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ABSTRACT

Future NASA Earth Observing System (EOS) Spacecraft will make measurements

of the earth's clouds, oceans, atmosphere, land and radiation balance. These

EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper

specifically addresses the EOS AM Spacecraft, referred to as "AM" because it has

a sun-synchronous orbit with a 10:30 AM descending node. This paper describes

the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit

control, and navigation system impact on earth based pointing. The EOS AM

Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation

System (TONS) as the primary means of navigation. TONS flight software will

process one-way forward Doppler measurements taken during scheduled TDRSS

contacts. An extended Kalman filter will estimate spacecraft position, velocity,

drag coefficient correction, and ultrastable master oscillator frequency bias and

drift. The TONS baseline algorithms, software, and hardware implementation are

described in this paper. TONS integration into the EOS AM Spacecraft Guidance,

Navigation and Control (GN&C) System, TONS assisted onboard time

maintenance, and the TONS Ground Support System (TGSS) are also addressed.

This work was performed for the National Aeronautics and Space Administration (NASA)

Goddard Space Flight Center (GSFC), Greenbelt, MD, under contract NAS5-32500.
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1.0 _TRODUCTIONANDBACKGROUND

Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's

clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the

NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft,

referred to as "AM" because it has a sun-synchronous orbit with a 10:30 AM descending node.

The EOS AM Spacecraft is shown in Figure 1. The first EOS AM Spacecraft is scheduled for

launch in 1998. A second and third EOS AM Spacecraft will subsequently be launched in five year

intervals. The five year mission life for each EOS AM Spacecraft will yield 15 years of continuous

scientific observations. Normal command, telemetry, and primary science data return will be

through the Tracking and Data Relay Satellite System (TDRSS). Additionally, a direct downlink

capability will be provided to send science data directly to user ground stations.

x-body (,-,velocity vector)

y-body ._
(negative orbit normal)

z-body (nadir)

Figure 1 : EOS AM Spacecraft

Table 1 lists the EOS AM Spacecraft mission requirements that are related to orbit determination

and orbit control. These requirements were derived from and are driven by instrument science

requirements (Reference 1). Requirements include earth pointing knowledge and control, earth

pointing jitter and stability, and navigation. Additional effort is in process to refine jitter and

stability requirements, and to refine estimates of spacecraft performance with respect to jitter and

stability. Jitter as used here refers to peak-to-peak spacecraft attitude motion over time periods

required to image one pixel. Stability as used here refers to peak-to-peak spacecraft attitude motion

over time periods required to image one scene composed of many pixels. The location of a pixel or

scene on the surface of the earth is referred to as the geolocation. Navigation as used here refers to

real-time onboard orbit determination. The EOS AM Spacecraft is currently baselined with a

geocentric attitude, meaning the spacecraft z-body axis will point toward the center of the earth.

160



Table 1 : EOS AM Spacecraft Mission Related Requirements (3-sigma)

Parameter Requirement

Repeating Ground Track 16 day repeat cycle, 233 orbits per cycle,
+/- 20 kilometers at all latitudes

Sun-Synchronous Orbit 10:30 AM descending node, +/- 15 minutes,
local mean solar time

Radial Orbit Position Repeatability +/- 5 kilometers at a given latitude

Earth Pointing Knowledge +/- 90 arc-seconds, per axis

Earth Pointing Control +/- 150 arc-seconds, per axis

Earth Pointing Jitter and Stability Peak-to--peak, per axis, over time periods

(Requirements Definition in Progress) from less than 1 second up to 1000 seconds

Navigation Radial Position +/- 150 meters

Navigation Intrack Position +/- 150 meters

Navigation Crosstrack Position +/- 150 meters

Navigation Crosstrack Velocity +/- 0.160 meters/second

Time Knowledge +/- 100 microseconds

Table 2 lists the mean orbit elements that satisfy the mission requirements in Table 1. This orbit is

very similar to the Landsat-4/5 orbits and may use the same World Reference System (WRS)

ground track. The repeating ground track period of 16 days and the sun-synchronous orbit require

a mean semimajor axis of 7078 kilometers and a mean inclination of 98.2 degrees. The mean

nodal period is 5933 seconds and the mean equatorial altitude is 705 kilometers. The sun-

synchronous descending node time is specified with respect to a fictitious mean sun. The local true

solar time will actually vary by as much as 16 minutes from the local mean solar time. Radial orbit

position repeatability of +/- 5 kilometers requires a frozen orbit with a mean eccentricity of 0.0012

and a mean argument of perigee of 90 degrees.

Table 2 : EOS AM Spacecraft Mean Orbit Elements

Parameter

Semimajor Axis 7078 kilometers

Inclination 98.2 degrees

Eccentricity 0.0012

Argument of Perigee 90 degrees

Descending Node 10:30 AM Sun-Synchronous
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The EOS AM Spacecraft will use the TDRSS Onboard Navigation System (TONS) as its primary

means of navigation. The Global Positioning System (GPS) had previously been considered as

the source of measurements for the navigation system. GPS is a satellite based navigation system

owned and operated by the Department of Defense (DoD). A TONS / GPS trade study addressed

accuracy, power, weight, security, risk, and cost. A TONS implementation would require the

addition of TONS software, and would use the S-band transponder and ultrastable oscillator

already provided for communications and for ground based TDRSS tracking. A GPS

implementation would require additional and redundant flight hardware including antennas,

preamps, cabling, and receiver ] processors. Performance analyses showed that both TONS and

GPS could meet a +/-150 meter navigation requirement under nominal conditions. However, the

cost and security concerns of the military version of GPS, and the inability to guarantee the

performance of the civilian version of GPS during times of crises, were major factors in the

decision to select TONS rather than GPS.

Section 2.0 of this paper describes how navigation errors affect attitude control and geolocation.

Section 3.0 provides an overview of TONS and describes the TONS implementation baseline for

the EOS AM Spacecraft. Section 4.0 discusses TONS interfaces with the real-time navigation and

attitude control system. Example jitter and stability results are also presented in section 4.0.

Section 5.0 describes the TONS ground support system and other ground system interfaces.

Section 6.0 briefly describes orbit control. Section 7.0 provides a summary and conclusions.

2.0 NAVIGATION IMPACT ON ATTITUDE CONTROL AND GEOLOCATION

The EOS AM Spacecraft navigation system will generate real-time estimates of spacecraft position

and velocity. Near real-time position and velocity estimates will be obtained by processing TDRSS

Doppler measurement data in an onboard extended Kalman filter. These estimates will then be

propagated up to real-time and used to compute the commanded spacecraft body axis inertial

attitude as illustrated in Figure 2 and detailed in the Appendix. Examples 1 and 2 in the Appendix

show how navigation errors impact the commanded attitude on a per axis basis. TONS and the

short term high rate propagator are described later in sections 3.0 and 4.0, respectively.

The EOS AM Spacecraft primary mode attitude determination system will generate real-time

estimates of the actual spacecraft body axes inertial attitude. These estimates will be obtained by

processing star tracker and rate gyro measurement data in an onboard extended Kalman filter. The

attitude control system will compute an attitude error by taking the difference between the

commanded attitude and the estimated attitude. The attitude control system will then drive this

error toward zero by commanding reaction wheel or thruster torques. Errors in the navigation

system will therefore result in errors in the actual spacecraft attitude.

A navigation error will also result in an error in the projection of the spacecraft position on to the

surface of the earth, referred to as the subsatellite location knowledge error. The navigation

induced subsatellite location knowledge error and the navigation induced attitude error are both

illustrated in Figure 3 using the example of a 150 meter intrack position knowledge error. This

150 meter error will result in a 135 meter subsatellite location knowledge error. This 150 meter
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error will also result in a 4.4 arc-second attitude error. The 4.4 arc-second attitude error

contributes an additional 15 meters to the geolocation knowledge error as shown by example 3 in

the Appendix. The total geolocation knowledge error from a 150 meter intrack position knowledge
error is therefore 150 meters (135 meters + 15 meters).

A navigation correction will result in spacecraft attitude motion with respect to the desired

spacecraft attitude. This attitude motion must be considered when evaluating jitter and stability.

The 150 meter intrack position knowledge error is used here again as the example. Assume that

the navigation error had grown to 150 meters, then a measurement was processed and the

navigation error reduced to 0 meters. Although this situation represents a desirable correction to

the navigation estimate, it results in a 4.4 arc-second change in the commanded spacecraft attitude

with respect to the desired spacecraft attitude. The actual spacecraft attitude will then change by

4.4 arc-seconds with respect to the desired spacecraft attitude, as the attitude control system tracks

this command. The 150 meter correction to the navigation estimate will therefore result in a 150

meter correction to geolocation knowledge, and a 15 meter correction to geolocation pointing.

  man'o'Doppler= Navigation High Rate Attitude
(TONS) Propagator Computation

_ Attitude I_ Spacecraft

C°ntr°l I I Dynamics

Attitude I--Determination

Figure 2 : TONS / Attitude Control System Interface Block Diagram
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Figure 3 : Geocentric Earth Based Pointing
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3.0 TDRSS ONBOARD NAVIGATION SYSTEM (TONS)

TONS Overview

There are two user implementations of TONS, referred to as TONS-I and TONS-II. TDRSS

infrastructure currently supports a TONS-I user capability. During scheduled TDRSS

communication contacts the TONS-I user extracts, time tags and processes one way forward S-

Band (approximately 2106.4 MHz) Doppler measurements. White Sands Ground Terminal

Doppler compensation is inhibited so that the user can extract valid Doppler measurements. A

TONS-II user would also have access to the planned TDRS-II navigation beacon and would not

require scheduled TDRSS services. The TONS-II navigation beacon will include a pseudorange

measurement and a navigation message similar to GPS. TONS-II offers the following advantages

over TONS-I: reduced TDRSS scheduled resources, near continuous Doppler tracking, more

current and accurate TDRS ephemerides, and onboard time determination. The EOS AM

Spacecraft is baselined with TONS-I and is expected to have provisions for TONS-II.

A TONS experiment will be performed in conjunction with the Explorer Platform (EP) / Extreme

Ultraviolet Explorer (EUVE) mission to flight qualify TONS-I (References 2 and 3). Onboard

Doppler extraction, onboard Doppler compensation, and TONS algorithms and software will be

proven by this experiment. A GPS receiver / processor will also be flown on EP / EUVE for

comparison purposes with TONS. EP / EUVE is currently scheduled for launch in May 1992.

TONS data collection and analysis will continue for one year after launch. Lessons learned from

the EP / EUVE experiment will be factored into the EOS AM Spacecraft implementation of TONS.

Algorithms and software will be optimized for the EOS AM Spacecraft with respect to speed,

accuracy and robustness. EOS AM Spacecraft unique features will also be added.

TONS uses an extended Kalman filter to measurement update the state vector estimate and the

associated state error covariance matrix. The state vector includes user spacecraft position,

velocity, drag coefficient correction, spacecraft ultrastable oscillator frequency bias and drift, and a

spacecraft clock time bias. The state error covariance matrix represents the uncertainty in the state

vector estimate. The filter computes measurement residuals by taking the difference between actual
measurements and estimated measurements. The actual measurement is considered valid if it

passes a 3-sigma or 4-sigma measurement residual edit test. The fraction of the measurement

residual to be incorporated in the measurement update is a function of the uncertainty in the

measurement, and the uncertainty in the current state vector estimate. Spacecraft position and

velocity are propagated between measurement updates with a [30 x 30] earth gravity model, drag,

solar gravity and lunar gravity. A physically connected state noise model (References 4 and 5) is

used to account for uncertainties in the [30 x 30] earth gravity model.

The actual observation from the S-Band transponder is an accumulated Doppler cycle count. A

Doppler cycle count difference is computed by taking the difference between two successive

accumulated Doppler cycle counts, approximately 10 seconds apart. An average Doppler

measurement is computed by dividing the Doppler cycle count difference by the 10 second

integration time. The Doppler measurement is modeled in the TONS Kalman filter as a change in

range over the 10 second integration time. The measurement model also includes the ultrastable
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oscillator frequency bias and drift. TONS requires knowledge of TDRS positions when estimating

Doppler measurements. TDRS state vectors will be uplinked daily and propagated in TONS-I with

an [8 x 8] earth gravity model, lunar gravity, solar gravity and solar pressure. TDRS positions

will be accurate to +/-150 meters (3-sigma) after a one day onboard propagation.

Current and near term TONS algorithm development studies are addressing covariance

factorization for numerical stability (Reference 6), addition of a state vector element to model the

time correlated measurement noise characteristics of TDRS ephemeris errors, refinements to the

earth gravity state noise model, additional measurement residual edit tests, and thrust acceleration

modeling during orbit maneuvers. Current and near term error analyses are addressing TDRSS

scheduling sensitivities, the effects of a flight processor 48 bit word length, processing

requirements for different sections of the EP / EUVE TONS software, ionospheric refraction

during periods of high solar activity, and Doppler measurement time tag errors.

EOS AM Spacecraft Implementation of TONS

The EOS AM Spacecraft will use TONS as the primary means of navigation. TONS performance

will vary somewhat as a function of the number, duration, and location of TDRSS scheduled

contacts, and the selection of TDRS East or TDRS West. Nominal EOS AM Spacecraft

performance analyses have assumed one 20 minute contact every 99 minute orbit. On average,

TONS must therefore propagate its state vector estimate and state error covariance matrix for 79

minutes between measurement updates. EOS AM Spacecraft performance assessments for TONS

are based on TONS-I (Reference 7). Performance estimates ranged from a best case of 16 meters

(1-sigma), to a worst case of 35 meters (1-sigma) for the case of high drag and degraded TDRSS

scheduling. The nominal performance estimate is 25 meters (1-sigma).

Communication and navigation requirements will both be factored into the EOS AM Spacecraft

TDRSS scheduling process. Multiple shorter duration contacts, e.g., two 10 minute contacts

instead of one 20 minute contact, are preferable for navigation because (1) they are easier to

optimally schedule than one long contact, (2) they provide the opportunity to observe different

parts of the orbit, and (3) they reduce the propagation time between measurement updates.

Navigation requirements will be specified by geometric criteria that maximize Doppler observability

and minimize ionospheric refraction. Doppler observability is maximized for the radial and intrack

directions when the scheduled TDRS is in the EOS AM Spacecraft orbit plane. Ionospheric

refraction is minimized by avoiding long, low altitude, signal paths through the earth's

atmosphere. In general, geometric requirements for TONS are similar to those for standard ground
based orbit determination with TDRSS.

The EOS AM Spacecraft has one 4.5 foot diameter Ku/S-Band high gain antenna, one zenith

facing S-Band omni antenna, and one nadir facing S-Band omni antenna. The TONS-I Doppler

measurement can be obtained via the high gain antenna with S-Band Multiple Access (SMA)

service or S-Band Single Access (SSA) service, or via the zenith S-Band omni antenna with SSA

service. Link margin analysis has shown that the TDRS-II navigation beacon could be obtained

via the EOS AM Spacecraft high gain antenna.
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TONS software will be located in the EOS AM Spacecraft Control Computer (SCC) as shown in

the TONS functional interface block diagram in Figure 4. Attitude determination, attitude control,

delta-v control, high gain antenna control, solar array drive control, and navigation are all elements

of the EOS AM Spacecraft Guidance, Navigation and Control (GN&C) System. The SCC will be

a MIL STD 1750A instruction set architecture computer. SCC processing and memory

requirements include allocations for TONS Ada flight software, based on EP / EUVE TONS

software (Reference 2) with modest growth provisions for EOS AM Spacecraft unique features.
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Figure 4 : TONS 1 EOS AM Spacecraft Functional Interface Block Diagram

The EOS AM Spacecraft baseline has a 20 MHz ultrastable master oscillator that provides

commonality in reference frequencies for the Command and Data Handling subsystem and the

Communication subsystem. The drift in the ultrastable master oscillator will be less than 1.0E-10

parts per day. Short term stability will be approximately 1.0E-12 parts over 10 seconds. The

Command and Data Handling subsystem will use the 20 MHz frequency to derive the 1 MHz

spacecraft clock. The 20 MHz master oscillator will also be used to derive a 5 MHz frequency for

the S-band transponder. The S-Band transponder will be a third generation transponder with a

built-in Doppler extraction function. The S-Band transponder will control the Doppler integration

interval within an accuracy of +/- 25 nanoseconds. The S-Band transponder will have access to

the spacecraft time and frequency bus and will generate time tags for the Doppler measurement.

166



TheEOSAM Spacecraftrequiresaccurateonboard time for (1) time tagging Doppler measurement

data for TONS, (2) incorporating uplinked TDRS state vectors and initial EOS state vectors in

TONS, (3) time tagging spacecraft position, velocity, attitude, and other data in the spacecraft

ancillary telemetry stream, and (4) time tagging instrument science data. The spacecraft time

knowledge requirement is +/- 100 microseconds. Actual time knowledge accuracy may vary from

+/-5 to +/-30 microseconds, depending upon the accuracy and frequency of ground based

spacecraft clock calibrations. TONS-I Doppler only measurements can not estimate the spacecraft

clock time bias, but TONS-I frequency bias and drift estimates can be integrated to maintain an

onboard software estimate of the spacecraft clock time bias. Preliminary analyses have shown that

TONS-I can maintain the time bias estimate within a few microseconds of its uplinked value for

days to weeks. Ground based spacecraft clock calibration is described briefly in section 5.0.

In the event of TDRSS contact outages, TONS will continue to propagate an accurate EOS AM

Spacecraft state vector and accurate TDRS state vectors. Additionally, a backup onboard

ephemeris will be provided for the EOS AM Spacecraft. This ephemeris will be sufficient for S-

Band high gain antenna pointing and will also be used periodically in the flight software Fault

Detection, Isolation, and Recovery (FDIR) logic for TONS. The TONS position estimate and the

backup onboard ephemeris will be differenced, and a flag set if this difference exceeds the accuracy

of the backup onboard ephemeris. If this flag is set, the ground system will be notified so that

appropriate action can be taken. Various backup ephemeris representations are presently being

considered. TONS estimates of the ultrastable master oscillator frequency bias and drift, drag

coefficient correction, and time bias could also be compared onboard with uplinked backups.

TONS is not required to meet EOS AM Spacecraft mission requirements during propulsive orbit

and attitude maneuvers. Additional TDRSS contacts will be requested during and after these

maneuvers for monitoring and tracking. As shown in Figure 4, TONS will have knowledge of

thrust accelerations acting on the spacecraft center of mass. TONS will maintain a valid state

vector estimate and state error covariance matrix during drag makeup maneuvers. Future analyses

will determine if the +/-150 meter navigation requirement can be maintained during drag makeup

maneuvers, and if not, the time required to reconverge.

4.0 TONS REAL-TIME INTERFACE

As discussed in section 2.0 and shown in the Appendix, real-time position and velocity estimates

will be used to generate the commanded spacecraft attitude. This section discusses the interface

between TONS and the EOS AM Spacecraft real-time navigation and attitude control system.

Simulation programs and simulation results are presented as necessary to understand the associated

jitter and stability issues. TONS accuracy estimates were presented in section 3.0.

A TONS truth model simulation, a TONS filter model simulation, and an example TONS real-time

interface simulation were used to generate the jitter and stability results in this section. These

simulations are currently being used for real-time navigation sensitivity studies and for TONS real-

time interface algorithm development. The TONS filter model algorithms and simulation results
are similar to those in Reference 7.

167



The TONS truth model simulation used the Artificial Satellite Analysis Program (ASAP),
(Reference8) to generatesimulatedtruth trajectoriesfor theEOSAM Spacecraft,TDRSEast,and
TDRSWest. TheEOSAM Spacecrafttrajectorywasgeneratedwith a [36 x 36] GEM-T1earth
gravity model, solar gravity, lunar gravity, solarpressureand drag. Atmosphericdensitywas
basedon the JacchiaJ70model with a SolarFlux (F10.7)of 230 and aGeomagneticActivity
Index (Ap) of 400. TDRS truthtrajectoriesandTDRSfilter trajectoriesweregeneratedwith 150
metererrorssimilar to thosein Reference7. The TONS "averageDoppler" measurementwas
modeledin the TONS truth model as a "rangedifference + integratedfrequencyerror range
differenceequivalent". Units are thereforeexpressedin metersrather thanHz. The simulated
observationwascorruptedwith timewiseuncorrelatedGaussiannoisewith a 1-sigmavalueof
0.0141metersateachsampletime. BecausetheaverageDopplermeasurement(rangedifference)
involvestwo independentsamples,themeasurementnoiseis statisticallygreaterby thesquareroot
of two andwould be0.020meters. Assumingnocycleslips, themeasurementnoiseis actually
correlatedin a desirablefashionfrom onemeasurementto the next. Simulatedmeasurements
include the effectsof the ultrastablemasteroscillator frequencybias anddrift. The simulated
frequencydrift was1.0E-10partsperday.

TheTONSfilter modelsimulationusedatenelementstatevector(XYZ position,XYZ velocity,
dragcoefficientcorrection,oscillatorfrequencybias,oscillatorfrequencydrift, anda timebias). A
fourthorderRunge-Kuttaintegratorwasusedwith a 10secondtime step. TheTONSstatevector
estimateandthe stateerror covariancematrix werealwayspropagatedto the measurementstart
time, then to the measurementstoptime, but neveraheadof the starttime in order to prevent
backwardintegrationwhenestimatingthemeasurement.Theaccelerationmodeluseda[22 x 22]
GEM-10B earth gravity model and an exponentialatmosphericdensity model. Position and
velocity statenoiseweremodeledin theradial, intrack,andcrosstrackdirections. In comparison
to thesimulatedtruth measurementnoiseof 0.020meters,thefilter measurementnoisevaluewas
sethigh at0.142metersto compensatefor theunmodeledTDRSephemerisbiases.Theoscillator
frequencydrift andthedragcoefficientcorrectionweremodeledin thefilter asfirst orderGauss-
Markov variableswith time constantsof 100,000seconds.The oscillator frequencybias was
modeledastheintegralof theoscillatorfrequencydrift. Thetimebiaswasmodeledastheintegral
of thenormalizedfrequencybiasanddrift. Noeffort wasmadeto optimally tunethefilter.

TheTONSreal-timeinterfacesimulationusedtheexampletimelineandalgorithmsin Figure5.
Simulatedmeasurementswereprocessedevery 10seconds.A shortterm high ratepropagator
tookthelatestnearreal-timeTONSestimate,measurementupdatedor not,propagatedit forwardin
timeandblendedit in with thereal-timenavigationestimate.Thecommandedspacecraftattitude
wasthencomputed.A thirdorderTaylor seriesintegratorandaJ2earthgravitymodelwereused
to propagatetheTONSestimateup to real-time. TheTaylor seriesintegrator,accelerationandits
derivativesweretakenfrom Reference9. Thepropagatedestimatewasblendedinto thereal-time
systemover a 10secondperiod in 0.5 secondincrements. The Taylor seriesintegratoronly
requiredoneevaluationof accelerationandits derivativesat thestartof the 10secondblending
interval for all twenty 0.5 secondincrements. The example interface algorithm in Figure 5
introducedanerror lessthan0.1metersin positionandlessthan0.005meters/secondin velocity.
A [4x4]earthgravitymodelcouldbeusedin theaccelerationcomputationto improveaccuracy.
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TONS Propagate TONS state estimate and covariance: xi_ 1 _ x i ; Pi-1 ---) Pi-" TONS state

estimate _i-1 and covariance Pi-1 known from previous cycle.

TONS Estimate measurement using TONS state estimates _i-1 and _'i-, then perform edit test.

TONS Measurement update TONS state estimate and covariance: _i- --) _i +; Pi- --) Pi +"

RTI Propagate TONS state estimate using Taylor series integrator*: _i + _ _i+ 1-

I

RTI Compute available correction to real-time state estimate: A_i+ 1 = [_i+ 1 - _'i+ 1].

Real-time estimate _i+l is known from previous cycle.

RTI Compute real-time state estimates _'i+ 1 + 1/20 ..... x'i+2 using Taylor series

integrator* with one evaluation of acceleration and its derivatives for time ti+l:

[_i+l + A_'i+l " j/20] ---r _'i+l+j/20 j = 1, 2 ..... 20.

*Third order Taylor series integrator propagates position (R) and velocity (R) from any time
oo

step (k) to (k+l). Acceleration (R) and its derivatives include the J2 earth zonal harmonic.

R(k+l) = R(k) + R(k)AT + R(k)AT2/2 + R(k)AT3/6.

= +  (k)AT +  (k)AT2/2 + a"--"(k)AT3/6.

Figure 5 : Example Real-Time Interface (RTI) for TONS
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Simulationresultsweregeneratedusingatwo dayTDRSScontactschedulethathad20minutesof
geometricallyfavorablecontactwith a TDRSeveryorbit (Reference7). Simulated errors were

computed by comparing simulated filter estimates with simulated truth data. The intrack position

error was larger than the radial and crosstrack position errors. A representative one day simulated

intrack position error profile is shown in Figure 6. The 1-sigma values from the filter state error
covariance matrix were consistent with the simulated errors for all state vector elements.

Peak navigation transients occur during TONS measurement updates as can be seen in Figures 6

and 7 at time [45 hours : 11 minutes = 2711 minutes]. The intrack position error and the

associated filter state error covariance matrix had both grown for 79 minutes since the last TONS

measurement update at time [43 hours : 52 minutes = 2632 minutes]. At time [45 hours : 11

minutes = 2711 minutes] a measurement was obtained and a 40 meter correction made to the

intrack position estimate. Although this 40 meter change is a correction to the TONS intrack

position estimate, its effects must be considered in jitter and stability analyses. If incorporated

immediately, the 40 meter correction would result in a 1.2 arc-second step change in the

commanded pitch attitude. If blended in smoothly over the next 10 seconds as shown in Figure 8,

this would result in a 0.12 arc-second per second ramp change in the commanded pitch attitude.

Note that the TONS measurement update valid at time [2711 minutes : 00 seconds] was not

incorporated into the real-time system until time [2711 minutes : 10.5 seconds].

Figure 8 also shows the approximate attitude control system / spacecraft rigid body response to a

navigation transient. This dynamic response is very approximate and is shown here for illustration

only. The dynamic response was modeled as a second order system with an undamped natural

frequency of 0.14 radians / second and a damping ratio of 0.6. Jitter and stability can be evaluated

from the simulated attitude control system response in Figure 8. As an example, the peak-to-peak

attitude error change was 0.7 arc-seconds over 10 seconds. A longer blending time will result in a

smaller rate of change. Blending the 1.2 arc-second command in over 60 seconds resulted in a

peak-to-peak attitude error change of 0.2 arc-seconds over 10 seconds. Navigation transients will

be incorporated into the EOS AM Spacecraft attitude control system simulation in the future.

Analysis to date has demonstrated the feasibility of interfacing TONS with the EOS AM Spacecraft

real-time navigation / attitude control system. Future studies will address longer blending times

and other interface algorithms. For example, the TONS integrator and force model could be used

to propagate a state vector ahead of real-time, then real-time data obtained by interpolation. Final

algorithm selection will depend upon spacecraft jitter and stability requirements, TONS Doppler

measurement processing rate and propagation step size (e.g. every 10 seconds vs. every 60

seconds), and associated accuracy vs. processing trades.

5.0 TONS GROUND SYSTEM INTERFACE

The TONS Ground Support System (TGSS) will be used to perform quality assurance checking of

downlinked TONS state vectors, support initial on-orbit filter tuning, evaluate performance,

provide diagnostic assistance, and verify flight software updates. The TGSS is currently

independent of standard GSFC Flight Dynamics Facility (FDF) operations such as orbit
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determination and ephemeris generation. The TGSS will be independent of the EOS AM

Spacecraft Operations Center which will factor navigation requirements into the TDRSS scheduling

process, perform spacecraft clock calibration, and handle normal command and telemetry.

Backup orbit determination and any ephemeris generation functions will be performed by the

GSFC FDF. Two way coherent range and Doppler measurements, or one way return noncoherent

Doppler measurements will be obtained via TDRSS tracking. Coherent and noncoherent
measurements can be obtained simultaneously with TONS onboard Doppler extraction. Ground

based measurements will be processed in a batch least squares process to generate an estimate of

the spacecraft orbit state vector at a given epoch. This orbit state vector, a table of predicted state

vectors, or a Fourier power series fit to a predicted ephemeris will then be uplinked to the EOS AM

Spacecraft. This backup ephemeris data will be generated and uplinked as often as necessary

depending upon the level of solar activity and drag. Ground based orbit determination results will

be used in the TGSS for quality assurance checking of downlinked TONS state vectors.

The EOS AM Spacecraft will use the User Spacecraft Clock Calibration System (USCCS)

developed for the Gamma Ray Observatory (GRO). The USCCS is a method designed for

calibrating a spacecraft clock using TDRSS pseudo-random noise (PN) ranging epochs. The

USCCS is expected to provide time calibration accuracy of approximately +/- 5 microseconds with

respect to Universal Time Coordinated (UTC). The USCCS is described in Reference 10. EOS

AM Spacecraft clock calibration will be performed by the EOS AM Spacecraft Operations Center in

conjunction with the White Sands Ground Terminal. A brief description of the USCCS is given

here: (1) The spacecraft S-band transponder extracts and time tags a PN code epoch from the

TDRSS forward S-band signal. This time tag is based on the PN code epoch receive time as

observed by the spacecraft clock; (2) This time tag is then sent to the ground system in spacecraft

telemetry; (3) The ground system estimates the time at which the spacecraft should have received

the PN code epoch, then computes the difference between the telemetered time tag and the ground

predicted time tag. This difference is the clock calibration parameter; (4) This clock calibration

parameter is then uplinked to the spacecraft.

Normal one per orbit navigation telemetry will include time tagged state vector estimates and filter

variances, time tagged Doppler measurements, the number of edited Doppler measurements, a flag

to indicate if the filter position or velocity variances exceeded pre-specified limits, a flag to indicate

if the TONS state estimate exceeded a pre-specified tolerance when compared with the backup

onboard ephemeris, and a flag to indicate if other TONS state vector elements exceeded a pre-

specified tolerance when compared with onboard backup values. When requested for initial filter

tuning, performance evaluation, or diagnostics, telemetry will also include measurement data

quality, time tagged filter measurement residuals, and time tagged state error covariance matrices.

Normal one per day navigation commands and data will include TDRS state vectors, a backup EOS

ephemeris, a backup for other TONS state vector elements, and a time calibration parameter. As

necessary, commands and data will also include an initial state vector estimate and initial state error

covariance matrix for TONS, filter tuning parameters for TONS, TDRS contact schedules, flags

indicating TDRS orbit adjusts, flags indicating EOS AM Spacecraft orbit and attitude maneuvers, a

solar activity parameter, major changes to spacecraft mass, and flight software updates.
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Groundbasedpost-processingcouldbeasolutionfor instrumentsthatmightdesirenon-real-time
accuraciessignificantly better than +/-150 meters. Ground basedpost-processinghas the
following advantagesin comparisonto onboardreal-timenavigation: (1) Real-timeestimatesare
basedonmeasurementdataup to thecurrenttime. Post-processedestimatescanincludeadditional
"future" measurementdatawhentheepochof interestis centeredwithin thefit interval. In other
words,today'sestimateof theorbit statevectoratyesterday'sepochcanbebetterthanyesterday's
estimateof theorbit statevectorat yesterday'sepoch; (2) Groundbasedcomputershavemore
processinganddatastoragecapability than flight computers. This allows for the useof more
sophisticatedmodelsandalgorithms;(3)Groundbasedpost-processingcanincorporateadditional
measurementdatatypesnot availableto theonboardnavigationsystem,suchastwo way range
data; (4) Groundbasedpost-processingcanincorporatetoday'sknowledgeof yesterday'ssolar
activity; (5)Groundbasedpost-processingallows for manualinspectingandeditingof potentially
badmeasurements.

6.0 ORBIT CONTROL

The GSFC FDF will perform orbit maneuver prediction and orbit maneuver planning. Orbit

maneuvers include initial mission orbit acquisition, drag makeup, frozen orbit maintenance,

inclination correction, and end-of-life safe re-entry if required. Maneuver command tables will be

generated at the GSFC FDF and uplinked via the EOS AM Spacecraft Operations Center. The

maneuver planning algorithm considers uncertainties in orbit determination, maneuver execution,

and orbit propagation. The maneuver plan will include burn start time, total required AV, and

estimated burn duration. The onboard system will compute the delivered AV open loop and stop

the burn when the commanded AV has been achieved. The closed loop attitude control system will

fire thrusters as necessary to maintain attitude control. TONS state vectors will be used by the
GSFC FDF for orbit maintenance maneuvers.

The EOS AM Spacecraft will be launched with an expendable launch vehicle from the Vandenberg

Air Force Base in California. The launch vehicle will inject the EOS AM Spacecraft into an orbit

with a 300 kilometer perigee altitude and a 705 kilometer apogee altitude. The target apogee

altitude may be biased low to account for launch vehicle dispersions, and apogee altitude increases

during the mission orbit acquisition sequence. The EOS AM Spacecraft will use its hydrazine

based propulsion system to boost up to the mission orbit. The target inclination may also be biased

to maximize the time to the first inclination correction maneuver (Reference 11).

Atmospheric drag will cause a decay in semimajor axis. This will result in a decrease in the nodal

period and a drift in the ground track. Drag makeup maneuvers will be required to reset the
semimajor axis and thus maintain the ground track within the +/- 20 kilometer tolerance. The time

between drag makeup maneuvers will vary with the level of solar activity. The time between

maneuvers is expected to vary from approximately 7 days to approximately 3 months.

A frozen orbit minimizes altitude variations at any given latitude. The orbit is frozen when secular

perturbations due to even zonal harmonics are balanced by long period perturbations due to odd

zonal harmonics in the earth's gravity field. This condition exists for the EOS AM Spacecraft orbit
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when the mean eccentricity is approximately 0.0012 and the mean argument of perigee is

approximately 90 degrees. Once initially acquired, the frozen orbit can be maintained by optimally

locating drag makeup burns so as to provide maximum correction to the eccentricity vector. The

nominal orbit will have altitudes that range from approximately 705 kilometers at the equator to

approximately 732 kilometers near the south pole. Altitude variations due to drag and a non-ideal

frozen orbit will result in few kilometers of altitude variation, within the +/-5 kilometer tolerance.

Solar gravity causes a secular decrease in mean inclination for a 10:30 AM descending node orbit.

This results in a drift in the descending node time. The time to the first inclination correction

maneuver will depend upon the initial inclination and the initial ascending node. If the ideal

combination is achieved during launch or during mission orbit acquisition, inclination corrections

can be postponed for 5 years (Reference 11). Inclination corrections could typically be expected

every few years. Inclination must also be controlled to maintain the ground track at high latitude.

Note that inclination corrections require a 90 degree yaw maneuver.

NASA requires that space debris and effects of re-entering space hardware be minimized

(Reference 12). EOS is addressing these requirements through detailed break-up / passive re-entry

analyses (and design modifications as necessary). This approach meets NASA requirements and

requires less propellant and operational complexity than other options (i.e., powered disposal or
safe orbit).

7.0 SUMMARY AND CONCLUSIONS

. This paper has summarized the orbit determination and orbit control baseline for the EOS AM

Spacecraft. This paper has shown how the TDRSS Onboard Navigation System (TONS)

can be integrated into the EOS AM Spacecraft Guidance, Navigation, and Control System.

Current and future analyses and design studies have been addressed.

. Onboard navigation will improve real-time geolocation knowledge and control when

compared to previous ephemeris upload methods. Accurate navigation data will be available

in the spacecraft telemetry stream and in the direct downlink to user ground stations.

o Onboard navigation will also reduce the magnitude of geolocation jitter and stability when

compared to the magnitude of ephemeris upload ti'ansients that typically occur once per day.

Blending can be used to further reduce the magnitude of navigation induced transients.
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APvendix : Commanded Body Axes Attitude and Examnles

The commanded spacecraft body axes unit vectors (Xb, Yb, _o) are computed using the spacecraft

position vector (R) and velocity vector (R--")as shown below. A commanded attitude matrix [A],

a direction cosine matrix, can be formed from (_b, Yb, _b). All vectors are defined in an earth

centered inertial coordinate system.

Zb = -R/I R I ; Yb = -R x R/ R x R I ; Xb = Y-b x Zb.

(-Xb, Yb, Zb) origin is at the spacecraft center of mass.

Zb axis is (+) in the nadir direction. A small rotation about Zb is referred to as yaw.

Yb axis is (+) in the direction opposite to the orbital angular momentum vector.

A small rotation about Yb is referred to as pitch.

Kb axis completes the right handed orthogonal coordinate system, and is not necessarily

aligned with the velocity vector direction. A small rotation about _b is referred to as roll.

Example 1

A 150 meter intrack position knowledge error results in a commanded pitch attitude error of
approximately 4.4 arc-seconds as shown below, using the 7,083,000 meter orbit radius. The
same results apply for a crosstrack position error and the resulting commanded roll attitude error.

(180)(3600) arc-seconds150 meters x = 4.4 arc-seconds.
7,083,000 meters rc radians

Example 2

A 0.160 meter / second crosstrack velocity knowledge error results in a commanded yaw attitude
error of approximately 4.4 arc-seconds as shown below, using the 7502 meter / second orbit
velocity. The crosstrack velocity knowledge error is an error in the knowledge of the velocity

vector direction, not an error in the knowledge of the velocity vector magnitude.

0,160 meters / second
7502 meters / second

x (180)(3600) arc-seconds = 4.4 arc-seconds.
rc radians

Example 3

A 4.4 arc-second pitch or roll attitude error results in a geolocation pointing error of approximately
15 meters as shown below, using the 705,000 meter orbit altitude. A yaw error will rotate an
instrument scene, but it will not result in a geolocation pointing error by itself.

4.4 arc-seconds x 7_radians x 705,000 meters = 15 meters.
(180)(3600) arc-seconds

176


