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ABSTRACT

This paper presents numerical techniques for constructing nonlinear predictive models to
forecast solar flux directly from its time series. This approach makes it possible to extract

dynamical invariants of our system without reference to any underlying solar physics. We

consider the dynamical evolution of solar activity in a reconstructed phase space that

captures the attractor (strange), give a procedure for constructing a predictor of future solar
activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and
attractor dimension.

1. INTRODUCTION

1.1 Review of Solar Activity

Need for Solar Flux Prediction. Solar flux F10.7 [radio flux emitted at a wavelength of k = 10.7 centime-

ters (cm)] is the best indicator of the slrength of ionizing radiations, such as solar ultraviolet and X-ray

emissions, that directly affect the atmospheric density and thereby change the orbit lifetime of satellites.
Thus, accurate forecasting of solar flux Fit.7 is crucial for orbit determination of spacecrafts.

Sunspots and Solar Flux. The strong correlation between sunspots and the solar flux FlO.7 is probably due to
the enhanced radiation from limited areas of the Sun where sunspots are active• Sunspot activity depends on

the wavelength of radiated solar flux. For waves shorter than 3 cm, the intensity is steady. From 3 to 60 cm,
often called the decimeter range, the intensity occasionally increases for a few minutes. Rising from the

vicinity of active sunspot regions, decimeter intensity also tends to exhibit a 27-day period associated with
solar rotation (Reference 1).

The dynamics of sunspots and their formation are still a mystery. They are often more than 1000 degrees

Kelvin cooler than the surrounding photosphere. Although many explanations for sunspot cooling have been

proposed (the Biermann field inhibition mechanism and the superadiabatic downflow mechanism), the huge
difference in temperature between sunspots and their surroundings suggests a similarity with solitons of

multilevel turbulence. One may think of sunspots as solitons in a fluid turbulent Sun (Reference 2). Orbit

lifetime is a function of atmospheric drag, which is a function of atmospheric density, which in turn is a
function of solar flux. For this reason, spacecraft orbit determination requires accurate forecasting of solar
flux.

* This work was supported by the National Aeronautics and Space Administration (NASA)/God dard Space Flight Center

(GSFC), Greenbelt, Maryland, Contract NAS 5-31500.

319



Nonlinear Structure in Solar Flux. Until recently, we had little reason to doubt that weather is in principle

predictable, given enough data. Recently, a striking discovery changed our perspective: simple deterministic

systems with only a few degrees of freedom can generate random behavior. When a system exhibits apparent

random behavior that is fundamental to its dynamics, such that no amount of information gathering will make
the system predictable, the system is considered to be chaotic. Much evidence supports our assertion that solar

flux signal falls in this category (References 3 through 11). Perhaps paradoxically, chaos is generated by fixed

rules that do not themselves involve any element of chance. Theoretically, the future of a dynamic system is

completely determined by present and past conditions. In practice, however, amplification of small initial
uncertainties makes a system with short-term predictability unpredictable in the long term.

Many people speak of random processes as though they were a fundamental source of randomness. This idea

is misleading. The theory of random processes is an empirical method to deal with incomplete information; it

does not attempt to explain randomness. As far as we know, the only truly fundamental source of randonmess

is the uncertainty principle of quantum mechanics;, everything else is deterministic, at least in principle.

Nonetheless, we call many phenomena, such as solar dynamics, random, even though we may not ordinarily
think of them in terms of quantum mechanics. Historically, scientists have assumed that randomness derives

solely from complication. In this paper, we will take the practical position that randomness occurs to the
extent that a system's behavior is unpredictable. We believe that randomness is subjective and a matter of

degree; that is, some systems are more predictable than others (e.g., solar activity is more predictable than

geomagnetic activity).

Solar Activity Prediction. Interest in solar activity has grown in the past two decades for many reasons.

Some reports claim a correlation between solar activity and weather on Earth (Reference 12), although a

correlation has not yet been convincingly established (Reference 13). We have some evidence for the
coincident occurrences of the Maunder minimum (a period of little or no solar activity occurring from 1645 to

1715) and the "Little Ice Age" (a period of abnormally cold weather) (Reference 14). Perhaps most
importantly for flight dynamics, solar activity changes the atmospheric density, which has important

implications for spacecraft trajectory and lifetime prediction (Reference 15). The seemingly random nature

of solar flux has misled us for many decades, causing us to assume that the underlying physics must
necessarily be complex as well. Therefore, researchers have generally used statistical models to predict solar

activity (Reference 16). However, new developments in chaos and nonlinear dynamics allow us to model the
behavior of a system in terms of some invariants directly extractable from system dynamics, without

reference to any underlying physics. Using chaos theory, we can predict short-term activity more accurately

than with statistical methods; however, chaos theory imposes a fundamental limit on long-term predictions.

1.2 Brief Review of Chaotic Dynamics

Self-Organization and Attractors. Imagine a very simple system: a pendulum. The pendulum exhibits two
fundamental degrees of freedom: position and momentum. However, in its stable periodic state (limit cycle),

the pendulum can be described by only one degree of freedom, the phase angle. Here, the dynamic is attracted

to a lower-dimensional phase space, and the dimension of this reduced phase space is equal to the number of
active degrees of freedom in the self-organized system.

Attractors are not limited to zero dimension (fixed point) or one dimension (limit cycle), but for nonlinear

systems they could be high dimensional and in some cases even fractional or fractal (strange attractors).

Nonlinear Dynamical Systems. Anything that moves or evolves in time is a dynamical system. (/fit does not
move, it is a dynamical system at a fixed point.) Mathematically speaking, a dynamical system can be

represented by a state space (phase space) R M and an evolution operator _ that defines how the state of the
system evolves in time. M is the number of degrees of freedom in the dynamics; V can be visualized as the

physics of the system.
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TheattractorA of adynamicalsystemisthesubsetof phasespacetowardwhich the system evolves:

lim
t--* oo aPt(S) = A.

An initial condition Xo that is sufficiently near the attractor will evolve in time so that _t (fi_o) gets very close
to the set A as t -+ _.

Phase-Space Construction Directly From a Time Series. When confronted with a complicated physical

system, an experimenter normally measures at regular and discrete intervals of time the value of some state
variable (e.g., flux FlO.7) and records the time series f(to), f(tl), f(t2) ..... with f(ti) _ It and ti=to+iAt. From the

observed time series, the experimenter attempts to infer something about the dynamics (i.e., the physics) of

the system. The measure f(t) represents a projection _ from tl M to R:

_: R M -+ R.

Because the time series is one-dimensional, it is an incomplete description of a system during a time
evolution. Nonetheless, many features of the dynamics can still be inferred from the time series alone. From

time-delayed values of the scalar time series, Takens (Reference 17) and Packard et al. (Reference 18) have

shown that one can embed the time series into a higher dimensional space. Vectors are created with

components as

"f(t) = If(t), f(t- z), ... f(t - (m- 1),)] T,

where, (time delay) and m (the embedding dimension) are parameters of the embedding procedure. Here f (t)

represents a more complete description of dynamics than f(t) and can be thought of as a mapping:

_ m :RM--+ Rm.

An embedding dimension of m > 2D+l, where D is the fractal dimension of the attractor, almost always

ensures the construction of the topology of the attractor (Takens' theorem, Reference 17).

If unlimited inf'mitely precise data are available, almost any delay time, and embedding dimension m > D

will work, at least in principle. However, choosing the optimal parameters for real data is a nontrivial process.

For example, if, is too large then the components f(t) and f(t+(m-1)z) of the reconstructed vector f will be
effectively uncorrelated, which will inflate the estimated dimension. On the other hand, if (m-1)x is too small,

then the components f(t) .... ,f(t+(m-1),) will all be very nearly equal, and the reconstructed attractor will look
like one long diagonal line. Generally, x must not be less than some characteristic decorrelation time, and
(m-1)_ must not be much greater than this decorrelation time. One such characteristic dine is the local minima

of the autocorrelation function R(x) = ((f (t)--(f))(f(t+,)--(f))), where ( ) represents average over time.

1.3 Some Invariants of Dynamical Systems

Lyapunov Exponent. In a chaotic system, the adjacent points of the time series become separated under the
action of a map; in our case, fn is the value of solar flux measured daily.

fa+l = M(fa),

which leads to satic motion. The Lyaptmov exponent X(-f0) measures this exponential separation, as shown in

Figure 1.

Therefore,

E0 er°<f°) = IMn (f0 + E0) - M t'r (f0)I-
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Figure 1. Exponential Separation Measurement

In the limit Eo -4 0 and N --+ oo, we get the formal expression for Lyapunov exponent _fo):

X(f°) = N-..lim=_o-'lim=1 in [ MN(f° + E°)-_ MN(fo)[

lira 1 ln[dMN(fo)[= N'= _ (If0 "

The Lyapunov exponent also measures the average loss of information.

Invarimat Measure. The invariant measure p(f) determines the density of the iterates of a map over the unit
interval and is defined to be

N

lim 1 M i

i=0

Kolmogorov Entropy. Kolmogorov entropy K describes the dynamical behavior at the strange attractor. K is
the analog of thermodynamic entropy that measures the disorder in a dynamical system. For a

one-dimensional map, it is just the Lyapunov exponent. The rate K (at which information about the system is
lost) is equal to the average sum of positive Lyapunov exponents:

[ ddf O (f) Z ki+ (f)'K

1 i

where the superscript d is the dimensionality of our phase space.

In most cases, the _s are independent of f, so

K= Z (o
K is, indeed, a useful measure of chaos. K becomes zero for regular motion. It is infinite for totally stochastic

or random systems but is a constant larger than zero for chaotic systems (Figure 2). In higher dimensional
systems, we lose information about the system (as shown in Figure 3). Here, a sphere of radius g_.ochanges its

geometry in phase to an ellipsoid as the system evolves in time.

I-IausdorffDimensiou. One of the invariants of an attractor that can be extracted directly from the time series

is caUed Hausdorff Dimension D, an infinite set of dimensions D=Do, DI, D2,, ... that describes the

inhomogeneity of the attractor. It can be shown that D2 (which yields a lower bound on the Hausdorff
dimension) and many other invariants of the system can be directly obtained from a time series:

• Da, that is, a lower bound on the Hausdorff dimension (132 < DI)

• d, that is, the embedding dimension of the attractor

• The amplitude of the white noise on the signal; that is, separating the deterministic chaotic
motion of the system from disturbing white noise
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• A lower bound on the Kolmogorov entropy; that is, determining "how chaotic" the signal is

• The Kaplan-Yorke dimension: connects the static structure of the attractor (as measured by
D=Do, D1, D2 .... ) and the dynamical behavior at the attractor (as measured by the Lyapunov

exponents)

Dimensions of a Strange Attractor. To characterize the inhomogeneous static smactttre of the attractor, we
introduce an infinite set of dimensions D n related to the nth powers of Pi via

log Z
lim 1 i=0

Dn = _0---0 n - 1 loge 0

n = O, 1, 2, ...,

where Pi is the probability of finding a point of attractor in the cell number i [i=l, 2 .... Q (co)]. For n=0, we get

the Hausdorff dknension of the attractor D=Do; for n=l, we get dimension D=D1 (called the information
dimension). It should be noted that for n ---_oo, the dimension is still a finite number (D 0,=finite), which in

general is not an integer.

Largest Lyapunov Exponent of Solar Flux Time Series. The sum of the Lyapunov exponents is the
time-averaged divergence of the phase space trajectory; hence, any dissipative dynamical system will have at

least one negative exponent. Any dynamical system without a fixed point will have at least one zero Lyapunov

exponem.

A small positive Lyapunov exponent is an indication of chaos, and a very large positive Lyapunov exponent is

an indication of a totally stochastic or random system. Therefore, the sign of the exponent provides a

qualitative picture of a system's dynamics--a positive exponent represents chaos, a zero exponent represents
marginally stable systems, and a negative exponent represents periodic systems. Figures 4 and 5 show the

actual solar flux data and the largest Lyapunov exponent, respectively, for more than 4000 points. Here, we
have used the well known technique of phase space reconstruction with delay coordinates (Reference 18).

After embedding the solar flux time series in a state space using the Takens-Packard delay coordinate

technique, one can "learn" the induced nonlinear mapping using a local approximation. This will allow us to
make short-term forecasting of the future behavior of our time series using information based only on past

values. The error estimate of such a technique has already been developed by Farmer and Sidorowich
(Reference 19).

E = Ce (m+I)KT N -(m+l)/D,

where E = normalized error of prediction (0 < E <_ 1, where zero is perfect prediction and one

is a prediction no better than average)

m = order of local approximation

K = Kolmogorov entropy

T = forecasting window

N = number of data points

D = dimension of the attractor

C = normalization constant

Using the Farmer-Sidorowich relation, we can f'md the prediction horizon T for the zeroth order of local

approximation. Any prediction above Trnax is no better than average constant prediction.
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Any prediction beyond the indicated horizons is no better than average value. The connection between the

local ,and the global Lyapunov exponents has recently been found (March 1991) by Abarbanel et al.

(Reference 20) in a form of power law as

N = _ol,

where )_(1)

1

V

C

0.1

= local Lyapunov exponent

= length of observed data (observation window)

= a constant dependent to the dynamical system (0.5 <_v <_ 1.0)

= a constant dependent to initial conditions of the system

= well known global Lyaptmov exponent

= frequency of data points

Because any data are finite length data, using the Abarbanel-Kennel power law and Farmer-Sidorowich

relation, we can find Tmax as

ln(lo0
Wmax

This means that as I increases linearly, Tmax increases logarithmically to a certain asymptotic T becanse of the
denominator c/1v (Figure 6).

Therefore, our relation shows that at the asymptote Tmax = TO (Reference 11) and dTmaxJdl = 0. Thus, we can
fred what observation window is required for forecasting up to Tmax within some confidence level.

x0(b)
dTmax _ 0, thus N O -- e-_ ×0 (6) > 2,
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Figure 6. Relationship of I to Tma x
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wherexo(5) is the solution to e-x (x - 1) = 5, and where

6 -- k_
Cto v

is the scaled global Lyapunov exponent.

Tiffs result shows that any observation window greater than lo = No/to will not improve our prediction horizon
To; so more data beyond this limit are not needed to understand a dynamical system. This conclusion is indeed

consistent with weather prediction and also with empirical results concluded from neural networks training.

2, STRUCTURE OF THE COMPUTER PROGRAM

Once we know the state space representation, the next goal is to fit a model to the data. There are several

methods. The simplest method is to assume that the dynamics can be written as a map in the form

fn+l = M(fn),

where the current state is fn, and fn+l is a future state. Methods such as the polynomial method, rational

approximation, radial basis functions, neural networks, and local approximations have been proved to be

successful. Here we only introduce local approximation technique, which is the method used to structure the

computer program.

Local Approximation. The basic idea is to break up the domain of M into local neighborhoods and fit
different parameters into each neighborhood. This fit is generally better than global approximation,

especially for large data sets. Most global representations reach a point of diminishing returns, at which

adding more parameters or data gives only an incremental improvement in accuracy. After a certain point,
adding more local neighborhoods is usually more efficient than adding more parameters and going to higher

order. With local approximation, it is possible to use a given functional representation efficiently. The key is

to choose the local neighborhood size correctly, so that each neighborhood has just enough points to make the
local parameter fits stable. The basic idea is shown in Figure 7.

Moving to representations of higher degree involves a tradeoff--higher degree representations promise more

accuracy, but also require larger neighborhoods. A larger neighborhood implies that the complexity of M

increases. Finding the best compromise between these two effects is a central issue in local approximation.

An example of local approximation isfirst order, or nearest neighbor, approximation. Look through the data

set for nearest neighbor, g_ndpredict the current state based on what the neighbor did at time T later. We
approximate f(t + T) by f(t, T) = f(t' + T), where f(t'), is the nearest neighbor of f(t). That is, to predict

tomorrow's solar flux, we would search the historical record and fred the solar flux pattern most similar to that

of today, and predict that tomorrow's solar flux pattern will be the same as the neighboring pattern 1 day later.

Ot+T

Figure 7. Phase Space Trajectories
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First orderapproximationcansometimesbe improvedby findingmoreneighborsandmergingtheir
predictions, for example, by weighting according to distance from the current state, ff the data are noise, it is

better to use a larger number of neighbors. This procedure can be improved by weighting the contributions of

neighbors according to their distance from the current state. The beauty of linear approximation is that the

neighborhood size grows slowly with the embedding dimension. The order of approximation may depend on

factors such as the choice of neighborhoods, the dimension, or peculiarities of the data set. For low

dimensional problems, a third order approximation is good.

Nonstationary Behavior. If the trajectory is on an attractor, the data must be stationary, as long as the

parameters axe constant. However, parameter variations can result in nonstationary behavior. To deal with this

problem, we include time as one of the state space coordinates. T'mae can be included in the metric, so that the
search for nearest neighbors favors recent data. This approach takes into account the trends, other

time-dependent effects, and seasonality.

Implementation of Local Approximation. Finding neighbors in a multidimensional data set is time

consuming when considering many points. A straightforward method is to compute the distance to each

point, which takes approximately N steps for N points. This can be reduced to roughly log N steps by
organizing the data with a decision tree, such as a k--d tree (Reference 21).

In this method, the data set is partitioned one coordinate at a time. We can take the coordinate with largest
range and partition it at its median value. These values are stored in the tree as keys. It is now possible to

eliminate many points form consideration when looking for the nearest neighbors. This way, we minimize
processing lime considerably.

2.1 CHOICE OF THE EMBEDDING DIMENSION d

Here we would like to determine the correct value of the embedding dimension d from the scalar time series

x(n), n=l,2 ..... ND. We assume that there are enough data that we need not be concerned with statistical issues
about numerical accuracy. We also assume that extrinsic noise is absent from the x(n) when we receive them.

We further assume that by following Takens' phase-space reconstruction technique we have successfully

captured the dynamics and embedded our time series. This requires a correct choice of x, which will be
discussed in the next section.

For now, let's further assume we have a correct x to construct the attractor in the phase space. To establish

dimension d, we need some characteristic of the attractor that becomes unchanging as d becomes large
enough, thus indicating that the attractor can be embedded in R a. This invariant characteristic of the attractor

is the attractor dimension dA. One increases d until dA remains constant and identifies the minimum d where

dA "saturates" as the embedding dimension. But computation of dn is difficult, so we use the correlation

function D(r) proposed by Takens (Reference 17).

N N

D(r,N,d) - N "_2t_,_ 1) E E U(r -II-f(j) - "f(i) I]) i ;_ j,
-- i=! j=i

1 z>0where U(z) is just the unit step function U(z) = 0 z<0 "

For N large enough, the behavior of D(r,N,d) for r becomes independent of N and D(r,N,d) takes the form

D(r, N, d) = _(r, d)r v(d) .

If we plot D(r,N,d) versus r we can single out the correct value of dimension d as in Figure 8. From Figure 8 it
is concluded that the minimum value of d=3 is the right choice beyond which attractor dimension dA does not

change or the slope of our graph becomes constant.

In the next section we study the correct choice ofx to reconstruct the phase-space attractor.
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Figure 8. Correlation and Attractor Dimensions

2.2 Choice of the Time Shift T

The choice of time shifts "_is not well agreed upon. ff the underlying system is described by a differential

equation and scalar variable x(t) were measured at discrete times x(n) = x(to + n At), then we would be, by the

choice of lagged variables, trying to find a discrete replacement for the usual phase-space coordinates:

dd-lx(t)
x(t),_(t), _(t),... dtd_ 1

The best choice for time shift x is a fraction of the time associated with the first local minimum of the
autocorrelation function

f_1 / x(t + x)x(t)dtT J

We f'md that this choice, although somewhat arbitrary, works well in practice and gives a simple systematic
way of determining 3.

3. RESULTS

Figure 9 shows the daily observed values of solar flux Flo.7 for about four solar cycles from February 1947 to

November 1991. A close examination of this graph shows low daily variability at solar cycle minima and

large daily variability at solar cycle maxima. Therefore, the challenge for solar physicists is to forecast solar
flux in the region of solar cycle maxima.

Here forecasts are made in the region of solar cycle maxima, where the variations are as large as 150 units of
solar flux, and in regions between a maximum and a minimum, where the variations are as large as 100 units

of solar flux. Comparisons are made versus 27-day NOAA predictions, Schatten's monthly predictions, and
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observedvaluesofflu.xFro.7.Figure10shows27-daypredictionsusingchaostheorywithundecoupled(raw)
data.Predictionsweremadein theregionof solarcyclemaxima.Comparisonsshowclearlythatchaos
predictionsareatworst20unitsoff fromobservedvalues,whereasthebestNOAA27-daypredictionsare
about40unitsoff fromobservedvalues,withawrongphaseonthe27-daylocalmaximum.

Hereit isclearthatchaoticlong-termpredictionisveryclosetothe81-dayaverageof actualFlo.7,whichis
usefulfor calculatingexospherictemperatureusingtheJacchia-Robertsatmosphericdensitymodel.

Figure11showsthesameconclusionforpredictionsmadefor a60-dayspan.Hereit isveryclearthatNOAA
predictions(bestupdatedvaluestotheendof60days)donotcarryanyof thesignificantdynamicalfeatures
of theobservedvalues,whereasthechaospredictiondoescarrytheinherentdynamicalfeatures.Figure12
showsa comparisonof MSFCandSchatten'spredictions.Figure13alsoshowscomparisonsof 81-day
averageFlO.7,Schatten'spredictions,andchaospredictions.

Figure14,whichwasmadefor aregionbetweensolarcyclemaximaandminima,showsa30-dayprediction
indicatingthatchaospredictionisatworst20unitsoff fromtheobservedvalues,butit shouldbenotedthat
thesignal-to-noiseratiocharacteristicofsolaractivityindicatorsare- 35forFlo.7,- 20forsunspotnumbers,
and- 10 for sunspot areas.
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Figure 15 shows chaos predictions for embedding dimensions 3 and 4, the Schatten mean, and +2or
predictions. Figure 15 clearly shows that, for long-term forecasting, the chaotic method carries all the

inherent structures of Schatten's method. Figure 16 shows that chaos prediction captures the cyclical behavior

of solar cycles (the minimum of the cycle is very clear). Figure 17 shows the observed F]o.7 and its 81-day
average, and Figure 18 shows chaos prediction for about 50 months after November 1991 (the time of our
analyis). Comparsions of chaotic predictions (Figure 16) with Schatten's predictions show the chaos model to

be predicting F10.7 even higher than Schatten's +20. Recently, the observed FlO.7 have in fact been higher than
Schatten's +2(r. As seen in Figure 17, after October the average flux is about 200, as is clear from the first

couple of points in Figure 18. It is certainly possible to fine tune the model by adjusting the embedding
dimension and the time shift z. Figure 19 shows predictions for various time shifts "_,with D=3. Figure 20
shows predictions for various time shifts z, with embedding dimension D--4.

4. CONCLUSIONS

In this paper we presented numerical techniques for constructing nonlinear predictive models to forecast solar

flux F10.7 directly from its time series. Using this approach, we extracted dynamical invariants of our system
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Figure 15. Chaos Long-Term Prediction With Embedding Dimension D=3 and
D=4 Compared With Schatten's Mean and Schatten's +2o
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Figure 17. Observed Solar Flux Flo.7 and Its 81-Day Average, Starting From
October 1991
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Figure 20. Variability of Predictions as a Function of Change in Time Shift T.

Here Embedding Dimension Is Kept Constant (D=4), and z Is Varied

by 8, 10, 17, and 21 Days

without reference to any underlying solar physics, thereby circumventing the complicated physics and

modeling the system clirecdy from data.

Comparison of our prediction of solar flux activity using chaotic dynamics with conventional methods used

by Schatten, MSFC, and NOA.A demonstrated the validity of our approach to modeling solar activity using

nonlinear dynamics. This approach could also be used to model other complicated systems, such as

geomagnetic activity and atmospheric density, to name just two.
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