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Abstract

The attitude motion of a tumbling, rigid, axisymmetric spacecraft is considered. A

methodology for detumbling the spacecraft through energy dissipation is presented. The

differential equations governing this motion are stiff, and therefore an approximate solution,

based on the variation of constants method, is developed and utilized in the analysis of the

detumbling strategy. Stability of the detumbling process is also addressed.

Introduction

As human expectations and scientific frontiers expand, the capabilities of satellites and

space platforms must expand to meet these challenges. This results in more expensive

satellites and space platforms being designed and launched. These elaborate systems will

require on-orbit servicing/repairs and recovery missions to correct system malfunctions. In

the past, on-orbit servicing and recovery missions have been uncommon operations since the

cost of a replacement satellite was far less than the cost of these missions. However, today's

high cost of manufacturing and launching of space systems make servicing and recovery

missions an economical alternative to spacecraft replacement. >4 For example, the

INTELSAF 6 communication satellite with an initial cost of $265M will be repaired on orbit

at a total cost of $15(1M.5

In addition to monetary costs, there is the "cost" of human lives when manned space

flights are inw_lved. For these missions, recovery is not an alternative, it is the only choice.

Finally, the growing concern over space debris mandates that at the end of a spacecraft's

useful life, it must be retrieved and properly disposed of.

Malfunctioning of a spacecraft could result in a wildly gyrating, uncontrolled system. In

the case of a manned spacecraft, it may not be feasible to wait for a period of several days

while the spacecraft settles into a state of pure spin (' before a rescue mission is attempted. It is

also reasonable to assume that the manned spacecraft may be a module from a larger system,

and as such, does not possess the degree of flexibility necessary to dissipate energy at a

sufficiently high rate in order to quickly detumble itself. Consequently, it can be expected that

during some recovery missions, the uncontrolled spacecraft will have non-zero precession

and nutation rates which must be reduced to zero as quickly as possible.

The dynamic interactions involved in detumbling one spacecraft (uncontrolled vehicle)

by another spacecraft (rescue vehicle), of perhaps comparable mass, are non-trivial. The task

of grasping the uncontrolled (tumbling) spacecraft poses quite a challenge to the recovery
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vehicle since the' grappling p_int on tile disabled spacecraft may traverse a c_me in space. In

addiii_m to the grasping tusk, the disabled spacecraft must be stabilized in a manner which

mainlains the moli_m _t b_lh vehicles within s_mle safe b_unds. Ibis requires detailed

knowldge of the dynamic charact_ristics of lhe Sl_acecra fi and places greater demands _ul tile

rescue vehicle's attired!_' contnd _y_tcm. as well as fuel reserves. More iml-_ortantly, this

sittnaticvl involves gr_'at saluiy hazards, particularly if either the disabled st_acecnatt c,r the

rescue vdliclu is mannd. Yet the r_hilosol_hy behind current approaches t_ the spacecraft

retrieval t-_roblcm is tt_ "grapple _knd wrestle" the spacecratt. 24 since the time recluircd for the

spacecraft t_ settle int_ a state of pure Sl_in may well exceed the time available during a

retrieval mission.

i\n alternative i_ the current "'grapple and wrestle" retrieval al_l_roach is a r_trieval

slralegy which first It_'dtlceS the m_ti_m of the spacecraft to that of pure spin and then despins

the Sl_aCeClafi. In this [_al_cr. a l_i_lcess I_y which this inay I_e achieved, within the lime franle

ofa ietrieval ini_silm, isl_rcsuntecl. In lilt tt_il_wingsecli_ln, a sliateg 7 flutleluml_linglhe

sl)acecrat:l is i_rexelllucl. lhe etlualions governing the detunlbling lllOtion are clevel_,ped and

i_rusenlcti. An ai_l_l_Xill]atu s_duii_m t_ the g_werning etluali_ns i<_l_rest'nted and tig_tl to

invexligate the i_l_l_ccl duluml_ling sliateg 7. lh_ paper omcludus wiih stlggesliluls flu
I'tll tire wllrk.

i)ettl mblint_ gtratel_y

It is wall kil_vn itlai the: gcnt_,ral n,taiillnal m_ltion of a lortitle-iree rigid b_dy ilI\"OIVeS

spin, Ilul_.itioll and i_recessh>n. 7 '_ ,'\1,_o. when dis._ipative effects [ir_ present (e.g., a flexiblt,

I}_)dy). the r(ilaiiomil II1(}ii()11 {)[ the l}()clv evellltl_llly redtlces l()_1 Sl_llt2 ill i-ltlre spin _ll](ttli th_

axis ()f II1_lXilllUlll nliinlenl (_| inert!<!. Ibis stale t_f ptire spin itllaliollal nl()ti(in i_ a result ()t

Cllelg), dis_ipati(in, and ihc'rc'f(_ru iel-)resc>nts th_a steady stal_ I()talional i11()iioll ()[ till real

Xl}aCCClatl (i.e.. n(}n-rigid I}(}clics). It is worth n(iiing thai t'()r an axi_ynlll_lric h_)d), ((ln_.,

whclU lhu t\vl_ smaller i_rincil_aI Illl_lllelliS O[' illt_'rti[i _lre ctjuaI) the iltll_ili_in I_lle _lSlll_lStlred

wiih leSpecl l_t ihe (c_lnstclnt) Cillgtilar IllOIll_nltllll vucl_r is ztHo.

in i_lactic__ '. lhe time rc'tluired t_lr thi<_stale _lf i-otati_mal mllti_m to occur is l),l_ic'ally on ihe

i_ltler ill sevial_ll d<ivs.<' it is i_l_l_s__'ct that in order t(1 decl_ase th_ I_tltlired iime. the energ),

dissipation rate i_f the Sl_tiCCClafl should be inci_as_d. Ibis would be accoml_li,_h_d b)'

atlaching a dis._iDitivc d__'vicc to lhc Sl_acecrafi: thai i,_, ieti_taclively filling th_ spac_cratl with

t'xlernal prect_,ssi_m and nulali_n d_iilll_er<_.

lhe cli_siDiiive device c_ln._isis lit' a fiuxibl_ rod wilil an end llla_,_ _lg ,_h_lwn in t_ig. 1.

Dalnl_ing eff__'cis in !he il_d w_uld be tailored i_! dissipate t_neigy at a ial_ which deci_ases lhe

nuialion anglt' within the linle flamt_' o[ th_ mission. lhe l_ngth and stiffness _f the rlicl, and

lhe size _lt the end lll_is._ _ile cte,_ign crileiia which ;.llt_ glwein_d by stabilii)' retitlirt_int_lllS, AS

depicted in l-ig. 1. ti<_agc'_[ lhis clevic_ requires only a slighl nlodil]calilln of the Tumbling

Sai_llilu Retriev_il ('I%R) Kit ttcvt, h_l_ed b7 (irtlrlllTl{In. 4 It is l_l_l_osed !hat th_ _il-m (l|' lh_'

cl_vice bc conslruclcd Irolll "Slll_lrl'" nlat_iials Stlch that. during instanct_s when the device i._

aliached to the_'rc'sCtlt_,vehicle', it will I_e sufficientl), stiff !o allow rapid i11[iltt_tlVelg, thlwevei,
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once grappling has been accomplished, the device will be detached from the rescue vehicle,

eliminating its source of power, thereby rendering the device passive.

b)

Fig. 1. Retrievalvehicle: a) current concept (Grumman),

b) proposed concept

In this paper, the issues associated with attaching the device to a tumbling spacecraft (i.e.,

locating/tracking/spin-rate matching and gripping), or the actual design of the dissipative

device are not addressed. In what follows, it is assumed that the device has been successfully

attached to the spacecraft. The following sections present an analysis of the dynamic

performance of the device.
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Equations of Motion

The spacecraft model adopted for the present study is shown schematically in Fig. 2. It

consists of an a,,dsymmetric rigid spacecraft, S, an end-mass, E, and a flexible link, L. The

end-mass is attached to the spacecraft via the flexible link'in such a manner that when the link

is in its undeformed state, both the link and the end-mass are along the axis of symmetry of

the spacecraft.

Zb

Undeformed i__

confi,quration I E
- I

I x

I L

S

l

Xb Yb

Fig. 2. Spacecraft Model

The dextral orthogonal coordinate system BXbYbZ b is fixed in the spacecraft. The axes

are centroidal principal axes for the spacecraft. The Zo axis lies along the axis of maximum

inertia which is also the axis of symmetry. The displacements of the end-mass in the

Zb-direction are assumed small and therefore are neglected. That is, the end-mass is

assumed to move parallel to the XbYb-plane; in this plane, the displacements of the end-mass

relative to the spacecraft are denoted by x and y as shown in Fig. 1.

The centroidal moments of inertia of the.spacecraft are Ixx, Iyy, and Izz, where

I_= Iry < Izz. The contribution of the end-mass to the overall system mass is neglected since

its mass, m, is significantly smaller than the mass, M, of the spacecraft. The flexible link

connecting the end-mass to the spacecraft is assumed "massless.'" Under these assumptions,

the center of mass location, B, is unchanged by the the addition of the dissipation device.

Denoting the stiffness and the damping of the flexible rod by K and C, respectively, then

the equations governing the motion of the system can be expressed as

5_+ cR + (k- a){ -w2)x- 2a)z_j + (a)x_y- O)z)y = -(_×a_z + ¢by)l (1)

+ o) + (k- _Oz2 -a)2)y + 2O)zi + (OOxOOy+ &z)X = -(%Wz- &x)/ (2)

26



l_b_= -%,v&(It- 1)I- l(ky + c_)- Fzy

bby = _Oxt0z(/t- !)1 + l(kx + c_) + Fzx

yhbz = c(5'x- _y),

(3)

(4)

(5)

where/is the distance of the end-mass from B, c, k, and 1, are mass "normalized" quantities, ta

is a nondimensional inertia ratio (it > 1), and Fz is the z-direction inertia force associated

with the end-mass. Note that the mass normalized stiffness, k, is actually the sqt.are of the

fundamental frequency for the dissipative device.

(" K 2 (6.a)c =--" k - - (u.
m m

I ixx lvv lzz=- = .-./_=- (c,.b)
m m ]xx

F_ = o3_y - _byx + 2(,.o_, - %i) + _oz(m_x + %,y) - I(_o2 + o)_) (6.c)

Equations (1) through (5) represent a set of stiffdifferential equations since there are two

disparate time scales. An approximate analytical solution for these equations is develol_ed in

the next section.

Approximate Solution

Assuming a small attached end-mass E (m ,_ M) and relatively small dissipation rates,

the rotational motion of the system (spacecraft and device) can be approximated for a few

cycles of oscillation by Euler's equations for an axisymmetric, torque free, rigid body. These

equations are

where p is as defined in Eq. (6.b).

(0 x = - _Oy(Oz(/t - 1), (7.a)

_by = WxWz(It - 1), (7.b)

&,, = O, (7.c)

Et, ler's equation (Eq. (7)) has a solution

_ox = Acosff2(t + to), (8.a)

COy= AsinQ(t + tll), (8.b)

_Vz = constant (8.c)

where A represents the tangential angular velocity (i.e., the resultant oftox and to>,;see Fig. 4).

and {2 = (It - 1)toz. Equations (1) and (2) can now be rewritten as

+ c_ + (k - {Oz- A2S2_.)x - "_ " = ." _Wzy + AzSs,_(:_ay - ,umzlAC_ (9)

+ c3_ + (k- (0_-A2C_a)y + =(0zX + A"Ss_( _ax = -tt_oflASs_ (i())
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where

Sea= sing2(t+ t0); C_ = cosg2(t+ to). (11)

Equations (9) and (10) have time varyingcoefficients; thus, a study of stability via the
Routh-Hurwitz criterion is inapplicable. To circumventthis problem, a coordinate system,
B{q¢,which rotatesrelativeto thespacecraft-fixedZb-axiswith angularrate _ isdefined(see
Fig. 3). The counterparts of Eqs. (9) and (10) in this coordinate system are constant

X

_t ,_

Fig. 3. B{TI_ coordinate system

coefficient differential equations for { and _q. Routh-Hurwitz criterion can now be applied to

show that the complementary solutions of { and "q decay provided that the normalized

stiffness satisfies

-_ -_ A 2

k-#'w_- T > 0, (12)

and the normalized damping is positive (i.e., c > 0). Note that if H is the magnitude of the

angular momentum of the tumbling spacecraft, then

H 2 = m212(,u2w_ + A2), (13)

A 2 H 2

which implies _2co2 +-T < m2I---X is bounded at all times for any given set of initial

conditions. Therefore, proper selection of k will always satisfy Eq. (12).

It can also be shown that in the B{rl_ coordinate system, the particular solutions for the

counterparts of Eqs. (9) and (10) are constants {1 and "ql. Since the complementary solutions

decay to zero and the particular solutions are constant, then steady state solutions for Eqs. (9)

and (10) can be expressed as
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x = _lC_a- 111S_, (14.a)

y = _tS_a + lllC_a (14.b)

The energy dissipation rate D then becomes

D = mc(_ 2 + 3;?) = mcse"(_7 + 71i) (15)

where the entire energy dissipution is considered as energy lost by the tumbling spacecraft.

That is,

d T
- D (l(,)

dt

where T is the spacecraft's (rotational) kinetic energy.

mI
l - (/t_0_ + A 2)

2
(17)

Now, the quantity A is _l measure of how far the spacecraft is from a state of pure spin.

When A is zero, the nutation angle is zero, therefore, the spacecraft is in a state c,f pure spin.

The angle that the axis t+t: symmeti T makes with the direction of the constant angular

nlon-lentum vector is uiven by (see Fig. 4)

A
tan 0 - ( 1S)

,ll(Oz

where 0 is the nutation half angle.

Fig. 4. Ptecessing spacecraft

29



Via Eqs. (13) through (17), a constant coefficient, ordinary differential equation for the

A 2 can be developed. Omitting the algebra, this equation is

d (A2) = 2c.o/2Az(P z- A2)2(Q 2- c202A 2)
d--t - I(Q 2 + (k - p2 _ c20Z)A2)2 (19)

where p. p2. and Q2 are defined respectively as

/.,-1

H 2
p2 = _ = kt2co2 + A 2

m2i 2

Q2 = (k-p2)2 + c202p2.

Note that the P is the precession rate of the spacecraft (see Fig. 4).

Equation (,19) is of the form

dx = _ ax(fl- x)20,- x)
dt (6 + x) 2 "

which may be rewritten as

dt = 1 (6 + x) 2 dx

a x)2(y- x)

Using a partial fraction expansion, an analytical solution can be obtained, resulting in a

solution of Eq. (19) of the form t = f(A2). For studies of settling time versus A 2, this form of

the anti-derivative of Eq. (19) is quite convenient. However, when A 2 as a function of time is

required, it is more convenient to numerically integrate Eq. (19).

Results

In order to validate the approximate solution, Eqs. (1) through (5) and Eq. (19) were

numerically integrated using the MATLAB 1° function "ODE45." Initial conditions for the

approximate solution were A= 6, toz = 3 whereas initial conditions for the complete solution

were tox = 6, toy = 0, toz = 3, 2 = 5' = 0, and x = y = 0. (Note, any combination of tox and tOy

resulting in A= 6 is applicable since the transien'ts decay rapidly.) In both cases, _= 1.5

resulting in p2 = 56.25. The results of these numerical integrations for two different

scenarios are shown in Figures 5 and 6. While the accuracy of the approximate solution is

quite acceptable, its computational requirement is typically three to four orders of magnitude

less than that required for the "complete" solution. Figures 5 and 6 show that the relative

error for the approximate solution decreases as the detumbling time becomes longer (i.e., the

energy dissipation rate decreases). This is expected since the approximation becomes more

accurate as the dissipation rate decreases.

Figures 7 through 11 demonstrate the dependence of energy dissipation rate, hence

settling time, on system the parameters c, k, l, It, and H, respectively. For an effective
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comparison,an initial value of A = 6 is used in each investigation. In Figs. 7 through 10, the

parameter p2 remains unchanged at p2=56.25 (i.e., g= 1.5, toz=3), whereas, in Fig. 11, p2

changes as _z is varied from 2 to 5. That is, in Fig. 11 the angular momentum is varied while

keeping the inertia properties constant. In contrast, in Fig. 10 the angular momentum is held

constant while the inertia properties are varied (0.5< la <2 and toz adjusted such that p2 is

maintained at 56.25). In Figs. 7 through 10, the label by each curve represents the value of the

parameter which was varied: in Fig. 11, the label by each curve represents the value of _z.

Damping obviously has a strong effect on the dissipation rate and generally an increase in

damping leads to a decrease in settling time (Fig. 7). However, a relatively high damping

value (c = 500) causes the settling time to increase indicating that for a given configuration,

there is an optimal value of c. Increasing c beyond this optimal value will result in increasing

settling times. As expected, decreasing the length of the rod (Fig. 8) or increasing its stiffness

(Fig. 9) increases the settling time since both of the processes decrease the energy dissipation

rate. Values of 1< /x < 2 are required for stability about the Zb-axis (Fig. 10). For cases in

which t,t < 1, the system is unstable about the Zb-axis, therefore A increases instead of

decreasing. Note that t.t < 1 does not violate the assumptions used in formulating the

problem, but represents an inappropriate configuration. Figure 11 demonstrates that the

settling time increases as the initial spin rate of the spacecraft decreases.

Figure 12 shows contours of constant settling time for various combinations of

normalized damping and stiffness. Settling time was defined as the time required for A 2 to

decrease to 1% of its original value. The contours of Fig. 12 were developed using values of

I = 400, !a= 1.5, l= 1, and t0z = 3: the parameter p2 was 56.25 (i.e., A=6 initially). Each

contour is labelled with the settling time in hours. These contours again demonstrate that for

a given stiffness, there is an optimal value of c, beyond which the settling time increases. For

large values of k, the optimal points on each contour lie approximately on a straight line. It

can be shown that for cases where (A 2 ,_ k), the "optimal" value of c is proportional to

(k-p2): the constant of proportionality depends on the choice of the initial and final values of

A 2 used in the definition of settling time. Superimposed on the contours of Fig. 12 is the

theoretically derived straight line. Excellent agreement is observed for cases inw_lving large

stiffness values. It should be noted that the "optimal" values of c are unrealistically large:

therefore we may assume as a general rule of thumb that the damping should be made as large

as possible.
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Summary

The approximate solution developed closely parallels the energy-sink approach. 11 The

device presented in this paper is an extension of the one-degree-_ff-freedom (dof)

ball-in-tube precession dampers studied by previous authors: ILL_ this device represents a

two dof damper.

The problem addressed in this paper is an important part of the bigger problem of

devising safe and efficient spacecraft detumblimg and retrieval strategies. Although the

results presented in this paper are based on somewhat higher than normal initial rotational

rates and normalized damping characteristics, the usefulness of the proposed device is well

demonstrated. Currently, the "optimal" normalized damping coefficients are not realizable:

however, with developments in the area of material sciences, these "optimal" damping

coefficients may eventually be achievable. Future work of direct practical utility will include

(1) a detailed study of desired settling time as a function of system parameters, (2) stability

analyses associated with misalignment of the device, and (3) despin strategies.
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