
Real-Time Attitude Determination and Gvro
V _.

Calibration* N 9 3 - 2 4 7 0 _t

lVI. Challa, O. Fiila, J. Sedlak, and D. Chu .- ,,, .-__ ,,

COMPUTER SCIENCES CORPORATION (CSC) /. ,, _.d

ABSTRACT

We present results for two real-time filters prototyped for the Compton Gamma Ray
Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background

Explorer (COBE), and the next generation of Geostationary Operational Environmental

Satellites (GOES). Both real and simulated data were used to solve for attitude ,and gyro
biases. These filters promise advantages over single-frame and batch methods for missions

like GOES, where startup and transfer-orbit operations require quick knowledge of attitude
and gyro biases.
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1. INTRODUCTION

Mishaps of the distant past have prevented sequential filters from becoming part of the operational ground

support systems in the Flight Dynamics Facility (FDF). Experience gained over the past few years with
prototype filters for several spacecraft, however, bolsters the conviction that sequential filters have a place in
real-time attitude and gyro bias estimation in the FDF.

Two very. different filters, filter QUEST and the Real-Time Sequential Filter (RTSF), both show themselves

to be reliable alternatives to the original single-frame QUEST for real-time systems. As long as attitude is
continuously observable, divergence does not appear to be a problem, and the filters work over a wide range of
tuning parameter values.

This article provides an account of recent attitude and gyro bias filtering experience using data from COBE,
GOES, GRO, and EUVE. The filters perform well and provide attitude and gyro bias solutions in less time
than would be necessary to obtain a batch estimate.

2. FILTER QUEST

Filter QUEST is a sequential version of the q-algorithm as implemented in the widely used QUEST software
(Reference 1). The q-algorithm only estimates attitude, but for the sake of accuracy, it is almost essential that

gyro biases be estimated as well. In order to make filter QUEST satisfy the demand for gyro biases, a bias filter
was added to run in parallel with the attitude filter.

The bias filter takes the attitude predicted using gyro measurements q( - ) and compares it to the attitude
updated using sensor measurements q( + ). First, the difference between the two attitude quaternions is
computed:

/Aq=/ q( - q(- )4 q(- q(
Aq = /Aq3 ] -- q( - q(-)l q(- q(

LAqq q(-)l q(-)2 q(- q( )4J

q(+

q(+

q(+ ),J

(1)

Then, this difference is transformed into a rotation vector A_ and divided by the time step At to provide an
observation of the gyro bias Ab:

2atan2(./Aq 2 + Aq 2 + Aq2,Aq,] [Aql"
kV 1 2 3 / [Aq2

_/Aq2 + Aq2 + Aq2 [An3

(2)

These observations are averaged using the same fading memory parameter, _ as is used for the attitude
(Reference 2). The fading memory parameter is a scalar between 0 and 1.

bn = bn- 1 + (1 - or')--_--A_" (3)
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TheenhancedfilterQUESTwasoriginallyappliedtoCOBEwherethespin(X-axis)gyrobiasisofprimary
concern.TheCOBEFineAttitudeDeterminationSystem(FADS)foundtheX-axisgyrobiasto be14.4
de_eesperhour(deg/hr)for thesedata.FigureI throughFigure3showthefilterQUESTbiassolutionsfor
differentvaluesof_t.Aninitialbiasvalueof0deg/hrwasused.Figure1showsthat_tequalto0.9istoolowto
filteroutsensornoise.InFigure2,thebiasconvergestowithin1deg/hroftheFADSbiasinonlyOminutes.
Settinga to0.999asinFigure3furtherreducesthenoisebutslowsconvergence.

Figure4differsfromtheprecedingfiguresinthattheinitialbiasisclosetothecorrectvalue.FilterQUEST
with ctequalto 0.999showsvariationin theestimatedbias.TheCOBEX-axisgyro is knownto be
temperaturesensitive,andtheenhancedfilterQUESTmaybeusefulin studyingthissensitivity.

TheCOBEsolutionswereobtainedbyreplacingthestandardQUESTsubroutinesin theCoarseAttitude
DeterminationSubsystem(CADS)withthenewfilterQUESTsubroutines.All thedataweresynchronizedin
theDataAdjusterSubsystem(DA), andeverydatapoint wasprocessed.Thefilter is updatedevery
half-second.

FilterQUESThasalsobeentestedwithsimulateddataforGOES.Inthiscase,thestandardQUESTroutines
werereplacedwith theirfilter counterpartsin theReal-TimeAttitudeDeterminationSystem(RTADS).
There,atmostonedatapointcanbeprocessedfor every8seconds(see)of data,andthedifferentdatatypes
maycomefromanytimeinthatinterval.TheseattributesofRTADSareclearlyundesirable,buttherehasnot
yetbeentimetochangethem.

Nonetheless,Figure5 showsthefilter QUESTroll andpitchbiassolutionsconvergingoverthecourseof
15minutes(yawissimilar).ThedataweresimulatedtoreproducethatexpectedduringtheGOEStransfer
orbitbutwithoutsystematicerrorsotherthangyrobiases.Thefilter wasstartedfrominitial estimatesof
0 deg/lu"andwasgivenanetvalueof 0.9999,whichshouldslowtheconvergence.Thereareinitialtransients
andoscillationsinthebiassolutions,butevenwiththelessthanidealRTADSpreprocessingandafairlyshort
dataspan,biasesapproachthebatchestimatedvalues.Thefiltersolutionsarewithin10%foryaw,30%for
pitch,and40%for roll.

3. RTSF

The RTSF is a scaled-down version of the extended Kalman filter originally prototyped for the Earth

Radiation Budget Satellite (ERBS) (References 3 and 4). Whereas the 37-component state vector of the
ERBS filter included various sensor misalignments and scale factors, the RTSF estimates a 7-component

state vector consisting of the attitude quaternion and the three components of the gyro bias (Reference 5). The
objective of the present study is to evaluate the RTSF in a real-time situation with its attendant data processing

problems. To this end, we integrated the RTSF into current real-time attitude determination software and
evaluated it using real telemetry data from GRO and simulated data from EUVE.

The theory of the filter has been presented elsewhere (References 3 and 4) and will not be repeated here,

except to note that the GRO RTSF updates the attitude quatemion using a multiplicative method. Thus, if
(_, fin,_) are three small Euler angles representing corrections to the attitude estimate, the corresponding

correction to the quatemion is specified by

=/Q/2/
[bt(2] (4)
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anti the quaternion is updated through:

= (5)

GRO is an inertially fixed spacecraft. The attitude hardware consists of: two fine Sun sensors (FSS); two
three-axis magnetometers (TAM); two fixed-head star trackers (FHST); and an inertial reference unit

containing three two-axis gyroscopes, Although the onboard computer (OBC) uses the full sensor

complement, the GRO RTSF does not process the more accurate FHST data; thus, we take here the OBC's
attitude estimate as the truth model. A different scheme was used to evaluate the RTSF gyro bias estimation,

since ( 1) the OBC's estimates of the biases were not readily available in telemetry, and (2) batch estimates
showed that the real biases were comparable to the noise in the RTSF estimates (0.5 to 1.0 deg/hr). Biases

werc introduced into the gyro rates before they were input to the filter, and these were taken as the truth model.
(Several different combinations of simulated biases were used, ranging in magnitude from 1 to 60 deg/hr).

The attitude matrix for inertial-to-body transformation is described here by a 1-2-3 Euler angle sequence

about the body X, Y, and Z axes, respectively, and the respective Euler angles are denoted roll, pitch, and yaw.

We present here the RTSF results using real telemetry data from GRO spanning a roll maneuver on April 9,
1991. The maneuver lasted about 2200 sec, during which only the roll gyro rate is nonzero and is maintained

at about 0.06 deg/sec. The initial and final OBC estimates of the attitude Euler angles are, respectively,
(146.27, 17.54, -11.00) and (-96.85, -17.96, -10.26) deg.

Figure 6 shows the roll angle estimated by the RTSF. We see that, starting from an a priori roll estimate of 120
deg, the RTSF converges to the OBC estimate in about 1500 sec (75 filter updates). It then varies about the

OBC estimate with an error of about 2 deg. For this set of data, the FSS boresight was very close to the roll
axis, so that the roll estimate is obtained essentially from TAM data alone. Thus, we attribute the relatively

large error in the RTSF estimates as being due to the coarseness of the TAM data.

The orientation of the FSS does not pose a problem for estimating yaw and, as shown in Figure 7, we see that

the RTSF errors are now less than 0.5 deg. Note also the spikes in the estimate at about 7000 and 7500 sec;
inspection of the data shows that abnormally large gyro data were received at those points. However, the filter

recovers very quickly after the anomalies. Another interesting feature is the effect of the covariance matrix on
the convergence rate of the RTSF. Whereas the a priori covariance matrix used to generate Figure 6 was large,

the a priori matrix used to obtain the data of Figure 7 was the converged matrix obtained at the end of the run of
Figure 6. Starting from an a priori value of-20 deg, the RTSF's yaw estimate now converges within 500 sec

(about 25 updates).

An example of the GRO RTSF's gyro bias estimation is presented in Figure 8. We see that, until the start of the
maneuver, the RTSF recovers the true yaw bias of +2.4 deg/hr with an error of about 0.5 deg/hour. There is

substantial noise during the maneuver--about 3.6 deg/hr or 0.001 deg/sec. We attribute this to a combination
of an effective yaw component of the rate due to errors in the attitude estimate and g-reater noise in the
high-rate gyro data during the maneuver.

The EUVE sensor complement consists of two FHSTs, an FSS, two coarse Sun sensors, and two triaxial
magnetometers. The EUVE RTSF performs real-time star identification by a direct match method enhanced

by an attitude-independent dot-product check between the star and Sun vectors.

Shortly after orbit insertion, EUVE will be spun up to 1.3 revolutions per orbit to allow its FHSTs to scan for
acquisition stars. As stars move through the FHST fields of view, the filter solution shows discontinuities

(Figures 9 and 10) due to small misalignments and biases in the simulated sensors. (The Kalman filter only
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Figure 9.

Figure 10.
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filters out random noise, not syslemalic errors). The discontinuities in attitude ,are under 0.04 deg. They can

be greatly reduced by tuning the filter for a longer memory and increasing the sensor noise parameters to put

less reliance on current incoming data. However. this leads to noisier solutions and longer bias convergence
times.

Figure 11 and 12 show a case where EUVE is inertially pointing with the Sun in view of the FSS and an

identified star in FHST-1. The attitude solution converges within 1 minute (the filter is updating once per

second), with residual noise under 15 arcscc ( 1-o). After 4 minutes, the gyro bias errors are under 0.2 deg/hr
(1-o) and still decreasing.

4. CONCLUSIONS

Adding a simple gyro bias estimator to filter QUEST gave COBE and GOES biases within 1 to 2 deg/hr of the

batch estimator values. This filter proved stable under a wide range of memory length parameter values.

Increasing the memory parameter slowed response and smoothed the time history but did not affect the final
result. The COBE data used were all clean and synchronized. The GOES data were simulated and clean but

not synchronized. Attitude was continuously observable for both spacecraft.

For the GRO RTSF, using real data provided a useful test of the filter's performance in a real-time situation.

The attitude errors using FSS and TAM data depended upon Sun observability by the FSS and ranged from

0.5 to 2 deg; the gyro bias errors varied correspondingly between 0.5 and 20 deg/hr.

The GRO RTSF proved to be robust in the presence of gyro data anomalies. However, its solutions for roll

angle and roll gyro bias are relatively noisy and slow to converge due to the limitation to only FSS and
magnetometer measurements (the Sun being close to the roll axis). The inclusion of FHST data in the EUVE

RTSF greatly improves the solutions. The EUVE RTSF solutions were subject to offsets and small

discontinuities due to misalignments and biases. This problem is expected to affect the early stages of any
mission until the full ground support system estimates these systematic errors.
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