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ABSTIGtCT

Many results in attitude analysis are still meaningful when the attitude is re-

stricted to rotations about a single axis. Such a picture corresponds to attitude anal-

ysis in the Euclidean plane. The present report formalizes the representation of atti-

tude in the plane and applies it to some well-known problems. In particular we study

the connection of the "additive" and "multiplicative" formulations of the differential

corrector for the quaternion in its two-dimensional setting.

Introduction

I call our world Flatland, not because we call it so. but to make

its nature clearer to you, . .. who are privileged to live in Space.

-- A. Square in Flatland

The treatment of attitude, because of the non-linearity and non-commutivity of the compo-
sition rule, is much more difficult to treat than position, for which components may be com-

bined by simple addition. The complexity of the attitude composition rule leads to virtually all

attitude problems being intrinsically three-dimensional or, in the case of the quaternion, four-

dimensional. There is, however, a class of attitude problems which are much simpler, namely,

single-axis problems, and the study of these will in many cases illuminate the more complex

problems. The present report attempts to formalize such a treatment.

PRE_iEDiNG PAGE BLANK NOT FILMED

259

IJII



Attitude in Fiatland

Having amused myself til a late hour with my favourite recre-

ation of Geomeoy, 1 had retired to rest with an unsolved prob-

lem in my mind.

Let us imagine that the world, Flatland, has only two dimensions and a constant isotropic

Euclidean metric. Such a world was imagined by Edwin Abbott Abbott [ 1 ], with the intent of

satirizing the social and political foibles of his day as much as of clarifying the concepts related

to the dimensionality of space. Our interest here is more limited than Abbott's. We develop
the mathematical structure of Flatland somewhat further in order to better understand those

aspects of attitude which do not depend on the dimensionality of space. The quotations which
appear in this report are from [ 1 ]. Following Abbott we will refer to our three-dimensional

world as Space.
In Flatland, vectors are, of course, two-dimensional

v:[::] ,,,
The "dot" product takes the usual form

U . V = I/,IU 1 q- 1L2V 2 ,

while the "cross product" is now a scalar

(2)

I1 )< V : 1/,lv.) -- II 21,_1 . (3)

There is, therefore, no vector product, and as alternate names to scalar and vector products we

might prefer symmetric and asymmetric products. The lack of a meaningful vector product in

two dimensions was ultimately the cause of many years of grief for Hamilton [ 2--4 ].
The attitude matrix in two dimensions is a 2 × 2 proper orthogonal matrix, A, which trans-

forms column vectors in the usual way

W = A V, (4)

with

AT A = AA T = I, (5)

det A= +1, (6)

where I denotes the 2 x 2 identity matrix,

It is a simple matter to show that in two dimensions the attitude matrix may be represented
as

[ s,,,0]A= --sill0 cos0 ' (8)
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and0 is the angle of rotation. If we define the matrix d according to

[o 1]J= 1 0 '

which satisfies

(9)

•12 = -I, (10)

then Euler's formula becomes simply

A = cos0l + sin0d, (11)

which is much simpler than the three-dimensional form [ 5-10 ]. Note that J acting on a vector
always generates a vector perpendicular to it. The matrices I and J in Flatland have an impor-

tance similar to that of the 3 x 3 identity matrix and the Levi-Civita symbol in Space. They are,

in fact, the representations of these objects in two dimcnsions.
If we define now

[[a]] = ad, (12)

then trivially
[[a]][[b]] = -abl, (13)

which again is much simpler than the three-dimensional variant, and Euler's formula becomes

A = exp [[0]], (14)

as in Space.
Corresponding to the quaternion in Space, in Flatland we must be content with the biernion

(pronounced "by-Ernie-on" and namcd in honor of Ernest P. Worrell, the character portrayed

by Jim Varney). The biernion is defined as

[ sin(0/2) 1 (15)
0- Lcos(O/2)j,

for which
qTq = 1. (16)

We continue to use the notation 0 (rather than b) in order to retain a greater resemblance to

the equations in Space.
In terms of the biernion Euler's formula bccomcs

A(O) = (q_ - q_)l + 2% q, d (17a)

= (q_ - q_)l + 2q2 [[q_ ]] (17b)

= (ql I + % j)2. (17c)

The biernion may be extracted from the attitude matrix in a manner similar to the method for

extracting the quaternion from the attitude matrix in Space,

1

% = _ v_+ trA, (18a)

1

(ll = _ (A12 - 't2, ), (18b)
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where
trA =- All + A22. (19)

Biernion composition follows directly from the trigonometric formula and reads

q" = 0' ® q (20a)

= {_'}_= {,j} q', (20b)

where

[ q2 qx] =q21+q,j " (21){0} - -ql q2

Note that biernion composition is commutative, as is the multiplication of attitude matrices in
two dimensions.

The Gibbs scalar or Rodrigues scalar is given by

g = ql/q2 = tan(0/2). (22)

Thus,

and Cayley's formula takes the familiar form

I+ [[91]

A = I-[[9]-----]" (24)

The composition of Gibbs scalars is given by

it g I + 9
- , (25)

9 1 - f9

in complete analogy to the formula for the Gibbs vector in Space.
The Cayley-Klein parameters are

O_ = q2 + i ql = eiO/2 , and /3 = q2 -- i ql = e-iO/2 = ore, (26)

and the superscript c denotes complex conjugation. These obviously satisfy

03 = 1. (27)

It follows that

1 1 o t32
A = _(42 +/32)1+ _(a "- )d. (28)

Attitude Kinematics in Flatland

Restraining my impatience--for I was now under a strong

temptation to rush blindly at my visitor and precipitate him into

Space...

The kinematic equation for the attitude matrix is given as usual by

d

d--tA(t) = [[w(t)]] A(t), (29)
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which,in fact,definesca(t).If wedefinethebiernionanalogue,

thenthekinematicequationfor thebiernionissimply

d-/dq(t)-- _1 (t)®O(t)= 21ft(ca(t))q(t),

where

(30)

(31)

fl(ca) - cad. (32)

Likewise, we can partition { _]} defined by equation (21) in terms of column matrices as

{q) -[=(q) q], (33)

which leads to

d O(t)= 1
d-t _ -(_(t)) ca, (34a)

and

--(0)= [ % ] =d0. (34b)L -ql

The kinematic equation for the Gibbs scalar becomes finally

d 1[1 + g_(t)]ca(t) (35)
d-/_(_) = _

while that for the angle of rotation is just

dO
__ = ca. (36)
dZ

Euler's equation for rigid-body dynamics is simply

dw = AT (37)
I(-/7.

where N, the torque, is a scalar and I, the moment of inertia, another scalar, is given by

I= /r 2dm. (38)

Attitude Errors in Flatland

If Fog were non-existent, all lines wouM al)pear equally and

indistinguishably cleal:

The representation of attitude errors in Flatland follows that in Space, with obvious simpli-
fications. The error in the attitude matrix, sincc it has only a single degree of freedom, can be

written as

A" = (6A)A TM , (39)
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with A* a random variable, usually an attitude estimate, and 6A is the (multiplicative) attitude

error,

&t : exP{i[ A( ]]} _ [ + [[A(]], (40)

with A_, the attitude error angle, generally an inlinitesimal quantity assumed to have zero
mean. The attitude variance is defined to be

P_¢ = E{ (A() 2 }, (41)

where E{ • } denotes the expectation.

The modeling of vector measurement errors follow a similar pattern. We write

_,r =e[[, 11A'Q, (42)

where _ is a zero-mean random variable with w_riance c,_,. In linear approximation this may
be written as

= A _r + A_V, (43)

with

AW = eJA9 = [[Ag]]c,

and we have defined [[ v ]] with vector argument to be

(44)

[[v]] __av =
1

(45)

Thus,

[[u]]r v = -u × -_= -u r [[v]],

[[.¢]1Tv = 0.

[[u]]_F[[,,l] = u. v,

[['11][[v]l:_ -- (u. v), - vu _',

[[.]]v = [[v]]..

(46a)

(46b)

(46c)

(46d)

(4_)

Batch Attitude Determination in Flatland

I answer that though we cannot see angles, we can bTfer them,

and Otis with great precision.

We can now examine some well-known algorithms in their Flatland setting. These are the

DYAD algorithm, the two-dimensional analogue of the TRIAD algorithm [ 11-12], and the

BEST algorithm, the two-dimensional analogue of the QUEST algorithm [ 12 ]. The develop-

ment of these algorithms in two dimensions is very simil_tr to that of their forbears in Space.

As can be expected, the results are much simpler in the smaller dimension.
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The DYAD Algorithm

For the DYAD algorithm we scck an attitude matrix which satisfies

W= AV, (47)

where V and W are arbitrary vectors. In a space of _zdimensions, n - 1 linearly independent

vector measurements are required to uniquely dctermine the attitude matrix [ 13 ]. In two

dimensions, therefore, a single measurement sutlices. (In one dimension, zero measurements

are sufficient.)
To construct the attitude matrix we first construct orthonormal dyads of reference and ob-

servation vectors as
#

--- and f', =d_'t, (48a)
I#1

and

From

9¢
and g, = dsl • (48b)

hwl

d 3 = -d, (49)

it follows that
J A JT" = A. (50)

Hence,
fii = Af'i, i = 1, 2,

Defining now orthogonal matrices (labeled by thcir columns)

All+= [f'l f'.,], and -U_.: [SL

(51)

g'2] , (52)

it follows that

M s = A AI R , (53)

whence

A = 31sAl)_'. (54)

The development of the DYAD attitude variance follows almost identical steps as in the cal-
culation of the TRIAD attitude covariance in Space [ 12] with the rcsult

I)I)YAI) = cr'_v • (55)

The BEST Algorithm

The BEST (Biernion ESTimator) algorithm in Flatland is only slightly less complicated than

the QUEST algorithm in Space. As usual, we seek an attitude matrix which minimizes [ 12,

t4]
1 n

i=1
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wherethea i, i = 1, ... , n > 2, are a set of positive weights, whose sum, we will assume, is
unity. As in the Space we define a gain function, 9( A ), such that

9(A) = 1 - J(A) = tr(BTA), (57)

which is a maximum when J(A) is a minimum, and, as before the attitude profile matrix is
given by

= _ ,_iw_gT. (58)
i=1

Substituting equation (17a) in equation (57) leads straightforwardly to

where

(59)

Thus,

with

s-tr(B w)=trB = BI1 +B22 ,

z - tr(,JB T) = -tr(,J 13) = B1.., - B21.

(60a)

(60b)

9(q) = qV'l(q, (61)

The maximization of 9(ti) leads to the familiar eigenvalue problem

(62)

A'q* = A,,,_x q*,

but in Flatland A,,,_ can be calculated in closed form as

(63)

and

,x,,,,,x= '+ _-, (64)

q* = v/Z _-+ (A,,,_ x + s)2 A,,,_ + s

The attitude variance of the BEST algorithm is calculated most easily from the Fisher informa-

tion matrix using the fact that the BEST algorithm is a maximum-likelihood estimator [ 15 ].
Assuming the errors to have a Gaussian distribution, the calculation is straightforward and
leads to

71

_-2 -'_
I m.:S_r= _ "'l'i " (66)

i=1

The optimal angle of rotation can also be computed directly by noting that the gain function
can be written in the form

9(0) = s cos0 + z sin0, (67)
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whichisobviouslyamaximumwhen0 = 0", with

cosO*- s and sinO*- z (68)
v_ + z_ v_ + z2

We write the solution of equation (68) more conveniently as

O* = arct_n2(z,_ ) , (69)

where arctan 2 is the same function as ATAN2 in FORTRAN. Equation (68) leads directly to

a solution for the optimal attitude matrix, namely,

A" a [: z] +>Z .S "

Substitution of equation (65) into equation (17) leads somewhat less directly to the same re-

sult, which should be compared with the construction of the optimal attitude matrix in Space

developed by Markley [ 16 ]. Markley's FOAM algorithm [ 17] carries over with little change

into Flatland and yields necessarily the same result as equation (70).

General Comments on Attitude Estimation in Flatland (and Space)

I am about to appear vely inconsistent.

There seems to be some confusion concerning the use of representations in attitude estima-

tion, which we will now attempt to muddy further. Typically in attitude determination, one is

given a set of measurements, {zt,... , Zx}, from which one wishes to infer the attitude, which
we will denote without reference to a rcprcscntation by .4. The space of..4 we know from long

experience is an m-dimensional manifold, where m = 1 in Flatland, m = 3 in Space, and
m = 6 in worlds so unfortunate as to bc four-dimensional. An important milestone in ev-

ery probabilistic estimate of the attitude is the construction of the probability density function
(pdf) of the measurements as a function of the attitude, p_ ..... ,u (z_, ... , z_v; .A), where the

primed variables denote the values taken by the (unprimed) random variables, and the attitude
manifold is assumed to be simply a parameter space rather than a space of random variables.

If ..4 is also a random variable then the pdf of interest is iv ..... _N,-a (z]' "'" ' Z_v' .,4'). When

one constructs a square loss function, one is, in fact, constructing part of the appropriate pdf

assuming Gaussian random noise.
The maximum-likelihood estimatc is simply the value of ,4 (or ..4') which maximizes the

appropriate pdf [ 18]. In mathematic_tl notation we can write"

" ' A).AML = arg n x Pz, ..... ZN,(Z/l+ ' '' ' ZN' ' (71a)

or

.A t*ML -- arg n_aax p., ..... zu,.a(zrt, ... , z_v, .A'), (71b)

* In the particular case where ..4 is a random variable one usually speaks of a rn,'_ximum a posteriori estimate.
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accordingto whetheror not ..4is a random variable, and the maximum is taken over the man-

ifold of A (or .At). Likcwisc, in the special case that A is a random variable, we can define a
minimum variance estimate of the attitude as

t* I . Z IAA/v-E{Alzl,.. , u}, (72)

that is, as the conditional expectation of ..4. This form of the minimum variance as given by
equation (72) is not meaningful, gcnerally, unless the representation of A has minimum di-

mcnsion. Otherwise, the conditional expectation will usually lead to a value which is not on

the manifold, and, therefore, unacceptable as a solution. It is difficult, in general, to calculate

the minimum variance estimate except in the case where the probability distribution of the
measurement noise is Gaussian, in which case the minimum-variance estimate is identical to
the maximum-likelihood estimate.

The general method of solution by maximum-likelihood cstimation to an attitude estimation

problem given a set of measurements and a probabilistic measurement model is to write the
negative-log-likelihood functk)n

J(A') =- -log p,, ..... ,N,_(z'_' ..., _v, A'), (73)

where for definiteness we consider the case that ..4 is a random variable. The negative-log-

likelihood function is a minimum at the maximum-likelihood estimate. The procedure is
thus to minimize the expression in equation (73) by an iterative method, such as the Newton-

Raphson method. Thus, if.A', is thc i-th itcration we write

A' = A(_),:::_A' i , (74)

where A(g) denotes the general attitude as a function olg, which is one of the many minimum-

dimensional rcprescntations of the attitude which is Euclidean at the origin and for which ..4(0)
is the identity rotation. Expanding A as a function ofg leads to

']J(A') = J(A'_) + J(A(Z) 0 A ,) g
B=O

Jc _ O_"_/_T J(A(g)_ A'i) /3 + O([gl3),
g=O

(75)

and minimizing this expression keeping terms only up to sccond order in/3 leads to the next
iteration

i0 ] ]
13=o ,o=o

.A'i+ l = A(_i+I) @.A' i .

(76)

(77)

This procedure will generally converge to a minimum of the ncgative-log-likelihoocl function.

In well-defined attitude problems this minimum is usually unique and hence,

AI* I,_/1. = tim .A i" (78)
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In the limit thattheamountof datais infinite theattitudecovariancematrixcanbewrittenas

02 .A')] } _=O,A,=.A,.M Lp_ = E { [O_O_7, j(A(_) ® (79)

If the measurement errors are Gaussian, then within the linearization approximation, equa-

tion (79) will be true even for small samples.

Treatment of the Biernion/Quaternion in Attitude Estimation

It is high time that I should pass from these brief and discursive

notes about things in Flatland to the central event...

Several schemes have been proposed [ 19] for mechanizing the Kalman filter update for the

quaternion. The effect of these and other schemes has been studied via numerical examples

by Bar-Itzhack, Deutschman and Marklcy [20, 21 ]. These latter authors make a distinction
between the update step of the Kalman filter using what they call the additive as opposed to

the multiplicative update. This distinction is artificial and misleading, as we shall now show.

Let us write the relation between the updated and predicted quaternions/biernions as

qk(+) = qA-) + (80)

which Bar-Itzhack et al. call the additive approach. The components are all resolved with re-

spect to inertial axes. Let us examine the same equation expressed with respect to the predicted

spacecraft body frame, i.e., we express all rotations as rotations from the predicted spacecraft
body frame. Denoting the quaternions/biernions of rotation with respect to this frame by q'
where

q_- = 'lk _7-_'/Ft(-), (81)

it follows that

where i = [0 0 0

q_.(+) = i + Aq[.(+), (82)

1] T for quaternions, and 1 = [0 1] T for biernions. Ifwe write now

@k(+) - (83)

then it follows that

(&(+ ) = bqk( + ) _) qk(-- ) , (84)

which is the so-called multiplicative correction. Thus, the distinction between the additive and

the multiplicative formulations of the Kalman filter is not one of the fundamental mechaniza-

tion of the filter but simply the frame in which it is desired to compute the update. These

two formulations are present in Reference [ 19 ], where they are given the names "truncated

covariance representation" and "body-fixed covariance representation." Admittedly, the pre-

sentation by those authors gave the appearance of there being one more distinct formulation

of the Kalman filter than was actually the case. This has even led one careful study to test both

formulations, as if they were distinct [ 22 ].

Where the important distinctions do lie is in how A?/k or A?/_. is calculated, and conse-

quently, whether _5_(+) has unit norm. From the earlier discussion it is clear that a correct
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approachisobtainedbyexpressingthisquantityin termsof somerepresentationof theatti-
tudeof minimaldegree.In thiscaseit is clearlyadvantageousto work from thespacecraft
bodyframesothatthisminimal-dimensionalrepresentationwill befarfrom asingularity,and
it will bemostrevealingtocomparctheresultsof References[19] and[20,21] in thatframe.
Theresultsof [ 20,21],however,arenotdirectlycomparableto [ 19] becausetheformerrests
on theattitudeKalmanfilterof Bar-ItzhackandOshman[23]. However,manypointsof com-
monalitywill beapparent.

Consider now the estimation of a constant biernion from scalar measurements of the form

Zk= fiTWk ' L'= 1,..., N, (85)

where fik is a known direction in the spacecraft body and W k is some vector measured in the

body frame. We assume that W k is related to a representation of the same vector in the inertial

frame according to

W k = AV k + vk, (86)

where A is the attitude matrix and v k is white Gaussian noise. We wish to compute the batch
attitude estimate from these measurements, using an good approximate estimate of the atti-

tude as a point of departure.
If we write now

A = (6A) Ao, (87)

where Ao is the approximate value of thc optimal attitude estimate, then the measurement

equation becomcs

. r Wo,k + a 'vk (88),7 k .-_ U k

where VCo,k = AoVk, the expected value of the measurement in the body frame. 3A is now an

infinitesimal rotation, which we shall parametcrizc in terms of the additive biernion error as

in equation (82). Recalling cquation (17c) it is a simplc manncr to expand z k to lowest order
in Aq with the result

u k--z k-zo, k = H kAq+vk, (89)

where zo, k is the value of the measurement with Aq = O, vk is the scalar white Gaussian noise

term appearing in equation (88) and the 1 x 2 sensitivity matrix H k is given by

G = = x (90)

The maximum likelihood estimate of Ail (for the additive biernion correction, which is not

constrained to preserve the norm) is given by

r-" = (91)A l_dd lq, I P,

where the covariance matrix, P(_q, and the inlbrmation vector, p, are given by

I5 1-' 5f'_q = IIZ.'R k' IIk , p = II_'RT_lu_. (92)
kk=l k=l

For the multiplicativc correction (which is norm-preserving) the estimate for the same data is

A% ,,,,,,Jr = 1 ,,,.u lfl ,
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with

N

Pl : Z HIT'k Rk-lr'k'

k=l

-1

(= 93a)11

(93b)

so that Pl is just the first component of p. Notc that we have written unnecessary (but not

incorrect) transpose signs and not commuted symbols, even between scalars, to preserve the

resemblance with the equations of Space. We can find a rclation between the additive and the

multiplicative corrections to the biernion by solving for p in terms of Aq*dd and using the value

of pl in equation (93).
This leads to

-* -* -1 -1 _.
Aql, 'nult = Aq', add + (Pqq)11 (Pqql)12/kq2, add" (94)

We will return to this equation soon.

The additive correction, A,_dd, allows us to construct an optimal biernion, e]_dd,

-* = _-* (95)

Because it does not necessarily have unit norm, L,dd does not without further effort have an un-

ambiguous connection to the attitude. However, we note that although q_dd is not a "biernion

of rotation," it is a sufficient statistic [ 18] for the attitude, certainly within the linear approx-

imation of equation (89). It is, in fact, an estimate of the biernion of rotation, and we know

also that were the measurement noise covariance to vanish (perfect measurements), q]dd would
have unit norm and be the desired biernion. Thus, denoting the desired biernion of rotation

by f/, we have that
q,_dd = 7)+ AT),,dd , (95)

and

AT),,+j~ .V(0, 1],_).

Hence, the negative log-likelihood function of q,:dd givcn 0 is

(96)

1
S(q-*dd I _/) = _ [(q_dd -- _)Tpqq (e];dd -- _i) + log det Pqq + 4 log 27r] o (97)

and the maximum-likelihood estimate of _ is simply

f]* = arg nlax J(eladd I (98)
f/: 7)T_= 1

where, since we know that the true bicrnion must lie on the manifold of unit four-vectors, we

must maximize the negative log-likelihood subject to the norm constraint.
We handle the constraint in the usual way, using Lagrangc's method of multipliers, and

optimize
1
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withoutconstraintandthenchoosingthevalueof the Lagrangemultiplier,A, for whichthe
constraintissatisfied.Differentiatingtheaboveexpressionwith respectto 71andsettingthe
derivativeequalto zeroleadsto

,j" (i + *= qa,hl ,

and A is a solution of

Wc cxpcct APgq
itcration of the Newton Raphson method with wmishing initial value. Thus,

To first order

Hcnce.

(99)

f(A)--_/*r(A)q(A) -- q_dd*7'(l+At_9)-'2-.q_dd =1 . (100)

to be small. Therefore, it will usually bc sufficient to calculate A using one

1- f(0) 1 * - 1) (101)
f'(O) - 2 (q,'./_i 1_9 qSd,l)-' (q,*.i,_q._,,o •

,,1"
q,,,H qS,Jd : 2 .Lq._,. (102)

A= (t99):: (103)
, (/zSubstituting this in equation (99) leads to lowest order in A J_,J,l

ii* = (I + AP99 ) -1 q,_,j,j (104a)

(1 - AI_9 ) q_,,d (1048)

(1' _-l
---- qadd -- "_q2,a,hl , 9'1"'2'2 l_gq qa,ht " (104c)

The first component of the desired optimal bicrnion is simply (to this same order)

(1' I-' P * (105)'ll ---- _ql,a,l,I- , 99"22 ( 99)12 Aq2, add'

But

--(lqq)12 (1999)-1"22 = (Pqql)?ll (Pq_l)12 , (106)

so that, in fact, comparing equation (106) with equation (94) we have

,l[=Aq; ......,t. (107)

Since the other component must also agree to linear order in :_-_q_ult, it follows that

q" = _q,,,,,,t . (108)

Thus, the additive correction to the biernic)n, followed by the normalization correction dictated

unambiguously by the maximum likelihood criterion, is identical (at least up to linear terms in

Aq*) to the so-called multiplicative correction. It is hard to imagine that any other answer

could be possible. It is obviously less burdensome to calculate the multiplicative correction
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directly. Identical arguments hold for sequential correction of the bicrnion as in the Kalman
filter.

Discussion

•.. my Lord has shewn me the b_testhws of all my coun#ymen

in the Land of Two Dimensions...

The representation of attitude in two dimensions has been described in detail. Two-dimen-

sional analogues have been presented lbr the well known TRIAD and QUEST algorithms.

General properties of attitude estimation in two and three dimensions have been discussed.

The question of whether the multiplicative or additive correction to the quaternion is to pre-
ferred has been has a clear answer in Flatland.

The additive correction, if done correctly, is identical to the multiplicative correction but is
much more burdensome. The first commandment of bicrnion correction (and, one can show,

also for quaternion correction in Space), thcrclk_rc, is to multiply. Wc emphasize that this

result is not the product of some heuristic argumcnt or arbitrary procedure to be justified by

experimcnt but the unavoidable conclusion to which one is led unambiguously and rigorously

by the maximum likelihood criterion.

Acknowledgements

"You see ... /tow little your words have done."

The author is grateful to E Landis Markley and Itzhack Bar-Itzhack for many passionate

discussions on this topic over the years.

References

[ 1 ] ABBOq_, E. A., "Flatland, a Romance of Many Dimensions," New York, Dover Publica-
tions, 1884.

[ 2 ] ALTMANN, S. L., Rotations, Quaternions, anti Double Gtvups, Oxford, Oxford University
Press, 1986.

[ 3 ] ALTMANN, S. L.., "Hamilton, Rodrigues, and the Quatcrnion Scandal," MathernaticsMag-

azine, Vol. 62, pp. 291-307, 1989.

[4] VnN DER WAERDEN, B. L., A Histoly of Algebra, New York and Heidelberg, Springer-
Verlag, 1985.

[5] GOLDSTEIN, H., Classical Mechanics, Reading, Mass., Addison-Wesley, 1980.

[6] HUGHES, E C., StmcecraftAttitude Dynamics, New York, John Wiley & Sons, 1986.

[ 7 ] JUNKINS, J. L., and TURNER, J. D., Ot>timal Spacecraft Rotational Maneuvers. Amster-
dam, Elsevier, 1986.

[8] MARKLEY, E L.," Parameterization of the Attitude," in WERTZ, J. R. (ed.) [9 ], op. cit.,

pp. 410--420, 1978.

273



[9]

110]

[lll

[12]

[13]

I141

[151

[16]

[171

[18]

[19]

120]

[211

I22]

[231

WERTZ, J. R. (ed.), Spacecraft Attitude Detennh, ation and Control, Dordrecht, the Nether-
lands, Kluwer Academic Publishers, 1978.

SHUSTER, M. D., 'A Survey of Attitude Rcprcscntations," Journal of the Astronautical
Sciences, (to appear).

BLACK, H. D., 'A Passive System for Determining the Attitude of a Satellite," AIAA Jour-
nal Vol. 2, pp. 1350-1351, 1964.

SHUSTER, M. D., and OH, S. D., "Three-Axis Attitude Determination from Vector Ob-

servations," Journal of Guidance, Cono'ol and Dynamics, Vol. 4, No. 1, pp. 70-77, 1981.

SHUSTER, M. D., 'Attitude Determination in Higher Dimensions," Journal of Guidance,

Control and Dynamics, (to appear).

J. KEAT, "Analysis of Least Squares Attitude Determination Routine, DOAOP," Computer
Sciences Corporation, CSCfFM-77/6034, February 1977.

SHUSTER, M. D., "Maximum Likclihood Estimation of Spacecraft Attitude," Journal of
the Astronautical Sciences, Vol. 37, 1989, pp. 79--88.

MARKLEY, E L., 'Attitude Determination Using Vector Observations and the Singular
Value Decomposition," Journal of the Astronautical Sc&nces, Vol. 36, pp. 245-258, 1988.

MARKLEY, E L., "Attitude Determination Using Vector Observations: A Fast Optimal
Matrix Algorithm," Flight Mechanics/Estimation Theory Symposium, NASA Goddard

Space Flight Center, Grccnbclt, Maryland, May 5-7, 1092.

SORENSON, H. W., Parameter Estimation, New York, Marcel Dekker, 1980.

LEFFERTS, E. J., MARKLEY, E L., and SHUSTER, M. D., "Kalman Filtering for Space-

craft Attitude Estimation," Journal of Guidance, Control and Dynamics, Vol. 5, No. 5, pp.
417-429, 1982.

BAR-ITZHACK, I. Y., MARKLEY, E L., and DEUTSCHMAN, J., "Quaternion Normal-

ization in Additive EKF for Spacecraft Attitude Determination," Flight Mechanics�Estima-

tion Theory Symposium, NASA Goddard Space Flight Center, May 1991.

DEUTSCHMAN, J., MARKLEY, E L., and BAR-ITZHACK, I. Y., "Quaternion Normal-

ization in Spacecraft Attitude Determination," Flight Mechanics/Estimation Theory Sympo-
sium, NASA Goddard Space Flight Centcr, May 1992, and works cited therein.

FERRARESI, V. A., Utiliza_'gto conjunta de sensores b_erciais e n_o-hTerciais em determina_5o

de atitude de satdlites via filtro de Kabnan, Instituto Nacional das Pesquisas Espaciais, Publi-
ca_fio No. INPE-4313-TDL/280, August 1987.

BAR-ITZHACK, I. Y., and OSHMAN, Y., "Recursive Attitude Determination from Vec-

tor Observations: Quaternion Estimation," IEEE Transactions on Aerospace and Electronics

Systems, Vol. 21, 1985, pp. 128-135.

274


