , , , , , , , , , , , , ;, 
2 

2.0 2 2  2 4  P I  2 0  3 0  32 3 4  
RIDIUWNUTAm H ARC 6-6 

F i g u r e  1 0 .  The Open Loop T r a n s f e r  F i g u r e  11. The Impact of  a 
F u n c t i o n  wi th  a D i f f u s e  S t a r  D i f f u s e  S t a r  Image on RMS 
Image P o i n t i n g  E r r o r  

I n  o r d e r  t o  g a i n  f u r t h e r  i n s i g h t  i n t o  t he  c o a r s e  t rack  c o n t r o l  
c h a r a c t e r i s t i c s ,  s e v e r a l  s i m u l a t i o n s  were r u n  u s i n g  t h e  computer  
model. P a r a m e t e r s  i n c l u d i n g  star magnitude(Mv),  image s p o t  s i z e ,  as 
w e l l  as K J  and  KG were v a r i e d  and  t h e  r e s u l t a n t  s e r v o  r e s p o n s e  was 
p l o t t e d  v e r s u s  t i m e .  F i g u r e  1 2  d e m o n s t r a t e s  t h e  r e s p o n s e  f o r  a h i g h  
i n t e n s i t y  s t a r  magni tude  (11Mv) w i t h  t h e  KG and K J  s e t  t o  d e f a u l t .  
The d i f f u s e  image ( 3 . 0  arc seconds )  and the  d i f f r a c t i o n  l i m i t e d  image 
(0 .1  arc  second)  c o n d i t i o n s  are  shown t o  have  s imi la r  rms e r r o r s  and  
good o v e r a l l  s e t t l i n g  t r e n d s .  T h i s  i s  due  t o  t he  f a c t  t h a t  t h e  
P o i s s o n  n o i s e  i s  a small  p e r c e n t a g e  ( abou t  2 % )  of t h e  s i g n a l  i n  b o t h  
cases, r e s u l t i n g  i n  low r m s  e r r o r s .  
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Figure 12 Coarse Track Settling 
for a Diffraction Limited and 
a Diffuse Star Image (11Mv) 

Figure 13 provides typical 

KJ -0.01 
KG I 2.818 

3 ARC SEC. SPOT 

Figure 13 Coarse Track Settling 
for a Diffuse Star Image 
(14 .5  Mv) for various KJ values 

coarse track performance for a 14.5  
Mv (fine guidance design limiting magnitude) star with a spot size of 
3.0 arc seconds and various closed loop gains (KJ = 0.05, 0.0261, and 
0.01 arc seconds). Since the signal to noise level ratio is quite 
poor with the diffuse image, any attempt to improve loop response by 
increasing KJ results in servo loop hunting. The loop is unlikely to 
settle over time since the noise constantly injects erroneous inputs 
at each of the 40 coarse track algorithm sample points. The higher 
closed loop gain emphasizes these random noise excursions. It will be 
noted that reducing KJ to 0.01 attenuates the effects of noise, but 
when the servo operates at this value dynamic response is severely 
impacted. Spacecraft disturbances cannot be followed with any 
fidelity in this case. 
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Figure 14 indicates the impact of changing KG, the radius of 
nutation. The star magnitude is once again set to 14.5 Mv and KJ is 
set to the default. Small values of KG (2 arc seconds) and large 
values of KG (3.5 arc seconds) result in responses which do not 
converge in an orderly manner. Rms errors can be large and biases can 
persist which will look like shifts in the average center position 
over time. For KG values of 2.3 arc seconds and 2 . 8  arc seconds, a 
slight improvement in rms pointing error (about 4 milli-arc seconds) 
occurs when compared with the case where the default parameters are 
used (see figure 13). Changing KG will not produce a significant 
performance improvement under the conditions of a spherically 
aberrated image. In this respect, the o n l y  approach to making inroads 
into improving rms pointing is to make use of high intensity guide 
stars whenever possible. 
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Figure 14. Coarse Track Response for Various Values of KG 
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Other modelling results indicate the following trends: 

Figure 15 illustrates the general relationship of the quadrature 
modulation versus image size. It will be noted that significant 
modulation amplitude reduction occurs as the image size increases. 
The overall peak signal amplitude is also reduced if a symmetrical 
modulation (50% in and 50% out) is to be achieved. This condition 
results in decreased signal to noise as well as poorer quadrature 
discrimination. 

02 AqC SECONDS 

. . . .  0 4 ARC SECONDS -. '.. _. ,-  -: ',- . .  -. .- . .  

32 ARC SECONDS 

6 4 ARC SECONDS 

. . . .  ., .. ., . . . . . .  
I .  . .  . .  . .  . .  . . . .  . .  . . . .  . . . .  .. 

bu 

13Yr 

RAn 

100 

m 
w( 

Figure 15. Quadrature 
Modulation Versus 
Image Size 

Figure 16. Relationships Between 
Signal Modulation, S/N Ratio and 
Radius of Nutation 

Figure 16 illustrates the general relationships between signal 
modulation, signal amplitude and radius of nutation KG. Ideally, 
selection of the maximum modulation would provide the best control. 
With a diffuse image, a compromise must be made. Selection of the 
maximum signal amplitude, in an effort to achieve maximum signal to 
noise ratio, results in a very limited signal modulation level. At 
best, selection of a KG radius of nutation in the 2.5 to 3.0 arc 
second range results in reasonably good signal amplitude and 
modulation. The default KG value of 2.68 arc seconds is not an 
unreasonable choice even for the case where the star image is 
diffuse. 
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Figure 17 provides predicted (RMS) coarse track performance with 
and without spherical aberration of the star image. Attempts t o  
improve control performance by increasing KJ, the closed loop gain, 
in the presence of a diffuse image in general has a deleterious 
impact. While response time is improved somewhat, the 
impact of Poisson noise is increased particularly for dim guide 
stars. RMS jitter is increased. 
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Figure 17. Coarse Track RMS 
Pointing Jitter Versus Image 
Size 
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Figure 18. On-Orbit PMT Counts 
Versus Time 

On-Orbit Performance 

Typical on-orbit observed pointing jitter is on the order of 10 
to 20 milli-arc seconds (rms) for 11 Mv stars, 20  to 45 milli-arc 
seconds for 13.8 Mv stars and 30 to 60 milli-arc seconds for 14.5 Mv 
stars. Figure 18 illustrates the observed decrease in sensitivity in 
both PMT count amplitude and depth of modulation in the coarse track 
control mode. Peak PMT signal amplitudes reach only 60 to 70 % of the 
expected amplitudes. Good correlation between the simulations and the 
observed performance implies that the HST Fine Guidance Sensors are 
performing nominally in the presence of a spherically aberrated 
image. 

The influence of higher than expected vehicle vibrations caused 
by thermally induced shocks from the spacecraft solar array panels 
result in hunting in the control loop as it attempts to maintain the 
pointing line of sight. The coarse track control has been shown to be 
quite robust in the sense that it can maintain lock on the guide 
stars even during the significant disturbances which occur during 
day/night thermal transitions. This has permitted longer science 
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observations that would likely have been impossible if only the FGS 
Fine Lock capability had been implemented. It is expected that, with 
the replacement of the solar panels on the future repair mission to 
HST, overall HST orbit-to-orbit pointing stability will be 
significantly improved. This should also improve the Fine Lock 
control performance which is designed to provide pointing control in 
the 3 milli- arc second range when the vehicle disturbances are low. 

Conclusions 

In spite of un-anticipated HST anomalies including spherical 
aberration in the primary mirror and significant mechanical "shocksn 
from the Solar Panels, the Fine Guidance Systems are performing 
reliable pointing control in Coarse Track Mode. A large percentage of 
the planned HST science observations are being accomplished using 
this robust pointing control mode. The fine guidance system 
implementation using quadrature centroiding principles coupled with 
the beam steering servos and the associated control algorithms 
demonstrates a sound design concept for highly accurate pointing 
control of earth orbiting spacecraft. 
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1. ABSTRACT 

The SCATHA (Spacecraft Charging at High Altitudes) satellite was operated from the Consolidated 
Space Test Center in Sunnyvale, California from February 1979 to May 1 9 9 1 .  It was a spin stabilized vehicle 
in a highly eccentric orbit that collected data on spacecraft charging. The purpose of such data gathering was 
to predict and/or model the effects of the Earth's magnetic field on synchronous and near synchronous 
satellites. 

During the majority of its lifetime, attitude precession maneuvers were done every 10-15 days to 
maintain solar panel orientation. Maneuver planning was difficult due to the structural characteristics of 
SCATHA. It is cylindrically shaped and has seven booms ranging in length from 2 to 50 meters. These 
precession maneuvers induced predictable nutation that damped out after a few days. Eventually fuel began 
running low due to these frequent maneuvers. Experiments that had required the spin axis be in the orbit plane 
had already been turned off or had collected all their data. To increase the vehicle lifetime, the spin axis was 
moved to ecliptic normal. While this stopped the need for frequent attitude maneuvering (only two per year 
required now), this movement of the spin axis caused nutation that would not damp out for the remainder of 
the mission. 

This phase of the mission, with the ecliptic normal orientation, lasted for approximately three years. 
Although nutation never damped, data gathering was unintempted. In late 1990, when SCATHA's 
transmitter became seriously degraded, the Air Force decided to turn SCATHA off. This would only be done 
after the satellite was made "safe". The most difficult part of making the vehicle safe was quickly purging the 
fuel. Several plans were considered. The selected plan was to perform a series of 20 degree attitude 
precession maneuvers (3 days apart to allow for the worst nutation to damp) until the fuel was depleted. 
Although this sounded simple, the actual execution proved difficult. This was due to a nearly complete lack of 
available telemeny data, large undamped motion of the long booms, inadequacies in attitude determination 
software, and an error in the fuel level calculation software. 

This paper discusses the various proposed termination plans and execution of the selected one. 
Attitude determination methodologies, nutation from maneuvers, and effects of the flexible booms on the 
termination mission are presented and analyzed from a satellite analyst point of view. 
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2. BACKGROUND 

2.1 Mission and Orbit 

The SCATHA mission was to investigate the cause or causes of numerous spacecraft anomalies due to 
spacecraft charging phenomena which plagued high altitude, near synchronous vehicles throughout the 1960's 
and 70s. On January 30,1979, a McDonnell Douglas Delta rocket launched SCATHA into a 176 by 43,278 
km transfer orbit. On February 2 it was injected into a 27,578 by 43,288 km, 7.9 degree inclination final 
orbit. For most of the mission, the spin stabilized satellite was operated at near 1 rpm. 

SCATHA was managed and funded by the United States Air Force (USAF) Space Test Program 
(STP). It was one element of a cooperative NASAAJSAF program to investigate various aspects of the 
electrical charging and discharging of geosynchronous spacecraft surfaces. Mission operations were under the 
administration of the U.S. Air Force office "Vehicle Operations - Complex F' (VOF). As one of several VO 
offices within the Consolidated Space Test Center (CSTC), VOF has historically been responsible for research 
and development programs. Mission planning and real-time operations were performed by the Lockheed 
Technical Operations Company (LTOC) Mission Control Team (MCT). Together the two organizations 
functioned as a mission control complex referred to as Test Support Complex- 1 (TSC- 1). 

2.2 Vehicle Description 

The primary systems relevant to fuel depletion and maneuver activity are the vehicle structure and 
attitude control systems. 

Structure. The SCATHA vehicle has a cylindrical body with diameter and height of approximately 1 3/4 
meters that supports all the subsystems and the experiments. In the on-orbit configuration it has experiments 
located on five extended booms (ref figure 2-1). In addition there are two 50 meter booms which comprise 
NASA's Electric Field Detector 100 meter antenna. 

Figure 2- 1. SCATHA On-orbit Configuration 

Attitude Control and Determination Subsystem (AC&D). The AC&D subsystem provides attitude 
sensing and thrust impulse for control of the spin rate, spin axis attitude, and orbital velocity adjustments. All 
attitude control commands are executed in real-time. There are no provisions for on-board storage of time- 
tagged commands. 

The AC&D system, in conjunction with ground based mission unique software, provides for attitude 
determination using data from two groups of space vehicle (SV) attitude sensor units. The first group consist: 
of four digital sun sensors. Each DSAS (Digital Sun Aspect Sensor) measures the angle between the sun 
vector and the vehicle spin axis once per revolution. The second group of sensors consists of two Steerable 
Horizon Crossing Indicators (SHCIs). These detect a thermal discontinuity as the line of sight crosses the 
earth horizon. The line-of-sight of each unit is adjustable and capable of expanding its field-of-view (FOV) to 
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471 steradians. The sensor output gives the instantaneous line of sight position and horizon crossing times. 
Figure 2-2 shows the sun and horizon sensor configuration. 
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Figure 2-2. Sun and Earth Horizon Sensor Configurations 

Two nutation dampers are installed to provide damping of residual nutation. The hollow rings are 
filled with Dow Coming dimethyl silicone fluid. They are mounted 180 degrees apart with the ring planes 
parallel to the vehicle spin axis and perpendicular to the axis of maximum transient moment of inertia when all 
experiments are fully deployed. The damping time constant for the 1.0 k 0.1 rpm spin rate (all booms 
deployed) is 8 hours over the operating range. 

2.3 Spacecraft Attitude Determination Methods 

The DSAS and SHCI telemetered values are used together in determining the SV attitude by the ground 
based mission unique software. The software takes in the telemetry from the DSAS and SHCIs and combines 
it with calculated vehicle and solar ephemerides to obtain three derived measuretnent angles: Sun-vehicle-earth 
angle (WE), Earth aspect angle (EA - from SHCI data), and solar aspect angle (SA - from DSAS data). The 
SVE angle is defined as the included angle between the nadir vector and the vector from the sun to the space 
vehicle (SV). The EA is defined as the included angle between the nadir vector and the positive spin axis. 
The SA is the angle between the positive spin axis and the sun vector. 

Attitude determination software uses sets of these three derived angles in a least squares batch 
processor which provides a minimum variance estimate of the average inertial attitude state at a user-defined 
epoch. This state is output in the form of two angles: spin axis right ascension (SARA) and spin axis 
declination (SADEC). The specification for ground software attitude determination error is k1.4 degrees (3 
sigma). 

2.4 Orbit and Attitude Maneuvering System 

The spacecraft is capable of performing three types of maneuvers: delta velocity, spin (up or down), 
and attitude precession (re-Orientation of the vehicle's spin axis). During SCATHAs lifetime the vast majority 
of the maneuvers were attitude precession maneuvers to keep enough sun on the mays to power the vehicle. 
SCATHA had two hydrazine fueled rocket engine modules, each with three .2 lb thrusters and a 5 lb thruster. 
Details on the ground based maneuver planning software are available in references 1 and 2. 
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3. MANEUVER OPERATION PHASES 

The SCATHA mission can be broken into three different phases: Nominal, Re-orientation/Extended Life, anc 
Termination. 

3.1 Nominal Phase Maneuvers 

For the first eight years of the mission (after the approximate 1 month orbit and spin axis initialization 
phase), the nominal attitude of SCATHA placed the vehicle spin axis oriented within the orbit plane. Due to 
power constraints, the vehicle sun angle (angle between spin axis and sun vector) had to be kept within +10 
and -5 degrees of normal to the sun line. To stay within these bounds, attitude maneuvers with sizes between 
10 and 15 degrees had to be performed every 10-15 days to counteract the apparent motion of the Sun due to 
the Earths orbital motion throughout the year (approx 1 deg/day). 

During this time (25 Feb 79 - 01 Jan 87), all maneuvers performed were attitude precession 
maneuvers. After this eight year nominal phase, software indicated approximately 2.68 Ibs of fuel remained 
on board (originally there was 21.3 lbs). A summary of this phase can be found in figure 3-1. 

1 Parameters I 
I+ 

Precession/S pin 
Maneuvers 

Fuel Used (lbs) 

Average Time 
Between Maneuvers 

Fuel Usage per 
Maneuver (lbs) 

Nominal Phase 
Feb 79 - Jan 87 

233 

10.82 

12.30 Days 

.046 

Jan 87 - Jan 91 Jan 91 - May 91 

.0375 .0707 

Figure 3- 1. Summary of SCATHA PrecessiordSpin Maneuvers 

The performance of the attitude maneuver generation software during this phase was exceptional. The total 
angular error between the predicted spin axis and the determined spin axis was never greater than 1 .O degrees 
and 99 % of the time it was less than .5 degrees. Due to the effect of the motion of the long booms (caused b! 
the maneuver) on the satellite, the MCT had to wait 3 days after each maneuver in order to gather useable 
telemetry for an accurate post maneuver attitude determination. Telemetered sun angle values showed that 
successive values differed by as much as 4 to 6 degrees per revolution. This difference, referred to (by the 
MCT) as "out-of-plane nutation", always damped to less than 2.0 degrees within 3-5 days. Undamped 
nutation was never a problem during this phase of the mission. 

3.2 Extended Reorientation / Extended Life Maneuvers 

In January of 1983, a study was performed by the MCT and the Aerospace Corporation to determine 
the projected date of hydrazine depletion and to recommend a course of action which might extend the fuel 
supply and therefore extend mission life. It was estimated that "blowdown pressure" (Le. the point at which 
the pressure of N2 would no longer be enough to move the hydrazine to the engines (approx 122 psia)) woulc 
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be reached by August of 1988 if no change to vehicle operations were implemented. As a result of these 
studies and talks with the remaining experimenters, it was determined that the vehicle's fuel supply could be 
greatly extended if the vehicle were oriented so that its spin axis was normal to the ecliptic plane (see Figure 3- 
2). In this orientation there would be far fewer attitude maneuvers required to stay within 10-20 of normal to 
the sun line. 

Orientation 
after Feb 1987 

Equatorial Plane L x  

View from within Oribit Plane 
Orientation 

before Feb 1987 

Figure 3-2. Spin Axis Onentation Relative to Orbit Plane 

The requirements for a maneuver of this magnitude were extensive, especially considering the effects 
of such maneuvering on the long booms. It was hoped that the booms could be pulled in prior to the 
maneuver, thus minimizing possible damage to the booms as well as reducing the number of maneuvers. 
However, analysis done by the spacecraft dynamics department at Goddard Space Flight Center (GSFC) 
showed that dangerous resonance points would be reached at various lengths as the booms were retracted. So 
any plan for maneuvering would have to be performed with the booms fully deployed. After much 
deliberation, it was finally decided to break up the maneuver into 5 smaller maneuvers with ample time 
between each to allow "out of plane" nutation to damp out (nutation had to be < 6 degrees in order for the next 
maneuver to proceed). The attitude maneuvers were completed on 4 Feb 87,20 days after the 1 st burn. Out- 
of-plane nutation during these maneuvers, while higher than had been seen prior to the re-orientation 
maneuvers (reached 15 degrees at one point), damped out to well under the 6 degree limit within one week 
following the last maneuver. 

Once these maneuvers were complete it was decided to do something about the vehicle's spin rate 
which had dropped to 0.928 RPM (very close to the lower limit for experiments). A series of small spin up 
maneuvers (each three days apart) was planned to raise the spin rate to its original value. After the first four 
maneuvers were completed, raising the spin rate to 1.021 WM, the out of plane nutation limit of 6.0 degrees 
was exceeded (it was greater than 8.5 degrees). More alarming, was the spin rate variation (time from a 
DSAS sun cross reading to its next sun cross reading) -- it had become quite large. Measuring it in terms of 
an angle, called "in-plane" nutation by the MCI', it reached in excess of 14 degrees. During the following five 
weeks, neither the in-plane nor out-of-plane nutation consistently dropped below the 6 degree linit. Clearly, 
the nutation dampers, designed expressly for handling out-of-plane nutation, were unable to handle the 
apparent coupling of these two motions. As a result of the increased and undamped nutation, the remaining 
planned spin-up maneuvers were postponed indefinitely. 

At the end of these maneuvers, the vehicle sun angle was 95 degrees (non-normality to sun line of 5 
degrees) and the out of ecliptic plane angle was 85 degrees. This attitude, assuming no precession, should 
have resulted in an annual sun angle cycle of 95 to 90 to 85 to 90 to 95 degrees, etc. There was, however, a 
slight precession of the spin axis about the Earth's polar axis, which changed the amplitude and timing of the 
annual Sun cycle. As it turned out, the SARA and SADEC rates were fairly close to constant. Plots of these 
values were performed weekly. Figures 3-3 (a) and (b) are examples of these. First order least squares fits 
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were performed on the data. In general the SARA drift rate was approximately -0.2 deg/day (+/- 0.02) and the 
SADEC drift rate was nearly 0 deg/day. 
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I I I 1 

Days from 01 SEP 1987 

SADEC Drift Rate = -0.001 66 Deflay 
(b) 

Figure 3-3. SARA and SADEC for Rate Calculation. 

This motion is recognized as nearly pure precession of the spin axis about the Earth's polar axis and has a 
period of approximately 360/.2 = 1800 days (4.93 years). The MCT then wrote a program to predict sun 
angle using these rates and a Sun ephemeris generator. A resulting plot can be seen in figure 3-4 . This 
prediction was very accurate on the average (nutation, of course causes small deviations from the precession 
path). Plots of the Sun angles from actual determined attitudes were always within a degree of the predicts. 
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Figure 3-4. Spin Axis Sun Angle Relative to Earth-Sun Orbit Plane 
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During this re-orientation phase of the mission (1 Jan 87 to 1 Jan 91) only seven precession maneuvers 
were performed to maintain the sun angle within limits. A summary of the maneuvers in this phase can be 
found in Figure 3-5. At this rate of fuel consumption, the entire amount of remaining fuel would not be 
exhausted (ignoring blow down pressure) until the year 2025. 

Maneuver Date 

09 Dec 87 
19 Nov 88 
03 Jan 89 
13 Jul 89 

08 Aug 89 
17 Aug 89 
09 J u l 9 0  

Initial Fuel 
Final Fuel 
Fuel Used by Original 5 Maneuvers 
Fuel Used by 4 Spin Maneuvers 
Fuel Used by 7 Normal Precession Maneuvers 
Total Fuel Used 
Average Time Between Maneuvers 

Avenge Fuel Used per Maneuver 
(1 Mar 87 to 1 Jan 91) 

(1 Mar 87 to 1 Jan 91) 

Max Obscrved In and Out of 
Maneuver Size Estimation Error Plane Nutadon(Deg) 

( D C p 3 )  (DCgI-CCS) Out In 
16.20 << 1 12.0 14.0 

14.998 1 .4 7.0 12.0 
15.014 1.1 8.5 8.5 
6.006 << I 4.0 5.5 
6.00 1 1.45 5.0 6.0 
4.060 < I  4.0 6.5 
12.113 No Telemetry No Telemetry 

2.68 Ibs 
2.34 Ibs 
0.064 Ibs 
0.012 lbs 
0.26 lbs 
0.339 Ibs 
200.3 days 

0.0375 lbs 

Figure 3-5. SCATHA Re-orientation Phase Maneuver Summary 

Maneuver performance for the seven normal precession maneuvers was good (see figure 3-6), 
although attitude determination was much more difficult during this phase due to the large amount of nutation 
experienced. There was more error than usual in the determined attitudes (both before and after the maneuver) 
as well as increased error in maneuver efficiency due to the high nutation. Still, the final attitudes were within 
operational accuracies ( less than 1.5 deg). 

Figure 3-6. Maneuver Errors and Maximum Nutation for SCATHA During the Re-orientation Phase 

Since the nutation did not appear to be damping, regular nutation analyses were performed. Data was 
collected from each contact (approximately 3 times a day) in order to calculate both in-plane and out-of-plane 
nutation values. Figure 3-7 shows the maximum daily calculated nutation values for a span from 1 Jan 88 to 
20 May 91. Since these were derived from data collected during vehicle contacts only, the maximum values 
are only estimates of the true maximums during the span. 

data (up to 19 hours of each day). The MCT explored other ways of examining the nutation data. Continuous 
data gathered by the vehicle tape recorders was downlinked to tracking sites and subsequently shipped to 
experimenters. Upon contacting some experimenters, a full week of continuous data was provided to the 
MCT for analysis. Figure 3-8 below shows one complete day of this data. This data was very representative 
of the week and shows that there is a fairly rapid short-term periodic variation in sun angle as well as a longer 
overriding variation. Overall, short term sun angle variations appear to occur at very regular time intervals 
(periods on the order of 1200 seconds) while the longer term variations are not so regular ( periods of between 
25000 and 30000 seconds). 

Deriving nutation maximum values using only data from contacts presented the problem of missing 
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Figure 3-7. In-plane and Out-of-Plane Nutation 

I I r! 

I i' 2'. 

33 r 

32 
I I I I I 1 1 I I 

0 2 0 0 0 0  40000 68000 80000  

0 3dRbl88 (sec) 

Figure 3-8. Full Day of Out-of-plane Nutation Data. 

Although plots of data from the other three sun sensors (for the same time span) appear to be similar, 
much more data needs to be collected and processed to be able to determine a true pattern and to derive a 
method to predict nutation. With a large data base of this type of information, it was hoped to be able to at least 
find a pattern in the data that will suggest methods of predicting the nutation. Being able to predict "quiet" 
times would have helped dramatically in chosing future maneuver times. Unfortunately facilities to quickly 
process this data were not available at this time and now much of the experimenter data is no longer available 
so plans for future analysis are up in the air. 
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Figure 3-9 shows another way of looking at the details of out of plane nutation. This plot combines 
data from all four sun sensors, rather than waiting an entire spin period (about 1 minute) for a sun angle 
reading. This allows for a plot of sun angle every one-quarter spin period and may provide indication of any 
very short-term variation patterns in sun angle. 
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Figure 3-9. High Resolution Sun Angle Data. 

4. MISSION TERMINATION 

4.1 Pre- termina tion Activities 

On May 20, 1990 SCATHA's transmitter # I ,  while in real-time support, displayed a sudden cut off to 
zero power output. All attempts to "revive" it failed. The only possible alternative was to go to transmitter #2 
(the backup). Unfortunately, three years earlier, transmitter #2 had exhibited a similar drop in power, 
although only from the nominal 14.8 watts to 8.5 watts. 

Real-time data retrieval became minimal and distorted. Playback data was all but impossible to 
retrieve. The ability of the MCT to collect attitude data was almost completely gone. Signal strength was very 
low, causing frequent loss of sync and data dropouts. These dropouts were especially detrimental to the 
collection of earth chords, one of the two types of attitude data. In order to get a valid earth chord angle, both 
a leading and trailing edge for that passage must be collected. Unfortunately, the dropouts were so common 
that valid earth chord data was extremely rare. The ground based software was completely unable to cope 
with such poor earth chord data. Many attempts were made to process the data but all failed. Attitude 
determination with sun sensor data only was tried but it gave unreliable results since data was too sparse. The 
last valid attitude determination by the original ground based software was done on May 19, 1990. For the 
next nine months, predictions of sun angles, earth chords, and attitudes were done using known SARA and 
SADEC rates and this last derived attitude. 

By December, the retrieval of this low quality data became a major issue. The only useable telemetry 
that could be retrieved was collected during perigee supports which were available only 15 minutes a day. 
Even then only about 50% of the downlink data was usable. Even out-of-plane nutation calculations could 
rarely be done since it was so difficult to get consecutive sun crossings. 

4.2 Termination Plan 
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The Systems hogram Office (SPO) directed TSC-1 that SCATHA no longer needed to remain active after 31 
Dec 1990. The MCT was directed to put SCATHA into a safe orientation and deplete all remaining fuel. 

Many studies were done and options considered for using up all the remaining fuel as quickly and 
safely as possible. The quickest way to do this was to first retract the large booms and then perform a large 
velocity change maneuver (or series of maneuvers) to lower perigee as much as possible. This method had thc 
added benefit of giving even better link margins at perigee and hence having more opportunities to gather gooc 
data. However, this method was rejected for a number of reasons. First, in order to do an efficient bum to 
lower perigee, a huge precession maneuver ( >50 deg) had to be done to align the spin axis with the negative 
velocity vector. This would use quite a bit of the remaining fuel and the subsequent delta velocity maneuver 
could only lower perigee by a couple hundred nautical miles. Second, and most importantly, the GSFC study 
(ref section 3.2, para 3) showed that bringing in the booms was extremely dangerous to vehicle stability. Of 
course, if the velocity change maneuver were done with the long booms out, they would bend and wrap 
around the vehicle if not break off entirely. Either way, the vehicle could not be considered to be in a safe 
configuration. So all future options would only be considered if the long booms remained fully deployed. 

A second option considered was to spin the vehicle up (slowly) with hopes of placing it in a more 
Stable configuration. However, the MCT experience with spin up maneuvers in the ecliptic normal 
configuration had not been very successful. The spin axis motion had not been the same since those four spin 
up maneuvers in February of 1987. The MCT considered the idea of bringing the spin axis back down into 
the orbit plane and then spinning it up, but spin maneuvers of any kind were viewed by the Air Force as too 
unsafe. 

Finally, the decision was made to execute a series of 20 degree attitude precession maneuvers until the 
remaining fuel was gone. From past experience the worst (short term) out-of-plane nutation had taken three 
days to a week to damp out to smaller acceptable levels. As 1 January 1991 approached, there was a strong 
desire by the Air Force to "terminate" the satellite as soon as possible. Thus, only a 2 to 3 day separation 
between maneuvers was considered an acceptable risk. The Orbit Analysts in TSC- 1 then performed a study 
to deplete the fuel in the requested manner. For purposes of study, the maneuvers were chosen so that only 
SADEC changed (i.e. add 20 degrees to SADEC, then subtract 20 degrees, then add, etc.). This study 
showed that it would take about 31 maneuvers to deplete all the remaining fuel. It was hoped that blow down 
pressure would be reached well before then, but the ground based software indicated that a tank pressure of 
133 psia would be reached as the fuel hit 0 lbs. This was not the only odd output from the software. 
Maneuvers were allowed to be planned even after reaching 0 lbs of fuel remaining. The software even printed 
out a negative amount of fuel remaining. Although we found these things alarming (and they haunted us later 
on), the ultimate objective forced the MCT to continue with the plan and assume the ground software would 
accurately generate maneuvers with low or negative fuel indicated. 

The Orbit Analysts performed one more study before taking the results to the Air Force. This study 
was to determine the best attitude in which to leave the satellite. From past experience, the M a  has been 
asked to turn off satellites with no regard to the spacecraft orientation. On a couple of occasions, vehicles 
were attempted to be turned on 1 to 2 years later. On all occasions it was impossible to turn on the vehicles 
due to their orientations. So, this time it was decided to try and leave SCATHA in an attitude that would leave 
it secure, but allow it to be possibly turned on in the future if needed. The attitude chosen was one that put the 
spin axis parallel to the Earth's polar axis. The natural precession of the satellite's spin axis about the vector 
parallel to the Earths polar axis causes the sun angle to sinusoidally walk further from normality to the sun- 
line (ref section 3.2 and figure 3-4). With this choice of final attitude, the spin axis would not precess and the 
sun  angle would constantly (and sinusoidally) walk between -23.5 degrees non-normality to sun line and 
+23.5 degrees non-normality to the sun line. These sun angles would provide SCATHA enough power to turr 
on in the future if needed . Fuel depletion and achievement of the final attitude for this plan would not occur 
until  April 6th, if maneuvers were performed every three days. However, there appeared to be no viable, 
safe, alternative plan. 
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Unfortunately, the plan did have some problems. The maneuver sequence would be planned with 
attitudes that were propagated from the last determination in May 1990, which was when the last viable 
attitude data was collected. Attitude prediction accuracy studies had not been done for so long a span. 
However, sun angle predictions from the last good attitude and the sun angle observed were within a couple of 
degrees of each other. While this certainly didn’t imply that the predicted attitude was within two degrees of 
actual attitude (since an infinite number of attitudes have the same sun angle), it was probable that the attitude 
estimate was useable. Further confiation of this fact came from new prediction accuracy studies. Estimates 
were made by predicting old attitude states six months or more ahead (no maneuvers included) and comparing 
them with actual determined attitudes at that time. For nearly all of the spans covered, the error of prediction 
was less than 1.0 degree when predicting for 200 days. Figure 4-1 shows a representative sample of predicted 
and determined attitudes. 

Attitude Epoch Determined @eg) 

08 Jan 88 oooOZ 257.865 68.094 
08 Jul 88 oooOZ 223.775 68.173 
11 Aug 88 oooOZ 216.683 68.195 

SARA SADEC 
*Predicted (Deg) 
SARA SADEC 

224.635 67.794 
218.428 67.738 

Total Angular 
Error (Deg) 

0.4976 
0.7980 

* Rates Used: SARA rate = -.18258 deg/day; SADEC rate = -.0016502 deg/day 

Figure 4- 1. Predicted and Determined SARA and SADEC 

While these predicts worked well for times when there were no attitude maneuvers, they could not be 
solely relied on for times when attitude maneuvers were being performed. Each maneuver introduces a small 
uncertainty in the predicted attitude after the maneuver due mostly to spacecraft nutation but also to imperfect 
knowledge of thruster efficiencies and non-perfect attitude rates. It was readily apparent when the maneuvers 
started that some method of estimating the vehicle attitude would be needed. 

As it turned out, the Orbit Analysts had already been working on a simpler version of generic attitude 
determination software. This method is based on the Earth Midscan Rotation Angle / Sun Angle method found 
in Wertz “Spacecraft Attitude Determination and Control”. It requires only one sun sensor (DSAS) 
measurement and one steerable horizon crossing indicator (SHCI) leading edge-trailing edge pair collected 
within the same spin period. Using this data, as well as vehicle and sun position, the method produces four 
possible choices for the attitude ( the intersection of two cones). Two of these values can be immediately 
eliminated since they are physically impossible. The user can then eliminate the remaining bad attitude by 
comparison with an apriori approximation of the true attitude. While this method is fairly easy to perform 
(once you’ve gathered all the data), it‘s accuracy is very much affected by variations in spin period and 
measured sun angle. Unfortunately, variation in spin period and out of plane nutation were common during 
this time and so determined attitudes even from data in the same pass were often not consistent. Sometimes 
averaging a few of the determined attitudes assisted in getting a better attitude state. 

4.3 Summary of Termination Phase Maneuvers 

The final phase of SCATHA’s mission life covered the span from 01 Jan 91 through 24 May 91. 
During this time, 48 precession maneuvers were performed 45 of which were 20 degrees in size while the 
others were less. Figure 4-2 provides a summary of fuel usage for the final maneuvers. As the chart shows, 
things did not go as anticipated. The predicted end date of April 6th passed without depleting the fuel. The 
software continued to operate accurately even though it was using “negative fuel“. Also, the sequence of 
maneuvers was disrupted at times and new requirements were given to the MCT as the maneuvers progressed. 
The remainder of section 4 is devoted to explaining how events differed from the original schedule along with 
an analysis and explanation of the gathered data. 
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Initial Fuel 2.3425 Ibs 

Total Fuel Used 3.3953 lbs 
Average Time Between Maneuvers 3.0 days 

Figure 4-2. Summary of Termination Phase Maneuvers 

Final Fuel (Apparent) - 1.0523 Ibs 

4.4 Maneuver Schedule and Analysis 

The first maneuver was executed as planned on 4 Jan 1991. The next maneuver was to be performed 
three days later, but was postponed. Due to reduced tracking supports covering only the perigee half of the 
orbit, the Orbit Analysts had a very difficult time determining the vehicle's orbit. Predictions with a newly 
determined orbit the day prior to the next maneuver were very poor so the maneuver was postponed until 
January 9th when the orbit was better defined. The next five maneuvers went as planned through January 21 
(9th, 12th, 15th, 18th, and 21st). At that point, the lack of tracking data caused an inability to obtain lockup 
on the vehicle for a sizeable portion of the pass. Clearly, the lack of good tracking data and inaccuracies in 
maneuver modeling were making maneuver planning and operations difficult. Also, at this time, there was 
still no ability to determine the post maneuver attitudes. For the next two weeks the Orbit Analysts worked at 
determining the actual orbit based on increased tracking data. At the end of the two weeks, it was decided that 
the increased number of passes needed for orbit determination accuracy couldn't be justified for a vehicle that 
was being phased out. Vectors ( 2 Line Mean Element Sets) for SCATHA were sent from the NORAD (North 
American Air Defense Command) Space Surveillance Center on a daily basis. This solved the problem for the 
remainder of the mission. 

Maneuvers resumed on February 2nd. However, there was a new twist to the maneuvers. One of the 
experimenters requested that when doing the maneuvers, the MCT try to keep the sun angle at a 100 degrees -t 
2.0 degrees. Until this point, the only restriction on maneuvers was that they be 20 degrees in size and within 
15 degrees of the sun line. However, this request was met as well as all other requirements. The 20 degree 
maneuvers continued approximately every three days until April 16 when the software indicated that the fuel 
had dipped below 0.1 lbs. At this point the spin axis was very near parallel to the Earth's polar axis. Smaller 
maneuvers were decided to be used to deplete the remaining fuel but not stray far from the desired final 
attitude. After two 6 degree maneuvers on the 16th and 18th of April, it was realized that we were still 5 psia 
above blowdown pressure. Also, the Orbit Analyst attitude determination program was now complete, and it 
became apparent that the maneuvers were reaching very near the full arc length (although not necessarily to the 
right target). 

At this point there was confirmation that the maneuver software or database definitely had a problem. 
However, at that time it wasn't known what was wrong. Investigations into the problem began and the twenty 
degree maneuvers continued again since there was clearly more fuel on-board than the ground software 
indicated and the Air Force was pushing to quickly turn-off the satellite.The 20 degree maneuvers continued 
every Tuesday, Thursday, and Saturday until the final maneuver on May 24. At this point, the maneuvers 
were still executing efficiently (not expected at such impossible propellant levels), but the MCT was asked to 
discontinue maneuvers anyway. The final maneuver was only 9.1 degrees in arc length, putting the spin axis 
as near as could be estimated to parallel to the Earth's polar axis. 

4.5 Fuel Consumption / Depletion Analysis 

It had been hoped to carefully analyze the propulsion system performance as the fuel was depleted. 
Careful analysis of the changing thruster efficiencies and an accurate measure of actual blowdown pressure 
could have been invaluable for future missions. However, at this time the CSTC was in the final stages of the 
process of converting from an old computer system to a new brand new one. The telemetry processing and 
attitude determination software for SCATHA was hosted on the old system. Also, SCATHA was one of the 
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few programs with software on this system and its mission was considered to be finished by the Air Force. 
So, termination of the mission as soon as possible was a very high priority. It was assumed that there was 
very little fuel remaining in the tanks and so the vehicle was considered "safe" enough to turn off. 
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Although analysis of the propulsion system could not be performed at this time, regular monitoring of 
propulsion system parameters was done during the final phase. Predicted and actual telemetry values were 
very close. Figure 4-3 shows tank pressure for the final months before turnoff. Occasional discontinuities in  
calculated pressure values are due to software database updates with an actual telemetered value. The Orbit 
Analysts made changes at these points in order to more accurately reflect the on-board pressure and 
temperature. With these periodic updates, the ground based software performed accurate modeling of the 
actual telemetered values. 

I . l  , - , - , - , - , . ,  
0 2 5  5 0  7 5  100 125 150 

Days Since 01 Jan 91 

Figure 4-3. Observed and Calculated Nitrogen Tank Pressure vs Time 

Unfortunately the problem of negative fuel went unsolved until after SCATHA had been terminated. 
As it turns out, the error lies in two places: the software and the database. The program that generated the 
maneuver calls a subroutine to actually calculate the nianeuver and the amount of fuel necessary. The amount 
of fuel necessary for the maneuver was passed to the main program but the newly calculated pre-maneuver 
fuel mass was not. The main program then updates the latest stored value of fuel remaining by subtracting the 
amount of fuel needed for the maneuver. This would not be a problem unless the stored initial propellant mass 
was incorrect. Unfortunately, this value was incorrectly updated during the first week or so of the mission 
(back in 1979). The value input was approximately three lbs too low. The error was further compounded 
when new tank temperature and pressures from observed telemetry were manually input. While the calculated 
starting mass was accurate, the initial stored mass was incorrect. Since the stored initial mass is never really 
used for anything but display, it was never noticed as being a problem especially since all maneuvers appeared 
to reach the target attitude (within attitude determination accuracies). Maneuvers were done with the mass 
calculated from input data, not from the displayed mass. 

With the error discovered, it is then appropriate to figure out how much fuel was really left in the 
tanks. Quick calculation shows there was nearly 2.5 Ibs of fuel remaining on board SCATHA. It can be seen 
that thirty-three 20 degree maneuvers would have been necessary to use all the fuel remaining (blowdown 
pressure and thruster efficiencies permitting). If maneuvers were continued at the same rate, three times per 
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week, the fuel would would have been depleted by August 10, 1991. This probably would be completed at 
least 2-3 weeks before due to blowdown pressure being reached. 

4.6 Termination Phase Nutation Analysis 

It was very difficult to get a true measure of the out-of-plane nutation and nearly impossible to get any 
measure of in-plane nutation during this phase. As mentioned in section 4.1, consistent telemetry data 
collection was difficult due to degraded transmitter performance. It was a tedious process to manually go 
through the telemetry, find consecutive sun angle readings, and calculate out-of-plane nutation. However, 
data was calculated for all available telemetry and the maximum values (among all four sun sensors) per pass 
were plotted in the graph show in figure 4-4. 
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Days Since M Jan 01 

Figure 4-4. Maximum Sun Angle Difference 

It is important to note that quality data was gathered for only 2 1/2 hours a day at most. Even if 2 1/2 hours of 
good data was gathered every day (1 hour was close to reality) for the entire termination phase (144 days), 
then only 10% of all possible SCATHA data was available for examination. Thus the graph in figure 4-4 
shows the smallest that the maximum nutation could be during each day of the final termination phase. 
Clearly, there was a large amount of nutation throughout the entire phase. 

In-plane nutation turned out to be extremely difficult to calculate accurately since the instantaneous spin 
rate was not output in telemetry and output sun crossing times were rounded to the nearest second. For this 
reason the in-plane nutation was not computed and plotted for this phase. At times, however, that successive 
spin rate calculations using successive sun crossing times (for a particular DSAS) were as much as 2 seconds 
off. This indicates a possible 12 degree in-plane nutation error. 

4.7 Determined Attitudes and Maneuver Performance 

Due to the nutation and lack of consistent telemetry information, attitude determination during this 
phase was difficult and at times required many attempts. The following chart (figure 4-5) gives a comparison 
of the determined sun angle (from the determined attitude) and the observed sun angle during the last half of 
the termination phase. The data in figure 4-5 does not prove that the determined attitude was actually quite 
close to the observed, since there are an infinite number of attitudes with the same sun angle. Still, it seems 
appropriate to assume that the predicted attitude is well within 5 degrees of the actual attitude, since the above 
data is consistently within 3 degrees at a wide variety of attitudes. 

466 



I &-Maneuver I Determined I Observed 

20 Apr 
23 Apr 
25 Apr 
27 Apr 
30 Apr 
2 May 
4 May 
7 May 
14 May 
16 May 
18 May 
21 May 
23 May 

105.37 
103.76 
97.76 
114.73 
95.86 
114.1 1 
98.79 
116.28 
93.15 
112.82 
105.97 
119.49 
105.62 

Sun Angle (Dev) 
103 
103 
1 02 
95 
113 
95 
113 
99 
113 
95 
1 1 1  
107 
117 
103 

Figure 4-5. Determined and Observed Sun Angle 

Maneuver performance is very difficult to analyze for the termination phase of the mission. From 1 
Jan 91 to 16 Apr 91 there was no method of attitude determination following the maneuvers. During this time, 
there were three basic criteria for determining whether to continue with maneuvers: 

(1) Nutation must be consistently less than 10 degrees on the pass prior to the maneuver. 
(2) The Sun angle must be within 3 degrees of the predicted Sun angle. 
(3) The orbit must be good enough to acquire the vehicle. 

For this time span, the maneuvers had to be stopped twice. Both times were due to poor orbit predictions. 
The other two criteria were violated only once, the exception being the 21 degree maneuver at the end of the 
span. Since the Sun angle was consistently within 3 degrees of the observed through a wide variety of 
attitudes, it seemed very probable that the attitude was within 3-5 degrees of the actual attitude. The difference 
between the determined and predicted Sun angles during the termination phase are shown in figure 4-6. 
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Figure 4-6. Difference Between Observed and Predicted Sun Angle 
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By April 20th, the in-house attitude software was completed and checked out. A rough attitude 
determination, using this software, was now possible before most of the remaining attitude maneuvers. For 
the maneuvers from April 20th to May 23rd, the difference in observed and predicted Sun angles (see figure 4- 
6) as well as the total angular error between attitude fits could be determined. The total angular errors are 
shown in Figure 4-7 

Maneuver Date 
(1991) 
18 Apr 
20 Apr 
23 Apr 
25 Apr 
27 Apr 
30 Apr 
2 May 
4 May 

1 1  May 
14 May 
16 May 
18 May 
21 May 

Angular Error Between 
Predicted and Determined (De@ 

2 1.067 
3.900 
19.223 
4.949 
0.61 1 
5.174 
2.385 
7.101 
5.034 
10.766 
2.490 
4.979 
7.650 

Figure 4-7. Angular Error Between Predicted and 
Determined Pos t-maneuver Attitudes 

The results are mixed. While the differences between predicted and observed sun angles are consistently 
within 3 degrees of the actual (exception in the case of the largest maneuver), the angular error between 
determined (post-maneuver) and predicted attitude was quite variable. The largest errors are most likely due tc 
selecting the image solution rather than the correct solution. The large nutation also contributes to attitude 
determination error. Most of the errors can be explained this way. These solutions seemed reasonable 
considering there was so little consistent data and so much nutation. 

5. SUMMARY 

SCATHA presented the MCT with several challenges over it's 12 year life with the termination phase 
being the most demanding. A summary of the MCT's activity and findings follow: 

1) The fuel depletion sequence was only partially successful. Most of the fuel was depleted but an 
estimated 2.5 lbs still remains on-board. 

2) The maneuver planning and execution were severely restrained by SCATHA's flexible booms that 
spanned 100 meters. 

3) Undamped nutation became a problem only after the spin-up maneuvers in the new ecliptic normal 
attitude. The undamped nutation required attitude maneuvers be spaced at least 3 days apart, 
dramatically hindered accurate attitude determination, and made precession maneuvers potentially very 
inaccurate. 

4) A long standing error in the software and database was discovered. The error remained hidden duf 
in large part to the high degree of accuracy and efficiency of all maneuvers performed. Correction of 
this error provided the basis for estimating the on-board fuel left on SCATHA after mission 
termination. 
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5 )  Attitude determination software, created in the final days of the mission, worked well at providing a 
rough attitude despite the nutation. 

6) The series of 48 attitude maneuvers during the termination phase appeared nominal even though 
telemetry was scarce and attitude detemination rough. 

7) The final attitude should leave SCATHA in an attitude that will provide enough power so there is a 
good chance of turning on the vehicle in the future. 
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ABSTRACT 

The Low-power Atmospheric Compensation Experiment (LACE) satellite, launched in February I990 
by the Naval Research Laboratory, uses a magnetic damper on a gravity gradient boom and a 
momentum wheel with its axis perpendicular to the plane of the orhi1 to stabilize and maintain its 
attitude. Satellite attitude is determined using three types of sensors: a conical Earth scanner, a set of 
sun sensors, and a magnetometer. The Ultraviolet Plume Instrument (UVPI) ,  on hoard LACE, 
consists of two intensified CCD cameras and a gimballed pointing mirror. The primary purpose of the 
UVPI is to image rocket plumes from space in the ultraviolet and visible wavelengths. Seconu'ury 
objectives include imaging stars, atmospheric phenomena, and ground targets. The problem facing ;he 
UVPI experimenters is thal the sensitivity of the LACE satellite attitude sensors is not always adequate 
to correcdy point the UVPI cameras. Our solution is to point the VVPI camwas at known targcts und 
use the information thus gained to improve attitude measurements. This paper describes the three 
methods developed to determine improved attitude values using the UVPI for both real-lime operalions 
and post observation anulysis. 

INTRODUCTION 

LACE Satellite Description 

The LACE satellite was designed and built by the Naval 
Research Laboratory (NRL) in Washington, DC. The 
satellite was launched on February 14, 1990 into a nearly 
circular orbit with an altitude of 541 km and a 43" 
inclination. It has no orbit adjustment capability. The 
spacecraft weighs 1440 kg. Its body is basically box 
shaped, 1.2 m by 1.2 m, and 2.4 m high. Gravity gradient 
stabilization is provided by a 45.7 m retractable boom, 
emerging from the top of the spacecraft, with a 91 kg tip 
mass including a magnetic damper. Foldout panels on the 
top and bottom support the solar arrays and sensor arrays 
respectively. Figure 1 is a drawing of the LACE satellite. 
The satellite's primary purpose is to provide an orbiting 
instrumented target board capable of measuring the effects of 
active compensation of a ground based laser beam propagated 
through the atmosphere. The LACE spacecraft was designed 
to support the experiment for 30 months. NRL operates a 
fixed and two transportable ground stations to communicate 
with, and control the satellite. Built by NRL, each 
transportable ground station is housed in two eighteen foot 
truck trailers. One trailer houses the telemetry, command 

and radio equipment, and thc other providcs an 
uninterruptable power supply and work area. The third 
ground station is permanently located in Maryland. Thcse 
stations provide all the command and communication links 
for the LACE spacecraft. 

Figure  1 
L A C E  S p a c e c r a f t  

* Barrios Technology Inc. ; * Rendix Field Engineering COT. 



History and Statement of the Problem 

When the LACE spacecraft design was complete and major 
subsystems, such as structure, power, and attitude control, 
were being fabricated and tested, an additional experiment 
was proposed for integration into the spacecraft. This new 
experiment was the Ultraviolet Plume Instrument, or the 
UVPI. The purpose of the UVPI is to point to, acquire, and 
actively track the plume of a rocket launched from the 
Earth's surface, and collect images of the plume in the 
ultraviolet wavelengths. The UVPI was accepted for 
integration into the LACE spacecraft with the ground rule 
that i t  have minimum impact on the already existing LACE 
design. This meant minimum volume, weight, power, 
telemetry, and command usage. It also meant no change to 
the spacecraft's proposed orbit, nor to the attitude control, 
radio frequency, or navigation subsystems, and no 
operational impact on the primary mission of the satellite. 
To fulfi l l  its goal, the UVPI was designed with an 
independently pointable camera with a field of view of about 
2". The LACE spacecraft was designed to maintain one side 
pointing to nadir to within +3" and with an attitude 
knowledge of about +lo. Initial UVPI pointing error 
analysis showed that the spacecraft attitude was the dominant 
source of pointing error, followed by spacecraft and target 
position uncertainty. The fundamental problem, then, was 
to be able to accurately point the UVPI when it is aboard a 
space platform with inadequately certain attitude. The 
solution that was developed during the operational planning 
was to use the UVPI imaging and precision pointing 
capability to augment the spacecraft's attitude sensor 
system. Using stellar and Earth fixed targets, the spacecraft 
attitude, both realtime and reconstructed, could be 
significantly improved. Three techniques to improve 
attitude knowledge were developed. These techniques 
became known as Yaw Scan, Beacon Tracking, and Star 
Pattern. The purpose of this paper is to describe these 
attitude determination techniques and show the results 
obtained when they were applied. 

Description of the UVPI 

The UVPI is mounted within the satellite and views through 
an aperture in the Earth oriented panel. By use of a 
gimballed mirror, the UVPI has a field of regard of a 50" 
half-angle cone about the satellite's nadir. When the UVPI 
is not in use, a door covers the aperture. Attached to the 
inside of this door is a flat mirror which, when the door is 
opened part way, allows the UVPI cameras to view celestial 
objects near the negative orbit normal or the Earth's limb. 
On-orbit photometric calibration is accomplished by 
observing stars with a known spectral signature. The UVPI 
has two cameras which share a common telescope and 
pointing system. The tracker camera has a field of view of 
2.0" by 2.6". It is sensitive in the UV and part of the blue 
portion of the visible spectrum, from 250 to 450 nm. The 
primary purpose of the tracker camera is to provide images 
to a closed loop tracking system. The plume camera has a 
field of view of 0.13" by 0.14'. It has four selectable filters 
and is sensitive in the UV from 195 nm to 350 nm. Open 

loop pointing is performed by providing, for each axis of the 
gimballed mirror, a polynomial function that is evaluated by 
an onboard computer which drives the gimbals. These 
polynomials are generated on the ground and transmitted the 
instrument as command data. When the UVPI tracker 
electronics detects a target in the tracker camera field of 
view, the centroid of the target image is computed. In 
addition, if the UVPI is commanded to do so, the gimballed 
mirror moves so as to bring the target image to the center of 
the plume camera field of view. This is referred to as closed 
loop tracking. If, during closed loop tracking, thc target is 
lost, the UVPI will continue pointing by extrapolating thc 
most recent gimbal readings, or revert to the polynomial 
pointing functions. If a target reappears, the UVPI will 
reacquire and track the target. Should the tracker electronics 
fail to identify a target, a method of manually assisted 
tracking is available. An operator viewing the telemetry 
images at a ground station can apply a vernier adjustment, 
using a joystick, to the gimbal position or velocity. In this 
way, targets of interest which are low contrast or arc 
obscured by clutter, such as clouds, can be brought into the 
plume camera's field of view. This method of joystick 
tracking was implemented while the spacecraft was in orbit. 

All the necessary commands and pointing functions can be 
stored onboard the spacecraft to perform one or scvcral 
complete observations over remote parts of the Earth. The 
resulting image data is recorded by a 3 1/2 minute tape 
recorder. As of this date, four rockets launched from the 
Earth's surface have been tracked and imaged by the UVPI. 

LACE Attitude Determination and 
Control 

The attitude control system used for LACE was designed to 
meet the requirements of the primary experiment. This 
experiment required one side of the spacccraft to point toward 
nadir with a f3"  accuracy. In addition, i t  was required that a 
leading, retractable boom remain within f 2 "  of the orbit 
plane (see figure 1 for a drawing of the spacecraft). To mcet 
these needs, a gravity gradient system was used. This 
system consists of a boom with a 92 kg tip mass, rising 
from the top of the spacecraft. A magnetic damper makes 
up part of the tip mass. A momentum wheel with its axis 
perpendicular to the orbit plane is used for yaw stiffening. 

Three types of sensors are employed to make attitude 
measurements. These are: A five eye sun sensor system 
which provides the direction to the sun from the spacecraft, a 
conical Earth scanner which identifies the nadir dircction by 
sensing the Earth's limb, and a magnetometer which 
measures the spacecraft's orientation with respect to the 
Earth's magnetic field. These sensors were selected to meet 
the requirement that the spacecraft's attitude be determined LO 
+lo  after post observation processing. In practice, the 
conical Earth scanner alone provided spacecraft roll and pitch 
measurements accurate to about +OS". The yaw, however, 
remained uncertain to about fl". In addition, the sun 
sensors provided no data during nighttime operations when 
most of the UVPI rocket target and stellar target 
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observations were made. Figure 2 is a plot of typical 
spacecraft attitude for two complete spacecraft orbits. 
Although roll and pitch have a relatively smooth and 
predictable behavior, instrument calibration and alignment 
contribute to measurement uncertainty. The yaw component 
shows large (-1') discontinuities when the spacecraft 
transitions from light to dark. The sinusoidal oscillation 
pattern of the spacecraft attitude is a typical feature of 
gravity gradient stabilized systems. The dominant period of 
these oscillations is equal to the spacecraft orbital period. 

January 25, 1992 

0:oo 0:50 1 :40 2:30 3:20 
Time (HH:MM GMT) 

F igure  2 .  
Typica l  Spacecraf t  At t i tude Va lues  

The attitude sensors can be sampled at various rates and the 
data transmitted to the ground station in real time, or stored 
onboard for later transmission. Typically, real-time data is 
sampled about once per second and the non-realtime data is 
sampled and stored at a rate of once per 100 seconds. The 
Quaternion ESTimator (QUEST) program is used to process 
the measurements (both realtime and non-realtime) into 
attitude estimates. In addition the Real Time Attitude 
Computation (RTAC) program is also used to estimate the 
attitude using realtime measurements. 

TECHNIQUES AND APPLICATIONS 

Yaw Scan of Star 

Description of Method 
Since the uncertainty of the spacecraft's yaw was about +lo, 
about the distance form the center to the edge of tracker 
camera field of view, a method of searching for targets was 
developed. To aid in locating stellar targets, a search 
pattern was superimposed onto the open-loop pointing 
function. This search pattern was a sinusoidal scan in the 
spacecraft's yaw direction. It typically had an amplitude of 
about 1' and a period of about 16 seconds. An operator, 
viewing the downlinked images in real time, observes the 
target entering the field of view. Noting the exact time 
when the target crossed the center line of the tracker camera, 
the operator, using ground based computer programs, can 

compute the spacecraft's yaw value and re-compute the 
UVPI pointing polynomials, transmit them, and center the 
target in the tracker camera. This method worked 
particularly well for stellar objects. The UVPI can only 
view stellar objects near the negative orbit normal direction. 
With this geometry, the errors in spacecraft roll and pitch 
have little effect on the image. The error in yaw, however, 
is nearly coincident to the error in pointing. To help the 
operator identify targets, stars were selected which were 
relatively bright in the blue and UV, and which were isolated 
by a few degrees from other bright objects. In addition, an 
estimate of the star's intensity, as seen in the downlinked 
image, was made so the operator was confident that the 
correct star was in view. 

Application 
Once a value for yaw was determined using the star scanning 
lechnique, it could be used as input to any UVPI pointing 
function in the next few minutes. Since the spacecraft 
oscillates in the yaw direction with an amplitude of about 
0.4" and a period of about 95 minutes, the maximum rate of 
change of the yaw value would be about O.O3"/min. Over 
the next 10 minutes the change in yaw would be less than 
0.3"; comparable to the uncertainty in the roll and pitch 
values. The roll and pitch values used to compute the UVPI 
pointing functions were determined from the spacecraft 
attitude sensors. 

Results 
Table 1 lists the results of determining thc yaw on 23 
occasions using the yaw scanning technique. The data spans 
a little more than one year of instrument operation. Thc 
table shows the yaw value which was dctcrmincd by thc 
image scan method and by the spacecraft attitude sensing 
system. What is evident from these data is that the pcak-to- 
peak oscillation of the yaw is much less than what is 
indicated by the attitude sensors alonc. In fact, the total 
variation in yaw based on the scanning technique, from 0.2" 
to 1.0", is less than the uncertainty of 21" ascribed to the 
attitude sensor measurements. Recent stellar observations 
which used a fixed yaw value of 0.3" resulted in good initial 
pointing and did not require any pointing adjusmcnt based 
on the location of the target star in the image field of view. 

Beacon Tracking 

Description of Method 
The roll and pitch attitude measurements, provided primarily 
by the conical Earth scanner, were thought to be precise 
(i.e., repeatable) to within about 0.25". Figure 2 shows 
very consistent roll and pitch measurements. The 
uncertainty of 0.5" assigned to roll and pitch were due 
mainly to biases or offsets in the Earth scanner and 
alignment of the UVPI to the attitude reference frame. By 
determining accurate attitude values using the UVPI alonc, 
independent of the spacecraft attitude measuring system, any 
mutual offset or misalignment could be measured. This 
measured offset could then be applied to improve spacecraft 
attitude measurements. 
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Table I 
Comparison of the Yaw as 

Determined by the UVPI Star Scan and by 
the Spacecraft Attitude Sensors 

Appendix A. Since the spacecraft's attitude in each axis was 
always less than about &3", and oscillates at orbital periods 
(about 95 minutes), it could be assumed that the spacecraft 
attitude did not changc over the solution pcriod, which was 
typically 5 seconds. 

Scanned M e a s u r e d  
D a t e  w i t h  b y  D i f f .  

UVPI S p a c e c r a f t  

DD-MM-YY ( d e g )  ( d a g )  ( d e g )  

1 1 - 1 1 - 9 0  0 . 8 8  0 . 1  6 - 0 . 7 2  

1 2 - 1  1 - 9 0  1 . o o  1 . 0 8  0 . 0 8  

1 6 - 1  2 - 9 0  0 . 2 4  - 0 . 4 0  - 0 . 6 3  

1 8 . 1  2 - 9 0  0 . 4 1  - 0 . 3 5  - 0 . 7 6  

1 9 - 1  2 - 9 0  0 . 4 7  1 . 0 2  0 . 5 5  

2 0 - 1  2 - 9 0  0 . 4 1  - 0 . 0 8  - 0 . 4 9  

1 3 - 2 - 9 1  0 . 2 6  - 0 . 6 0  - 0 . 8 6  

1 4 - 2 - 9 1  0 . 3 6  - 0 . 6 7  - 1 . 0 3  

1 5 - 2 - 9 1  0 . 7 6  1 . 0 7  0 . 3 1  

1 4 - 4 - 9 1  0 . 6 4  - 0 . 7 1  - 1 . 3 5  

2 2 - 4 - 9 1  0 . 6 4  0 . 7 2  0 . 0 8  

2 3 - 4 - 9 1  0 . 4 7  0 . 9 8  0 . 5 1  

2 4 - 4 - 9 1  0 . 6 5  0 . 7 4  0 . 0 9  

2 5 - 4 - 9 1  0 . 5 7  0 . 7 8  0 . 2 1  

1 3 - 6 - 9 1  0 . 4 3  0 . 8 4  0 . 4 1  

1 4 - 6 - 9 1  0 . 8 1  0 . 7 9  - 0 . 0 2  

8 - 8 - 9 1  0 . 2 9  0 . 8 7  0 . 5 8  

9 - 8 - 9 1  0 . 3 1  1 . 1  1 0 . 8 0  

1 4 - 9 - 9 1  0 . 2 8  - 0 . 4 0  - 0 . 6 8  

1 6 - 1  1 - 9 1  0 . 2 1  - 0 . 8 5  - 1 . 0 7  

1 8 - 1  1 - 9 1  0 . 2 2  - 0 . 8 4  - 1 . 0 6  

1 9 - 1  1 - 9 1  0 . 2 2  - 0 . 7 8  - 1 . 0 1  

9 - 1  - 9 2  0 . 6 0  - 0 . 9 2  - 1 . 5 2  

A portable ground beacon was uscd as the target for the 
UVPI. The beacon consists of four 6 kW metal halidc 
bulbs, each with its own power supply. About 10% of the 
bulbs output is in the bandwidth of thc UVPI tracker camcra 
which, at night, provides a targct bright enough for thc 
UVPI to track. This beacon was used for various instrument 
calibration and tracking tests, and has been located at: 
Southern Maryland; Wallops Is., Virginia; Titusvillc, 
Florida; Vandcnberg AFB, California; Table MI., Calilbrnia; 
and Hawaii. 

Results 
Table 2 shows the results of the attitude determination using 
seven diffcrcnt UVPI ground beacon observations. The 
table also shows the attitude measured by the spacecraft 
attitude sensing system at the same time, and the differcnce 
between the two values. A bias of 0.7" is clearly evident in 
the roll measurements. A standard dcviation of the 
differences in roll values of only 0.1" indicates that the roll 
measurements madc by the spacecraft attitude sensing 
system are quite accurate once the bias is accounted for. The 
pitch parameter shows no systcmatic offset. It  is known 
that the spacecraft has a natural pitch bias due to an offset of 
the spacecraft center of mass. The calculated yaw values 
show an average of 0.4' with a standard deviation of 0.2". 
This is consistent with the previous results whcrc the yaw 
was calculated using the star scanning techniquc. The 
difference betwc.cn the calculated yaw and the yaw measured 
by the spacecraft attitudc scnsors is too uncertain to cstimate 
any possible offset. 

Average  0 . 4 8  0 . 1 5  - 0 . 3 3  

S t d .  0 . 2 3  0 . 7 8  0 . 7 0  

M e x .  1 - 0 0  1 . 1 1  0 . 8 0  

M l n .  0 . 2 1  - 0 . 9 2  - 1 . 5 2  

The approach used, was to have the UVPI track a fixed, 
known location on the surface of the Earth. The UVPI's 
gimballed pointing mirror provided a sequence of unit 
vectors pointing to the target in the body frame of the 
spacecraft. For each measurement there was a corresponding 
computed unit vector pointing from the spacecraft to the 
target in the local reference. or attitude frame. The difference 
between these two unit vectors was viewed as the attitude. 
A morc detailed description of this method is provided in 

The seven observations used for this analysis Uackcd the 
ground beacon target from 20 seconds to over 2 minutes. 
Attitude values were calculated using 5 second data 
segments. This resulted in a sequence of solutions spanning 
the observation interval. Figure 3 is a plot of the sequencc 
of attitude solutions for one of thesc observations. This 
plot, typical of the seven cases, shows a largcr variation in 
each attitude component than could be expcctcd from thc 
natural oscillations of the spacecraft. From the observed 
amplitudes of oscillation in each axis, 0.25", 0.9', and 0.3" 
for roll, pitch, and yaw, the maximum rates of change arc 
27rA/P, where A is the amplitude and P is the pcriod of 
about 95 minutcs. This gives maximum rates of changc of 
0.02"/min, 0.06"/min, and 0.02'/ min for roll, pitch, and 
yaw which are clearly smallcr than the calculated values 
shown in Figure 3 .  
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Table II 

b y  Spacecraf t  At t i tude Sens ing  S y s t e m  

Beacon Track Attitude Sensors (Measured - Calculated) 

Comparison of At t i tude Calculated Using U V P I  Tracking Beacon and Measured  

Calculated Using UVPI Measured Using S/C Differencc 

Date 
DD-MMM-Y Y 

Roll Pitch Yaw Roll Pitch Yaw 
(deg) (&g) (de@ (deg) (deg) (de& 

2 2  - A p r -  9 1 
2 4 -Apr-91 
2 5 - A p r -  9 1 
13- J u n -  9 1 
1 4 -  J u n - 9 1  
11 -Nov- 90 

- 0 . 2 5  0 . 1 0  0 . 2 9  
- 0 . 1 8  - 0 . 4 4  0 . 2 5  
- 0 . 2 7  - 0 . 6 8  0 . 6 4  
- 0 . 0 4  -0 .66  0 . 4 3  
- 0 . 3 7  - 0 . 3 6  - 0 . 0 2  
- 0 . 1 9  - 0 . 5 9  0 .50  
- 0 . 2 8  - 1 . 0 9  0 . 2 9  

To determine if the large variations in the calculated attitude 
parameters could be attributed to errors in other model 
parameters, a sensitivity analysis was performed. Using 
simulated data, errors were introduced one at a time in 
selected model parameters. These parameters and errors 
were: 0.5 km in the North and East components of the 
location of the ground beacon, 1.5 km in the along track 
direction of the spacecraft, and 0.01" in the azimuth and 
elevation angle of the UVPI gimballed mirror. The ground 
beacon was located at various sites in the continental US. 
Its location was determined, for each of these locations, 
either by estimates from the proximity to known geodetic 
locations such as fixed tracking antennas, or from a Global 
Positioning System receiver. The spacecraft position is 
obtained from the Naval Center for Space Surveillance 
(NAVSPASUR) in Dalhgren Virginia, and is accurate to 
within 1.5 km during the time period of ground beacon 
tracking. These orbit elements are provided especially for 
UVPI operations and use special propagation models to 
attain high accuracy. The pointing error due to the UVPI 
gimballed mirror was assumed to be two times the readout 
of the least significant bit in the telemetry. Gimbal 
measurement noise, estimated from gimbal readings and 
target image centroiding, is estimated to be about 0.002'. 
Figures 5, 6, and 7 are the results of this analysis for roll, 
pitch, and yaw respectively. Comparing these results to the 
calculated results in Figure 3 shows that none of the 
examined error sources are sufficient to account for the wide 
variation in the calculated attitude. 

0 . 4 1  - 0 . 2 5  - 0 . 3 2  
0 . 4 9  - 0 . 7 5  0 . 7 2  
0 . 4 7  - 0 . 7 6  0 . 7 4  
0 . 4 4  - 0 . 7 7  0 . 7 8  
0 . 4 5  - 0 . 2 6  0 . 8 4  
0 . 4 0  - 0 . 5 2  0 . 7 9  
0 . 5 5  - 0 . 5 8  0 . 9 7  

Verification 
Two methods of verification were used. First, images of the 
ground beacon, where the UVPI was pointing but not 
tracking, were adjusted by 0.7" in the roll direction during 
post observation processing. Figure 7 shows several 
observation results, plotting the original location along with 
the location after an adjustment for roll bias. In each case 
the adjustment resulted in the ground beacon target being 

Roll 
0 

0 . 6 6  
0 . 6 7  
0 . 7 4  
0 . 4 8  
0 . 8 2  
0 . 6 0  
0.83 

Pitch Yaw 
(deg) (dcg) 

- 0 . 3 5  - 0 . 6 1  
- 0 . 3 1  0 . 4 7  
- 0 . 0 9  0 . 1 0  
- 0 . 1 1  0 . 3 5  

0 . 1 0  0 . 8 6  
0 . 0 7  0 . 2 8  
0.510.67 

Average 0 . 6 9  - 0 . 0 2  0 . 3 0  
Std. Dev 0 . 1 2  0 . 2 9  0 . 4 7  

moved closer to the center of the UVPI field of view (FOV). 
The second method uscd was to apply thc 0.7" roll bias to 
the UVPI pointing functions whcn attempting to acquirc the 
ground beacon target. Previously, h e  approach had bcen to 
perform a circular scan of about 0.5' about the nominal 
pointing function to ensure that, at some point during the 
scan, the target would enter the FOV and could bc idcntified 
and acquired. Recent operations have applied the roll bias 
identified in this analysis and did not apply a scan pattcrn. 
In all cases where this was done, the target bcacon fcll wcl l  
within the camera's FOV. 

.................................................. ...... ;..i...;..i..j ..,.......,..,.... . . . . .  ........ 
. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  

-. .... .......- ........... 
, . o . .  . . . . . . .  

8 : 4 2  8 : 4 2  8 : 4 2  8 : 4 2  8 :42  8:43 8:43 8:43 8 : 4 1  
Time (HH:MM GMT) 
Figure  3 

Calculated At t i tude V a l u e s  using 
Beacon Tracking.  June  1 3 ,  1 9 9 1  
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Figure  4 
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Figure  5 
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Star Pattern 

Tech n ique 
One mission of the UVPI is to gather rocket plume images. 
Since the instrument's data collection mission was expected 
to last for at least one year, with plume observations made 
throughout this period, it was felt necessary to regularly 
verify the UVPI radiometric response. The method used to 
do so is to image one or more stars whose spectra and 
magnitudes are known. Based on the photon counts from 
these known stars, UVPI calibration parameters are 
calculated. A typical calibration observation consists of 
pointing the instrument in the appropriate direction, and 
tracking a star for some time. Pointing direction is 
de te rmined  by 
calculating needed 
gimbal functions and 
door mirror angles 
using projected 
satellite location and 
attitude. Because of 
LACE a t t i tude  
uncertainty and the 
requirement that the 
star or stars imaged 
be p o s i t i v e l y  
identified, stars and 
star patterns imaged 
by UVPI a re  
compared with a star 
map after the 
observation. After 
stars in a pattern are 
matched to an 
image, as required 
for a posit ive 
identification, error 
in the LACE attitude 
sensors can be easily 
determined using the 
following technique. 

After  a s ta r  
observa t ion  is  
p e r f o r m e d ,  a 
computer program, 

star map. Once a match is found, it provides the actual 
location of the FOV, which is manually traced onto the 
FOV/star map plot. The relative offset of the two FOV 
rectangles is the result of program input uncertainties, of 
which the predominant ones are inaccuracies in the LACE 
attitude inputs. Rotation between thc two boxes is 
attributed to pitch error. Pitch error is difficult to measure 
accurately so frames showing large pitch errors have not 
been included in this analysis. Small apparent pitch errors 
are approximated to zero. Linear offset between the actual 
and calculated FOV's is attributed to error in roll and yaw. 
Roll error is manifested as offset in a direction parallel to thc 
short sides of the FOV rectangle. Yaw error is manifested as 
offset in a direction parallel to the long sides of the FOV 

Right ascension 

Figure  8 
S tar  Map wi th  Calculated U V P l  t racker  Camera 

FOV Super imposed 
S e p t e m b e r  2 3 ,  1 9 9 1  

called the Line-of Sight (LOS) program, is used to calculate 
the Right Ascension and Declination of the four comers of 
the FOV box. Inputs to this program are: LACE position, 
LACE attitude (LACE attitude sensor data smoothed to fit a 
2nd order curve), UVPI gimbal angles, and UVPI door angle 
(since the observed star images are reflected on the door 
mirror). A plot is then produced which shows a star map in 
the vicinity of the calculated FOV of a particular frame and 
includes the calculated FOV box. Figure 8 shows an 
example of this type of plot. The corresponding frame 
showing the star pattern actually imaged by the camera is 
then transferred to hard copy for comparison to the star map. 
By scaling the hard copy of the image properly, the star 
pattern in the image can be matched to a star pattern on the 

rectangle. Error is 
defincd as actual 
a t t i tudc  minus 
calculated auitude. 
The sim pli fica t ion 
of decoupling roll 
and yaw is valid and 
yields sufficicnlly 
accuratc results for 
the smal l  angles 
usually encountered. 
It should be noted 
that ,  for this 
technique, any error 
in the roll includes 
error caused by 
inaccurate door anglc 
measurements. 

Application 
Figurc 8 shows a 
plot of a typical star 
map with t h e  
calculated FOV of 
UVPI for a particular 
frame included. 
Figure 9 shows the 
corresponding image 
that was rccordcd in 
the UVPI camera. 
When the two arc 
superimposed and 

the pattern in the image is matched to stars in the star map, 
the actual FOV can be traced onto the star map. Figure 10 
shows both the actual and calculated FOV traced onto a star 
map. The error in attitude is quantified using the angular 
dimensions of the UVPI FOV as a scale. As mentioned 
earlier the UVPI FOV is 2.0" by 2.6". In Figure 10 it  is 
Seen that pitch error is minimal, yaw error is also small, and 
roll error is approximately -0.6". 
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Results 
Table I11 lists the mean and standard deviation of the 
corrected roll, pitch, and yaw calculated from over 50 
individual frames spanning a little over one year of UVPI 
operations. Notice that the mean of yaw is near zero. This 
indicates that there is no detectable rotational offset in yaw 
between the UVPI and the LACE coordinate systems. The 
large standard deviation in the yaw shows that data from the 
Sensors is especially inaccurate for yaw measurements. The 
0.7" mean for the roll represents a rotational offset between 
the UVPI and LACE coordinate systems. The large standard 
deviation in roll error is attributed to random door angle 
error. The 0.7" offset is corroborated by findings from 
beacon observations, shown in Table 11. The relatively 
small standard deviation in roll error shown in Table I1 
results from the fact that beacon observations do not use the 
door mirror. Hence this source of error is eliminated from 
beacon observation derived measurements. Appendix B 
contains the data used to calculate values shown in Table 111. 

Table  1 1 1  
At t i tude Error  Data  from Star  Pat te rn  

Technique  

Attitude Error 
I Roll I Yaw 

Mean I 0 . 7 4  1 0 . 0 7  
Standard Deviation I 0 . 7 8  I 0 . 8 0  

Table 111 shows that while statistical analysis of attitude 
error data from many passes can reveal systematic attitude 
errors, even error from a single frame during an observation 
can help in improving attitude data. If it is assumed that 
attitude error stays constant during the time period of a 
typical observation (5 to 10 minutes) then it follows that 
the attitude error measured for a single frame can be applied 
to every frame in that pass. This procedure represents the 
second step in attitude data processing (the first is 2nd order 
smoothing) and is called enhancement When this enhanced 
attitude data is used as an input to the LOS program, each 
and every FOV rectangle should be very close to where the 
UVPI was actually looking. This idea has been tested and 
was found to be valid for most cases. This enhanced attitude 
data represents the best attitude of W P I  for the particular 
time period. Figures 11 and 12 show the yaw and roll error 
versus frame number (i.e., time). It is seen that unsmoothed 
roll and yaw show significant error and scatter while 
enhanced roll and yaw show average error near zero and very 
little scatter. It is noted that smoothing alone reduces scatter 
significantly. Applying the observed error back to the data 
simply moves the average error closer to zero. The data 
shown in the following graphs was generated using the error 
calculated from Figure 10. Again, it is noted that for this 
technique, roll error includes LACE attitude sensor error and 
door mirror angle error. It is known that as long as the door 
mirror is not moved, the door mirror angle error also 
remains constant. This is the case for most star tracking 
sequences. Figures 11 and 12 demonstrate that these 
assumptions are valid. Note that the time period shown in 

Figures 11 and 12 begins some time after thc framc depicted 
in Figure 10. Therefore, what appears to bc an 
inconsistency in the calculation of roll and yaw error 
between Figure 10 and Figures 11 and 12, is in fact duc LO 

sensor measurement noise at two differcnt timcs. 
Enhancement of attitude data as described above has become 
a standard procedure in UVPI data processing and has shown 
to result in average attitude errors of approximately .lo. 
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Other Applications 
Another application of this technique has automated some of 
the processing. Once a star pattern has bcen idcntificd, a 
computer program is used to directly calculate the attitudc of 
the spacecraft. This is an improvement over the preceding 
technique in that roll, pitch, and yaw are calculatcd as a 
triplet. While valid, this technique is a recent devclopmcnt 
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and has little supporting data. The basic technique is shown 
in  Appendix A. 

SUMMARY 

Thc precision pointing and imaging capability of the UVPI 
has been used to improve the LACE spacecraft attitude 
srnsing and determination. Utilizing these capabilities, the 
instrument was used to determine attitude in real time, 
estimate offsets, and to more accurately characterize the 
spacecraft's attitude sensing system. This was accomplished 
by viewing stars which were near the normal to the orbit 
plane, and by tracking a ground target with a known 
location. Based on these results three conclusions were 
reached: (1) There was an offset between the attitude 
reference frame and the imaging instrument of 0.7" in the 
roll direction, (2) The roll and pitch provided by the 
spacecraft attitude sensors were better than expected, and (3) 
The total variation in the yaw was much less (k0.4" vs. 
? I  .O0) than the spacecraft sensors indicated. Thesc results 
wcre then implemented into instrument operations resulting 
in improved camera pointing accuracy. 

The experience with the LACE spacecraft and the UVPI has 
tiemonstrated that a precision pointing instrument can be 
opcmted from a spacecraft with simplc and inexpensive 
attitude control and sensing systems. The imaging 
instrument itself can be used to improve the spacecraft 
;it ti tudc de term ination. 
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Appendix A 

Attitude Determination Technique 

for Ground Beacon Tracking or Star Pattern Observation 

Let L be an orthogonal coordinate system having L1, L2, L3 as its axes where L3 is along the spacecraft 
radial, L2 is pointing opposite to the orbit normal, and Ll  completes the right-handed rectangular 
coordinate system. 

L3 

\ \ I  

L3) : 
9 83) 

Local 
: Body 

Vertical 
Fixed 

B2 
Figure A 1 

Coordinate S y s tem 

Let B be an orthogonal coordinate system attached to the body of the spacecraft whose axes are B1, B2, 
and B3 such that if the attitude of the spacecraft is zero (i.e., roll = pitch = yaw = O"), then the coordinate 
systems L and B are identical. Figure A1 illustrates the two coordinate systems. 

To establish a relationship between the two coordinate systems, we rotate the L system first about the L1 
axis in the clockwise direction an angle equal to fp, forming the (Ll, L2', L3') system. Next rotate 
counter clockwise about the L2' axis an angle equal to +r, forming the (Llt,L2',B3) system. Finally, 
rotate counter clockwise about the B3 axis an angle equal to +y, forming the (B 1 ,BZ,B3) system. 

The rotational matrices that correspond to the three rotations described above can be expressed as: 

0 +sin(p) +cos(p) 
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+cos(r) 0 -sin(r) 

+sin(r) 0 +cos(r) 
[+[ 0 1 0 ] 

+cos(y) +sin(y) 0 

The three rotations can be combined into a single rotational matrix [A], the attitude matrix, by multiplying 
the rotational matrices [yl, [R], and [PI in that order to give: 

cos(y)cos(r) - cos(y) sin(p) sin( r )  + sin(y) cos( p) - cos(y) cos(p) sin ( r )  - sin(y) sin( p )  
-sin(y)cos(r) sin(y)sin(p)sin(r) + cos(y)cos(p) sin(y)cos(p)sin(r) - cos(y)sin(p) 

sin@) sin(p) cos(r) cos( p )  cos( r )  

the attitude matrix [A], an orthonormal matrix such that [A]-* = [A]T, transforms vectors expressed in the 
L coordmate system to the B coordinate system. 

T -. 
Let 1 = ( ~ , , ~ ~ , l ~ )  be the LOS unit vector from the spacecraft to the target (a ground beacon or a star) in the 

L coordinate system. Then T is a function only of the spacecraft ephemeris and target position. Next let 

h = (4,b2,h) be the LOS unit vector from the spacecraft to the target expressed in the B coordinate 
system. The vector 6 is a function of the characteristics of the body-fixed pointing system which, for 
UVPI, included the location of the target (in terms of the x- and y-pixels location on the focal plane) 
relative to the center of the FOV of the camera and the azimuth and elevation of the gimbal mirror (and of 
the UVPI door angle if the target is a star). The vectors 

T 4 

and 6 are then related by: 

[ A J - i  = G 

Since the attitude of the spacecraft is within f 3O, the small angle approximations can be made. The matrix 
[A] can be linearized, keeping only the zeroth and first order terms, to give: 

where r, p, and y are roll, pitch, and yaw angles expressed in radians, necessarily. 

Now, treating vectors 7 and 6 as known quantities, and r, p, and y as unknowns, Eq. (1) can be 
rewritten as: 
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-1, 0 +I2 
0 -1, -1, 

4 12 0 

or 

where 

[m].? = c' 

-1, 0 +12 
[m]= 0 -1, -11 [ 4 12 0 

, and c'= 

Eq. (3) 

Note that [m] is of rank 2 and det[m] = 0 in which case r, p, and y cannot be solved uniquely using just a 
single equation. However, using a series of LOS unit vectors during a short observation interval for the 
case of the beacon or using the star patterns in the case of star observation, the attitude can be solved 
uniquely. In practice, the LOS vectors are obtained by tracking the beacon source or observing the night 
sky to collect star patterns. 

Let's assume that there are n LOS unit vectors that can be obtained during an observation, Eq. (3) can be 
written for each LOS unit vector. 

We thus have : 

[mI1 . x '=  F1 
[mI2 *x'= z2 
[m], .x' = F, Eq. (4) 

Eq. (4) is a system of 3n equations in three unknowns, namely the vector 2.  Eq. (4) can be written in a 
more compact form as: 

Eq. ( 5 )  [ M ] . x ' =  c 
where [MI is a 3n x 3 augmented matrix and C is a 3n dimensioned vector. 

The over-determined system in Eq. ( 5 )  can be solved either by the standard least-square method by 

forming the residual function and minimizing lEr, or by forming the transpose of [MI and 

solving for x' directly. The former technique is more general in that i t  can be applied even when the 
linearization of the matrix [A] is not invoked. The latter technique is more efficient with the linearized 

version. In this case, one would form [ M I T [ M ] . x '  = [MIT .e and x' = {[M]TIM]}-l[M]T. where the 

inverse, {[MIT[M]}-' , can easily be determined since it is a 3 x 3 matrix. 

= [ M I .  x' - 
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Appendix B 

Rev# 1 I roll pltch yaw 
Total Correction 

5 97 6706 0 . 6 5  0.00 -0.97 
1 0 0 5 4  0 .70  0 . 0 0  -1.05 
10510  0 .73  0.00 - 0 . 9 4  

Ui. 0 . 4 1  

0 .00  0 .49  
0 .33  0 . 0 0  -0 .40 

7 7 3 8  0 . 4 4  0 . 0 0  - 0 . 3 1  
0 .40  0 . 0 0  -0.65 

2439  1 0 9 0 3  -0 .00  0 . 0 0  - 0 . 7 5  

6456 
6456 

2 622 9928 1 . 4 8  0 . 0 0  - 0 . 1 9  I 9 9 9 4 I  1 . 5 9  0 .00  -0.49 

3910 1 . 0 5  0 . 0 0  0 . 7 6  
4360 0 .40  0 . 0 0  0 . 8 3  

2 6 3 6  0 . 6 9  0 . 0 0  - 0 . 4 8  I 1:::76( 0 .68  0 . 0 0  -0.67 
2837  
3078 
3182 

3686  
3820 

3835  
3866  

3790 0 .36  0 . 0 0  0 . 9 9  
7894  0 . 6 0  0 .00  -0.60 

1 7 0 9 4  1 . 3 3  0 . 0 0  -0 .05 
4378 1 . 2 3  0 . 0 0  - 0 . 2 3  
4228 0 .75  0 .00  0 .90  
5632 0 . 3 5  0 .00  1 . 4 8  
5650  0 .35  0 .00  1 . 4 8  

6196  0 . 5 9  0 . 0 0  1 . 2 3  
4564 - 0 . 2 5  0 . 0 0  0 . 3 9  

4090 
4423 

4592 
4 6 2 1  

1 1 7 4 0  -0.52 0 . 0 0  0 . 1 2  
4120 0 .80  0 . 0 0  0 . 2 2  
9339  0 .10  0 . 0 0  0.40 

1 3 3 3 2  1 . 0 0  0 . 0 0  0 . 2 5  
9880 - 0 . 7 6  0 . 0 0  -0.57 
9583 1 . 0 7  0 .00  0.78 

4669 
4983 
5279  

5 3 2 1  

5336  

4 . 2 5  0 . 0 0  - 0 . 6 7  
5582 -0 .30  0 . 0 0  - 1 . 4 3  

1 0 4 2 6  1 . 4 5  0 . 0 0  0 . 1 7  
1 7 8 9 6  1 . 0 4  0 . 0 0  - 0 . 3 6  

7174  -0.38 0 .00  0 . 7 7  
1 8 2 4 4  0 . 3 5  0 .00  0 .86  
1 8 3 1 6  0 . 5 3  0 . 0 0  0 . 9 3  

3712 1 . 0 5  0 . 0 0  -0 .05  
4588 1 . 1 4  0 . 0 0  -0.25 

1 3 7 7 1  0 . 7 2  0 . 0 0  - 1 . 6 4  
1 3 7 8 3  0 .89  0.00 - 1 . 5 7  

4132 - 0 . 0 8  0 .00  0.88 
4282 -0 .08  0 . 0 0  0 . 8 8  

0 . 3 3  0 . 0 0  - 0 . 2 3  
25288  0 . 6 6  0 . 0 0  - 0 . 3 9  

6 4 1 1  I L3.4i:I 0 . 0 1  0.00 

5 3 5 1  
5396  

5487 

5537 

7360  2 . 0 1  0 . 0 0  0 .92  
7150  0.85 0 . 0 0  0 . 6 4  

1 1 6 0 1  0 . 8 3  0 . 0 0  0 . 3 5  
22516  0 . 8 0  0 .00  0 .36  

6338 0 . 9 0  0 . 0 0  0 . 8 1  
1 7 3 8 9  0.17 0 . 0 0  2 . 0 4  

4 4 1 4  1 . 5 4  0 . 0 0  - 0 . 4 5  

Mean 0 . 7 4  0 . 0 0  0 . 0 7  
S t d .  Dev 0 . 7 8  0 . 0 0  0 . 8 0  
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ABSTRACT 

The Low-power Atmospheric Compensation Experiment (LACE) satellite 
was launched in February 1990 by the Naval Research Laboratory. The 
spacecraft's pitch and roll are maintained with a gravity gradient boom and a 
magnetic damper. There are two other booms with much smaller tip masses, one 

i n  the velocity direction (lead boom) of variable length and the other i n  the 
opposite direction (balance boom) also of variable length. In addition, the system 
uses a momentum wheel with its axis perpendicular to the plane of the orbit to  
control yaw and keep these booms in the orbital plane. 

The primary LACE experiment requires that the lead boom be moved to 
lengths varying from 4.6 m to 45.7 m. This and other onboard experiments 
require that the spacecraft attitude remain within tight constraints whi le  
operating. The problem confronting the satellite operators was to move the lead 
boom without inducing a net spacecraft attitude disturbance. A description of :) 

method used to change the length of the lead boom while minimizing t he  
disturbance to the attitude of the spacecraft is given. Deadbeating to darnpeii 
pitch oscillations has also been accomplished by maneuvering either the lead or 
balance boom and will be discussed. 

* Project Scientist, LACE Project 
* Project Engineer, LACE Project 
+ Project Engineer, LACE Project 
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Figure 1. Drawing of the LACE satellite. 

LACE SATELLITE DESCRIPTION 

The Low-power Atmospheric Compensation Experiment (LACE) satellite 
wiis designed and built by the Naval Research Laboratory (NRL) in Washington, 
[IC. The satellite was launched on 14 February 1990 into a circular orbit with ;in 

altitude of 541 km and a 43" inclination. The spacecraft weighs 1440 kg and the 
body of the spacecraft is basically box shaped, 1.2 m by 1.2 m and 2.4 m high. 
Figure 1 is a drawing of the LACE satellite. The LACE satellite has no orbit 
adjustment capability. Attitude is controlled with gravity gradient stabilization 
provided by a retractable boom emerging from the top of the spacecraft with a 
91 kg tip mass containing a magnetic damper. There are two additional 
retractable booms with tip masses each of 12.7 kg; one in  the velocity direction 
of variable length up to 45.7 m (lead boom), and the other i n  the  anti-velocity 
direction, also variable to 45.7 m (balance boom). The system uses a momentum 
wheel with its axis perpendicular to  the plane of the orbit to keep these booms 
in  the orbital plane. Spacecraft attitude is determined using the output from 
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change in the frequency, amplitude, or phase of any of the attitude components. 
A very large change was performed to demonstrate the effectiveness of this 
method. Figure 4 shows the pitch as a function of time for a change in lead boom 
from 4.6 to 43.3 m and balance boom from 45.7 to 16.5 m. The pitch bias 
changed by 1" with no significant change in pitch amplitude. In addition, the 

pitch frequency is not altered during these moves. For completeness, the plots 
for roll and yaw for the same event are shown in Figure 5 and Figure 6. It  was 
also noted that the step size of 1.5 meters was conservative and one experiment 
indicated that larger steps could have been used without disturbing the 
amplitudes of the attitude components. 
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Figure 4. Pitch variations during boom movements. 
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three sets of sensors: a conical Earth scanner, a set of three magnetometers, a n d  
five sun sensors. 

NRL operates three ground stations to communicate with and control the 
LACE spacecraft and its experiments. The LACE spacecraft was designed to 
support its experiments for 30 months. 

ONBOARD EXPERIMENTS 

The satellite's primary purpose is to provide an orbiting instrumented 
target board capable of measuring the effects of active compensation of a grourid 
based laser beam propagated through the atmosphere. This target board consists 
of an array of sensors on the bottom of the spacecraft. A panel of corner c u b e  

reflectors on the end of the lead boom provides a preliminary laser target. 'The 
position of the lead boom is fixed for the duration of the pass by the particular 
requirements of the experiment, but the length varies from one experiment to 
another .  

A second experiment aboard the LACE satellite is the Ultraviolet Plume 
Instrument (UVPI).  This is an ultraviolet imaging system with a maximum field 
of view of 2.0" x 2.6". This camera views through the Earth facing side of the 
LACE spacecraft and is pointed using a precision gimbaled mirror pointing 
system. Knowledge of the spacecraft attitude to better than f l "  is needed i n  each 
a x i s  for UVPI observations. Moving booms for the primary experiment could 
disturb the spacecraft attitude by inducing unacceptably large oscillations i n  the 
pitch direction. Although the large pitch oscillations would damp out i n  several 
days, these movements would make attitude predictions for the secondary UVPI  
experiment pointing functions very difficult since t h e  attitude motion would 
consist of both transient and steady state oscillations. A method of moving the 
lead and trailing booms was developed which would not cause a net disturbance 
to the  spacecraft attitude. 

MOTION OF LACE 

The angular momentum of the  spacecraft is dominated by the  once per 
orbit rotation about the pitch axis as the spacecraft keeps one side facing Earth. 
Added to this once per orbit rotation are perturbations caused by t h e  magnetic 
damper, by the orbit eccentricity of 0.02, and by aerodynamic forces. These 
perturbations result in a driven oscillation of the spacecraft's roll, pitch, and yaw 
about their equilibrium values. The natural oscillation rates of this system are 
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dependent on the moment of inertia (MOI) about each axis. The calculated MOIs 
of the spacecraft give a natural period of oscillation about the roll, pitch, a n d  
yaw axes of 56 minutes, 71 minutes, and 60 minutes respectively. In the steady 
state condition the natural oscillations are completely damped, but the driven 
oscillations about the equilibrium attitude remain. This results in  oscillations i n  
roll, pitch, and yaw with dominate periods which are orbital (approximately 95 
minutes) and half orbital. As with any gravity gradient spacecraft with ;t 

momentum wheel in the orbit plane, the roll and yaw are coupled to each other 
and the pitch is independent of the  two. Figure 2 shows typical roll, pitch, and 
yaw values over two orbits. Note that only the forced oscillations are present. 
The widely varying yaw values around 2.6, 4.3, and 5.9 hours are associated 
with the periods when the  spacecraft is in darkness. Only the magnetometers, 
with accuracies of &I0, are used for yaw angle determination during this time 
when the sun sensors are not available. 

DAMPING OF LACE 

The spacecraft is equipped with an attitude damper consisting of B 

collection of magnets imbedded in a sphere of oil, located at the  tip of the 
gravity gradient boom. As the spacecraft oscillates, the magnets attempt to align 
themselves to the Earth's magnetic field. This forced motion in a viscous f luid 
removes unwanted energy from the  the  attitude system. Although v e r y  
effective in removing unwanted natural oscillations in the  attitude system, the 
magnetic damper requires considerable t ime to remove even a moderate 
disturbance. Figure 3 shows the natural decay of the spacecraft's pitch motion 
after an induced disturbance. The time required to damp the oscillations to one 
half their initial amplitude is about 88.8 hours. This is an unacceptably long 
time for pitch disturbances caused by moving the boom to return to the  steady 
state oscillations in the pitch axis. 
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Figure 3.  Effect of magnetic damper on LACE pitch value. 
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DISCUSSION OF ATTITUDE CONTROL DURING BOOM MOVEMENTS 

During pre-launch operations planning, a computer program was used to 
simulate the spacecraft's dynamics. This program simulated naturally occurri rig 
forces on the  spacecraft such as gravity, aerodynamics, the magnetic damper, 
and solar pressure. In particular, this program also simulated the effects of the 
movements in all three spacecraft booms. 

It was noted that changing the boom lengths in one step caused changes i n  
pitch amplitude even though the MOI about the pitch axis was the  same before 
and after the move. The difference in MOI due to the uncertainty in the final 
boom positions and the variation in the MOI during the movement is less t h a n  
0.1% of the total and is, therefore, negligible. 

The subsequently disturbed pitch motion varied with the  magnitude of' the 
change in boom length and the time in the phase cycle of the  movement. 
Therefore, moving booms in one large step was not an acceptable solution to the 
attitude control requirement. It was also noted that a change in pitch bias (the 
equilibrium position about which the pitch oscillations occur) is associated with 
the change in boom positions and is a factor in the change in pitch amplitude. 
That is, if initially there is no pitch oscillation and the booms are moved i n  one 
step with constant MOI, the resulting pitch amplitude will equal the  incurred 
pitch bias change. Simulations showed that changing the boom lengths slowly 
(making the moves over a time comparable to the  pitch period) did not cause 
changes in the amplitudes of any of the attitude components. Since the speed of 
movement of the booms is fixed at about 9.1 cmlsec, the slow movement can be 
approximated by making the moves in small steps. In performing these changes 
in boom positions, the pitch bias changes and the  change can be calculated a n d  
included in attitude predictions. Roll and yaw remain unchanged during these 
moves. A simple calculation of the change in position of the center of mass of the 
spacecraft yields very good information about the change in the pitch bias. 

SPACECRAFT DATA WITH BOOM MOVEMENTS 

In normal operation on the LACE satellite the changes required i n  the 
position of the lead boom were usually less than 5 meters with an average of 2.5 
meters. These movements have been made about 65 times and as often a s  once 
per day. The lead boom is usually positioned between 27 to 38 meters, but  four 
special experiments required the lead boom to be at 4.6 meters. Performing 
these changes using steps of 1.5 meters spread over 95 minutes results i n  no 

49 1 



VI 
9) 
P) 

m 
P) 
0 

L 

2 

, , 5  

1 

0.5 

0 - 

- o , 5  

. 1 

- 1 . 5  

0.5 

0.4 

0.3 

0.2 

0.1 

0 

. ' . .  

-m ................. 

-w. ................. 

-- ................. 

-. ................ 

-- ................. 

- m  ................. 

' ' ' ' 

-m ................. 

0 10 20 30 40 50 6 0  7 0  80 

Time (hours) 

Figure 5. Roll variations during boom movements. 
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Figure 6. Yaw variations during boom movements. 
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DISCUSSION OF ATTITUDE CONTROL USING DEADBEATING 

Although attitude control using step movements was done by computcr 
simulations prior to launch, it was desired to have a backup solution to the 
problem. Deadbeating was explored for this purpose. Deadbeating is a method of 
decreasing the amplitude of pitch motion by moving one boom out at maximum 
pitch angular velocity and then moving the same boom in to its original position 
at minimum pitch angular velocity. The orbital angular velocity must bt: 
included in the determination of the pitch angular velocity since i t  is the 
dominant term in the pitch angular velocity. Because of this, deadbeating has its  
greatest effect on the pitch motion. The order of these boom moves for 
deadbeating can be reversed. The magnitude of the boom movement depends 011 

the MOI about the pitch axis and the amplitude of pitch oscillation to be damped. 
Deadbeating is described in Wertzl for a dumbbell and the equation given there 
can be modified to apply to the LACE configuration by replacing the angular 
pitch frequency of the dumbbell by that of LACE. Deadbeating maneuvers can be 
done with any one of the three booms. 

SPACECRAFT DATA WITH DEADBEATING 

Since boom movements with the small step method caused no disturbance 
in attitude, the backup deadbeating method used in prelaunch simulations was 
not required. However, in order to further study the dynamics of large space 
structures, deadbeating maneuvers were preformed. Testing with simulators, the 
phasing of the boom movements could be done precisely. This was not possible 
on the  spacecraft since the decision on the timing of the movements had to to 
predicted in advance of the movements. Several attempts were needed to 
achieve the proper phasing. Best results were obtained when one movement of 
the booms was executed, results of the  move examined and, based on these 
results, the  timing of the second move was calculated for completion of the 
dead beat in g operation, 

Figure 7 shows the change in pitch as a result of this type of deadbeating. 
Since t h e  configuration of the boom is the same before and after the 
deadbeating, there is no change in pitch bias. Figures 8, 9 and 10 are blowups of 
Figure 7 to show the boom movements. Figures 1 1  and 12 show roll and  yaw.  

Yaw shows little or no effect while there is some change in roll associated w i t h  
t h e  boom movements. In order to increase the pitch amplitude prior to 
deadbeating, the principles of deadbeating were used but the  phasing of the 
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boom movements were selected to increase the amplitude. This was another 
application of the deadbeating idea. 
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Figure 7. Pitch variations during deadbeating experiment. 
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Boom movements for increase in pitch 
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Figure 8. Expansion of figure 7 showing initial disturbance. 
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Figure 9. Expansion of figure 7 showing first step of deadbeating. 
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Boom movement for second deadbeating move 
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Figure 10. Expansion of figure 7 showing second step of deadbeating. 
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Figure 1 1 .  Roll variations during deadbeating experiment. 
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Figure 12. Yaw variations during deadbeating experiment. 

CONCLUSIONS 

Positioning of the  lead boom as required by laser experiments h a s  been 
satisfied without changing the restrictions demanded by t h e  i m a g i n g  
experiments on the  spacecraft. Movement of the booms was repeated many 
times as required by the experiments without affecting the overall attitude of 
the spacecraft. The change in pitch bias was expected and predictable. 

Deadbeating the pitch oscillations was demonstrated using the  lead or 

balance boom. 

ACKNOWLEDGEMENTS 

We are indebted to Dr. D. M. Horan of NRL for his support and suggestions 
i n  many areas of this program; to the flight operations group at BFEC who were 
responsible for moving the booms and for supplying the attitude information 
from the spacecraft. 

497 



Work for this paper was done for the  Naval Research Laboratory under 
contracts NOO14-89-C-2011 and NOO14-91-C-2316. 

Spacecraft Attitude Determination and Control, edited by James R. Wertz, Kluwer 
Academic Publishers, Dordrecht, The Netherlands, 1978. 

498 



Major Rick Miller, Wright Laboratory, 
WUMNSI, Eglin A.FB, Florida 

Joe E. Coulter and Seymour Levine 
Northrop Corporation, Electronics Systems Division, 

Hawthorne, California 

ABSTRACT 

This paper provides a brief overview of the design 
considerations and the current status of the Miniature 
Optical Wide-Angle Lens Startracker program. 
Mini-OWLS offers a revolutionary alternative to the 
conventional startracker. It is a small, lightweight, low- 
cost, high performance startracker that can be used in a 
variety of applications including calibration and alignment 
of Inertial Measurement Units (IMUs). 

Mini-OWLS makes use of a strapdown design 
incorporating Holographic Optical Elements (HOEs) in 
place of conventional optics. HOEs can be multiplexed so 
that the same aperture can be used for multiple separate 
optical paths looking in several directions simultaneously 
without startracker rotation. Additionally, separate 
Schmidt corrector plates are not required to compensate 
for spherical aberration. The optical assembly, or what 
would normally be considered as the telescope, is less than 
20 cm3 in volume, weighs less than 55 grams, and contains 
the equivalent of three individual telescopes. Each one has 
a 4 deg Field of View (FOV) with a field of regard of 
48 square degrees. Mini-OWLS has a bandwidth of 
approximately 300 nm in or near the visible wavelength. 
The projected resolution of the startracker is 5 to 10 arc- 
seconds, depending on the centroiding algorithm used. 

The Mini-OWLS program was initiated last year and 
represents a miniaturized version of a similar design for 
aeronautical applications. The contract is managed by 
Wright Laboratory, Air Force Systems Command, 
Wright-Patterson AFB, Ohio, with funding from the 
Strategic Defense Initiative Organization through Eglin 
AFB. The initial phase of the program is to build and test 
a development unit. The second phase is to integrate the 
startracker with the Charles Stark Draper Laboratory 
Micromechanical Inertial Guidance System (MIGS) and 
the Signal Processing Packaging Design (SPPD) being 
developed by Texas Instruments. The preliminary design 
review was conducted in November 1991. Three-axes 
prototype telescope assemblies have been built and design 
evaluation tests initiated. 

INTRODUCTION 

Stellar trackers can provide the fiducial reference for 
attitude control systems for air vehicles, satellites, and 

space-based interceptors. The independence of stellar 
fixes from radio aids has provided a reliable source of 
navigation information in both peace and war. When the 
stellar tracker is used to augment an IMU, a synergistic 
blending of data occurs where the high-frequency attitude 
data is derived from the IMU, and the low-frequency 
information is derived from stellar fixes. This process of 
complementary filtering of data provides excellent attitude 
information that is accurate over a wide range of 
frequencies. Furthermore, since the low frequency is 
derived from the stellar tracker, the requirement for 
precision and costly gyroscopes for attitude control has 
been reduced. 

Figure 1 shows the probability of seeing the sky from 
sea level. Above 13.7 km (45,000 A) in altitude, the 
probability of having an unobstructed view of the stars is 
essentially 100 percent. Although at an altitude of 13.7 km 
yopr view of the sky is unobstructed by cloud coverage, the 
sky background light will prevent you from observing the 
stars in the daylight. Yet at night, the view of the stars, 
from that altitude, is spectacular. Above 13.7 !an, the 
daytime sky background, not in the direct vicinity of the 
sun, grows progressively darker with increases in altitude 
until it essentialiy turns black and is indistinguishable from 
the nighttime sky. Figure 2 shows the star magnitude 
capability versus altitude for two different-aperture 
telescopes in daylight. Basically, it shows that observing 
stars in daylight at sea level with a 232 cm2 (36 in2) 
aperture, 3 deg FOV telescope has essentially the same 
stellar magnitude capability as a 4.65 cm2 (0.72 in2) 
aperture operating at 97 km (60 mi) above the earth. It 
also shows that at altitudes above 97 km, there is no 
improvement in star magnitude capability, for a given 
telescope, since the sky background noise has reached a 
minimum and the stellar irradiance experiences no loss due 
to atmospheric transmission. Table 1 is a simplistic 
Signal-to-Noise Ratio ( S N R )  equation definition for stellar 
trackers. The small-aperture telescope is in good 
correlation with our experience on a clear, moonless, 
desert night. Under these conditions an observer can 
easily see the Little Dipper constellation, which has 4.7 
magnitude stars. In fact, under good stellar observation 
conditions, the human eye can detect magnitude 6 stars at 
sea level. The eye has a pupil diameter of between 6 and 
9 mm, corresponds to an aperture of about 0.6 cm2, and is 
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much smaller than the 4.6 cm2 telescope in the star 
magnitude capability curve of Figure 2.  

Table 1. Signal-To-Noise Ratio Equations 
For a Stellar Backer 

1 
.TITUDE 

PERCENT PROBABILITY *I*  ,.I 01 

Figure 1. Probability of Clear Lines of Sight Over 
the Northern Hemisphere for All Seasons 

Combined (72,000 Observations) 

A = APERTUAE AREA 
' 1 ,  

Figure 2. Star 'Ikacker Sensed Magnitude Versus 
Altitude for a Silicon Detector and 

a 3 Deg FOV 

Thus, based on our experience, empirical 
measurements, and analysis, the SDI Organization in 
Washington, D.C., Wright Laboratories in Dayton, Ohio, 
and Eglin AFB, Florida, and Northrop have embarked on 
the design of a Miniature Optical Wide-Angle Startracker. 
This telescope is specifically designed to correct the 
attitude of spaceships, satellites, and space-based 
interceptors. In this capacity it provides the fiducial 
reference for the vehicle's attitude control system. 

STELLAR TRACKER CONCEPTS 

The stellar tracker, unlike an observation telescope, is 
specifically designed to correct the attitude control system 
of a vehicle and is therefore primarily concerned with the 
line of sight (LOS) to the stars. Thus the spectral content 
and stellar magnitude are of minor significance if they 
provide sufficient stellar irradiance to satisfy the functional 

I Signal-To-Noise Ratio (SNR) I 
Qsp = q ' 0 s  * A l * A T  *A,  *TT 'q  I, O N ,  /Ns 

Where: 
QSP =Star sianal charaes De r oixd 

q = Electronlc charge 
Qs = Stellar spectral radiance 

A k = Wavelength bandwidth of telescope system 
A, = Atmosphere transmission 
A, = Aperture area 
TT = Telescope transmission 
q = Quantum efficiency 
I ,  = Integration time of a frame (stellar snapshot) 

N ,  = Number of frame snapshots utilized 
Ns = Number of pixels containing the star image 

(star blur factor) 

q *OB *Ax*A,*TT* Fov *?l I, N ,  
N e O F  QBP = 

Where: 
QBp = Backaround ohoto charaes De r Dlxel 
OB = Sky background spectral radiance 

FOV = Field of view 
N = Total number of pixels in sensor array 

0, = Sky background attenuation of optical filler 

Q D p  = q  n i k  V, I l  N I 
Where: 

QDP = W C t O  r dark durr-s De r olxa 
n = Detector intrinsic carrier concentration 
7 = Detector dark current charge generation time 

V, = Detector charge generation bucket volume 

QNP = ~ ( Q s P +  QBP+ QDP) QES 

Where: 
QNp = Noise charaes De r Dixd 
QSP = Star photo charges per pixel 
QBP = Background photo charges per pixel 
QDP = Dark detector charges per pixel 
Q ES = Electronic system bandwidth noise coefficient 

E (QsP+ QBP+ QDP) QES 
SNR = 

For Sea-Level Daytime Tracking in a Non-Nuclear-Event 
Environment, the SNR equatlon slmplifles to: 

QBP>> QSP+QDP 

Q SP 

m S  
SNR = 

q A )i A,* TT q II N, N OF SNR= s. 
cl, NS O A T  J QB*FOV*QES 

92M.lbJ-07 
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SNR requirements of the tracker. This occurs when there 
is sufficient stellar photon flux to offset (lie corrupting 
noise sources. Figure 3 sliovvs the conceptual design of the 
h.liiii-OWLS. It is iiiade up of three 4-deg-FOV star 
trackers spaced 120 deg apart in azimuth aiid 30 deg off the 
zenith, all embedded in a single liousirig. The star tracker’s 
function is to measure the attitude drift about three 
orthogonal vehicle ases. A single stellar f ix  only provides 
an attitude update about the two vehicle’s axes nornial to 
the star’s LOS. Thus, in order to provide a coniplete 
three-axes attitude update, an atlditiorial lis from a 
different LOS is required. ‘lh ideal geometric separatio’ii 
is to have the two LOSs cross each other mid thus have an 
angular separation of 90 deg. This 90-deg separation in the 
LOSs could be accomplished by mountiiig a single axis 
telescope i n  gimbals and  then rotating the giinbais to 
observe a different LOS. Another method of obtaining 
different LOSs is to have a strapdown telescope and then 
rotate the vehicle to observe a different LOS. Both of the 
above methods of obtaining rliffereiit LOSs either add 
costly moving parts to the system or iiiipose coristraints on 
the vehicle. The low-cost Mini-OWLS, with its three 

implicit strapdown telescopes, requires no gimbals or 
vehicle rotations to observe multiple LOSs. 

When the optimuni 90-deg separation isn’t achieved, 
there is a Geometric Dilution of Precision (GDOP). 
Although the Mini-OWLS has a 51.3-deg separation in 
telescope axes, its GDOE as shown in Figure 4, is 
negligible. This figure also shows that a single 20-deg very 
wide FOV telescope, or dual telescopes with an angular 
separation of 20 deg, experiences significant GDOP 
problems. Furthermore, having three telescopes, each of 
wliicli provides two axes of attitude updates, enables the 
system to provide a redundant attitude compensation for 
all three vehicle axes. 

In addition, the redundant telescope design provides a 
measure of self compensation for thermal mechanical 
expansion of the stellar tracker. Figure 5 shows a two-axis 
tracker with stars in each FOV. When the attitude of the 
vehicle changes about an axis orthogonal to the plane of 
the telescopes, both telescopes observe identical variations 
iii attitude and direction. Conversely, when the telescope 

ZENITH 
A 

Notes: 1. Three telescopes provide highly reliable, fully redundant 
attitude corrections on all three gyroscope axes 

2. The three telescopes are 120 deg apart in azimuth and 
30 deg off the zenith 

- 
Ray trace (one of the three telescopes) 

Figure 3. Mini-OWLS Multiplexes Three Wide-Field 
Schniidt Telescopes in a Single Housing 
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Figure 4. Astro-Inertial GDOP Due to Telescope 
Angular Separation 

structure expands homogeneously, tlien the attitude 
variations of the telescopes change equally i n  magnitude 

Platiorm Rotation 

( i ) 
Statistical Benefit 

0 Telescope 

K 0 6 A  = 

Platiorm Rotation 

Statistical Benefit 

0 Telescope 

K 0 6 A  = 

Nole 1; For a platform rotation. both 
telescopes experience the same 
stellar deviation angle 

Figure 5a. Mini-OWLS Provides the 
Benefit of Redundant Observations 

but in opposite directions. Thus the average attitude 
associated with the expansion of the telescopes is zero. 

This self-compensation feature is optimized in the 
Mini-OWLS design since three telescopes represent the 
minimum number of stellar trackers required to achieve 
self compensation. 

TELESCOPE CONSTRUCTION 

Figure 6 shows the spherical aberration of an  
uncompensated spherical mirror. Its focus occurs at half 
the mirror's radius for the plane-wave rays close to the 
principal axis ray. As the height, h, of the plane wave 
increases from the principal ray axis, the focus decreases 
slightly from its half-radius focal length, resulting in a 
blurred focus. This spherical aberration can be minimized 
by the insertion of an aspheric Schmidt corrector plate 
positioned at the mirror radius. The aspheric corrector 
plate attempts to deviate the plane-wave rays such that all 
plane rays focus at a single point or focal length 
independent of the height of the plane wave above the 
principal ray axis. 

Strut(s) symmetrical thermal expansion or 
material creep errors cancel 

/ 
Nole 2: For a symmelrical struut with thermal expansion or material 

creep the average observed stellar deviation is zero. Thus 
b e  redundant telescope cancels many thermal expansion 
errors. 

Figure 5b. Mini-OWLS Minimizes 
Telescope Strut Expansion Errors 

Figure 5. Mini-OWLS Provides the Benefit of Redundancy and 
Self Compensation for Thermal Expansion and Material Creep 
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Spherical mirrors are ea$ tq build out do not 
have single focus (spherical aberration) 

Focal Length = FU2 - f(h) 

Conventional Schmidt telescope uses spherical 
mirrors and aspheric corrector plate 
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Figure 6. Spherical Aberration 
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The aspheric Schmidt corrector plate is costly to make 
and could be replaced by a single Holographic Optical 
Element (HOE). Furthermore, three holographic Schmidt 
corrector plates can be multiplexed in a single aperture. A 
picture of the Mini-OWLS is shown in Figure 7. 

The Mini-OWLS is composed of three wide-FOV 
Schmidt camera telescopes. The corrector plate for all 
three telescopes is a multiplexed HOE in lieu of the costly 
aspheric corrector plates in conventional Schmidt cameras. 
This unique HOE construction eliminates all costly optical 
elements since the plane and spherical mirror surfaces are 
simple to construct. Because all of the optical elements 
are essentially surface phenomena (i.e., mirrors and 
HOES), the telescope can be made extremely lightweight. 
The telescope construction is based on proven industrial 
techniques with the single three-axes multiplexed HOE 
Schmidt corrector plate fastened to the telescope along 
with the FPAs. The telescope's major precision assemblies 
are in the mirror housing. The single multiplexed HOE 
provides the corrector plates for the spherical aberration, 
while the FPAs provide the electrical readouts of the stellar 
irradiances. 

Figure 7. Mini Optical Wide-Angle Lens Startracker 
(Size in Centimeters) 

SUN THERMAL ANALYSIS 

Solar heating effects on a silicon FPA in the Mini-Owls 
star sensor at its operating bandwidth are not important. 
Under space illumination conditions with the sun focused 
on four pixels, assuming a constant-temperature mounting 
surface at any temperature, only a 4.5 "C temperature 
change will occur. 

STRAY LIGHT MEASUREMENTS 

Stray light measurements were made using the 
Mini-OWLS prototype telescope. Figure 8 depicts the 
experiment setup. With the simulated sun set 30 deg off 
one telescope axis, the stray light detected in the other two 
axes as a fraction of the incident beam was negligible. 
With the simulated sun directly on-axis, the optical 
crosstalk detected at the FPA for a second telescope was 
higher, as expected, and is readily reducible to an 
acceptable level by optimizing the optical swfaces to 
reduce the scattered light. 
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Abstract 

A technique is developed which demonstrates how to interpret a large fully-populated filter 
gain matrix as a set of scalar gains. The inverse problem is also solved, namely, how to develop a 
large-order filter gain matrix from a specified set of scalar gains. Examples are given to illustrate 

the method,* 

Introduction 

The intent of the present work is twofold. First, the Scalar Gain Interpretation (SGI) of the 
gain matrix for discrete fiters is developed. The scalar interpretation provides the filter designer 
with an easily understood description of large-order Multi-Input Multi-Output (MIMO) filters. 
This interpretation can be used to aid filter designers in analyzing the effects of changes in the gain 
matrix or other filter parameters. Second, a technique for determining a, fully-populated gain ma- 
trix which satisfies specifred scalar equivalent gains is demonstrated. Thus, in the common in- 
stance that a a t e r  designer does not know certain filter parameters, making the choice of the gain 
somewhat arbitrary, the gain may be selected based on the scalar equivalents directly rather than 
by assuming values for the unknown covariances. 

The motivation for filtering is to obtain the best estimates of the true states of a dynamic 
system, given a (generally imperfect) model and a (generally imperfect) set of measurements[5]. 
To illustrate the concepts of the paper and to motivate the discussion, consider the simple linear 
discrete Kalman filter, which may be represented as [3]: 

K~ = P - H ~  k k [ k p k  H P - H T + R ~ ~ - '  

x : = x ; + K ~ ( ~ ~ - H  X- k k  

P i  = [ I - K p k ] P i  

*. This work was supported by the National Aeronautics and Space Administration (NASA)/Langley Research Center 



where x is the n x l  state vector, 
riance matrix, Qk is the nrn  process noise, Kk is the nxm gain matrix, zk is an ml measurement 

vector modeled by 
(2) 

where H is the ntxn measurement model, v is the measurement error vector, and Rk is the mxm mea- 

surement covariance matrix. The subscriptsk - 1 ,  k refer to discrete times tk - l ,  t k .  The superscript 

(-) refers to values based on measurements up to but not including zk, and the superscript (+) refers 

to values obtained after including measurement zk. 
The operation of the filter proceeds as follows. Eqs. (la) and (lb) are used to calculate the 

state estimate and its error covariance between measurements. When a new measurement set zk is 

obtained, Eqs. (ld) and (le) are used to update the values of the state estimate and its error covari- 
ance. The updated values depend on the value of the gain matrix calculated using Eq. (IC), and so 
the accuracy of the filter is directly tied to the determination of Kk . Kk depends on the two cova- 

riance matrices: R , representing the error covariance matrix of the measurements, and Q, represent- 
ing the state error covariance introduced as a result of the approximation of the system dynamics 
via E q .  (1 a). 

Theoretically, the Kalman and related filters find the unbiased minimum variance (or max- 
imum likelihood) estimate of the state vector. Unfortunately, this is only true if all the noise and 
system parameters are known exactly. In practice, neither the measurement noise covariance,i?, 
nor the process noise covariance,Q, is perfectly known. In fact, modeling errors may be far more 
complex than what is theoretically modeled by the process noise. Moreover, the initial value for 
p0 may not be known. Thus, the filter design problem normally requires these matrices to be as- 
sumed at least somewhat arbitrarily. For a large, fully populated, non-square gain matrix, it is very 
difficult to interpret the correlation between the assumed covariances and the filter performance. 
Often, the gain matrix itself is simply assumed directly. If the assumptions are poor, then the filter 
will be suboptimal, and in certain cases, the filter may itself become unstable [ 111. 

The main motivation behind the scalar gain interpretation is to give the filter designer some 
insight into the process of desi,ping a filter and an understanding of how the gain matrix affects 
the MIMO estimation. Although the theoretical development of classical filtering techniques is 
sound, the practical implementation of the theory is Micult due to the unknown numerical values 
of the process noise covariance matrix, and measurement noise covariance matrix. In the case of 
a scalar filter, the effect of the gain is readily apparent. In order to find an easily understood inter- 
pretation of the MIMO gain matrix, a parallel between the scalar filter and the MIMO filter gain is 
found. This parallel then allows the filter designer to visualize the MIMO filter as several scalar 
filters. 

There are two major reasons why the filter designer’s intuition has been removed from the 
design process. The fmt reason is due to breakthroughs in estimation theory. For example, many 
algorithms and theories have been developed to find the noise and filter parameters for the Kalman 

is the nxn state transition matrix, Pk is the nxn state error cova- 

Zk = H J k  + I f k  
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filter and its gain. Mehra [ 11 used the innovation sequence property to identlfy the process noise 
covariance matrix and the measurement noise covariance matrix. In other methods adaptive Kal- 
man filters have been devised to determine the unknown noise and system parameters [8]. Algo- 
rithms such as least squares [8] and the dead beat process noise estimator [7] have also been used 
to determine the noise and system parmeters. However, these algorithms do not describe the ef- 
fect that the newly found Kalman gain has on the estimation. Other adaptive filters attempt to fiid 
the Kalman gain directly [2,9,10]. The accuracy of these techniques varies greatly from case to 
case, but in any event the interpretation of the gain matrix is difficult at best. 

The second reason is that high order systems diminish a designer's general understanding 
of the effect the Kalman gain has on the estimation. In the scalar case, the affect of the K h a n  
gain on the estimation is obvious. But as the order of the system increases, the interpretation of the 
Kalman gain matrix, which determines the optimal estimates, becomes vague. 

Incorporating the robust methods mentioned above and the scalar gains interpretation, the 
MIA40 filter designer can determine the best gain and still retain insight as to how the gain affects 
the estimation. 

Scalar Interpretation 

The Scalar Filter 
To define the problem in this paper, consider a scalar system represented by Eqs.( 1). 

Eq.( la) provides the state estimate, from the filter model, at t h e  tk, based on the estimates ob- 
tained through t h e  tk-1. At tk, measurement zk becomes available. Eq.( Id) is used to update the 

state estimate based on the residual between zk and the predicted value Hp;. 
In the scalar case, if ~ = l  &e., the state is measured directly), the gain Kk has a value be- 

tween 0 and l. At Kk=l, the filter relies only on the measurement 

At Kk" 0 the Nter relies only on the model estimate: 

When the value of Kk is between one and zero, the filter takes a weighted average of the model and 

the measurements. In the scalar case, Eq.( Id) can be solved for Kk to obtain 

x i  -x; 

-Hiur-k 
Kk = (3) 

To "normalize" the gain to lie within 0 and 1 we define the "physical scalar gain" (PSG) as 
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Hkx+ - Hkx-  
PSG = 

zk - Hp- 

This concept is illustrated in Figure 1. 

X 

where: 

X is the measurement zk 

0 is the model estimate HX- 
is the updated estimate Hx+ 

Figure 1 Graphical interpretation of the scalar filter gain 
In Figure 1, D is the residual between the model output estimate and the measurement. It 

can be seen that the PSG represents the amount, A, of the residual used in the update, divided by 
the total residual, D, i.e., 

HP+ -HP- - total correction - update estimate - model estimate - PSG = - 
z k  - H g -  total residual measurement - model esmate (5 )  

Thus in the scalar case, the physical scalar gain and the Kalman gain are equivalent if the 

The effect of the filter parameters Q and R on the gain and state estimates can be seen by 
measurement is the state of the filter. 

examining the scalar K h a n  gain given by Eq.(lc) 

The K h a n  gain can be written as a function of Q and R by substituting the error covariance P- : 
T ( @ k - 1  P+ k - 1  QT k - l + Q k - l ) H k  

T K k  = 
[.p ( @ k  - 1':- lo:- 1 -+ Qk - 1 )  H k  + R k ]  (7) 

For the scalar case where H = l  this simplifies to 
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From Eq.(8) it can be seen that if Q is large and R is small, then the denominator and the numerator 
will be approximately equal. This scenario describes the filtering of a good measurement with a 
poor model. In this situation the optimal filter relies primarily on the measurements. The other ex- 
treme occurs when Q is small and R is large (poor measurements and a good model). The gain for 
this case is close to zero. 

The effect of Q and R on the K h a n  gah  matrix is very difficult to interpret in the MlMo 
fdter case. With the scalar gah  interpretation one can clearly see the effect of Q and R on the Kal- 
man gain matrix, by examining the scalar equivalents. 

The Scalar Equivalents for the MIMO filter 
In the previous section, the theory of the Kalman fdter and the concept of the physical sca- 

lar gain (PSG) have been given. In this section, the scalar gain interpretation for MIMO fdters is 
derived. The concepts of the scalar gain interpretation are applicable to any order MIh40 system, 
and to any fdter gain. Consider the matrices of Eq.(ld): 

Kk = H k  = 

Expanding Eq.( 1d)at time tk ,  we may write 

. . . + R 1 ,  , ( Z, - hm, 1~; - ... - h,, ,xi> 

+ xn = x; + R,, 1 ( z1 - h l ,  - . .. - h,, .x,> + 

(9) 

where the subscripts now refer to position in the vector or matrix at time r k .  Eq.(9) can be written 
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in a simplified form by defining Di as 

!Ii = ( z j - h .  I ,  1 x-  I -  ... ... - hi, , x i )  i = 1, ... m (10) 

D~ represents the residual between the irh measurement and the ich element of the predicted model 

output Hx- . Eq.( Id) can now be written as 

X+ = X:  + K .  i ~ i  j = i . . . n  (1 1) i J Ji 

Thus, the elements of thejfh row vector of Kk describes how much of each residual is used in the 

estimation of thefh state. 

veRed to the output estimates by multiplying by output matrix H :  

In order to find the PSG associated with each residual Di, the state estimates must be con- 

rn 

i =  1 

In Eq.( 12), y j  is the estimate of theth output at time tk using all measurements including zk, and H~ 

is &elfh row of the output matrix. Comparing Eq.(12) with Eq.(4), the physical scalar gain for a 
MIMO filter is described mathematically as: 

( H K )  il (I - Hx- )  1 + ...+ ( H K )  im ( z - H x - )  rn 
PSG,= 

I 
( 2  - Hx- ) i 

In the typical case where the irh estimated output is strongly dependent on the ifh measurement but 
not on the other measurements, Eq.(13) simplifies into: 

( H K )  ii ( I -Hx- )  j 
PSGi 5 = (Wii 

(I -HA--) j 
(14) 

If this assumption is not valid then the concept of the physical scalar gain is still valid, but the PSG 
is not a constant since the random elements of the numerator in Eq.(13) are not canceled by the 
denominator as in Eq.(14). However, for stationary measurement noise statistics, the expected 
value of the PSG’s are constant. The HK matrix still contains the scalar percentages of the resid- 
uals used in the estimation of each output estimate. Comparing Eq.(13) and Eq.(14), the PSG’s 
approach constants if HK becomes diagonal dominant. The concept of the scalar gain interpreta- 
tion and the diagonal assumption for the HK matrix is reinforced in the expectation analysis sec- 
tion. 

The scalar gains can be used to monitor the effect of Q and R .  If Q is large and R is small 
then the corresponding scalar equivalent gains should all be close to 1. In the inverse case if R is 
large and Q is small the scalar gains should be close to zero. In the common situation where Q and 
R are not well known, checking the scalar gains can aid in interpreting the effect of assumed values 
of Q and R. 

To illustrate the equivalence between the physical scalar gains and the full gain matrix con- 
sider the following simple example, where n=4  and m=2. 
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Let 

A =  

Substituting into Eqs.(l), we find 

r 0.21 

f f K =  ["" 0.1 
0. 0.5 

The physical scalar gains (PSG) are 

The physical scalar gains are the same as the diagonal elements of the diagonally dominant 
HK matrix. 

The Exoectat ion Aaalvsh 

The PSG described in Eq.( 14) can bt written in the following simplified form: 
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Performing the expectation analysis of the PSG results in the predicted numerical value of the PSG 
at steady state. This value describes how much weight is placed on the measurement vs. the model 
of a particular measurement estimate. The expectation analysis of the PSG is similar to the analysis 
of the error covariance [3 3. As in the case of the error covariances the PSG is squared and then the 
expectation is taken: 

Since H and K matrices are time invariant (constants), they can be taken outside the expectation 
m m  

C p q j ( H m j p { [ z i -  ( H - f ) j I  [ z , -  ( H X - ) , ] }  

(17) 
;E I / =  1 E [ ( P S G ) ; ]  = 

E {  [ z j -  ( f w j l  [zj- (HX3jlI 
The expected value in the numerator and denominator is expanded by substituting for z=Hx+v. 

E {  [ H x + v - H x - ]  [ H x + v - H x ' ] ' } = E {  [ H ( x - x ' )  + V I  [ H ( x - x ' )  + V I ' }  = RHS 

The right-hand side can be expanded by multiplying out the internal terms to obtain 

RHS = ~ { ~ ( x - x - )  ( X - x - ) ' ~ ~ + v V + ~ ( x - x - )  v r + v ( x - x - ) r ~ r }  (18) 

Note that ( x  - f )  = e- , E [vv'] = R and E [e- (e-) '1 = Pix . Eq.(18) now simplifies into 

RHS=HP;# + R  + H E  { v  (e- )  '1 +E { (e- )  v r }  H' (19) 

Assuming that the noise vector, v, and the estimation error, e, are uncorrelated, the last two terms 
in Eq.( 19) are zero. Eq.( 19) can now be written as: 

RHS=HP;~' + R 

Substituting this back into Eq.( 17) yields 
n m  

If H K ,  R and HP;$' are diagonal matrices, then F!q.(21) may be simplified to 

This assumption is valid for systems where the covariance error matrix is diagonal; therefore, the 
errors associated with the states are not coupled. Taking the square root of both sides gives the 

E[(PSG):] = ( H K , ;  (22) 
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expression for the approximation of the expected magnitude of the PSG. 

The square root of the squared expected value PSG is a function of not only the J"" measurement 
but also of the other measurements and the residuals associated with them [Eq.(23)]. 

Finding a Fully Populated Gain Matrix 
Determination of Q and R (or directly, K )  is rarely s h p l e  for a large order filter. Since it 

is easier to determine and understand a scalar gain rather than a fully populated gain matrix, MIMO 
filters are often written as sets of decoupled scalar filters. The process of transforming a MIMO 
filter into several scalar ones is clumsy and may result in errors. This is the primary motivation for 
finding a method to determine an equivalent fully populated gain matrix from a set of scalar gains. 

Let the specified scalar gains be placed in the diagonal Gd matrix ( m x m ) .  The fully popu- 
lated K matrix is determined by equating the scalar gains to the H K  matrix. If H is a square matrix, 
then premultiplying both sides by the inverse of H yields an equation for the gain matrix as a func- 
tion of the scalar gains: 

H - ~  H K ~  = H - I  G ,  

K, = H - ~  G, 

where Kd is the MIMO filter gah  matrix designed from the scalar gains. Since H is generally not 
a square matrix one can not use this procedure to determine K d .  To circumvent this problem the 
Moore -Penrose Pseudoinverse [4,6] is utilized to determine the pseudoinverse of a non-square ma- 
trix H :  

Kd = ( H )  *-' Gd 

where ( ) *-I represents the pseudoinverse. 
This method of determining a fully populated gain matrix from a set of scalar gains, con- 

strains the output of the filter. It does not constrain the states of the filter. Since the scalar gain 
interpretation is associated with the output of the fiter and not the states, then the fully populated 
gain matrix found from these gains is forced to have the same output as dictated by the scalar gains. 
A design gain matrix that has the same scalar gains as another fully populated gain matrix will have 
the same output estimate but not necessarily the same states. 

Simulation Resut ts 

A filter simulation is used to venfy the theory of the scalar gain interpretation. There are 
two objectives of this section. The first objective is to demonstrate that the SGI does approximate 
the scalar gains of the filter. The second objective is to verlfy that a fully populated gain matrix 
can be determined from a set of specified scalar gains. 
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To accomplish the first objective an 8th-order time-varying Kalman filter is used. During 
the execution of this filter the average physical scalar gains are calculated. These averages are 
compared to the expected scalar gains to validate the scalar gain interpretation. To ensure a fair 
comparison, the constant gain filter is implemented with the steady-state gain matrix, K .  The phys- 
ical scalar gains of both filters are compared to prove the equivalence of the scalar gains interpre- 
tation. The parameters and model of the filter are described in a problem statement. 

The second part of this section uses the scalar gains from part 1 to determine the fully pop- 
ulated design gain matrix, Kd A constant gain filter is implemented using Kd. The physical scalar 
gains are calculated during the execution of the filter. The physical scalar gains are compared to 
expected scalar gains to prove the equivalence of the design gain matrix to the set of scalar gains. 
Then, the output estimates of both fdters are compared to prove that the Kd and the original steady- 
state gain matrix produces the same output estimates. 

ments are created from the following state space equations. 

X = A x  
measurements = Cx + noise 

Consider the following example to illustrate the scalar gain interpretation. The measure- 

(26) 

A is the model of the states and C is the output matrix of a 8 state system. The true model of the 
system is 

A =  
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-10.0 5.0 
5.0 -10.0 
0.0 5.0 
0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

5 .O 
-10.0 

5 .O 

0.0 1.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 
0.0 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 1.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 
5.0 0.0 0.0 0.0 0.0 

-5.0 0.0 0.0 0.0 0.0 
The state transition matrix is use to find the state trajectories of the true model. A perturbed model 
is used as the liltcr model. This perturbed model is created by changing the last four elements in 
the true A matrix to -3.5 and changing -10.0 , -5.0 to -9.5 , -4.5 respectively. After the states have 
been converted to output via the output matrix, 26% noise is added to the output to create the mea- 
surements. The measurement noise covariances is R = 2.2. i4x4 These perturbations and simulated 

measurements noise are arbitrarily; the values given here are simply for demonstration purposes. 
The simulation is implemented for 500 and 1000 measurement points. The Kalman gain 

reaches steady state at approximately the 200th time step. The steady state Kalman gain matrix is. 
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K =  
0.5124 
0.0115 
0.0032 
-0.0052 
-0.0913 
0.0740 
0.0052 
-0.002 1 

The H*K matrix at steady state is 

avePSG 

500pts 

0.0068 
0.6262 
0.0039 
0.0001 
0.0622 

-0.0829 
0.0615 
0.0023 

gain1 gain2 gain3 gain4 

0.5851 0.6191 0.5743 0.5211 

0.0033 -0.0051 
0.0057 -0.0002 
0.5161 -0.0012 
-0.0013 0.5175 
0.0054 -0.0018 
0.0722 0.0058 

0.0753 0.0407 
-0.0847 0.0767 

0.5124 0.0068 0.0033 -0.0051 
0.0115 0.6262 0.0057 -0.0002 
0.0032 0.0039 0.5161 -0.0012 

-0.0052 0.0001 -0.0013 0.5175 

The expected PSGs and the diagonal elements of the H*K matrix are almost identical, since the 
noise covariance, error covariance, and process noise are assumed to be diagonal. Since the H*K 
matrix and the expectation gain are diagonally dominant the scalar gains can be found by Eq.(23) 
or by taking the iith element of H*K. The expected scalar gains are 

Table 1: The Scalar Gain I gain1 1 gain2 I gain3 1 gain4 1 
0.5 122 0.6261 0.5 161 0.5 174 

The average physical scalar gains (PSGs), of the time-varying filter simulation, are calcu- 
lated using the matrix form of Eq.(4), which is equivalent to Eq.(13). The average physical scalar 
gains of the time-varying filter are 

Table 2: The average PSG of the variable gain filter 

(1OOOpts (0.5591 10.6188 10.5156 10.5190 I 
Notice the similarity between these gains and the expected gains. 

average PSGs of the constant gains filter are 
Next a constant gain filter is executed with the steady-state gain matrix shown above. The 

517 



Table 3: The average PSG of the constant gain fdter 

avePSG 

500pts 

gain1 gain2 gain3 gain4 

0.5842 0.6189 0.5747 0.5202 

)lOOOpts l0.5586 10.6187 10.5158 10.5185 I 

avePSG 

The PSGs of the constant gain filter and the time-varying filter approximate the expected scalar 
gains in Table 1. The average PSGs from the constant gain filter are closer to the predicted physical 
scalar gains, since the gain matrix of the time-varying filter does not reach steady state instantly. 
As the number of cycles increases this average approaches the predicted value. This trend can be 
seen in the comparison between the 500 and 1OOOpoint average. The physical scalar gains of these 
filters are constantly fluctuating, but the average of these gains approach the expected PSGs as time 
goes to infinity. This fluctuation is due to the off-diagonal residuals of the H*K matrix. 

The second objective of this section is to prove that the design gain maaix can be found 
from the scalar gains. This gain mauix will produce the same estimated outputs. The set of scalar 
gains used in this part are taken from Table 1. The design gain, Kd is determined for a diagonal 
dominant H*K matrix and the diagonal Gd. This is done to test the uniqueness of the method. 

ed with this Kd. matrix and the same initial conditions as in part 1. The average physical scalar 
gains of this filter are 

The Kd is found from the diagonally dominant H*K matrix. A constant gain filter is execut- 

gain1 gain2 gain3 gain4 

500pts 0.5948 0.6175 0.5109 

I 1000 pts I0.5510 10.5936 10.5176 I0.5216p1 

0.5288 

Like the constant gain and time varying gain filter, the PSGs of this filter are not constant. 
Next, the Kd for a diagonal Gd is found. The gain matrix that is produced from this method 

only uses the i" residual to determine the i& estimate. The PSGs are not a function of the off-diag- 
onal residual effects, therefore physical scalar gains of the diagonal gain fiiter are constant. The 
diagonal elements of the Gd matrix are taken from Table 1. The average PSGs are 

avePSG 

500pts 

gain1 gain2 gain3 gain4 

0.5122 0.6261 0.5161 0.5174 
~~ ~ - 

1000pts 0.5122 0.6261 0.5161 
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The physical scalar gains of the diagonal gain filter are constant; therefore, the average PSG is also 
constant. 

gains. The comparison of 500 and 1000 points sets of average gains illustrate how the accuracy of 
approximation increases as time goes to infinity. Therefore it can be inferred that the SGI is a good 
approximation of the true physical gains of the filter. 

Since the scalar gains are the same, the output estimates should be the same. Figures 2 4  
contain the first output estimates of the three! constant gains filters. 

Tables 2,3,5 illustrate how all three constant gain frlters approach the predicted scalar 

20 I I I I 1 I I 
1 

Figure 2 The output estimates of the constant filter 
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Figwe 3 The output estimates of the constant design gain filter 

- 

20 I I 1 1 I 1 1 

x 1 -4:; 

-20 I I I I I I I 

-20 ' I I I I I I I 

0 1 2 3 4 5 6 7 8 
time 

1 

Figure 4 The output estimates of the constant diagonal design gain filter 
Figures 2-4, which contain the first output estimate, are essentially identical. Therefore the 

three constant gain fdters have an equivalent effect on the output estimates and it can be inferred 
that a gain matrix can be found from a set of scalar gains. This accomplishes the second objective. 
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Conclusion 

This paper has demonstrated that a large fully populated gain matrix can be interpreted as 
a set of scalar gains; and, conversely, a fully populated gain matrix can be developed from a spec- 
ified set of scalar equivalences. The simulation results verlfy that the scalar gain interpretation is 
a good approximation of the true filter scalar gains associated with the gain matrix. The accuracy 
of this approximation increases as the number of measurements samples approaches infinity. Also, 
the results showed that a fully populated gain matrix can be found from a set of scalar gains. The 
fully populated gain matrix found from this method is not unique. This was demonstrated by the 
comparison of the filtering results of the Kalman gains found by the diagonal Gd and the diagonal 
dominant H*K matrix. 

With the scalar gain interpretation, filter designers can easily interpret the effect of assumed 
values for the covariance matrices Q and R (or, the gain matrix itself). Alternatively, the scalar 
gains may be specified duectly and the equivalent fully populated gain matrix may be found. 
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WATERNIWI YorWALIUTlWI IN SPACECRAFT A T 1  

bv 

z 
J. Deutschmam , F.L. Harkley*, and I . Y .  Bar-ltzhack # 

' I  
Att i tude determination of spacecraft usual ly u t i l i z e s  vector measurements such as Sun, center of Earth, 

star, and magnetic f i e l d  d i rec t i on  t o  uplate the quaternion which determines the spacecraft or ientat ion with 
respect t o  sone reference coordinates i n  the three dimensional space. These measurements are usually 
processed by an extended K a h n  f i l t e r  (EKF) which y ie lds an estimate of the a t t i t ude  quaternion. 

Two EKF versions fo r  quaternion estimation were presented i n  the l i t e ra tu re ;  namely, the m l t i p l i c a t i v e  
EKF (HEKF) and the addi t ive EKF (AEKF). In  the mu l t i p l i ca t i ve  EKF i t  i s  assuned that the error  between the 

correct quaternion and i t s  a - p r i o r i  estimate is ,  by i t s e l f ,  a quaternion that represents the ro ta t i on  
necessary t o  b r i ng  the a t t i t ude  which corresponds to  the a -p r io r i  estimate of the quaternion i n t o  

coincidence with the correct a t t i tude.  
updated quaternion estimate i s  obtained by the product o f  the a - p r i o r i  quaternion estimate and the estimate 
o f  the dif ference quaternion. 
quaternion estimate and the correct one i s  an algebraic dif ference between two four- tup le elecnents and thus 
the EKF i s  set t o  estimate t h i s  d i f f e r w e .  The qda ted  quaternion i s  then computed by d i n g  the estinrete 
of the dif ference to  the a -p r io r i  quaternion estimate. 

estimate has m i t y  norm. 
applying normalization t o  the f i l t e r  measurement a t e  of the quaternion. 
that when the a t t i t ude  changed very slowly between measurements, normalization merely resulted i n  a faster  
convergence; houever, when the a t t i t ude  changed considerably between measurements, without f i l t e r  t m i n g  or 
nonnelization, the quaternion estimate diverged. However, hen the quaternion estimate uas normalized, the 
estimate converged faster and to  a Lower er ror  than with t m i n g  only. 

the brute force method presented i n  the l i t e ra tu re .  
of the HEKF and examines several WEKF normalization techniqws. 

' 

The EKF bas ica l ly  estimates t h i s  quotient quaternion and then the 

In  the eddi t ive EKF i t  i s  a s s W  that the error  between the a - p r i o r i  

I f  the quaternion estimate converges t o  the correct quaternion, then, natural ly, the quaternion 
This fact  was u t i l i z e d  i n  the past t o  obtain superior f i l t e r  perforRvtnce by 

I t  was observed fo r  the AEKF 

In las t  year's synposiun ue presented three neu AEKF n o m i i t a t i o n  techniques a d  ye carpared them t o  
The present paper presents the issue of normalization 

The nornel izat ion of the a t t i t ude  quaternion i n  the AEKF was presented in past work [1,21. 
brute force 

Several 

techniques uere developed and b r i e f l y  tested. 
normatization o f  the quaternion (BF), considering the n o m l i z e d  quaternion a apscudo-measurement' and 
u jpet ing the quaternion i n  the usual nuumr (QPW), coosidering the magnitude o f  the norm a 'pscudo-measurementa 
and updating the quaternion i n  the usual mamer (M), and f i n a l l y  developing the AEKF algorithm with a 
no rm l i zed  a t t i t u c k  matrix, or the ' l inear ized orthogonalized matrix '  normalization (LOW). Each method was 
shorn t o  inprove the a t t i t ude  e s t i m t e  and t o  speed convergence o f  the f i l t e r .  

Several normalization techniques are also presented fo r  the M K F .  
HEKF i s  necessary t o  avoid divergence, even when the a t t i t ude  does not change considerably between 

Those techniqws included the fol louing: 

Ue f o v d  that nornei izat ion in the 

Aerospace E n g i m r ,  A t t i t ude  Analysis Section, F l i gh t  Dynfmics Analysis Branch, 
NASA Goddard Space F l i gh t  Center, Grembett, CD 20771 

+ Assistant Head, Guidance and Control Branch, NASA Goddard Space F l ight  Center, 
Greenbelt, WD 2Onl 

# Professor, Faculty of Aerospace Engineering, Technion - Is rae l  I n s t i t u t e  o f  Technology, 
member Technion Space Research Ins t i t u te ,  Haifa, fsreel 32000 



masurenents. 
performed. Ue present the methods f o r  each, along w i th  OW end HPll methods, developed f o r  the HEKF. 

change considerably betueen measurements. 
used fran each spacecraft. 
the AEKF. 
but uere not reedy f o r  p h i i c e t i o n  i n  t h i s  paper. 

1 1 1  ue exp la in  the  r o l e  o f  quaternion n o r m l i z a t i o n  in  the AEKF and HEKF. 

present each o f  the normal iza t ion  methods f o r  both f i l t e r s .  Test r e s u l t s  using simulated Ear th  Radiat ion 
Budget S a t e l l i t e  (€RES) and Upper Atmospheric Research S a t e l l i t e  (UARS) data a re  given i n  Sect ion V I  and the 
conclusions f o l l o u  i n  Sect ion V 1 1 .  

I n  the WEKF there are three p i n t s  i n  the + a t e  cyc le  a t  which n o r m l i r a t i o n  can be 

Each o f  the AEKF and HEKF methods a re  tes ted  with data from a spacecraft i n  which the a t t i t u d e  does not 

Finally, the r e s u l t s  o f  the HEKF n o r m l i z a t i o n  methods are carpared t o  those o f  
Fine Sun sensor, Ear th  sensor, magnetaneter, and gyro data are 

Tests using data fran a spacecraft tndergoing h igh  tu rn ing  ra tes  are c u r r e n t l y  being conducted 

I n  the next sec t ion  ue sunnarize the use o f  the AEKF and WEKF f o r  a t t i t u d e  determinat ion.  I n  sec t ion  
In  the fo l l ow ing  sect ions ue 

11. THE EKF ALC[IIITH( 

The EKF a lgor i thm i s  based on the fo l low ing  ass& models 

where: X ( t )  = s t a t e  vector 
y ( t )  = zero mean h i t e  process 
xk = zero mean wh i te  sequence 

The measurement update and the propagation o f  the s t a t e  estimate and o f  the e r ro r  covariance are  performed 
as 

Pk = c s t i m t i o n  e r r o r  covariance rnetr ix 
R k  = covariance o f  the h i t e  sequence, 4 
Pk = spec t ra l  d m s i t y  m t r i x  o f  the h i t e  process, Y 

Kk = ga in  nv l t r i x  
-k 

The s t a t e  vector i s  given as 

1 I’ 
r 

X T = 1 9 ,  I (7) 
L J 

where: g = four quaternion capcKKnts 

- b = three gyro b ias  conponents 
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Note that equation (3 )  i s  the c c d i n a t i o n  o f  the fol lowing 

where: yk = e f fec t i ve  measuremnt or residual 
gk = actual measurement 
h+(gk(-)) = the e s t i m t e  of the actual measurement 

The re la t ionship between (3 )  and (8) has been presented in-past work [31. 
are correctjons t o  the g estimate by the EKF,-denoted as 4. 
g, t o  give gk(+).  
added t o  the best estimate o f  the gyro bias. 

The f i r s t  four carpooents of x -k 
These are Bdded t o  % ( - I ,  the best estimate of 

The remeining elements i n  r, are the corrections t o  the gyro bias which are also then 

In  the MEKF the quaternion elements of p are treated d i f f e ren t l y .  The d e f i n i t i o n  o f  p i s  given as 

r 1 

L f three small  angles (vector) and 1 (scalar) 
where: gT = I +, 8, /I I = three smell angles based on the assurption that the error  quaternion i s  conposed of 

6g = corrections t o  the gyro bias 

The correction t o  the quaternion, given as %, i s  then constructed accordicg t o  

(12) 

and the quaternion i s  updated as 

Uhereas the gyro bias i s  W t e d  according t o  (8). 
i n t o  the s tate vector (7). For further discussion of the MEKF see 141. 

here. For reference see [1,2,31. 

The udpeted gyro bias conponcnts and gk(+) are augmented 

The dynanics f o r  both f i l t e r s  has been presented extensively i n  previous work and w i l l  not be included 

111. TWE ROLE OF QIATERYIOY YOW(M1UTIUi  

The state measurement @ a t e  qua t ions  are given i n  (8) f o r  the AEKF and i n  (12) f o r  the MEKF. Unless 
convergence has been attained, the upd4ted quaternion g(+), i s  not necessarily normel, even i f  g(-) is.  Ue 
know, however, that the quaternion uhich the algorithm i s  t r y ing  t o  estimate i s  necessarily normal. We can 
then enforce normalization on +(+) with the hope that the enforcement of t h i s  qua l i t y  of the correct 
quaternion w i l l  d i rec t  the estimated qmternion i n  the r i g h t  track and w i l l  h e n c e  i t s  convergence. 
Indeed, i t  was fovd i n  the past t2,SI that nornvrlization i s  helpful.  In par t icu lar ,  i t  was f d  that when 
the a t t i t ude  varies slowly between measurements, n o m l i z a t i o n ,  although not necessary, resulted i n  a faster 
convergence; however, when the a t t i t ude  changed rap id ly  ktvm measurements, e i t he r  f i l t e r  tuning o r  
normalization were ncessary t o  avoid divergence. 
f i r s t ,  t r n ing  involves a tedious t r i a l  end error  process, second, t m i n g  i s  not a robust solution, and 
th i rd ,  with queternion normalization the f i n a l  a t t i t ude  estiumte i s  closer t o  the correct quaternion. 

The use o f  normalization i s  supcrior t o  t rn ing  because, 

Following i s  a sunnary of the AEKF nornvll ization methods. The de ta i l s  a re  given in  111. 
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4.1 B r u t e  Force Normalization (BF)  

After X has been carputed in  (8) the quaternion part of the state i s  normalized as -k 
- *  - + = +(+)/14(+)1 (14) 

and i s  augmented i n t o  &(+).  This method was f i r s t  presented in  [SI, where i t  nas shorn that the operation 

performed in  (14) i s  

The f inat  term, -+( 

f i l t e r  cap r ta t i ons .  
next stage of the f i  

n 

equivalent ( t o  f i r s t  order) t o  

(15)  ' T '  ' *  
gk (+I  = [+(-I  + %(+)I  - +'-'+ dqk(+) 

* T -  1% %(+I ,  i s  a residual term, not found in (8) that must be conpensated for  in  the 
This term i s  retained a f te r  the normalization i s  performed and a c c m t e d  for  in the 

t e r  -ration. This mode of n o m l i z a t i o n  does not a f fec t  the covariance carputation 
of the EKF [SI. 
cer ta in  conplication t o  the algorithm. 

This conputation consti tutes an outside interference in  the EKF algorithm and adds a 

4.2 Quaternion Pseudo-measurement (QPt4) 

In t h i s  algorithm the updated quaternion, %, i s  used t o  form a pseudo-n rasu rmt  as follows 

The pseudo-measurement yn 
on t h i s  measurement. 

is, of course, a nonnelized quaternion. A measurement update i s  performed based 
,k 

The re la t ionship between the m e a s u r m t  y,, and the s tate vector i s  fornulated as ,k 

where: H = diag[1,1,1,110..01 
= white measurement er ror  

n, k 
4, k 

The covariance, R of n is set t o  be the diagonal matrix 
n, k'  7, k 

R = dieg Cr*,r*,P,r*I (18) 
n, k 

where r i s  a -11 nrnber. 
on +(*).The QPM i s  performed a f te r  the s tate update, so the ap r io r i  s ta te estimate is &(+I.  
of t h i s  +at! i s  the f u l l  s ta te vector, not just the estimate of E which i s  the d i f f e r w e  between Xk and 
i t s  estimate &(+). 

By adjusting the value of r we determine the degree o f  the inposed normalization 
The output 

The s tate + a t e  i s  performed as 

- *  4 ( + I  = $(*) Kn,k[&,k - H,,&(+)l (19) 

where K 

covariance i s  then recanprted according t o  (4) and the rw state and covariance are p r q g a t e d  as before. 
I f  r i s  too -11 the f i l t e r  w i l l  attenpt t o  replace the 

quaternion est inste by the normalized qusternion. However, a smell r increases the variance o f  the 
quaternion e s t i m t i o n  error, and a high c r e d i b i l i t y  i s  assigned t o  the normalized w t c r n i o n  even when i t  i s  
not yet the correct quaternion. 
f i l t e r  i s  stuck on a wrong estimate. 
disadvantage i s  overcome when the fol lowing normalization scheme i s  used. 

i s  conplted using the rqdeted covariance which corresponds t o  X (+) end H and Rn,k above. The 
n, k -I! n, k 

i t  is inportant that  r be uetl  tvlcd. 

Yew measurements are not a l l d  t o  a l t e r  the queternion estimate end the 
This rcquired t m i n g  gives the algorithm a d i s h a n t a g e .  This 

4.3 Magnitude Pseudo-measurement (MPM) 

I n  t h i s  scheme we use the square of the quaternion Euclidean norm, whose magnitude i s  assuml  to  be 1,  
as the m e e s u r m t ;  that i s  
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where v 
l inear  f w t i o n  of the qmtern ion conponents. 

i s  a s s d  to  be a uhi te  measurement noise with variance r. This measurement quant i ty  i s  a non- 
n, k 

The ef fect ive measurement, Y , , ~ ,  i s  conprted as 

Following the derivations of [ l l  t h i s  i s  rewr i t ten as 

and Rn,k = r. A smal 
measurement of  g i s  precise, i t  i np l i es  that the measurement of 191' i s  precise. 
not s t i c k  t o  a wrong value, since the variance o f  g doesn't approach the value o 

This method does not have the t v l i n g  problem of the OPM. r does not i np l y  that the 
So the est inete o f  g does 
P. 

4.4 Linearized Orthogonalized Matrix (Lon)  

When the quaternion i s  of unit length the a t t i t ude  matrix, A(g), i s  orthonormal. I t  was proven i n  [61 
that 

* '  1 -  
A (g) = - A(g) (23) 

191' 

* -  
i s  orthonormal-snd i s  the closest orthonormal metrix t o  A ( q ) .  
rather then A(g), p r a c t i c a l l y  enforces n o m l i z a t i o n .  

Using A (g) in the developnent of the AEKF, 

V. =IF NOUUMIUTICW TECWIQlES 

The normalization methods developed f o r  the MEKF are presented here. In  contrast t o  the AEKF algorithm, 
normalization i s  essential i n  the MEKF t o  avoid divergence. 
ensuing, force normalization during the udpate of the quaternion. The f i n a l  tno methods are pseudo- 
measurement techni-s s im i la r  t o  those presented f o r  the AEKF. 

The f i r s t  three methods, discussed i n  the 

5.1 Forced Normalization 

Af ter  4(+) has been carputed in  (13), normalization i s  forced as 

No carpcnsation i s  p e r f o m d  because no consequent d i v e r g m e  of the MEKF has k e n  reported in  the 
l i t e r a t u r e  [il. We re fe r  t o  t h i s  nrthod as 'normtized q'. 

The next method of forced n o m l i z a t i o n  i s  t o  normalize dg from (12). This i s  prrformed as 

* 
The n o m l i z e d  4 

MEKF state, given in  (11). 

i s  then used in (13) t o  conpcte %. 

Each of the angles i s  scaled t o  y i e l d  

This method i s  referred t o  as 'normt ized dql. 
The f i n a l  method forces norinel i tat ion o f  the three -11 angles which form the a t t i t u d e  po r t i on  of the 

(27a) 
(2%) 

H 
H 

+* = 2 w [ v  + e* + C* + 41 
e = a/[+? + e* + + 41 
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The elements of dg are canprtcd as 

%,k 
H 

P I  + 41 

* 
Performing the scal ing given in (27)-results i n  the 4 
4* i s  then used in  (13) t o  carp l te  +(+I.  This method w i l l  be ca l led 'normalized alpha', i n  r e f e r w e  to  
the vector, p, o f  snrell angles in (11). 

These methods const i tu te  an outside interference in the MEKF algorithm. The covariance m a t r i x  i s  not 
affected. 

given in  (28) being nonnel. The normalized 

The complication of carpensation i s  not edded since divergence was not detected. 

5 .2  awtern ion Pseudo-measurment (QPM) 

I n  t h i s  method we-normalize the smel l  angles of (11) and use them as the 'pseudo-measurement'. The 
relat iooship between dg end the angles i s  given in  (12) and i s  repeated here. 

- -  - -  - .  
dql +/2 dq2 = W2 % g/2 dqq = 1 ( 2 9 )  

Normalizing dg gives 

Use ( 3 0 )  in (29) t o  obtain 

or 

* i  

(dql' + dq2' + %'+ 1) 
dqi .= 

- '* - '* - 
< = @ , e  = p , g  = p l r  

(30) 

-H . _ -  
where p = 2 0 '  + 8' + fit + 6)  

Note that dq4 i s  not a pe r t  of the f i l t e r  state. 
PPM W t e .  
the f i l t e r .  

carplted as 

Ue assign i t  a value such that rig w i l l  be n o m 1  a f te r  the 
Following i s  a slmwry of the algorithm c a p u t e t i o r s  in the order i n  which they are performed by 

F i r s t  p f ron  (32) i s  conprted using the updeted angles of (10). The pseudo-measurement i s  then 

z , = p  Z 2 ' @  23 = w (33) 

The vector 1. i s  re la ted t o  the s tate vector as g = H 4  + 4, where 5 i s  given in (10). 
metrix, Hn, IMCI the noise covariance m t r i x ,  Rn, are, therefore, defined as 

The measurement 

where r i s  a small n n k r .  A Kalmnn W t e  i s  performed and the new covariance matrix i s  conprted as f o l l o w  
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where p(+) = updsted covariance m t r i x  (before normalization) 
x(+) = resul ts  of measurement update given in  (91, - 

with x1 = +, x2 = 8, x3 = p 

't 
The elements of  dg are conputed as 

-*  -t 't -*  
d q 1 = + / 2  d q 2 = e / 2  dq*3=,?/2 ( 3 9 )  

't -t -* 't -* 
where the angles, + , 8 , and f i  are the f i r s t  three canponents of 6 (+). The fourth elcrnent of &J i s  
conputed as 

Final ly, the quaternion i s  conputed using (13). 

This method exhib i ts  the same t v l i n g  problem as the AEKF QPM. Here, too, i t  i s  inportant that the r 
be u e l l  tuned to  avoid get t ing the quaternion estimate stuck on the wrong value. 
somewhat of a disadvantage fo r  t h i s  method. 

Again t h i s  presents 

5.3 Magnitude Pseudo-measurement 

This method uses the magnitule of the n o r m l i r e d  angles (10) as the measurement. Recall frm (32) 

(42) 
-% - - -  

p = 2(+1 + e' + p* + 4) 

We use p t o  normalize the angles 

. -  . -  
+,,= pi, en = ~ e ,  fin = WI ( 4 3 )  

Following (111, ue rewr i te  (44) as 

(44) 

The magnitude of a i s  re la ted t o  the estimate o f  the individuel angles as follows -n 

The measurement z i s  defined as 

z = I%l' + n 

The e f fec t i ve  measurement t o  be processed by the MEKF i s  then given as 

Y = 2 - lal '  (47) 

We need t o  express y as a l inear  c h i n a t i o n  of the dif ference between % and 9. 
(47) y ie lds 

Substi tut ing (46) i n t o  

Y = I % [ ' +  n - lal '  ( 4 8 )  
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Def ire 6g as 

Substi tut ing (49) i n t o  (48) gives 

_ . .  
Neglecting squares of  6 + ,  be, 6p y ie lds 

or 

This defines the measurement matrix, Hn, as 
_ _ _  

Hn = 12). 28, a, 0, 0, 01 

( 5 1 )  

(52) 

(53) 

The MPM algorithm i s  then carr ied out as follows. 
f i r s t  p* i s  conputed and used t o  obtain y. 

Then Hn i s  conputed and a smell value i s  assigned t o  r, the wicerteinty corresponding t o  n of (46). 
Kalman update i s  performed and the covariance i s  updated. 

A 

Kn = 

-* - x (+) 

P (+) = ( I  - 

P(+)H, T /IH,P(+)H,,' + rl 

T T 
KnHn)p(+)(I - KnHnl KnRnKn 

where p(+) = Iqcbted covariance m t r i x  (before norrnrl ization) 
E ( + )  = resul ts  o f  measurement @ a t e  given in ( 9 ) ,  

with x, = +, x2 = e, 5 = c 

-a 
The normalized 4 i s  then constructed. 

-*  -* 
Again, since dq i s  not a par t  of the s tate w assign i t  a value such that 4 w i l l  be n o m l  a f te r  the tW4 

-* m 4 =  

The quaternion i s  then @atad  according t o  
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This method i s  not subject t o  the t m i n g  problcRs o f  the QW for  the sarc reasons as those given above 
for  the M K F  WPII. 

The a l g o r i t h m  presented i n  t h i s  paper were tested using clean, nominal sinulated data fran the Earth 
Radiation Budget S a t e l l i t e  (ERBS) and noisy sinulated data f ran  the U w r  Atmospheric Research S a t e l l i t e  
(UARS). Two UARS datasets were created. Onc contains sinulated data from a nominal 1 revolut ion per o r b i t  
(RPO) a t t i t ude  and the other contains a 0.5 deg/sec simulated yaw maneuver. 
spacecraft in  i t s  nominal 1 RW at t i tude.  The i n i t i a l  a t t i t ude  error  was 5 degrees and the value of r f o r  
the QPM and MPM a l g o r i t h m  was lo-'  for  both the AEKF and the MEKF. 

algorithm early, which we refer  t o  as the transient period, and a f te r  convergence was achieved, which we 
refer  t o  as steady state. Note also that each of the f igures included s ta r t s  with the f i r s t  @ a t e ,  not with 

the i n i t i a l  a t t i t ude  error  of 5 degrees. 
A l l  of the methods, including not normalizing at  

a l l ,  converged quickly. Figure 1 shows the f i r s t  5 seconds using ERBS data. The BF converges the quickest 

and the LCU the slowest. 
period using the 1 RW UARS data. 
RSS a t t i t ude  error. I n  the steady state, a l l  the methods, including not normalizing a t  a l l ,  achieved 
s imi lar ,  low RSS a t t i t d e  errors. Figure 3 shows resul ts  from the UARS yaw maneiiver. 
lowest error. 

the UARS 1 RPO data. A l l  the methods converge quickly. The resul ts  of not normalizing don't converge as 
low as the normalization results, and beyond the 10 seconds shown bcgin t o  diverge. In steady state, a l l  
the normalization methods achieved low RSS a t t i t ude  errors. 
meneuver. 
s ta te results, using ERBS data, for the three BF methods. 
resul ts  are s l i g h t l y  bet ter  than the inormalized q' results. 

'normalized dq' method fo r  the MEKF, i n  the transient period, using ERBS data. The AEKF converges a l i t t l e  
faster than the MEKF. Figure 8 shows the steady s tate resul ts  frm the UARS yaw maneuver, conparing the 
AEKF L a (  and BF t o  the WEKF 'normalized q'. The WEKF 'normalized q' method has a lower RSS a t t i t ude  error .  
The resul ts  o f  these canperisons of the tu0 f i l t e r s ,  i n  both the transient and steady s tate periods, were 
fwnd t o  be true f o r  the other methods as well. 

The ERBS data i s  taken with the 

We studied the behavior of each 

Ye f i r s t  carpered the AEKF normalization algorithms. 

The QPM and MPM are s imi lar  t o  not normalizing. Figure 2 shows the transient 

A L l  the methods converge quickly; the OW has a s l i g h t l y  lower i n i t i a l  

The Locl has the 

For the MEKF, normalization was found t o  be essential. Figure 4 shows the MEKF transient resul ts  f r a  

Figure 5 shows resul ts  from the UARS yaw 

The 'normalized 4' and 'normalized alpha' 
The three BF methods a r e  s l i g h t l y  bet ter  then the QPM and MPM methods. Figure 6 shows steady 

Final ly, the two f i l t e r s  were canpered. Figure 7 shows the B F  method for  the AEKF versus the 

Ue fwnd that a l l  of the normalization methods presented work well and y i e l d  canperable resul ts .  I n  
the AEKF, normalization i s  not essential since the data chosen fo r  the test  does not have a rap id l y  varying 
at t i tude.  In the MEKF, normalization i s  necessary t o  avoid divergence of the a t t i t ude  estinmte. 
spacecraft experiences low angular rates, a l l  of the methods for  each o f  the f i l t e r s  have s im i la r  behavior. 
The choice of which algorithm t o  select as superior depends on the conplexity o f  each algorithm. 
pscucb-masuranent techniqucs, f o r  both the AEKF d MEKF, blend the n o m l i z a t i o n  i n t o  the Kalman f i l t e r  

algorithm, but they don't represent M actual physical m e a s u r m t ,  and are therefore sanewhat obscure in  
t h e i r  derivation. 
i s  carpl icated by the need t o  corpcnsate. 
using a nomalized a t t i t u d c  t o  derive the f i l t e r  tqdste equations. 
achieves the lowest RSS a t t i t ude  error. 
quaternion i s  the easiest t o  itnplcnmt and i s  the most s t ra ight  forward, but the other tw brute force 
techniques have s l i g h t l y  bet ter  p r f o m n c e .  
UARS urdcrgoing a high turning rate. 
f i l t e r s ,  has the b t s t  perfornence d m y  further substantiate the claim that udcr high rates n o m l i z a t i o n  
helps speed convergence d eliminate the md f o r  tming.  

Uhen the 

The 

In addition, the OW method rcquires the edded bur- of tuning. The AEKF BF algorithm 

The L(111 i s  the slowest t o  converge but 
The L(111 method blends natura l ly  i n t o  the f i l t e r  developrmt, 

In  the MEKF, the brute force technique of n o m l i z i n g  the 

A l l  of the a l g o r i t h m  w i l l  be fur ther  tested u i t h  data f ran 
This my help t o  determine uhich of the algorithms, fo r  each of the 
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ATTITUDE DETERMINATION USING VECTOR OBSERVATIONS: 
A FAST OPTIMAL MATRIX ALGORITHM 

F. Landis Markley' 

Abstract 

The attitude matrix minimizing Wahba's loss function is computed directly by a method that 
is competitive with the fastest known algorithm for finding this optimal estimate. The method 
also provides an estimate of the attitude error covariance matrix. Analysis of the special case 
of two vector observations identifies those cases for which the TRIAD or algebraic method 
minimizes Wahba's loss function. 

Introduction 

In 1965, Wahba posed the problem of finding the proper orthogonal matrix A that 
minimizes the non-negative loss function [ 11 

where the unit vectors ri are representations in a reference frame of the directions to some 
observed objects, the bi are the uni t  vector representations of the corresponding observations 
in the spacecraft body frame, theui are positive weights, and IZ is the number of observations. 
The motivation for this loss function is that if the vectors are error-free and the true attitude 
matrix A f r l r e  is assumed to be the same for all the measurements, then bi is equal to Atrlreri 
for all i and the loss function is equal to zero for A equal to A,,,,,. 

Attitude determination algorithnis based on minimizing this loss function have been used 
for many years [2-91. The original solutions to Wahha's problem solved for the spacecraft 
attitude matrix directly [2-51, but most practical applications have been based on 
Davenport's q-method [6-8], which solves for the quaternion representing the attitude 
matrix. In this paper, we present a new method that solves for the attitude matrix directly, as 
well as the covariance matrix, and which is competitive with the well known QUEST 
algorithm [9] in speed. Analysis of thc special case of two observations serves to relate this 
method to the TRIAD or algebraic method [ 8, 91. 

Statement of the problem 

Simple matrix manipulations transform the loss function into 

L(A) = h- tr(AB'), 
where 

n 

1= 1 
T B I C ai biri , 

Af)5 c N i ,  

n 

i= 1 

'Assistant IIead, Guidance and Control Briuich, Code 7 12, God&lrd Space Flight Center, Grccnbclt, MD 20771 
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tr denotes the trace, and the superscript T denotes the matrix transpose. Thus Wahba's 
problem is equivalent to the problem of finding the proper orthogonal matrix A that maximizes 
the trace of the matrix product AB . The weights are often chosen so that 
not always the most convenient choice, as will be discussed below. 

T = 1, but this is 

This optimization problem has an interesting relation to a matrix norm. The Euclidean 
norm (also known as the Schur, Frobenius, or Hilbert-Schmidt nomi) is defined for a general 
real matrix M by [ 10, 1 I ]  

( 5 )  
2 2 T IIMjl = E M i j  = t r (MM ), 

where the sum is over all the matrix elements. The assumed orthogonality of A and 
properties of the trace give 

2 [ [ A  - B 11 = tr[(A - B )  (A - BIT] = tr 1 - 2tr(AB7') + I( B 11 , (6)  
T where f is the 3 x 3 identity matrix. The orthogonal matrix A that maximizes tr(A B ) 

mininiiLes this norm, so Wahba's problcni is also equivalent to the problem of finding the 
proper orthogonal matrix A that is closest to B in the Euclidean norm 1123. 

The matrix B can be shown to have the decomposition [ 131 
T B = U+ diag[S,, S2, S3] V+ 

where U+ and V+ are proper orthogonal matrices; diag[. , .] denotes a matrix with the 
indicated elenicnts on the main dingonal and zeros elsewhere; and SI, S,, and I S3 I , the 
singular values of B ,  obey thc inequalities 

The optimal attitude estimate is given in tcrnis of these matrices by [ 131 

( 7 )  

Equation (7) differs from the singular value decomposition (SVD) [ 10, 111 in that U+ and V+ 
are required to have positive determinant. In  reference [13], S3 was denoted by ds,, where 
d = k 1 and .s3 2 0. 

The SVD provides a robust method for computing the matrices U+ and V+, and thus the 
optimal attitude estimate, but i t  is not  very efficient 1131. The purpose of this paper is to 
present a more efficient method to estimate the attitude. 

Computation of the attitude matrix 
T Noting that the ad-joint of the transpose of B and the product BB B can be written as 

and 
T 3 3  T BB B = U+ diag[S13, S2 , S3 ] V+ , 
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it is a matter of simple algebra to see that 

where 

and the other scalar coefficients are defined by 

and 

The matrices in equation (12) can be computed without performing the singular value 
decomposition, but this equation is an improvement over equation (9) only because the scalar 
coefficients K, 2, and ccan also be computed without the SVD, as we will show below. 

Iterative computation of the scalar coefficients 

We first find expressions for the other scalar coefficients in terms of A. A little algebra 
shows that 

and 

Let A ( A )  denote the expression for the attitude matrix given by equations (12), (17), and 
(18) as a function of A and B. This is equal to A , ,  if A is given by equation (15). Equations 
(7), (91, and (15) give 

(19) T A = tr(Aop, B 1, 

A =  tr[A(;1)B7] = tr[(K+ IIR112)BB7’+A (det B ) l -  ( B B T ) 2 ] / < .  

so Acan be computed as a solution of the equation 

(20) 

Substitution of equations (17), (18), and the identity 

IIB1l4- tr[(BB7*)2] =2)1adjB112 

2 2 O = Q ( A ) = K  - 2 ; l d e t B -  (IadjBII . 
lets us write this as 

Since  is a quadratic function of A. Q (  A) is a quartic polynomial. It can be shown to be the 
same quartic that is used in QUEST, up to an irrelevant factor of one-fourth. Substitutionof 
equation (7) into equation (22) gives the four roots of the quartic in terms of S,, S,, and S,. 
We must use equation (17) for IC rather than equation (14) in this substitution, which gives 

4~ (A) = (a - s, - s, - s,) (A - s, + s, + s,) (A + s, - s, + s3) (A + s, + s, - s3). (23)  
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The roots of this equation are all real, and they are the four eigenvalues of the K matrix 
in the q-method, as is well known [7, 91. Equations (8) and (15) show that we require the 
maximum root, and that this root is distinct unless S, + S, = 0. When S2 + S, = 0, the attitude 
solution is not unique, as is discussed in reference 1131; in the method introduced in this 
paper, this results in ( = 0 and all the elements of A,, having the indcfinite form 0/0. 

We now note from equations (2) and (19) that 

L(Aopl)  = - A 2 0. (24) 

For small measurement errrors, the loss function should be close to zero, so the maximum 
root of equation (22) should be close to A" 191. Thus we can find A by Newton's method, 
starting with this value. This defines a sequence of estimates of A by 

A;=A;- l  -Q(Ai-l)/Q'(Ai-i), i = 1, 2, .... ( 2 5 )  

Substitution of equation (23) shows that this sequence would be monotonically decreasing 
with infinite-precision arithmetic, but a computation with finiteprecision arithmetic 
eventually finds a Ai L Ai-1. At this point, the iterations are tcrminated and Ai-1 is taken to 
he the desired root to full  computer precision. This iteration converges extremely rapidly in 
practice, except in the case that the maximum root of Q ( A )  is not unique. In that case the 
dcrivative in the dcnominato1 o f  equation (25) goes to zcro as the root is approached, so the 
computation is terminated and a warning is issucd that the attitude is indeterminate. Halley's 
method [ 141 would give convergence in fewer iterations than Newton's method, but would 
require mort: computations per iteration, s o  it was not  investigated further. 

I t  is important to carry out the computation of A to full  machine precision, since otherwise 
the computed attitude matrix will not be orthogonal. Straightforward matrix computation gives 

(26) A ( A ) A  T( A) = I - Q (A) (A21 - BB7) /c2 .  

This shows the orthogonality o f  the computed attitude matrix if A is a root of Q (  A), and 
est im a tc s the de parture from orthogonal i t y ( ) t her w ise . 

Analytic computation of the scalar coefficients 

The scalar coefficients can also be computed as functions of the largest singular value S, 
off3 by 

K =  S,(S2 + S,) -+ S,S, = S1(S2 + S,) + S1-'det B ,  (27) 

A=S1 + ( S 2 + S , ) .  (28) 
and 

where 
(29) 

(30) 

2 [ = W + S ,  )G,+S,L 

S, + S, = {S1-,[ I /  adj B 11 - (S,-Idct B ) 2 ]  + 2SI-'det B}1'2. 

This form is chosen to avoid near-cancellations in near-singular cases. The largest singular 
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value is found as the positive square root of the largest root of the cubic characteristic 
equation of the matrix B B  171: T 

0 = (S12)3 - tr(BB") (S,2)2 + tr[adj(BB7)]S12 - det(BB7) 

= (S1 ) - IIB 1 1  2(S12)2 + 11 adj B 11 S, - (det B)2.  2 3  2 2  

The largest root of this equation is given by [7, 151 

SI2  = 5 { 11 B 1 1  + 2a1'2cos[ f cos-'(a- 3np )I } ,  
where 

and 

4 2 a =  I/Bll -311adjBII , 

p E I/ B 1 1  - (9/2) 11 B 1 1  1 1  adj B 11 + (27/2)(det B ) 2 .  

Equation (7) can be used to show that a 2 0, with equality if and only if S, = S, = IS, I ,  in 
which case p=  0 also. Thus we have a complete analytic solution of Wahba's problem. 

Computation of the covariance matrix 

The quality of the attitude estimate is best expressed in terms of the covariance of the 
three-component column vector $ of attitude error angles in the spacecraft body frame. This 
parameterization gives the following relation between the estimated and true attitude 
matrices A and Arrue:  

A = Iexp[(- $)XI IArrlle = { I  - [$ XI + $ IO XI2 + - a .  IAtn'e, ( 3 5 )  

where the matrix [u x] is defined for a general three-component column vector u as 

0 - 1'3 

lux ]  = 1 1'3 0 . (36) 

This notation reflects the equality of the matrix product [u x]v and the cross product u x v. 

Shuster [ 161 has recast the Wahba problem as a maximum likelihood estimation problem 
[ 171, which leads to a very convenient method for computing the covariance matrix. Asymp- 
totically, as the amount of data becomes infinite, the covariance matrix tends to the inverse of 
the Fisher information matrix F, which is the expected value of the Hessian of the negative- 
log-likelihood function J ;  

The distribution of the components of the i th  measurement error vector perpendicular to the 
true vector are assumed to be Gaussian and axially symmetric about the true vector with 
variance oi per axis. Then the negative-log-likelihood function for this problem is 113, 161 

F,k = E[d2J/d$d~k]. (37) 

2 
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where the omitted terms are independent of attitude. For any positive A. and with 

the weights 
(39)  

(40) 

are positive and satisfy equation (3). With this choice 

(41)  
1 -2 J =  A()- Of,, L ( A )  + ... , 

which means that the solution to Wahba‘s problem is a maximum-likelihood estimate, since it  
minimizes the negative-log-likelihood function. Substituting equation (35) into equation (2) 
and using the identity 

gives, to second order, 
[ u XI [v XI = - (vTu)I + vu7’ (42) 

and, by matrix inversion, the covariance matrix 

The true attitude matrix is not known in a real attitude estimation problem, of course, so 
A,, must be used in place of A,,,, in computing the covariance. Making this replacement in 

T equation (46) gives, with equation (19) and the symmetry of the matrix product A,, B , 
which follows from equations (7) and (9), 

(46) 

Equation (46) is one of the forms for the covariance matrix given in Appendix B of [13], which 
is also the result obtained in [ 181, simplified to the case that only the attitude is estimated. 
The computation of the matrix inverse can be avoided as follows [19]. Equations (7), (9), and 
(15) show that 

(47) 

P = A u ~ ~ o ~ ( A 1 - A o ~ , I  B y )  r - I  =Aoa,,, 2 adj(AI-AOptB T )/det(AI-AoplBT). 

AI -Aop tB  T = I /+diag lS2+S?,S?+S1,S1 +S21U+ 7’ . 
- -  

The determinant of this matrix is given by equation (16) as 
I.. 

det ( A  I ~ A,, B’)  = c, 
1’ T adj(AI -A(ljl, B ) = K I + B B  , 

and its adjoint is 

yielding the desired manifestly symmetric result 
2 T P = Aootot ( # I  + B B  )/[. 

(48) 

(49) 
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We see that the covariance matrix is infinite when c = 0, which agrees with the conditions 
for indeterminacy of the attitude solution discussed above. In the case of near-indeterminacy, 
the singular values are approximately S, = A, S2 = S, c- 0 [ 131, which gives the covariance 

A good criterion for terminating the iterative solution for A by equation (25) i s  

since equation ( 5  1) predicts attitude estimation error standard deviations larger than 2a& 
radians when this inequality is satisfied. This error can only be small if A << do, in which case 
the attitude estimate is poor because the loss function is large. 

Normalization of the weights 

The results above are valid for any positive value of the parameter h, but only two 
choices are useful: 

or 
A. = 1 (normalized weights) ( 5 3 )  

(54) -2 &, = Otor (unnormalized weights). 

Past treatments of this problem have generally used normalized weights, which give a B 
matrix with elements of order unity. This is convenient in computations using fixed-point 
arithmetic, but floating-point arithmetic is an option on virtually all present-day computers. 
The normalized form may also be useful if the measurement weights are arbitrarily assigned. 

The unnormalized form is more natural if the weights are computed in terms of measure- 
ment variances, as in equation (40), since the unnormalized weights are just equal to the 
inverse variances. The unnormalized form also simplifies the computation of the covariance, 
as shown by equation (50), but this form can potentially lead to numerical problems. The 
elements of B are of order a,,, if the weights are not normalized, which means that 

( 1  adj B 11 is of order atot . Since atot can be of order 10 
11 adj B 11 can be of order 

that do not provide an adequate exponent range. This is not a problem with double-precision 
arithmetic in conformity with ANSIfiEEE Standard 754- 1985 for binary floating-point 
arithmetic [20], since this standard mandates eleven bits for the exponent, allowing 
representation of numbers as large as 10308. The Standard Apple Numerical Environment 
1211 and VAX G-FLOATING [22] double-precision arithmetic employ eleven-bit 
exponents, but VAX D-FLOATING double-precision arithmetic allots only eight bits for the 
exponent. This is the same as in IEEE-standard single-precision arithmetic, and allows 
representation of numbers only as large as 
exponent overflow problems for measurement variances ate; less than about lo-', but 
double-precision arithmetic is certainly preferred in such cases. 

-2 

-8 -6 for highly accurate sensors, 
leading to exponent overflow in floating-point representations 

Single-precision arithmetic would lead to 
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Algorithm test - accuracy 

Two forms of the new algorithm, the form with the iterative solution for A (FOAM - Fast 
Optimal Attitude Matrix), and the form with the analytic solution for S, (SOMA - Slower 
Optimal Matrix Algorithm), were compared with the SVD method [ 131 for minimizing 
Wahba's loss function. The three methods were implemented in double-precision FORTRAN 
and executed on a DEC VAX 8830 computer. FOAM and SOMA were implemented in 
G-FLOATING arithmetic with unnormali;?ed weights. FOAM was also implemented with 
normalized weights in both G-FLOATING and D-FLOATING arithmetic, while the SVD 
method was implemented with unnormalized weights in D-FLOATING arithmetic. 

Four sets of reference vectors wcre used for the tests: 
7' 7' T r1 = IL 0, 01 , r2 = IO, 1 ,  01 , r3 = [O, 0, 11 , (55) 

7' T r1 = 10.6, 0.8, 01 , r2 = [0.8, - 0.6, 01 , 

and 
(58) 

7' T rl = [ I ,  0, 01 , r2 = 10.96, 0.28, O]", r3 = [0.96, 0, 0.281 . 

Set ( 5 5 )  models three sensors with orthogonal boresights along the spacecraft body axes, 
whilc set (56) models two sensors with orthogonal boresights not along the body axes. 
Reference vector set (57) is intended to model three star measurements in a single star 
sensor with a small field-of-view. Set (58) models one sensor with its boresight along the 
body x- axis and two sensors with boresights 16.26 degrees off this axis. The observation 
vectors were computed as 

where 
b; = AI,,,, r; + ";, (59) 

(60) 1 0.352 0.864 0.360 
- 0.864 0.152 0.480 , 

0.360 -0.480 0.800 

which has all non-zero matrix elements with exact decimal representations and is otherwise 
arbitrary, and ni is a vector of measurement errors. The tests were run both with ni = 0 and 
with measurement errors simulated by mo-mean Gaussian white noise on the components 
ofni . All the methods normalize the input  observation and reference vectors; some 
efficiencies in the normalization process were found and applied to the three algorithms. 

The results of the accuracy tests are presented in Table 1. The reference vector sets are 
labeled REF. The standard deviations (in radians) in the table were used to compute the 
measurement weights and also the level of measurement errors in the tests where these 
were simulated. Only two measurements wcre used in the tests in which only two standard 
deviations are given. The quantities presented in the table are the estimation error in radians 
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(computed with simulated measurement errors), 

(61) 
-1 - 3/2 T T 

EST = sin (2  l l ~ o p r  Atride - AI,,, I l l 7  

COMIJ= l l ~ o p l  - Atrue II 7 

ORTH = IIAopl A,, - 1 II * 

the maximum computation error for all FOAM and SOMA variants (computed with nj = 0),  

(62) 

and the maximum orthogonality error for FOAM and SOMA, 

(63) 

The estimation error was the same for all methods, to the accuracy of the computation errors. 
As expected, the very robust SVD method gives the smallest maximum orthogonality error 
(2.16 x for cases 1 - 4, 1.63 x lo-'' for case 5 ,  
3.74 x lo-'' for cases 6 - 11, and 2.10 x for case 12). No significant differences were 
seen between FOAM and SOMA or between normalized and unnormalized weights. 
D-FLOATING arithmetic was about one decimal digit more precise than G-FLOATING 
arithmetic, as expected [22]; but this is not significant, since the computation errors are much 
less than the estimation errors in all cases with realistic noise. It is clear that cases with 
widely differing measurement accuracies furnish the greatest computational challenges. 

Algorithm test - speed 

T 

and computation errors (4.72 x 

The above methods were compared with Shus ter's QUEST (Quaternion ESTimation) 
algorithm [9] for computational speed, since QUEST is the fastest previously known 
algorithm for solving Wahba's problem. In addition to the reference and observation vectors 

Table 1 
Accuracy Test Results. See text for explanation 

EST COMP ORTH CASE REF 0 1  02 0 3  

1 (55)  10" 10" 10" 1 . 3 8 ~  10" 4.61 x 1 . 1 2 ~  
2 ( 5 5 )  10" 10" - 

5 (56) 10" .O1 - 

6 (57) 10" 10" lod 
7 (57) 10" 10" - 

10 (58) 10" .01 .o 1 
11 (58) 10" -01 - 

12 ( 5 8 )  .o 1 10" - 

3 ( 5 5 )  .o 1 .0 1 .o 1 
4 (55) .01 .o 1 - 

8 ( 5 7 )  .01 .o 1 .o 1 
9 ( 5 7 )  .o 1 .o 1 - 

2.02x 10" 
1.39 x 
2.05 x 
1.12 x 

3.18 x lo-' 
0.186 

8 . 8 2 ~  
1.72 x lop2 
3.33 x 
3.48 x 

2.51 x 

3.05 x 
5.27 x 
3.05 x 

4.66 x 
7.84 x 
4.04 x 
5.70 x 
1.49 x 

7.83 x 

1.45 x 
3.01 x 

6.1 1 x 
1.01 x lo-'' 
1.12 x 1 0 - l ~  

8.94 x 10-l2 

1.12 x lo-" 
2.97 x 
2.87 x 
6.00 

2.73 x loF8 

1.54 x lo-'' 
7.50 x 
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and the measurement standard deviations, QUEST requires the input of five control 
parameters, which were taken as QUIBBL = 0.1, FIBBL = lod5, Q U A E  = 
and IMETH = 1. The measured CPU times were effectively the same for normalized and 
unnormalized weights. They consist of a part that is independent of the number of 
observations processed and a part proportional to the number of observations: 

N E W T =  10, 

tQmsT = 0.24 + 0.09 n msec. 

tFOAM = 0.27 + 0.07 IZ msec, 

 SOMA = 0.36 + 0.07 n msec, 

tSVD = (3 _+ 1) + 0.07 n msec. 

The greater n-dependent time in QUEST as compared to the other algorithms is due to the 
method used to compute the covariance matrix in QUEST. The computation of A generally 
requires one or two iterations in QUEST and two to six iterations in FOAM, due to the need 
to iterate to convergence in the latter method, which accounts for the greater n-independent 
time in FOAM. The transcendental function calls in SOMA account for its longer running time 
compared to FOAM, which is definitely preferable to SOMA since it is faster and no less 
accurate. The range of times for the SVD method is related to the rank and conditioning of the 
B matrix. This method is significantly slower than all the other methods tested, as has been 
noted previously; but the SVD method may still find applications in nearly singular estimation 
problems. The exact CPU times will vary from case to case, and the time required for either 
FOAM or QUEST appears to be quite modest in comparison with other computations 
performed in spacecraft attitude determination. 

It should be pointed out that FOAM computes the attitude matrix directly, while QUEST 
computes an attitude quaternion. If an attitude matrix is required from QUEST, an additional 
step is required to compute it from the quaternion. This requires only multiplications and 
additions, though, and no transcendental function evaluations. If it is desired to compute a 
quaternion from FOAM, the standard method for extracting i t  from the attitude matrix can be 
used [23]. This requires the evaluation of one square root, but FOAM is faster than QUEST 
even with this addition. The principal advantage of FOAM over QUEST in practice is that it 
requires no control parameter input; its only inputs are the number of observations, the 
refercnce and observation vectors, and the measurement standard deviations. 

Two-observation case 

In the special case of two observations, the rank of B is at most two, so det B = 0, which 
gives with equation (22) 

K = II adj B II , 
= (2K + IIBII 1 

(68) 

(69) 2 1/2 
9 

and 
[ = K A .  (70) 
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Both K and A must be positive in order for A to be the largest root of (?(A). The explicit form 
forB as a function of the reference and observation vectors then yields 

(71) ad jBT=aln2(b l  xb2)(r1xr2) T , 

~ = q a ~ l b ~  xb21 Irl xr21, (72) 
and 

The attitude is indeterminate if either the two reference vectors or the two observation 
vectors are parallel or antiparallel. Thus we will assume that both e r ,  the angle between rl 
and r2, and O b ,  the angle between b, and b, are strictly greater than zero and strictly less 
than pi. Now set A. = a l  + a2 = 1 for the remainder of the discussion in this section, define 

E =  (eb - e ~ 2 ,  (74)  

and note that 1 E I < n/2.  This allows the expression for A to be written more compactly as 

(75)  2 1/2 A = ( I  -4cl,u2sin E) . 

These expressions for A in h e  two-observation case arc equivalent to equation (72) in [9]. 

It is convenient to write the optimal attitude estimate in terms of the orthonormal triads: 

and 

Other orthogonal triads can be defined, but these preserve the maximum symmetry between 
the two measurements. The optimal attitude malrix expressed in terms of these triads is 

2 -112 7 7‘ T T Aopl = ( 1  - 4 ala2sin E) [ c o s ~ ( b + r +  + b-r- ) + ( u l  - a 2 ) s i n ~ ( b + r -  - b-r+ )J  

(78)  

It is interesting to note that a factor of ulu2 in the denominator of equation (12) has cancelled 
an identical factor in the numerator. Thus the attitude estimate has a well-defined limit as 
either a l  or a2 tends to zero, even though Wahba’s loss function does not have a unique 
minimum in either limit. Another interesting property of the two-observation case is that the 
optimal estimate is independent of the weights when E = 0. Equations (24) and (75) with 
4 = 1 show that the optimi7,ed loss function is zero if any of a l l  u2, or E is zero. 

T + (b+ x b-) (r+ x L) . 
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We now investigate the conditions under which this optimal attitude estimate can be 
obtained by a generalization of the simpler TRIAD or algebraic method 18, 91. This is a 
well-known algorithm for computing an attitude matrix from two vector observations by 
forming orthonormal triads from the reference and observation vectors. One of vectors in the 
reference triad is the normalized cross product of the two reference vectors, and the other two 
are orthonormal linear combinations of the two reference vectors. The most general form €or 
the reference triad that we will consider is: 

rI 3 cosy, r+ - siny, r- = [sin(y, + 8,./2)r, - sin(y, - 0,/2)r2]/sin0,, 

rII 3 cosyr r- + siny, r+ = [cos( yr - 0,/2)r2 - cos( lyr + 8,/2)rl]/sin8,, 

rI x rII = r+ x r- , 

(79a) 

(79b) 

(79c) 

where v, is some rotation angle in the plane spanned by r1 and r2. The observation triad is 

b, = cosyb b+ - shyb b- = [sin(yI, + Oh/2)bl - sin(yh - Ob/2>b2]/~inf3b , 

b,, E cosy!, b- + sinryl, b, = [cos( yl, - 0,/2)b2 - cos(yl, + O,/2)b , ] /~ in8~ , 

(goal 

(gob)  

(80c) b, x b,, = b+ x b- , 

similarly. The angles yr and y b  are chosen to give more or less weight to the two vector 
measurements. The choice y, = yo = 0, for example, gives equal weight to the two 
measurements. The choice vr = Or /2 and yo = Ob /2 gives 

‘1 = r1, (81a) 

(81b) rII = (r2 - cosOr rl)/sinOr, 

and similar relations for 9 and bIr, with maximum weight on the first measurement. The 
choice yr = - Q r / 2  and yr, = - Ql, 12, on the other hand, gives 

TI = r2, (82a) 

(82b) 

and similarly for 4 and h,, with maximum weight on the second measurement. The key point 
is that y, is some function of Or and the measurement weights, and y b  is the same function of 
Ob and the weights. Note that this does not imply that y, = yb except in the case that E = 0. 
Often, the TRIAD method is understood to mean only the special cases of equations (81) or 
(82), rather than the generalized method specified by equations (79) and (80). 

rII = - (rl - cos0, r2)/sin0,, 

The TRIAD attitude estimate is given by 

(83) T + (b+ x b-1 (r+ x r-1 . 
We now attempt to find angles yr and y/, such that the TRIAD solution gives the optimal 
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attitude estimate of equation (78). We immediately find such angles in four special cases: 

1)  If & = 0, then I,V, = v/b automatically, all TRIAD solutions are the same, and they all agree 
with the optimal estimate, which is independent of the weights in the loss function. 

2) If al = a2 = 1/2, the TRIAD solution with vl, = vb = 0 and with vector triads given by 
equations (76) and (77) gives the optimal estimate. 

3) If al  = 1, a2 = 0, the TRIAD solution with v, = 8,/2, yb = 8,/2 and with triads as in 
equations (8 1) gives the optimal estimate. 

4) I fa l  = 0, a2 = 1 ,  the TRIAD solution with I,Y, = - 8,/2, Vb = - eb/2 and with triads as in 
equations (82) gives the optimal estimate. 

We will now show that the TRIAD solution does no& minimize Wahba‘s loss function except 
in these four special cascs. Comparing equations (78) and (83) gives the following necessary 
condition for agreement of the TRIAD and oplimai attitude estimates: 

tan( yb - ty,) = (al - a2)tan&. (84) 

Set 8, = eo, some arbitrarily chosen angle, and denote the corresponding value of y, by yo, 
which is also a function of the observation weights. Then 

t an (yb-  yo) = (a1 -u2)tan[(Ob- 00)/2] = (a l  -a2)zb.  ( 8 5 )  

This equation must hold for any O r ,  with yo and eo regarded as fixed parameters, since yb is 
required to be a function of Ob and the weights only, and not of 8,. Now setting Ob = eo in 
equation (84) gives I,Y~ = and 

tan(w, - yo) = (a l  - a2)tan[(8, - Oo)/2] = (a1 - a2) r, , (86) 

which must hold for any Ob . In fact, equation (86) could have been written directly in  analogy 
with equation (85) ,  since vr is required to be the same function of 8, and the measurement 
weights as vb is of Ob and the weights. Now combining equations (85) and (86) with some 
elementary trigonometry gives 

2 wv1, - vr) = W ( V h  - w0) - t vr - W())l = (“1 - 9) czh - q/l 1 + (q - 9) q7J 
= (a1 - a2 ) t an&( l  + zbzr)/[l + (1  - 4UlU2)q,,rr1. (87 1 

Equating the right sides of equations (84) and (87) gives, after some cancellations, the 
necessary condition 

4ala2zbz,(a, -a2) tan&= 0, ( 8 8 )  

which is satisfied in the four special cases discussed above. I t  is also satisfied if either zb or 
rr is zero, but these conditions cannot be satisfied i n  general since Oo is an arbitrarily chosen 
angle. Thus the TRIAD method cannot find the optimal attitude minimiLing Wahba‘s loss 
function in the general case, but only in the special cases E = 0, u l  = 0, u2 = 0, and a l  = a2. 
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Conclusions 

A new algorithm for minimizing Wahba's loss function has been found, which solves for 
the optimal attitude matrix directly, without the intermediate computation of a quaternion or 
other parameterization of the attitude. The attitude quaternion can be computed from the 
attitude matrix, if desired; and the new method with iterative solution of the scalar 
coefficients in the attitude matrix is at least as fast as existing methods even with this 
additional computation. The scalar coeflicien ts used in computing the optimal attitude matrix 
are also used to compute the covariance of the attitude error angles. Since the attitude matrix 
is inherently nonsingular, there are no problems with special cases like 180 degree rotations, 
and no special procedures are needed to deal with such cases. The principal practical 
advantage of the new method over existing fast optimal attitude estimators is that it requires 
no control parameter input; its only inputs are the number of observations, the reference and 
observation vectors, and the measurement standard deviations. 

A closed-form solution for the optimal attitude matrix is presented for the special case of 
two observations. This solution is compared with the estimate produced by the well-known 
non-optimal method based on  orthonormal triads formed from the observation and reference 
vectors. When the angle between the two reference vectors is equal to the angle between the 
two observation vectors, all triad choices give the optimal estimate, which is independent of 
the weights in the loss function. Except for this case, the optimal and triad-based attitude 
estimates agree only when the two vector measurements are given equal weights in the loss 
function or when the weight given to one vector measurement is negligible compared to the 
weight given to  the other. 
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ABSTRACT 

The Upper Atmospheric Research S a t e l l i t e  (UARS) 
requires a h igh l y  accurate knouledge of i t ' s  
a t t i t u d e  t o  accocrplish i t ' s  mission. Propagation 
o f  the a t t i t u d e  s ta te  using gyro measurements i s  
not s u f f i c i e n t  t o  meet the accuracy requirements, 
and rmst be supplemented by a observer/cocrpensation 
process t o  correct  f o r  dynamics and observation 
anomalies. The process o f  amending the a t t i t u d e  
s ta te  u t i l i z e s  a u e l l  known method, the d iscrete 
Kalrnan F i l t e r .  

This study u i l l  be a s e n s i t i v i t y  analysis o f  the 
d i sc re te  Kalman F i l t e r  as inplemented i n  the UARS 
Onboard Cocrputer (OBC). The s t a b i l i t y  o f  the 
Kalman F i l t e r  used in  the normal on-orb i t  cont ro l  
mode u i t h i n  the O M ,  u i l l  be investigated f o r  the 
e f fec ts  of corrupted observations and nonlinear 
errors. Also a s t a t i s t i c a l  analysis on the 
residuals o f  the Kalman F i l t e r  u i l l  be performed. 
These analysis w i l l  be based on simulat ions using 
the UARS Dynamics Simulator (UARSDSIM) and conpared 
against a t t i t u d e  requirements as defined by General 
E l e c t r i c  ( G E ) .  An independent v e r i f i c a t i o n  o f  
expected accuracies ui 11 performed using the 
A t t i t u d e  Determication E r r o r  Analysis System 
(ADEAS). 

1.0 In t roduc t i on  

The Upper Atmosphere Research S a t e l l i t e  (UARS) i s  a 
three ax i s  s t a b i l i z e d  spacecraft, designed t o  make 
a global, continuous and conprehensive look a t  the 
Earth's W r  atmosphere. The spacecraft uas 
launched on September 12, 1991 onboard Space 
Transportat ion System 48 (STS-48) and placed in  a 
c i r cu la r ,  lou ear th o r b i t  before ascending t o  i t ' s  
f inal mission o r b i t  u i t h  mean a l t i t u d e  o f  585 km. 
and i n c l i n a t i o n  o f  57 degrees. The mission l i f e t i m e  
w i  11 cover tu0 northern hemisphere u in te rs  and have 
a nominal l i f e  expectancy of 18 months, w i th  
possible extensions up t o  15 years. 

The UARS observatory consists o f  t en  science 
instrunents, an instrunent module (IMI inc lud ing 
mission-unique hardware, and the Mult imission 
Modular Spacecraft (MMS). The MMS u i l l  provide 
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I 

prec is ion po in t i ng  f o r  the science i n s t r w n t s  on (/ 

an Ear th-or iented pletform, u i t h  pe r iod i c  rout ine [ 
manewers t o  mainta in  a favorable sun or ientat ion.  
The MMS i s  an on-orb i t  serviceable spacecraft bus 
that  has a modular design t o  a l l o u  f o r  use on most 
science r e l a t e d  s a t e l l i t e s .  The observatory uses 
the MMS t o  provide a t t i t u d e  contro l ,  comnunications 
and data handling, e l e c t r i c a l  power storage and 
regulat ion, and propulsion. 

O f  i n te res t  t o  t h i s  study i s  the MMS Modular 
A t t i t ude  Control Subsystem (MACS) uhich provides 
the A t t i t u d e  Determination and Control (ADLC) 
subsystem sof tuare tha t  i s  implemented i n  the 
onboard Conputer (OBC), uhich i s  part of the 
C a n a n d  and Data Handling (CLDH) subsystem. The 
06C provides the est imat ion model f o r  meeting the 
a t t i t u d e  determination accuracy during the 
p rec i s ion  mode o f  the normal on -o rb i t  mission mode 
o f  60 arcsec. (3 sigma). A n  i l rportant part o f  the 
a t t i t u d e  determination scheme inplemented i n  the 
OBC i s  t o  compensate the propagated s t a t e  using 
gyro data u i t h  pe r iod i c  measurement data from the 
Fixed Head Star Trackers (FHSTs) t o  ob ta in  a be t te r  
estimate o f  the current a t t i t u d e  e r r o r  and gyro 
d r i f t  bias. This conpensator i s  known as the 
d iscrete Kalman F i l t e r .  This study u i l l  address 
the a t t i t u d e  determination c a p a b i l i t i e s  o f  the 
d iscrete Kalman F i l t e r  during the prec is ion 
po in t i ng  mode o f  the normal on -o rb i t  mission as 
inplemented in  the OEC o f  the UARS spacecraft. 

2.0 A t t i t ude  Modeling 

This study u i l l  be a s e n s i t i v i t y  analysis o f  the 
d iscrete Kalman F i l t e r  as implemented in  the UARS 
spacecraft. The s t a b i l i t y  o f  the Kalman F i l t e r  
u i l l  be invest igated f o r  the e f f e c t s  of corrupted 
observations and nonlinear errors. Also a 
s t a t i s t i c a l  analys is  on the res iduals  of the Kalman 
F i l t e r  u i l l  be performed. These analysis w i l l  be 
based on s i rm la t i ons  using the UARS Dynamics 
Simulator (UARSDS), a sof tuare implementation of 
the spacecraft 's hardware and con t ro l  systems. A n  
independent v e r i f i c a t i o n  o f  expected accuracies 
u i l l  a lso be performed using the A t t i t ude  
Determination E r r o r  Analysis System (ADEAS). 

2.1 A t t i t u d e  Determination Error Analysis System 
(ADEAS) 

One o f  the a t t i t u d e  t o o l s  used in t h i s  study uas 
the A t t i t u d e  Determination E r ro r  Analysis System 
(ADEAS), uhich a l loued f o r  a quick v e r i f i c a t i o n  of  
expected accuracies. ADEAS can model est imation by 
using e i t h e r  a batch f i l t e r  o r  a Kalman F i l t e r .  
The est imat ion choices found i n  ADEAS makes t h i s  
too l  i dea l  f o r  conparison against simulat ion 
r e s u l t s  using the  UARSDS and the d e f i n i t i v e  
a t t i t u d e  ground so lu t i ons  using a batch f i l t e r .  The 
means by uhich ADEAS conputes the a t t i t u d e  
accuracies i s  the so l ve - fo r  and consider parameters 
supplied by the user. The sa l ve - fo r  parameter are 
those found.in t h e  UARS s t a t e  vector. I n  the UARS 
case these a re  the  a t t i t u d e  e r ro rs  and the gyro 
d r i f t  errors. The consider parameters are those 
not found in  the  s t a t e  vector o f  the OEC and not 
taken i n t o  account by the f i l t e r ,  such as 
m i  sa l  i g w n t s  . 



2.2 UARS Dynamics Simulator (UARSDS) 

The UARS Dynamics Simulator (UARSDS) i s  an 
ana ly t i ca l  t o o l  developed t o  g ive the analysts an 
i ns igh t  i n t o  the performance o f  the a t t i t u d e  
determination and contro l  system used onboard the 
spacecraft. By means o f  i n te rac t i ve  screen 
displays the user can configure the UARS spacecraft 
t o  include misalignnents, noises, biases and scale 
factors  t o  a l l  o f  the modeled hardware. The 
dynamics can be configured t o  include i n i t i a l  
a t t i t u d e  and r a t e  errors, as u e l l  as the a b i l i t y  t o  
include or  exclude the e f f e c t s  due t o  external 
perturbations, such as envirormental torques and 
cryogenic venting. Also, the user can specify the 
desired o r b i t a l  character is t ics  f o r  a given epoch 
t o  a l low the choice o f  seasonal var ia t ions o f  sun 
and moon vieuing data, as u e l l  as cont inual ly  
changing s t a r  and target  pos i t i on  vectors. A 
s imulat ion using the UARSDS i s  con t ro l l ed  using the 
same set o f  ground c m n d s  used by the actual 
spacecraft, thus a l tou ing the simulator t o  create a 
r e a l i s t i c  scenario ac tua l l y  q l o y e d  during the 
spacecraft 's mission. 

2.3 UARS A t t i t ude  Determination 

The UARS onboard a t t i t u d e  determination function i s  
contained i n  two pa r t s  u i t h i n  the OBC. The f i r s t  
pa r t  contains the routines which propagate the 
s t a t e  vector using gyro data and cotrpensates the 
s t a t e  vector dur ing the normal on-orb i t  modes every 
32.768 seconds (64 OBC cycles) using the resu l t s  
from the second par t ,  the a t t i t u d e  estimation 
function. The a t t i t u d e  estimation funct ion 
contains the d i sc re te  extended Kalman F i l t e r  and i s  
processed every 64 OEC cycles t o  produce update 
parameters. The fo l lowing sections give a m r e  
de ta i l ed  mathematical view o f  the a t t i t u d e  
determination process. 

2.3.1 Kinematic Equations ( T i m  Propagation) 

This process updates the spacecraft Euler 
parameters using the angular increments furnished 
by the gyro data processor. Uhen the update f i l t e r  
( t he  Kalman F i l t e r )  processing i s  enabled, the 
Euler parameters are also compensated using update 
parameters from the a t t i t u d e  estimation fulction. 
Also the gyro biases, uhich are used i n  the gyro 
data Drocessor. are corrected. The eauations f o r  
propagating a i  conpensating the OBC i t a t e  
are as follows: 

1. Compute the Euler parameter updates 

sa = K n(e) a 

e, -e, 0 
-e, -e, -e, o 

vector 

(2-1) 

3. 

4. 

a,,, = a, + 6P (2-2) 

Normalize the update Euler parameters 

at+l  = a,,, * 9-1 

uhere 9.' = 1 + K ( 1 - I 
I f  update f i l t e r  processing i s  enabled update 
the a t t i t u d e  and gyro biases. 

a. Compute the Euler parameter updates 

(2-3) 

1' 1 

69' = H n(6e) (2-4) 

uhere 68 = S, i = 1,2,3 

s = [Sl, S 2 r  S3r S4r S5r S63 
and i s  the M a t e  parameters from 
the a t t i t u d e  estimation funct ion 

b. update the Euler parameters 

Q,*1 = 4+1 + 69' (2-5) 

c. update the gyro biases 

b, = b, + (S,,, * t,) 

where b, are gyro biases 

i = 1,2,3 (2-6) 

t, i s  the OBC cycle t i m e  
(0.512 sec.) 

2.3.2 Discrete Kalman F i l t e r  

The d iscrete Kalman F i l t e r  has three processing 
steps. The f i r s t  i s  the computation o f  the s t a t e  
t r a n s i t i o n  matrix, the s t a t e  noise covariance 
matrix, and the s t a t e  covariance matrix. The s t a t e  
t r a n s i t i o n  matr ix  and the s t a t e  noise covariance 
matrices are cocrputed once and recocrputed only  i f  
the measurement update i n t e r v a l  changes. The 
second s tep  i s  the measurement d e l .  The 
measurement d e l  uses two Fixed Head Star Trackers 
(FHST) as the source o f  measurement data f o r  
nominal processing. In the event one o f  the FHSTs 
degrade in  performance, then a Fine S u n  Sensor 
(FSS) replaces the f a i l e d  FHST as the source of 
data. FHST data i s  c-red against a l i s t  of 06C 
guide s ta rs  t o  find a match based on magnitude and 
p o s i t i o n  thresholds, t o  produce an estimate o f  
p o s i t i o n  error .  The FSS makes use o f  an onboard 
ephemeris generator f o r  the ' t rue '  Sun p o s i t i o n  in  
i t ' s  computation o f  a p o s i t i o n  error. The output 
o f  the measurement model i s  the Kalman gains used 
t o  conpensate the s t a t e  vector, uhich contains a 
representation o f  the a t t i t u d e  e r ro r  and the gyro 
biases. F ina l ly ,  the third step uses the Kalman 
gain and measurement matrices from the second step 
t o  propagate the s t a t e  covariance matrix, t o  be 
used during the next measurement update. 

e,.,, are gyro cocrpensated data 

9 = 191, % a  q3' %IT 

2. Update the Euler parameters 
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2.3.2.1 Dynamics Model 

The s t a t e  t r a n s i t i o n  and s t a t e  noise covariance 
matrices are obtained from the dynamics d e l .  The 
de r i va t i on  o f  the dynamics model and thus the 
matrices are presented i n  the fo l lowing paragraphs. 
f i r s t ,  the gyro rates are described as 

solve f o r  the noise covariance matrix, [U,]. 

. .  
0 = u -bo - b + n, (2-7) 

b=n., (2-8) 

where 0 = [e,, e,, S,l i s  gyro r a t e  
. . . .  

measurements 

h = [u,, uv, U,I i s  t r u e  spacecraft 
body rates 

bo = [bo,, b,, bo,] i s  gyro bias 

b = [b,, b,, bJ i s  gyro d r i f t  b ias 

n, = I\., n,", n,J i s  f l o a t  torque 
noise (Gaussian u h i t e  noise) 

q, = [q,,, &", q,,I i s  f l o a t  torque 

noise) 

The a t t i t u d e  r a t e  e r ro r  i s  defined as fo l lous:  

de r i va t i ve  noise (Gaussian u h i t e  

* .  
a = e - u = - b  - b + n ,  (2-9) 

The gyro b ias i s  a s s d  t o  be known and therefore 
i t  can be removed from equation 2-9, leaving the 
fo l lou ing:  

a = - b + \  (2-10) 

The two equations, 2-8 and 2-10, then give the 
dynamics d e l .  I t can be w r i t t e n  i n  the form 

X ( t )  = [ A I  X ( t )  + U(t) (2-11) 

where X ( t )  = [q,  41' i s  the s ta te  vector 

U ( t )  = [nv,, m41' i = 1,2,3 

w3.n -I,,, 
[ A I  = __.......... I o,, : o,,, 1 

The d i sc re te  s ta te  t r a n s i t i o n  matr ix  i s  derived 
from [AI  and i s  given by 

+, = e'NT (2-12) 

Uhere T i s  the measurement update in terva l .  This 
expression can be approximated by a Taylor's 
expansion as 

Q, = I + CAI1 + 1/2(CAIT)' + l/6(CAlT)3 

Knowing the s t a t e  t r a n s i t i o n  matr ix  ue can n o w  

U, = r' +(tk, 7 )  P(7 )  /T(tk,T) d7 (2-13) 

Uhere P ( t )  = E[U(t) UT( t ) l  and i s  known as the 
spect ra l  densi ty  matrix. The evaluat ion o f  P ( t )  i s  

th.l 

The r e s u l t i n g  matrix i s  a main diagonal matr ix  
since the fo l lowing cha rac te r i s t i cs  ho ld  

E[% \,I = 0 f o r  i f j 

E[% &,I = 0 f o r  i # j 

Ern,, &,I = 0 f o r  any i and j 

Nou we have everything t o  propagate the s ta te  
covariance matrix. The equation f o r  the 
propagation o f  the s ta te  covariance m a t r i x  i n  the 
time update step i s  

P, = P, P * , ,  +,, + u, ( 2 - 1 4 )  

where P, i s  the a p r i o r i  propagated s ta te  
covariance matr ix  f o r  t h i s  update 
i nt erva l 

P + , ,  i s  the a p o s t i o r i  updated s ta te  
covariance matr ix  from previous 
i nt erva I 

A t  i n i t i a l i z a t i o n  the s ta te  covariance matrix i s  a 
main diagonal matr ix  given i n i t i a l  values as 
speci f ied by the ground f o r  the a t t i t u d e  e r ro r  
variances, upper l e f t  suhnatrix, and the gyro bias 
variances, louer r i g h t  submatrix. The other 
suhnatrices are given the i n i t i a l  value o f  zero. 

2.3.2.2 Measurement Model 

This process determines uhether the update f i l t e r  
s t a t e  covariance matr ix  requ i re  updates and, i f  so, 
which sensor data are used t o  perform the update. 
The ground has the a b i l i t y  t o  se lect  d i f f e r e n t  
sensor configurations. In nominal condit ions the 
two FHSTs are used as the source o f  measurement 
data. In the event of a degraded FHST then an FSS 
can be selected by the ground t o  replace the f a i l e d  
sensor. Data i s  used from only  one o f  the sensor 
p a i r  a t  each update in terva l ,  and i s  the sensor 
tha t  has gone the longest t ime per iod without 
prov id ing update data. This i s  nominally an 
a l te rna t i ng  scheme between the sensor p a i r  with 
targets  v i s i b l e  i n  each f i e l d  o f  view (FOV).  The 
measurements from the sensor i s  compared against 
knoun ' t rue '  data provided by the OEC system 
tables, f o r  guide stars, o r  an ephemeris generation 
routine, f o r  sun data. Once v a l i d  data i s  found, 
p o s i t i o n  e r ro rs  are generated, which are used t o  
generate the update s t a t e  vector used i n  the 
kinematic equations and t o  generate measurement 
matrices used i n  the Kalman F i l t e r  update routines. 
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The algorithms fo r  the measurement model are as 
f o l  lous: 

1. Cocrpute the residuals 

Z ( i )  = OS(i) - C S ( i )  i = x,y (2-15) 

uhere OS i s  the observed target 
vector in  the sensor coordinate 
frame created from sensor 
measurement data 

CS i s  the conputed target  vector i n  the 
sensor coordinate frame created from 
OBC ' t rue '  data 

2. Form the measurement matrix 

The measurement d e l  i s  given by the 
equation 

2, = H, X,, + R, 

uhere Z, i s  a measurement a t  t i m e  k 
H, i s  transformation matrix 
R, i s  Gaussian u h i t e  noise 

(x  x S,lT : O t x 3  1 ...._...._.__..... 
( Y  x SJT : o,,, 

spacecraft body frame 
uhere S, i s  observed target vector i n  the 

X,Y are the reference vectors and are 
defined as follows: 

FHST: X and Y are j us t  the x-ax is  
and the y-ax is  unit vectors 
o f  the FHST in  the 
spacecraft body frame 

FSS: X and Y are defined as 

x, = (X - XE*Z,)/S,(Z) i = x,y,z 

Y, = (Y, - YE*Z,)/S,(z) i = x,y,z 

h e r e  X, i s  the FSS x-ax is  i n  the 
spacecraft frame 

YG i s  the FSS y-ax is  i n  the 
spacecraft frame 

2, i s  the FSS z-ax is  in the 
spacecraft f r a m  

XE,YE are the FSS ' true' x 
and y ax is  vectors conputed 
from sun vector in  FSS 
coordinates 

3.  Form the measurement e r ro r  variance matrix 

R, = EN, V,T1 

uhere V, i s  the sensor noise (Gaussian) 

2.3.2.3 Update Algorithms (Measurement Update) 

The f i n a l  step in the Kalman F i l t e r  i s  t o  update 
the s ta te  covariance matr ix  and cocrpute the s ta te  
vector update parameters used in  the kinematic 
equations. The algori thms in matr ix  f o r m  f o r  the 
update are 

1. Gain matr ix  conputation (2-17) 

& = P,- H,' (H, P,- H: + Rk).' 

2. Gyro Bias and Euler parameter correct ion 
(2-18) 

x,' = x,' + &(Z ,  - H, X,- 1 

3. State covariance matr ix  update (2-19) 

P,' = P,. - &,H,P, 

In  the UARS OBC the algori thms are processed i n  a 
sequential manner, thus changing i t  t o  a scalar 
inplementation and requ i r i ng  a tuo pass system t o  
process both measurement vectors. Equation 2-18 i s  
actua l ly  i n p l m t e d  in  the kinematic equations, 
u i t h  the s ta te  @ate vector cocrputed i n  the 
measurement model. I t  i s  easier t o  f o l l o u  the 
scalar tuo pass implementation by f i r s t  not ing the 
fo l l ou ing  

K, = [K, _._... K.31 

Pass One: 

H = [ (X x S,)': O,,, I 

K1, = P,, H7 / ( H P,, H T  + R,) 

s = z , K ,  

P, = P,. - 4 H P,. 

Pass Tuo: 

H 

K, = P,, HT / (H P,, HT + R,) 

S = S + ( Z , - H S ) K ,  

P,' = P, - 

= [CY x SJT : o,,, 1 

H P, 

2.4 

The next feu sections u i l l  g i ve  e b r i e f  descr ip t ion 
o f  the sensor rnodels end t h e i r  coordinate systems 
as modeled by the UARS Dynamics Simulator. 

Sensor Models and Coordinate Systems 
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Deta i led descr ip t ions o f  the models can be found i n  
reference 1. 

2.4.1 Fixed Head Star Tracker (FHST) 

The FHST i s  an a t t i t u d e  sensor tha t  searches for, 
detects, and t racks stars; provides accurate 
p o s i t i o n  and i n t e n s i t y  information f o r  s ta rs  i n  i t s  
f i e l d  o f  v i e u  (FOV); and generates s tatus f lags and 
parameters character iz ing the sensor operation. 
The p o s i t i o n  o f  the s t a r  i s  output as a hor izonta l  
( H I  and v e r t i c a l  (V )  coordinate pa i r ,  u i t h  the H 
and V ax is  descr ib ing the p ro jec t i on  onto a plane 
perpendicular t o  the camera boresight. 

The naninal coordinate system o f  the FHST i s  
def ined by a ser ies o f  ro tat ions from the 
spacecraft body coordinate system (BCS) t o  the FHST 
coordinate system (FCS). The transformation i s  a 
3-2-3 Euler sequence: 

M,, = M3(6,) M,(Bz) M3(03) 

uhere f o r  FHST 1; 

6, = 51.9 deg., 6, = 105.6 deg., 6, = 0 deg. 

and f o r  FHST 2; 

6, = 128.1 deg., 6, = 105.6 deg., 0, = 0 deg. 

The subscr ip t  FB denotes a transformation from BCS 
t o  FCS. 

2.4.2 Fine Sun Sensor (FSS) 

The FSS i s  an a t t i t u d e  sensor tha t  provides 
tuo-ax is  Sun d i r e c t i o n  information u i t h  respect t o  
the sensor axis. Output consists o f  angles betueen 
the  boresight and the sun vector, uhich are 
pro jected i n t o  a plane described by a v e r t i c a l  ax i s  
(beta) and the hor izonta l  ax i s  (alpha). 

The nominal FSS coordinate system i s  defined by 8 
3-2-3 Euler ro tat ion:  

n, = M,(B,) n,te,) rr3ce3) 

where the ro ta t i ons  are 

6, = 33.1 deg., 8, = -100.5 deg., 0, = 0 deg. 

The subscr ip t  SB denotes a transformation from BCS 
t o  sun sensor coordinate system (SCS). 

2.4.3 I n e r t i a l  Reference U n i t  (IRU) 

The IRU i s  an a t t i t u d e  r a t e  sensor consis t ing o f  a 
gyro package tha t  measures i n e r t i a l  vehic le  ra tes 
about the sensor axis. The output o f  the IRU 
consists o f  analog rates, accunulated angles, range 
s tatus and tenperatwe. 

The nominal IRU Coordinate system i s  defined as 
being coincident uith the spacecraft body ax i s  
coordinate system. Equation 2-7 describes each 
gyro output, uhere u i n  the equation i s  the 

measured body r a t e  f o r  t ha t  gyro. 

3.0 Onboard A t t i t ude  Accuracy 

As stated ea r l i e r ,  UARS requires a h i g h l y  accurate 
knouledge o f  i t ' s  a t t i t u d e  t o  a l l o u  the instrunents 
on board t o  perform prec ise measurements o f  the 
earth's atmosphere. The a t t i t u d e  determination 
requirement placed on the OBC dur ing the normal 
mission phase i s  60 arcsec. (3  sigma) per ax is  
using tuo FHSTs and 70 arcsec. (3  sigma) using one 
FHST. The requirements f o r  a t t i t u d e  determination 
uere generated by C.E. using prelaunch sensor 
aligrments, uhich accounts f o r  the overwhelming 
major i ty  o f  the a t t i t u d e  determination 
uncertaint ies. The prelaunch alignment 
uncertaint ies f o r  the FHST and FSS sensors are 

Prelaunch 
Aligrment Uncertainty 

Sensor (arcsec, 3 sigma) 

Ro(l P i t c h  Yau 
FHST 1 55.3 55.3 55.2 
FHST 2 55.3 55.3 55.2 
FSS 200.0 200.0 200.0 

A study uas done by F l i gh t  Dynamics t o  determine 
the expected on -o rb i t  a t t i t u d e  uncer ta in t ies a f t e r  
sensor ca l ibrat ion.  The f i r s t  step i n  t h i s  process 
uas t o  determine the expected on-orb i t  sensor 
a l i g m n t  accuracies a f t e r  ca l i b ra t i on .  The 
procedure f o r  t h i s  analysis i s  given i n  reference 
2, u i t h  the resu l t s  of t h i s  anatysis given as 

Postlaunch 
A l i g w n t  Uncertainty 

Sensor (arcsec, 3 sigma) 

R o l l  P i t c h  Yau 
FHST 1 39 47 49 

FSS 63 65 44 
FHST 2 40 48 48 

Using these ca lcu lated on -o rb i t  sensor aligrment 
uncertaint ies, the on -o rb i t  a t t i t u d e  uncer ta in t ies 
uere determined using ADEAS. Because UARS i s  a 
momentun biased system w i th  a one r o t a t i o n  per 
o r b i t  about the p i t c h  axis, a feu d i f f e r e n t  
scenarios ar ises w i th  ta rge t  avai l a b i  1 i ty  f o r  the 
sensors. With the tuo FHST configuration, most of 
the t i m e  there i s  an abundance of target  
opportunit ies per o rb i t .  However, dur ing c e r t a i n  
times o f  the year the a v a i l a b i l i t y  o f  guides s ta rs  
drops t o  around only f i v e  per o rb i t .  U i t h  one FHST 
and one FSS t o  replace the f a i l e d  FHST, no t  on l y  i s  
guide s ta rs  o f  concern, but also the amount o f  t ime 
the Sun i s  in the FSS FOV. Nominally the Sun i s  
in  the FOV f o r  about tuenty minutes out o f  the 
orb i t ,  tut there u i l l  be t i n e s  uhen the FSS u i l l  
not see the sun f o r  the e n t i r e  o r b i t .  The a t t i t u d e  
accuracies uere determined f o r  these scenarios 
using ADEAS u i t h  expected a l i g m r n t  uncer ta in t ies,  
and measurement and dynamics noise values. The 
resu l t s  are given as 
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Pos t -ca l i b ra t i on  
A t t i t ude  Uncertainty 

Sensor (arcsec., 3 sigma) 

Two FHSTs 41 55 32 76 
( s ta r  r i c h )  
Tu0 FHSTs 43 62 32 82 
( s ta r  poor) 
FHST/FSS 53 60 41 90 
( s ta r  r i c h )  
FHST/FSS 55 63 44 95 
( s ta r  poor) 
One FHST 56 63 43 95 
( s ta r  r i c h )  
O n e  FHST 58 70 44 100 
(s ta r  poor)  

Rol l P i t c h  Yau RSS 

Based upon t h i s  prelaunch analysis, the a t t i t u d e  
determination funct ion should be able t o  meet the 
requirements set up by the p ro jec t  o f f i c e  a f t e r  
c a l i b r a t i o n  o f  the sensor a l i g m t s .  I t ' s  
i n te res t i ng  t o  note tha t  FSS data does not seem t o  
a f f e c t  the a t t i t u d e  accuracy s i g n i f i c a n t l y  uhen 
comparing the FHST/FSS and the one FHST 
configurations f o r  both s t a r  r i c h  and s t a r  poor 
o rb i t s .  

Comparisons o f  t yp i ca l  OEC and ground a t t i t u d e  
so lut ions over an o r b i t  f o r  the tuo FHST 
conf igurat ion a f t e r  c a l i b r a t i o n  are given belou 

3 Sigma (arcsec.) 
R o l l  P i t ch  Yau RSS 

UARS OBC star  r i c h  5.1 28.2 7.2 29.5 
UARS OBC star  poor 12.6 31.9 13.2 36.8 

The a t t i t u d e  so lu t i on  shous a dramatic improvement 
over uhat uas expected. To cocrpare actual resu l t s  
and ADEAS r e s u l t s  u i th  the dynamics s im t la to r  
andestablish some bounds f o r  expected performance 
of the OBC, tuo simulat ions uere made, one u i t h  
per fect  knouledge o f  a l i g m n t s  and noises by the 
OBC, and another using ant ic ipated pos t - ca l i b ra t i on  
aligrments u i t h  per fect  knouledge o f  noise f o r  a 
s t a r  r i c h  o r b i t .  The r e s u l t s  are 

3 Sigma (arcsec.) 
R o l l  P i t ch  Yau RSS 

O y n .  S i m  (per fect )  1.0 21.2 1.2 21.3 
D y n .  S i m  (expected) 25.0 33.8 24.4 48.6 

In  cocrparing the dynamics simulators runs u i t h  the 
actual resu l t s  o f  a s t a r  r i c h  o r b i t ,  s i m i l a r  
r e s u l t s  are given v e r i f y i n g  the dynamics simulator 
as a reasonably accurate t o o l  f o r  t h i s  analysis. 
The resu l t s  also m d e  c lea r  tha t  the post- 
c a l i b r a t i o n  aligrment uncer ta in t ies uere be t te r  
than expected. S imi lar  r m s  uere made f o r  the 
FHST/FSS sensor conf igurat ion as for the tu0 FHST 
configuration, u i t h  the f o l l o u i n g  resul ts .  

3 Sigma (arcsec.) 
Ro l l  P i t c h  Yau RSS 

FHST/FSS (per fect )  4.9 31.4 3.3 31.9 
FHST/FSS (expected) 31.2 61.0 23.7 72.5 

The dynamics simulator case u i t h  the expected 

pos t - ca l i b ra t i on  aligrments are comparable u i t h  the 
ADEAS resul ts .  Then depending on the actual 
a l i g m n t  uncer ta in t ies the r e s u l t s  should f a l l  
somewhere i n  betueen these tuo bounds. This also 
i s  a good i l l u s t r a t i o n  o f  hou the alignment 
uncertai n t i  es dominate the a t t i t u d e  determination 
accuracy. One f i n a l  simulat ion uas made using only  
one FHST in a s t a r  r i c h  o r b i t  u i t h  per fect  
a l i g m n t  and expected noise. 

3 Sigma (arcsec.) 
Ro l l  P i t ch  Yau RSS 

One FHST (perfect) 11.9 41.1 2.4 42.9 

Notice hou l i t t l e  improvement i s  made by adding the 
FSS along u i t h  a FHST. This i s  due t o  the 
a v a i l a b i l i t y  of an abundance o f  s t a r  measurements, 
u h i l e  the FSS approximately has the Sun in  the FOV 
f o r  a t  most tuenty minutes o f  each o r b i t .  

4.0 S e n s i t i v i t y  Analysis 

This s e n s i t i v i t y  analysis i s  designed t o  determine 
the responses o f  the a t t i t u d e  determination 
function (uhich includes the Kalman F i l t e r )  due t o  
noise and modeling errors, v i a  analysis of 
simulations using the dynamics simulator by varying 
parameters. To keep t h i s  paper w i t h i n  a 
respectable length, on ly  the sensor conf igurat ions 
fo r  a s tar  r i c h  o r b i t  u i l l  be considered. The 
study u i l l  look a t  the a t t i t u d e  determination 
accuracy, steady s t a t e  values and measurement 
residual s t a t i s t i c s  as a r e s u l t  o f  varying 
a l i g m t  and modeling errors. The r e s u l t s  are 
given i n  tabular and graphical form, uhichever i s  
most informative. The graphical representations 
u i l l  include a polynomial f i t  t o  shou any trends 
fo r  possible predict ions. 

4.1 Misaligrment o f  Sensors 

The a f f e c t  of misal igning the sensors i s  t o  create 
an o f f s e t  from the normal point ing, around uhich 
the sensors u i l l  t r y  t o  nul l  out measurement 
errors. This change in  a t t i t u d e  po in t i ng  u i l l  
necessitate a cocrpensation o f  the measured body 
rates in  the OBC f o r  any movement o f  the boresights 
u i t h i n  or out o f  the plane tha t  i s  described by the 
tuo sensor boresights. The misaligrments uere 
applied t o  both o f  the FHST sensors, such as not t o  
separate the boresights i n  or out o f  the plane. 
Figure 1 show uhat the OBC determines i t s  a t t i t u d e  
t o  be as a resu l t  o f  increasing misaligrments about 
each o f  the FHSTs axis. Figure 2 gives the actual 
a t t i t u d e  determination e r ro r  from the known t ru th.  

Cwrparison of the two p l o t s  shous tha t  the 
misaligrments are not  observable i n  the a t t i t ude ,  
as expected. Notice also, t ha t  the a t t i t u d e  i s  
insensi t ive t o  small ro ta t i ons  about the boresight, 
because of t h i s  r o t a t i o n  i s  about the body p i t c h  
axis and i s  in terpreted as an i n s i g n i f i c a n t  p i t c h  
ra te  bias. The res iduals  did not shou any increase 
i n  variance ( lack o f  obse rvab i l i t y  o f  boresight 
reor ientat ion and ro ta t i ons  about the boresight), 
but the gyro biases increased due t o  the 
reor ientat ion o f  the spacecraft 's a t t i t u d e  
point  i ng. 
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Alliludc Drlrrminalian Accuracy RSS 
for FHST mualignment rich axis 

I Kalman Filtrr viewpoint) 

Figure 1 

Attitude Determination A c w r c y  RSS 
for FHST misalignment eich axis 

(Actual attitude accwacv) 

J d la, 

l H S T  h111.lt&nn.nl (arc le<  I 

Figure 2 

The gyro bias needed t o  compensate f o r  each o f  the 
m i s a l i g m n t s  are given f o r  each ax is  in  Figures 3,  
4 and 5. 

The y -ax is  (p i t ch  ax is )  shows no change i n  gyro 
bias fo r  any of the ro ta t ions .  This i s  because the 
b ias  i s  very m a l l  as carpared t o  the p i t c h  rate,  

A t  t i tude and therefore indist inguishable.  
determination accuracy uas more sens i t i ve  t o  
misalignments about the FHST x-axis,  which i s  also 
re f l ec ted  i n  the gyro b ias  resu l ts .  O f  in te res t  
would be hou rnuch misaligrment would be to le ra ted  
before a pa r t i cu la r  ax i s  exceeds the 60 arcsecond 
( 3  sigma) requirement. The p red ic t i on  i s  obtained 
from the polynomial f i t  t o  the data and are 
estimated t o  in  the fo l l ou ing  table.  The dominate 
ax is  i s  the one most sens i t i ve  t o  the disturbance 
and f i r s t  exceeds the requirement. 

FHST Aligrrnent Tolerance 

X-axis Y-axis Z-axis 
(arcsec., 3 sigma) 

39 None Misal i g m n t  54 
(arcsec.) 

- _  Dominate Axis 2 X 

Gyro Bias Respansc IO FHST 
Mkalignmrnt of Y Axis  

Gyro Bias Rcspansr to FHST Gyro Bias Responsr to M S T  
Misalignment of 2 Axis hirnlignmenl of X a x e  

Y O ,  m, 

559 



The c a p a r i s o n  o f  the a t t i t u d e  determinat ion 
accuracy f o r  the misalignment of  the FSS are given 
i n  f igures  6 and 7. In these s i rmla t ions  on ly  the 
FSS uas misaligned about each o f  i t s  axis.  

Al l i ludt  Dclerminalion Accuracy RSS 
for FSS Misalignment Each Axis 

lKalmin Filter viewporn0 
0 _ _  

Again, i t  i s  seen tha t  the OBC has no accurate 
knouledge i n  the a t t i t u d e  f o r  movement o f  the  
boresights r e l a t i v e  t o  each other (nor uould there 
be any no t ice  in the res idua ls  o r  gyro b ias  fo r  any 
comnon movement t o  each other). 

Houever, the Kalman F i l t e r  t h i s  time r e f l e c t s  some 
change in a t t i t u d e .  

Altitude Determination Accuracy RSS 
for FSS Misalignment Each Axis 

IActual Allilude Accuracy) 
, 

FSS Misaligrment Residual 
Variances (arcsec"2) 

Rotat ion X-axis Y-axis Z-axis 
21 22 (arcsec.) rl 22 

0 1069 2845 1069 2845 1069 28LS 
60 1273 3370 1644 3115 1105 2773 
120 1524 4180 3307 3477 1225 2789 

This bouncing a f f e c t  i s  o f  course more pronounced 
as the misalignnents increase. The increase i n  
residual  variance i n  turn i s  observed in  the  
measurement model, which ac ts  t o  null out the 
measurement e r ro r  around the  neu po in t ing .  I t  can 
be seen tha t  the a t t i t u d e  accuracy i s  s e n s i t i v e  in 
t h i s  case t o  a misalig-t about a l l  axis,  
including the boresight (because t h i s  r o t a t i o n  i s  
mostly about the body r o l l  axis, the x -ax is ) .  The 
z-axis shoued no residual  response t o  misalignment. 
The boresight didn't move u i t h  respect t o  the FHST, 
and therefore there uas no bouncing in s u i t c h i n g  
betueen sensors. A lso the FHST dominated around the 
o r b i t  u i t h  i t s  perfect  measurements, cocrpared u i t h  
only twenty m i n u t e s  shared betueen the  FHST and FSS 
when the sun uas in  the FOV. Figures 8, 9 and 10 
shou the gyro b ias  response t o  the neu a t t i t u d e  
pointings. I t  i s  atso seen here t h a t  the  gyro 
biases are sens i t i ve  t o  a r o t a t i o n  about the 
boresight. As  u i t h  the tu0 FHST case, an estimate 
of the a l i g m t  tolerance before the accuracy 
exceeds the 70 arcsecond ( 3  sigma) requirement i s  

z l  22 

FSS Aligrment Tolerance (arcsec.) 
X-axis Y-axis Z-axis 

Misalig-t 16 78 98 
Dominate Axis Y Y Y 

Gyro Bias Response to FSS 
Misalignment of X Axis 

f 

Figure 8 Figure 7 

This i s  because there i s  some separat ion betueen 
the two boresights, which in  turn produces 
r e s i d w l s  each time sensors are toggled f o r  data. 
The variance of  the res idua ls  a r e  given by 
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Gyro Birr Response lo FSS 
Mtsalignment of Y Axis 

G y o  Bias Response lo FSS 
Misalignment of 2 A x s  

> I 
Im 

C S S  2 1 1 1 ,  ~ l l , r l , ~ n m r n t  ,.1<1*r1 

Figure 10 

As expected the misalignment of the gyro's has no 
a f f e c t  on the measurement residuals a d  a t t i t u d e  
determination accuracy. The 06C cotnpensates f o r  
gyro misaligrments by so lv ing  f o r  gyro biases tha t  
maintain the correct  point ing.  The same holds t rue  
f o r  an incorrect  modeling in the scale fac to r  tha t  
converts the d i g i t a l  informat ion i n t o  engineering 
un i ts .  A d i f fe rence i n  the scale fac to r  i s  l i k e  
introducing a bias t o  the ra te  information, and i s  
handled by solv ing f o r  a OBC gyro b ias  t o  
carpensate. 

4.2 Measurement Noise 

The a t t i t u d e  determination accuracy r a p m s e  t o  
measurement noise on the FHST and FSS uas 
determined by s e t t i n g  the OBC t o  have per fec t  
knouledge about a l i g m t s  and dynaraics noise. 
Thus a l l  changes in response CM be a t t r i b u t e d  t o  
only measurement noise var ia t ion .  The aeasurmmt  
noise i s  taken t o  be Gaussian white noise, with 
zero mean and increasing variance. The noise i s  
app l ied  t o  the cutput measurements. Figure 11 
show the a t t i t u d e  determination accuracy response 
t o  noise appl ied t o  each o f  the FHST ax i s  
independently. 

Atlltude DetermlNtiOn Accuracy RSS 
Far FHST Noire Each Axir 

*I--- 

The graph of  the tu0 ax is  show a minimm around 20 
t o  30 arcseconds. This i s  where the measurement 
noise i s  c o r r e c t l y  accomted for by the OBC model, 
which has louer and upper measurement noise range 
o f  14 and 28 arcseconds, respect ively.  So t h i s  
graph shous the a f f e c t  o f  the d i f fe rence o f  the 
actual  sensor noise fran the modeled or  expected. 
As before a p red ic t i on  i s  made o f  when the response 
u i l l  exceed the 60 arcsecond (3 sigma) requirement. 

FHST Measurement Noise Tolerance 
(arcsec.) 

Theta Phi 
Noise (sigma) 126 124 
Oaninate Axis Y Y 

The a t t i t u d e  determinat iw, accuracy i n  response t o  
measurement noise on each of the FSS ax is  i s  shoun 
in f i gu re  12. 

Attitude Delennination Accuncy R5S 
for FSS Noise Each Axis 

I 

Figure 12 
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In  t h i s  case the feu data po in ts  produces a poor 
polynomial f i t  t o  the data. But l i k e  the FHST 
case, t h i s  graph shous the a f fec t  o f  a d i f fe rence 
in  actual  measurement m i s e  and that which i s  
modeled i n  the OBC.  Here, the mininun seems t o  
ex i s t  over a larger range of noise. An 
approximation t o  t h i s  range from t h i s  graph seems 
t o  be 20 t o  80 arcseconds. The OBC model in  fac t  
conputes the lower and upper measurement noise as a 
func t ion  o f  the alpha and beta measurements, which 
produces a range of 24 t o  96 arcseconds. A n  
estimate i s  given fo r  the noise tolerance on the 
FSS before the a t t i t u d e  determination exceeds the 
70 arcsecords ( 3  sigma), u i t h  the note that a 
larger u x e r t a i n t y  i s  present do t o  the poor f i t  of 
the data. 

FSS Ueasurement Yoise Tolerance 
(arcsec., 3 sigma) 
Theta Phi 

Noise (sigma) 242 267 
Dominate Axis Y Y 

As expected, the increase i n  measurement noise, 
increased the residual  variance fo r  both the FHST 
and FSS. An exwp le  i s  given fo r  the uorse case, 
the  FSS, i n  Figure 13. 

Rerlaual Variance lor FSS Noire  

----7-- . . I ,  

,,+w , . 

d m 
Sid D e r  FSS L i o ~  / a r < . n !  

Figure 13 

4.3 Dynamic Noise 

Equation 2-11 shows tha t  the a t t i t ude  i s  a f fec ted  
by both f l o a t  torque noise (Gaussian white) and 
f l o a t  torque de r i va t i ve  noise (a lso ca l l ed  randan 
ualk) .  The f l o a t  torque noise produced no 
s i g n i f i c a n t  response t o  the a t t i t u d e  determination 
accuracy. The randan ua lk  noise, however, shoued a 
(arge e f f e c t  in  the accuracy. This i s  because the 
random ua lk  i s  integrated over time t o  prodwe a 
gyro d r i f t  bias, which a t  the next measurement time 
i s  not estimated accurately by the dynanics model 
i n  the Kalman F i l t e r .  The f l o a t  torque noise i s  a 
d isc re te  Gaussian random var iable tha t  has no 
co r re la t i on  u i t h  previous or  fu tu re  sanples o f  the 
noise, and no accunulative a f fec t  between 
measurement rpdates. Figure 14 show the a f fec t  of 
a random ualk noise tha t  i s  d i f f e ren t  from the 
d e l e d .  

Attrtudr Delrrmrnation Accuracy RSS 
For Gym N o i x  E x h  Sensor Conligurahon 

The m i n i m n ,  occurs, as i t  should, a t  the gain o f  
one, h e r e  the model and actual  agree. The random 
ua lk  noise a t  t h i s  po in t  i s  awroximately 2.0e-10 
r / ( s * * 1 . 5 )  ( o r  a p p r o x i m a t e l y  4 . 0 e - 5  
arcsec/(s**l.5). The response diverges rap id l y  as 
the  d i f fe rence from the modeled increases. The 
graph a lso  demonstrates that the response i s  the 
same f o r  each o f  the sensor configurations. This 

, i s  not wxpec ted ,  s ince the noise i s  appl ied t o  
, the gyro r a t e  measurements and conpensated f o r  by 
1 est imat ing a cor rec t iona l  gyro bias i n  the f i l t e r .  

1 The estimated tolerance fo r  dynamic noise i s  

Dynamic Noise Tolerance 
(gain x nominal) 

1 FHST FHST/FSS 2 FHST 
Noise (gain) 5.1 4.7 2.7 
Dominate Axis X o r  Y Y Y 

5.0 Conclusions 

I t ' s  been demonstrated u i t h  t h i s  analysis hou the 
a t t i t u d e  m c e r t a i n t i e s  i s  being, and can be met fo r  
the  three sensor configurations. The FHST 
a l i g m t  v r e r t a i n t y  i s  cur ren t ly  u e l l  u i t h i n  
spec i f i ca t ions  according t o  the ground a t t i t u d e  
solut ions,  u i t h  the j u r y  s t i l l  out on hou u e l l  the 
FSS w i l l  perform. U i t h  the a i d  of analysis too ls  
l i k e  AOEAS and the dynamics simulator, i t  can be 
pred ic ted  h a t  t o  expect f o r  each o f  these 
scenarios. The quest ion tha t  needs t o  be asked nou 
is how inportant i s  the need t o  ca l i b ra te  the 
sensors f o r  m i s a l i g m t s  and d e r  uhat 
c i r c u n s t m e s  w i l l  misaligrments not be observable 
by the  Ka lmn F i l t e r .  Also, when u i l l  r e t w i n g  of 
the  Ka lmn  F i l t e r  d e l  be necessary and uhat are 
the cocrseqwnces o f  changing measurement and 
dynamic noise models. 

Looking a t  the  n i s a l  igrments, the FHST/FSS cases 
demonstrated the response t o  separation o f  the 
boresights r e l a t i v e  t o  one another. The FSS shoued 
a dramatic s e n s i t i v i t y  t o  ro ta t ions  about the 
sensor x-axis, whereas very l i t t t e  i n f l w n c e  on 
a t t i t u d e  determination about the other tuo axis. 
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This i s  su re l y  because the FHST, uhich uas not 
perturbed, provided accurate measurement data f o r  
the body p i t c h  and yau axis. The ro ta t i on  about 
the FSS x-axis, i s  mostly about the body x and 
y-axis. I t  seem tha t  the x-body motion uas 
observable and the gyro b ias  was cocrputed t o  
compensate f o r  t h i s  corrponent of the ro ta t i on  and 
the change in  a t t i t u d e  po in t i ng  about t h i s  axis. 
However, the p i t c h  (body y-ax is)  motion f o r  any o f  
the three ax i s  rotations,seemed t o  be absorbed in to  
the large p i t c h  r a t e  u i t hou t  a f fec t i ng  the a t t i t l d e  
est imat ion or gyro b ias  about t h i s  axis. In  the 
tuo FHST case, uhere the m i s a l i g m n t s  o f  the 
sensors uere the same r e l a t i v e  t o  another, the 
r e s u l t s  shou a lack o f  observabi l i ty  by the Kalman 
F i l t e r  f o r  any o f  the rotat ions i n  the a t t i t ude  
state. The a b i l i t y  t o  c a l i b r a t e  the a l i g m n t s  of 
the FHSTs i n  t h i s  case i s  dependent on the 
a v a i l a b i l i t y  o f  accurate measurements from a t h i r d  
source. Both scenarios shous that the Kalman 
F i l t e r  i s  a t  least  p a r t i a l l y  biind t o  m i s a l i g m n t s  
of the sensors. The process of e l iminat ing these 
uncertaint ies, as much as possible, great ly  
improves the a t t i t u d e  determination error. 

The coarser measurement source, the FSS, i s  able t o  
t o l e r a t e  w r e  measurement noise than the F H S T  
before the a t t i t u d e  determination shous any 
divergence and the requirement i s  exceeded. The 
OEC measurement model a l l ous  the FSS measurements 
t o  accomnodate a larger  tolerance t o  noise in  the 
data than the FHST, before i t  begins t o  a f fec t  the 
a t t i t u d e  s tate.  The consequence though of  a l lou ing 
larger  measurement noise i s  a larger  transient t o  
steady s t a t e  and indeed a d i f f e r e n t  value o f  steady 
s t a t e  do t o  the increased tolerance t o  a noisy 
signal, and therefore larger  uncer ta in ty  t o  the 
t r u e  a t t i t u d e  knouledge. The same concern i s  
present i n  the dynamics u i t h  the in t roduct ion o f  a 
random walk noise. The resu l t s  o f  the analysis 
shou the same e f f e c t  o f  not properly d e l i n g  the 
d r i f t i n g  gyro measurements. A n d  l i k e  the 
measurement noise, the dynamic noise a t  s m  point  
u i l l  cause enough uncer ta in ty  in  the ra te  data t o  
uarrant an a l te rna t i ve  source o f  ra te  measurements 
and/or ad just ing f i l t e r  parameters, u i t h  the same 
consequences. 

The choice o f  prefer red sensor configuration i s  
d i c ta ted  not  only by the modeling parameters and 
f i l t e r  t rans ient  and steady s ta te  behavior, but 
a l so  the a v a i l a b i l i t y  o f  s ta rs  i n  the o r b i t .  I t  
uas shoun i n  t h i s  study that  a l l  three 
conf igurat ions uould be able t o  meet requirements 
u i t h  a s t a r  r i c h  o r b i t ,  and that  sun measurements 
added l i t t l e  t o  the a t t i t u d e  determination 
capab i l i t y .  Thus, i t  might be jus t  as good t o  use 
the remaining FHST if one should f a i l  o r  degrade. 
It may be des i rab le i f  the FSS exh ib i t s  large 
atigrmnent unce r ta in t i es  or a large noise variance 
i n  the signal. When a s t a r  poor o r b i t  i s  
encountered, the FSS measurements are sure t o  be a 
u e l c m  source f o r  added information t o  supplement 
the feu  FHST measurements, even i f  i t  i s  a t  m s t  
on l y  tuenty minutes out o f  the o rb i t .  
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ABSTRACT 

Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere 
Research Satellite (UARS) sensors included alignment calibration of the fmed-head star 
trackers (FHSB) and the fine Sun sensor (FSS), determination of misalignments and scale 
factors for the inertial reference units @Us), determination of biases for the three-axis 
magnetometers (TAMS) and Earth sensor assemblies (ESAs), determination of gimbal 
misalignments of the Solar/S tellar Pointing Platform (SSPP), and field-of-view calibration 
for the FSSs mounted both on the Modular Attitude Control System (MACS) and on the 
SSPP. The calibrations, which used a combination of new and established algorithms, gave 
excellent results. 

Alignment calibration results markedly improved the accuracy of both ground and onboard 
Computer (OBC) attitude determination. IRU calibration results allowed UARS to identify 
stars in the period immediately after yaw maneuvers, removing the delay required for the 
OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved 
the pointing accuracy of the attached science instrument package. 

This paper presents a summary of the methods used and the results of all FDF UARS sensor 
calibration. 

Thisworkwassupported bytheNational Aeronautics and Space Administration (NASA)/Goddard Space Flight Center 
(GSFC), Greenbelt, Maryland, Contract NAS 5-31500. 



1. INTRODUCTION 
The Upper Atmosphere Research Satellite (UARS) was launched on September 12,1992, aboard the Space 
Shuttle Discovery on a mission to investigate the chemistry of the Earth’s upper atmosphere. It was equipped 
with a variety of sensors, most of which would be aimed at the edge of the atmosphere, at precise heights 
above the surface. To achieve the required science instrument pointing precision, the UARS attitude 
knowledge was required to have a small uncertainty-less than 60 arcseconds (3a). 

UARS uses two fixed-head star trackers (FHSTs) as primary attitude sensors. It propagates attitudes using 
two inertial reference units (IRUs) (primary and backup channels on each axis). It also has one fine Sun sensor 
(FSS) with a @-degree square field of view (FOV) as a backup fine attitude sensor, and a second FSS with a 
4-degree square FOV, mounted on the Solar/Stellar Pointing Platform (SSPP) as a reference sensor for the 
science instruments mounted on that platform. For coarse attitude sensors it has two three-axis 
magnetometers (TAMS), twocoarse Sun sensors (CSSs), and two Earth sensor assemblies (ESAs). These last 
are used primarily for acquiring Earth pointing attitude prior to fine pointing. 

UARS travels in a near circular orbit with an inclination of about 57 degrees. Its attitude rotates at 1 revolution 
per orbit (RPO) about an axis approximately parallel to the orbit normal. Consequently, the UARS body 
maintains an attitude that is nearly fmed with respect to the Earth. 

The UARS orbital plane precesses about 4 degrees a day, which has two effects of consequence for 
calibration. As the solar angle (the angle between the Sun vector and the orbit normal) changes, the apparent 
path of the Sun through the FSS FOV changes, moving from below one edge (outside the FOV) to near the 
other. In addition, as the orbit plane precesses, the Sun moves from one side of the spacecraft to the other. At 
about 6-week intervals, UARS is commanded to yaw 180 degrees in order to maintain the Sun on one side of 
the spacecraft. 

The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) helped satisfy the UARS attitude 
knowledge accuracy requirement by performing on-orbit calibration of the attitude sensors, and also 
supported the UARS mission with two other calibrations. The major on-orbit calibrations that were 
performed included 

Determination of the misalignments of the FHSTs and FSS and determination of the 
coefficients in the FSS FOV transfer function, which converts detected sensor counts to Sun 
position angles. Determination of the misalignments and FOV coefficients was intended to 
improve the spacecraft attitude accuracy. 

Determination of the IRU misalignments, scale factors, and biases. Determination of these 
values was intended to improve the propagation of UARS attitude through maneuvers, 
allowing the onboard computer (OBC) to converge on an attitude rapidly after maneuvers. 

Determination of the SSPP gimbal misalignments and FOV coefficients for the FSS 
mounted on the SSPP. Determination of these quantities was intended to improve the 
pointing accuracy of the science instruments mounted on the SSPP and coaligned with the 
platform FSS. 

In addition, biases for the ESA and TAMS were determined, but the values determined in these calibrations 
were small enough that the impact of their use was considered unimportant to the mission and the values have 
not yet been transmitted to the spacecraft. 

2. ALIGNMENT CALIBRATION 
Alignment calibration is intended to determine the true pointing directions of the attitude sensors. Sensor 
alignments are determined before launch, but removal of gravitational load and vibrations during launch shift 
the alignments, making i t  necessary to redetermine sensor alignments on orbit. 
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The alignment calibrations were performed using Shuster’s algorithm with a posrprocessing step added to 
minimize variation of the mean OBC attitude. The methods used do not require accurate attitude knowledge 
to yield accurate alignments. 

Shuster’s algorithm minimizes a loss function that contains two types of terms. The fust type represents 
differences in the angles between simultaneously measured observation vectors and the angles between 
corresponding reference vectors. The second type represents differences between modeled alignments and 
those measured before launch. This second term allows determination of the three degrees of freedom that 
cannot be resolved using sensor data alone. The method resolves these indeterminate degrees of freedom by 
minimizing these terms. 

After launch, the UARS scientific instruments were calibrated by the UARS scientists using the OBC attitude 
as a reference. The scientists requested that when the FDF calibration values were uplinked, the OBC attitude 
should change as little as possible so that the science insuument Calibration would remain valid. To 
accommodate the scientists, an algorithm was developed to maintain a reference frame that would not change 
as the alignments were changed. 

The UARS OBC attitude is determined using a Kalman filter with FHST data as attitude input. Data are used 
alternately from the two FHSTs, with the FHST selected changing frequently compared to the time constant 
of the Kalman filter. On the average, the attitude reference is the mean of the two FHST boresights. At any 
time, however, the OBC attitude will deviate from this toward the direction of misalignment of the particular 
FHST currently used as a reference. During periods when few stars appear in the FHSTs, the deviation will be 
especially evident because it is more likely that there will be no observations in one of the trackers for a 
considerable period of time. 

To minimize the deviations from the true attitude while keeping the mean attitude independent of calibration, 
the following three orthonormal vectors were established as the basis of a mean boresight reference frame 
defined by the nominal FHST boresights: 

where E, and E2 represent the FHST boresight vectors in the nominal body frame. 

A matrix M is constructed with the rows composed of the three vectors: 

M =  (3) 

M transforms vectors in the nominal body frame to corresponding vectors in the mean boresight frame. 

Any subsequent FHST aligpent csibration generates misalignment matrixes and corresponding 
misaligned boresight vectors B’, and Bf2. A new matrix M’ can be constructed from these vectors using 
equations 1 and 2. The matrix which transforms M‘ into M was determined ,and used to correct the 
misalignments of all sensors so that their mean FHST frame remained invariant. 

Three periods of data were used for alignment calibration of the FHSTs and FSS. Each period started when the 
Sun entered the FSS FOV in one orbit and ended when the Sun left the FSS FOV in the next orbit. Initially, 
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data were used from shortly after deployment, when the solar angle resulted in the path of the Sun through 
the FSS FOV being near its edge. 

Before alignment calibration results were accepted, data became available from a period about 3 weeks after 
deployment, at which time the Sun passed near the center of the FSS FOV. Use of data from this period was 
expected to improve the FSS alignment accuracy because the FSS FOV transfer function is sigmfkantly less 
accurate at the edges of the FOV than at its center. For this reason, about three orbits (320 minutes) of data 
from this period were processed for calibration. As anticipated, this second calibration yielded FHST 
misalignments that were almost identical to the first, but yielded somewhat improved FSS misalignments. 
The new misalignment matrixes were chosen as the calibration baseline and transmitted to the OBC. 

FHST alignments were determined first, followed by determination of FSS alignments using artificially high 
weights to the FHST observations so that their misalignments would not be altered by the addition of FSS 
data. The resulting misalignments were transformed to maintain an invariant mean boresight. 

The determined angular deviations of the sensor boresights are summarized in Table 1. 

r SENSOR MlSUlONMEM (ARC-SECONDS) 

M S T l  62 

MSTP 62 

CASE 

SENSOR 
PRELAUNCH ALIGNMENTS 

FDF ALIGNMENTS 

I I 
... I 

RMS RESIDUAL (ARC-SECONDS) 

FHSTl FHST2 FSS 
26.8 25.27 250 

6.17 6.35 32.8 

The large value of the FSS boresight shift was realistic. This sensor’s alignment had been measured before 
launch, but the sensor had subsequently been removed from the spacecraft and remounted without 
redetermining the alignment. 

The principal validation of the misalignment calibration was achieved by computing fine attitude solutions 
using sensor data with and without application of the determined misalignments. The attitude solutions were 
taken for periods of about one orbit with times different from the times of the data used for calibration. In FSS 
validation, the weight of the FSS observations was set to a small value so the attitudes determined were 
exclusively FHST based. 

Residuals between observed and reference sensor observation vectors from the two solutions were compared. 
For all three sensors the results were as expected: the mean of the observation residuals moved toward zero 
and the dispersion about the mean decreased. 

These validation results are summarized in Table 2. 

An attempt was also made to venfy that attitudes determined after calibration and rotated to maintain an 
invariant mean boresight frame would not change, on the average, from the attitudes computed with 
uncalibrated sensors. To achieve this goal, attitudes were calculated for a one-orbit period using the same 
sensor data but using the pre- and postcalibration alignments. These attitudes were compared at epoch and at 
5-second intervals throughout the orbit. Table 3 presents the RMS attitude change at 5-second intervals, the 
attitude change at epoch, and the maximum attitude change found. 

Table 2. Sensor Residuals Before and After Calibration 
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RMS CHANGE 

CHANGE AT EPOCH 
MAXIMUM CHANGE 

When the misalignments were uplinked to the OBC the results were dramatic. Neither the flight operations 
team (FOT) nor the project scientists detected any attitude shift, but the OBC attitude sensor residuals 
decreased by an order of magnitude. The attitude pointing knowledge improved from barely meeting 
requirements to exceeding them by about a factor of 3. 

YAW ROLL PITCH 

14 13 6 

11 5 3 

25 20 13 

3. IRU CALIBRATION 

Calibration of the UARS IRUs was intended to allow precise propagation of attitudes during intervals when 
no attitude sensor measurements are available and therefore minimize diffezences between calculated OBC 
attitudes and true values. Calibration consists of determining a bias vector b and a matrix G. The corrected 
rate vector, GCI, is related to the observed rate vector, Go,, by 

Because the IRUs three axes behave as separate rate sensors, their misalignments are independent. It follows 
that the G matrix need not be orthogonal. It is also customary to multiply each column of the G matrix by an 
independent scale factor, so the G matrix need not be normal. 

During periods with spacecraft motions at constant angular velocities, errors in the alignment cannot be 
separated from biases. The misalignment projects components of each axis’ constant angular velocity onto 
other axes, resulting in a constant contribution to the other axes’ biases. Both the OBC and ground attitude 
determination systems solve for IRU biases along with attitudes, so as long as the spacecraft has negligible 
angular acceleration, IRU misalignments result in very small attitude errors. 

In order to separate biases from misalignments and scale factors, data for calibration must include maneuvers 
during which the rates about the axes change. Ideally, at least three maneuvers would be used, each containing 
an acceleration about one of the axes and an eventual return to the original velocity. Maneuvers in which the 
spacecraft slews by 90 degrees around a single body axis should yield the best results. 

Because of UARS mission constraints, no pitch maneuvers were performed. Data for calibration were taken 
during a normal mission yaw maneuver (1 80 degrees) and a special roll maneuver in which the spacecraft was 
rolled by 10 degrees, and after a period at this attitude, rolled back to its nominal attitude. During both 
maneuvers the pitch rate was maintained at its nominal 1 RPO value. IRU calibration was performed using 
intervals of data, each starting just before a maneuver and ending just after. The roll forward and roll back were 
treated as separate maneuvers. In addition, intervals of data containing no maneuvers were used. In all, more 
than 600 minutes of IRU data were used for calibration. 

The calibration algorithm requires an accurate attitude at the start and end of each calibration interval. These 
attitudes were determined using FHST data in the periods before and after each maneuver while the spacecraft 
angular velocities were constant. The epochs of each attitude solution were set at an end of one of the 
calibration intervals. 

If IRU data are used to propagate the spacecraft attitude from an epoch at the start of each interval to one at the 
end, the difference between the propagated attitude at the second epoch and the attitude determined at the 

569 



same epoch from sensor data will depend chiefly on the errors in IRU misalignments, scale factors, and 
biases. The calibration software determines the least-squares minimum deviation of these attitudes over a 
number of such intervals. Note that for the least-squares process each interval corresponds to only three 
observations - one for each axis - so that for the small number of maneuvers used, the solution is not much 
more than minimally determined. 

AXIS 

X 

Y 

z 

The results of the IRU calibration are shown in Table 4. In this table, the change in direction of each IRU axis 
and the scale factor corresponding to the axis are given. 

Calibration results were validated by determining the accuracy of propagation for the second normal mission 
yaw maneuver - a maneuver that was not used in the calibration itself. Data from before and after but not 
during this maneuver were processed to produce accurate attitudes with epochs immediately before and after 
the maneuver. The attitudes were then propagated through the maneuver using pre- and postcalibration IRU 
parameters. The attitude differences between the attitude solutions and the propagated attitudes are shown in 
Table 5 .  

POSTCALIBRATION SCALE FACTORS ALIGNMENT CHANGE 
(UNITLESS) (ARCSECONDS) 

0.999818 79.7 

0.999144 88.5 

0.999057 310.8 

The mission consequences of IRU calibration were signficant. At the end of the first scheduled yaw 
maneuver, the spacecraft attitude (propagated onboard from premaneuver solutions) was sufficiently far from 
the actual attitude (> 0.2 degree) that the OBC could not identify stars. The spacecraft dropped out of fine 
pointing mode and had to use the ESAs to establish sufficient attitude accuracy to resume normal operations. 
The IRU calibration parameters were uplinked before the second scheduled yaw maneuver, and fine pointing 
was never lost throughout the maneuver. 

AXIS 

YAW 

ROLL 

PITCH 

BEFORE CALIBRATION AFTER CALIBRATION 

0.087 0.01 0 

0.132 0.044 

0.081 0.045 

I I I 1 

4. SSPP CALIBRATION 

Several of the scientific instruments on UARS are mounted on the SSPP. This platform is attached to the 
spacecraft through two nominally orthogonal gimbals, which are normally rotated to follow the Sun. The 
platform may also be driven to track a star. An FSS (called the platform Sun sensor - PSS) is mounted on the 
SSPP, and the scientific instruments are aligned relative to it. 

The alignment of the platform was parameterized and solved as two misalignment matrixes and an 
intergimbal misalignment angle. The matrixes, Mgs and MMa, represent misalignments from the PSS 
boresight to the (or outer) gimbal and from the a (or inner) gimbal to the body frame. The intergimbal angle, 
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y, is the rotation of the p gimbal axis from the a gimbal axis about an axis perpendicular to both. Since the a 
and gimbals arenomlnally aligned (at index) to rotate about the Y- and X-axes respectively, the intergimbal 
rotation is about the Z-axis. 

h observed Sun vector, So,, may be transformed into GCI, by 
A 

where A is the attitude matrix and Mz(a), MI@), and M3(y) are rotation angles about single eulgr axes by the 
angles a, p, and y. M p  and MMa are represented as functions of two misalignment vectors, 6 and by: 

(6 )  
,,T 

M~~ or M,, = Icos(e) + (1 - cos(e)) ee - sin(e)[e] 

where I is an identity matrix and 

The gimbal rotation angles a and p, and information that can be converted into a Sun vector in the sensor 
frame are available from telemetry, the attitude can be computed from other sensor data (FHSTs), and the m e  
Sun position can be obtained from known ephemerides, so the differe5e between observed and reference Sun 
vectors depends only on the unknown misalignment parameters 6, g ,  and y. The calibration software 
minimizes the least-squares residuals with respect to a state vector containing the elements of the two 
misalignment vectors and the intergimbal misalignment angle. 

Data for calibration were taken over a period of 15 days, using one orbit per day. The spacecraft solar p angle 
changed through most of its possible range during this period, so the data spanned almost the full range of 

Prelaunch analysis had shown that a large amount of data would be needed for resolving the partial 
correlations among the SSPP alignment parameters. Even with the large amount of data used, the parameter 
corresponding to a rotational misalignment around the gimbal Z-axis could not be properly determined. 
This parameter correlates with a rotation about the PSS boresight. Since the PSS tracks the Sun, its boresight 
is always near the center of the FOV and rotations about it are not easily distinguished. 

This problem was resolved by using additional data from a science instrument calibration maneuver (for 
SOLSTICE and SUSIM). During this maneuver, the PSS was slewed to follow a path where the Sun was 
tracked at a 1 degree offset from the center of the FOV. Several slews were performed so that the Sun position 
was maintained 1 degree on either side of both axes. 

The seven alignment parameters and their uncertainties are presented in Table 6. This table also contains the 
RMS difference between Sun vectors, computed using these misalignments, and reference Sun vectors. The 
largest uncertainty is about the Z-axis of the gimbal, but this uncertainty is greatlyreduced from the value of 
1.656 degrees obtained using all data except that from the maneuver. 

gimbal angles. 
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Table 6. Comparison of SSPP Alignments 

I VARIABLE I VALUE f UNCERTAINTY (DEG) 
Rotation around a gimbal X-axis 

Rotation around a gimbal Y-axis 

-0.036 f 0.001 

-0.125 f 0.005 

Rotation around a gimbal Z-axis 

Rotation around fl gimbal X-axis 

0.072 f 0.001 

-0.026 f 0.001 

Rotation around fl gimbal Y-axis 

Rotation around fi gimbal Z-axis 

The RMS error is an order of magnitude reduced from the value of 0.0535 degree obtained using prelaunch 
alignments. 

Determination of the gimbal alignments greatly improved the pointing accuracy of the SSPP instruments. 
The improvement as a function of the two gimbal angles is shown in Figure 1 .  

0.030 f 0.005 

-0.035 f 0.012 

5. FOV CALIBRATION 

Intergimbal angle 

RMS Attitude Residuals (deg) 

FOV calibration consists of determining the coefficients of the transfer function that converts the digitized 
FSS signal into angles. This function, supplied by the FSS manufacturer, is of the form 

+ = a, + tan-l(a, + a2 N + a,sin (a4 N + a,) + a,sin (a7 N + as)) (7) 

where @ is one of the desired angles (a or p), N is the digitized signal, and ai is the set of coefficients. The axes 
are treated as entirely independent, and separate sets of coefficients are solved for each. 

Calibration was performed both for the FSS mounted on the MACS and the PSS. These calibrations were 
performed only after the alignments had been determined. For the FSS, data from a period of about 2 weeks 
were needed to ensure that Sun observations from the entire FOV were used. For the PSS, since the PSS 
normally tracks the Sun, the only data that could be used were those from the SOLSTICE/SUSIM calibration 
maneuver described above. 

The FSS FOV calibration resulted in coefficients that were only slightly changed from their ground-measured 
value. The sensor residuals determined using these coefficients were very slightly lower than those before 
calibration, and were not loaded into the OBC. 

The PSS calibrations showed a somewhat larger change, and sensor residuals decreased from 12.2 to 8.8 
arc-seconds for Sun measurements at the center of the FOV and from 15.0 to 12.2 arc-seconds for all 
measurements during the offset maneuver. These improvements were considered too small to merit uplink of 
the new coefficients. 

~~ ~- 
0.001 f 0.003 

0.0048 

6. CONCLUSIONS 
Overall, the calibration of the UARS attitude sensors produced a marked increase in the accuracy of both 
ground- and OBC-determined attitudes. The pointing accuracy of the UARS science instruments was 
increased correspondingly, enhancing the attainable precision of scientific stu&es of upper atmosphere 
chemistry. 

Over the life of the mission, the FDF will regularly monitor sensor calibration and is prepared to recalibrate 
any sensors that drift as the spacecraft ages. 
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Solar Array Thermal Snap and the Characteristics of 
Its Effect on UARS 
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J. Garrick 
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ABSTRACT 

The single solar array on the Upper Atmosphere Research Satellite (UARS) is subjected to a 
thermal distortion when the spacecraft enters and exits the Earth’s shadow. The distortion 
results in a torque that alters the spacecraft attitude. Due to the sudden nature of the attitude 
discontinuity, the effect has been termed “thermal SIMP.’’ Thermal snap has also been 
experienced by Landsats 4 and 5 .  

Analyses by the spacecraft builder addressed the impact of the resultant torque on the 
onboard control system. This paper discusses the results of comparisons between the 
predicted effects of thermal snap on UARS and actual attitude solutions from UARS 
telemetry data. In addition, this paper describes the characteristics of the thermal snap on 
UARS in terms of maximum displacement, solar beta angle, and solar array drive angle. 
Comparisons are made between the actual times of thermal snaps and the predicted 
spacecraft sunrise and sunset times. The effects of the UARS thermal snap are summarized 
and a general comment is made relating possible effects of thermal snap on other satellites. 
Also, an analysis of UARS attitude solutions that span periods of thermal snap was 
performed to determine whether the gyro sampling time of 1/8 second is sufficient to 
properly model the resulting spacecraft attitude without compromising the accuracy 
requirements. The results of this analysis are discussed in this paper. 

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight 
Center (GSFC), Greenbelt, Maryland, Contract NAS 531 500. 
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1. INTRODUCTION 

1 .I History and Motivation 

It has been observed for some time that certain spacecraft entering or leaving the Earth’s shadow experience 
attitude perturbations believed to result from a variety of thermal effects. Particularly large perturbations have 
been observed in spacecraft having flexible solar arrays. Flight data from Landsats 4 and 5 ,  for example, 
showed large disturbances about the roll and yaw axes whenever the spacecraft entered or exited sunlight. 
Richmond [Reference 11 has postulated that these disturbances were caused by torques created by the flexing 
of the solar arrays. This effect has been termed “thermal snap” due to the sudden nature of the attitude 
disturbance. The possibility of such attitude disturbances during the UARS mission was aconcem because the 
design of the solar array is similar to that of Landsar-4. Prelaunch analysis reports examined the control and 
stability implications of thermal snap. Jasper and Neste meference 21 and Freesland [Reference 31 developed 
models that reproduced Landsat-4 data to make predxtions of UARS perturbations. 

As predicted, attitude disturbances near spacecr‘aft sunrise and sunset have been observed in UARS flight 
data. This paper examines the characteristics of these disturbances, discusses them in light of thepredictions, 
and discusses the implications for UARS and other satellites. 

2. DEFINITION OF SOLAR ARRAY THERMAL SNAP 

2.1 Geometry 

UARS is in a low Earth orbit with an inclination of approximately 57 degrees. The solar beta angle is the 
complement of the angle between the UARS orbit normal and the Earth-to-Sun vectors. Because of the 
precession of the UARS orbit and the relative motion of the Sun, the beta angle is constantly changing. The 
maximum beta angle is approximately 80 degrees. 

The normal mission mode attitude reference frame for UARS is the orbital coordinate system (OCS). In the 
OCS, the spacecraft yaw axis is parallel to the Earth-to-spacecraft vector, and the pitch axis is parallel to the 
orbit normal vector. Therefore, UARS constantly pitches at the orbital rate. 

UARS has a single solar array that is made up of six panels and is offset from the pitch axis by 17 degrees 
(Figure 1). The orientation of the solar array in the UARS body frame varies with spacecraft local time. At 
noon, the array is positioned at 270 degrees; at midnight it is at 90 degrees. The solar array drive angle at 
sunset and sunrise is near 180 or 0 degrees at low beta angles (depending on flying direction, which is 
explained below) and approaches 90 degrees for high beta angles. This is because the local times for sunset 
and sunrise become closer to midnight as the beta angle increases. The solar array is nominally driven around 
the pitch axis at the orbital rate in order to maximize the intensity of the Sun on the solar cells for power 
considerations. The intensity of the Sun on the array is primarily a function of the solar beta angle. Due to the 
offset from the pitch axis, the solar intensity on the array is maximum at the beta angle of 17 degrees. 

Sunsets and sunrises as observed by UARS appear differently depending onthe solar beta angle. At a low solar 
beta angle, the Sun appears tomove perpendicularly to the limb of the Earth. At a high solar beta angle, the Sun 
appears to move along the limb. Therefore, the UARS solar array sees day/night transitions that decrease in 
speed and intensity as the beta angle increases. 

The changing beta angle also forces UARS to perform an attitude maneuver on approximately a monthly 
basis. The Sun must be kept in the hemisphere bounded by the X-Z plane and containing the solar array for 
instrument and power considerations. As the beta angle passes through 0 degrees, UARS performs a yaw 
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maneuver of 180 degrees about its Z-axis. UARS is said to be flying forward when its positive X-axis is 
aligned with its velocity vector; UARS is said to be flying backward when its negative X-axis is aligned with 
its velocity vector. The data used by the UARS attitude task in this study were obtained while the spacecraft 
was flying backward from December 5 to 20,1991. However, a survey of the data for the spacecraft in the 
forward-flying mode indicates that the behavior is symmetric, as would be expected. 

2.2 Mechanics of Thermal Snap 
The single solar array on UARS is about 30 feet long and is made up of six panels of equal size. Each panel is 
constructed mainly of aluminum facesheet and aluminum honeycomb. Jasper and Neste and Zimbelman, et 
al. [Reference 41, have described the bending of the solar array in terms of time derivatives of the thermal 
gradient across the panels. When the spacecraft enters sunlight, the hot side of the panel heats up faster than 
the cold side, causing the panel to bend away from the sun. When the spacecraft exits sunlight, the hot side 
cools down more rapidly than the cold side and the array bends back again. This bending creates torques about 
the spacecraft axes. Conserving angular momentum, the spacecraft responds with a rapid change of attitude 
(Figure 2). The duration of sunrise and sunset and solar intensity, as seen by the spacecraft, depends on the 
solar beta angle, as discussed in the previous section. This in turn will affect the magnitude and timing of the 
thermal snap because the temperature gradients will differ. Plots of temperature gradients versus time 
presented by Jasper and Neste indicate that the disturbance should occur at the penumbral entrance for both 
sunset and sunrise (where the temperature gradient across the array changes most rapidly). 

3. ANALYSIS RESULTS AND DISCUSSION 

3.1 Discussion of Predicted Effects of Thermal Snap on UARS 
Freesland has presented several estimates of the magnitude of UARS attitudedisturbances. Early predictions 
concentrated on the effects at a solar beta angle of 18 degrees because the total torque on the spacecraft should 
be maximum there. It was also felt that the effects at sunrise and sunset would be very similar, so while the 
numbers cited here are for sunrise, it is not clear that the thermal modeling was sophisticated enough to draw 
any distinction that may exist between sunrise and sunset. ' h o  sets of numbers from Reference 3 are given in 
Table 1 as Cases 1 and 2. The primary distinction between them is in the mass properties used. Note that 
Case 2 shows increased disturbances for the reduced mass properties. 

A more recent estimate is included as Case 3 [Reference 51. Case 3 is compared in Reference 5 to flight data in 
which the spacecraft is entering sunset at a beta angle of 35 degrees. It is assumed here that the estimate was 
produced under these conditions. 

- 
BEFORE ENTERING SUNLIGHT 

------------- WC 

MOTION OF ARRAY 

SOLAR ARRAY 

AFTER ENTERING SUNLIGHT 

MOTION OF 
SPACECRAFT 

Figure 2. Bending of Solar Array 
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Table 1. Predictions of Attitude Disturbances (arcseconds) 

Case 

1 

2 

3 

Disturbance Mass Properties (FT-LB-sec2) . 
Yaw Roll Ixx lY Y lu Ixy 1x2 lyz 
144 197 13200 34500 38200 -3610 -920 1360 Baseline 

155 221 11808 31910 35449 -3344 -847 1443 

150 250 13400 35209 39974 4366 -1089 1751 Beginning of Mission 

12632 31519 35623 -3236 -909 1696 Endof Mission 

Finally, predicted end-of-mission mass properties are included for reference. Note that the principal moments 
of inertia for the end-of-mission mass properties lie between those for Cases 1 and 2. 

3.2 Magnitude of Attitude Disturbances 

The simple model described in Figure 2 can be taken to another level of sophistication using vector analysis. 
Figure 3 shows the torque that should result from UARS flying backward into the sunset. The spacecraft 
attitude data agree with the predictions of such diagrams on the direction of the disturbances for any 
configuration (flying forward or backward at sunset or sunrise). It remains then to examine the magnitudes of 
the disturbances. 

Figures 4 and 5 show the magnitude of the attitude disturbance at various solar beta angles for both sunrise and 
sunset. The magnitude shown in the plots was derived by examining characteristic signatures of the 
disturbance in OBC attitude solutions for the time at which the initial disturbance is maximum (Figure 6). 
Three sunrise and sunset events were examined for each of seven different beta angles ranging from 0 to 65 
degrees. The baseline attitude, determined as indicated in Figure 7, was then subtracted from the peak attitude. 
At each sunrise and sunset the three events were averaged. Generally, the solar array disturbance affects the 
attitude about all three spacecraft axes. The effect on the pitch axis is often less dramatic; therefore, only the 
roll and yaw axes disturbances will be discussed here. 

The peak disturbances are defined when the reaction wheels begin to return the spacecraft to the nominal 
attitude. They are therefore dependent upon the beta angle in the sense of the total torque input to the 
spacecraft; upon the solar array drive angle insofar as how the total torque is distributed among the axes; and 
upon the control system reaction to the position and rate errors computed onboard. 

The values listed as Case 1 Table 1 compare well with the disturbances at sunset for an 18degree beta angle 
(yaw = 113 arcseconds; roll = 198 arcseconds) although the yaw axis is somewhat overestimated. The mass 
properties were probably close to the values cited for this case (by inference of interpolation of the 
beginning-of-mission and end-of-mission mass properties). Case 2 exceeds the values seen in this study, 
probably because the mass properties resemble the end-of-mission mass properties. It may be a good 
indication of what to expect at the end of the mission. For comparison to Case 3, flight data for that specific 
event (occurring on October 5,1991, around 00h:22m GMT) were examined, indicating 100 arcseconds for 
yaw and 195 arcseconds for roll. Case 3 is then an overestimate, but it may be that the assumptions in the 
previous section were incorrect. Generally, it seems that the model used by Freesland, Jasper, and Neste is 
capable of making reasonable predictions. Some overestimate may be desirable from a conservative 
standpoint regarding instrument stabilities. 
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A 
-2, r 

centec of mass 

/ center of force 

+X 

+z 

x, y, z = UARS attitude control system A I = vector from UARS center of mass to center of force f 
A 

A 

r = radialvector 

v =  velocity 

A 
Fs = force at sunset 

7 s  = torque at sunset 

Figure 3. Torque at Sunset 

NOTE: When UARS is flying backward into the sunset at a beta angle of 1 8 O ,  the solar array drive 
angle is around 150". The solar array straightens, creating the force with the resulting 
torque. This torque has components in the -x, -y, and+z spacecraft axes. The spacecraft 
responds with positive roll and pitch and negative yaw in order to conserve momentum. 
A similar analysis for any other configuration yields qualitative agreement with the data. 
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Figure 4. Actual Disturbance at Sunrise; r-roll, y-yaw 
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Figure 5. Actual Disturbance at Sunset; r-roll, y-yaw 
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Figure 6. Determination of Maximum Attitude Disturbance 
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There are two features in these plots that have not yet been fully explained. First, while the yaw axis shows 
maximum disturbance at low beta angles (where the total torque should be maximum) as might be expected, 
the roll axis is disturbed mostly at high beta angles, where the total torque should be falling off. One possible 
explanation is that, because the solar array drive angle is approaching 90 degrees for high beta angles, more of 
the total torque should be input to the roll axis, which has arelatively low momen1 o f  inertia. Secondly, the roll 
disturbances for sunset are significantly larger than those for sunrisc, while the yaw disturb‘ances are relatively 
the same. These characteristics of the roll disturbances are likely to be understood only with detailed 
examination of the control system reaction and possibly with better thermal modeling. It  is also possible that 
there are more dynaniics that need to be accounted for, such as motion of the Zenith Energetic Particle 
experiment boom (in Figure 1 ,  the boom that lies along the Z-axis). 

3.3 Timing of Attitude Disturbances 

An analysis was undertaken to determine a model for estimating the timing of UARS attitude disturbances due 
to torques produced by the solar array at sunrise and sunset [Reference 61. The UARS Flight Dynamics 
Facility (FDF) attitude task generates a variety of planning aids for the UARS project. Among these aids are 
predictions of sunrise and sunset times for the spacecraft. More specifically, these are referred to as ‘‘Zero 
kilometer” sunset and sunrise events, meaning that the center of the Sun is at the limb of the Earth. When 
UARS observes a zero-kilometer event, it is at the halfway mark on its path through the penumbra. The peak 
attitude disturbances as determined above were correlated with the sunrise and sunset times as predicted in the 
planning aids. 

The predicted sunrise and sunset times were then subtracted from the time of maximum initial attitude 
disturbance for each event. Averages and standard deviations were computed for each event. Because the 
disturbances in the roll and yaw axes occur at very nearly the same time, only the roll axis plots are included; 
however, they are valid for the yaw axis as well. The results are tabulated in Table 2 and plotted in Figure 8. 

The sunset events show a tendency to move into the day as the beta angle increases. At a beta angle of 
0 degrees, the attitude disturbance occurs around 7 seconds after the zero-sunset predxtion. At a beta angle of 
65 degrees, the snap occurs at 47 seconds prior tothe zero-sunset prediction. The sunrise events show a similar 
tendency to move into the day. At a beta angle of 0, the disturbance occurs about 26 seconds after the 
zero-sunrise prediction. At a beta of 65 degrees, the disturbance occurs 71 seconds after the prediction. 

As noted in Section 2.2, the plots of gradients indicate that the solar snap should occur at the entrance to the 
penumbra for both sunset and sunrise events. At sunset and sunrise, the spacecraft enters the penumbra 
increasingly earlier than the zero-kilometer event as the beta angle increases. The data for the sunset events 
appear to agree with this model; the solar snap occurs increasingly earlier than sunset as the beta angle 
increases. However, the sunrise events show the opposite behavior: they occur later and later than sunrise as 
the beta angle increases. It should be remembered that the differences presented here are based on the times of 
the peak disturbance, which are ultimately determined by thecontrol system. It would be perhaps morecorrect 
to examine the predictions in terms of the timing of the “shoulder time” (Le., the times at which the attitude 
begins to be disturbed as shown in Figure 7) or in terms of the peak torque due to solar snap. But a casual 
survey of shoulder times indicates the same trend. A torque analysis had not been completed at the time of this 
writing. This discrepancy indicates the need for a detailed understanding of the thermal behavior of the array. 

3.4 Predicted/Actual Effects on Propagation 

The UARS FDF attitude task routinely computes attitude solutions using Fixed-Head Star Tracker (FHST) 
and digital gyro telemetry in a batch least squares algorithm for confirmation of the attitude computed 
onboard UARS. 
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Table 2. Timing of Roll Attitude Disturbance With Respect to 
Zero-Kilometer SunsetlSunrise Predictions 

18 
35 
44 
56 
65 

SUNSET 

9 1 
6 1 
4 1 

-7 1 

-4 1 4 

Solar Beta Angle (degrees) I Timing Difference (seconds)' 1 Standard Deviation (seconds) 

inertia values (ft.lb.se$) Timing Difference (seconds)' 

0 26 
6 26 
18 26 
35 29 
44 31 
56 40 
65 71 

Standard Deviation (seconds) 

1 
1 
1 
2 
2 
1 
4 
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Figure 8. Times of Attitude Disturbance for Sunrise and Sunset versus Solar 
Beta Angle 

To obtain an analytical expression for the attitude propagation matrix, one assumes that the angular velocity is 
constant over the sampling interval. In reality, there are accelerations in the angular velocities due to a variety 
of factors. Since the gyro sampling rate is very small, 1/8 second, most of these accelerations do not present a 
problem. In the case of thermal snap, however, the disturbance is relatively large and occurs over a short 
period of time (Le., less than one minute). One concern was that the ground-computed attitudes would not 
properly model the thermal snap. Errors could even accumulate when spacecraft nights are short. 

An analysis was performed to determine whether the attitude ground support system (AGSS) is able to meet 
the 60-arcsecond-per-axis attitude determination requirement. Attitude solutions for periods just prior to and 
during sunset were generated using the AGSS. The results were compared with the OBC attitude solutions 
over the same time period. The magnitude of the residuals from the attitude solutions prior to sunset are of the 
same magnitude as those during sunset. Table 3 gives the root mean square (RMS) values for the comparison. 
This indicates that the UARS AGSS is able to propagate attitude solutions during periods of thermal snap 
without compromising the attitude determination requirements. 
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Table 3. Comparison of OBC and Ground Attitudes 

Before Snap 
During Snap 

- 1  RMS VALUES (ARCSEC) I I 
Yaw Roll Pitch 

5 9 27 
12 12 18 

4. CONCLUSIONS 

From this analysis and the prelaunch studies, it can be concluded that the attitude disturbances experienced by 
UARS are caused primarily by bending of the solar arrays as the spacecraft enters and exits sunlight. 

The disturbances were predicted to occur for UARS based on its design similarity to the Landsats (Le., an 
asymmetric solar array configuration). The disturbances are not reported to the same extent for satellites with 
smaller solar arrays or more symmetric configurations. 

The direction of the attitude discontinuities for UARS confirms that the torque being applied as the spacecraft 
enters and exits sunlight coincides with the predictions from the model described in Section 2.2. In addition, 
the magnitude of the thermal snap modeled by the spacecraft builder in References 2 and 5 is a fairly good 
predictor of what the actual magnitudes are, as described in Sections 3.1 and 3.2. 

On the other hand, there remain some questions concerning the magnitude and timing of the disturbances. 
Specifically, why are sunset roll disturbances so much larger than those at sunrise? Why do the roll 
disturbances become larger at high beta angles? And why does the timing of the sunrise disturbances appear to 
be opposite of that predicted? A key to answering these questions may be provided by the TOPEX satellite, 
which will be flown with temperature sensors on either side of the array, allowing observational checks for the 
thermal modeling. Jasper and Neste have also proposed using strain gauges for direct measurements of solar 
array bending. 

Whatever the details are of the process taking place, the Lmdsat-design spacecraft have demonstrated that 
there is a potential for large attitude disturbances at sunset and sunrise. It is important that this process be better 
understood. It should be considered in stability analysis for any satellite, even ones with small symmetric 
arrays. 

Because the UARS moments of inertia will continue to decrease (due to cryogen boiloff and propellant use), 
efforts should be made to determine any trends in the disturbances. 
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Accuracy Using Coarse Attitude Sensors 
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ABSTRACT 

The Upper Atmosphere Research Satellite (UARS) uses fixed-head star trackers 
(FHSTs) and inertial reference units (IRUs) to determine and control its attitude. 
This combination of fine sensors results in attitude knowledge accuracies to better 
than 10 arc-seconds ( 1 ~ ) .  UARS also has a variety of coarse attitude sensors 
onboard: the three-axis magnetometer (TAM), the coarse Sun sensor (CSS), the 
fine Sun sensor (FSS), and the Earth sensor assembly (ESA). By comparing 
attitude solutions using coarse sensors with FHST-determined attitude solutions, 
estimates can be made of the accuracy of the coarse sensors. This paper presents 
the results of an analysis that compares attitude solutions using various 
combinations of UARS coarse attitude sensor data with FHST attitude solutions. 
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