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ABSTRACT //_'"7;" 'QI/-

Spacecraft in orbit near libration point L1 in the Sun-Earth system are / ! /

excellent platforms for research concerning solar effects on the terrestrial

environment. One spacecraft mission launched in 1978 used an L1 orbit for

nearly 4 years, and future L1 orbital missions are also being planned. Orbit

determination and station-keeping are, however, required for these orbits. In

particular, orbit determination error analysis may be used to compute the

state uncertainty after a predetermined tracking period; the predicted state

uncertainty levels then will impact the control costs computed in

station-keeping simulations. Error sources, such as solar radiation pressure

and planetary mass uncertainties, are also incorporated. For future missions,

there may be some flexibility in the type and size of the spacecraft's nominal

trajectory, but different orbits may produce varying error analysis and

station-keeping results. The nominal path, for instance, can be (nearly)

periodic or distinctly quasi-periodic. A periodic "halo" orbit may be

constructed to be significantly larger than a quasi-periodic "Lissajous" path;

both may meet mission requirements, but perhaps the required control costs for

these orbits are provably different. Also for this spacecraft tracking and

control simulation problem, experimental design methods can be used to

determine the most significant uncertainties. That is, these methods can

determine the error sources in the tracking and control problem that most

impact the control cost (output); it also produces an equation that gives the

approximate functional relationship between the error inputs and the output.

INTRODUCTION

In one formulation of the problem of three bodies, when the mass of one of

the bodies is sufficiently small (infinitesimal) so that it does not affect the

motion of the other two bodies (primaries), the "restricted three-body problem"

results. Five libration (Lagrange) points can be found as particular solutions of

the equations of motion governing the path of the infinitesimal mass moving within

the gravitational fields of the primaries. These equilibrium points are defined

relative to a coordinate system rotating with the primaries. One Lagrange point,

L1, is located between the primaries and is the libration point of interest here.

Three-dimensional, periodic and quasi-periodic orbits are currently being

studied for upcoming missions. Periodic "halo" orbits in the vicinity of

libration points have been studied since the late 1960s. Robert Farquhar coined

the term "halo" to describe a three-dimensional periodic orbit near a libration
' 1

point on the far side of the Moon in the Earth-Moon system. These orbits were

designed to be large enough so that the spacecraft would be constantly in view of

the Earth and thus would appear as a halo around the Moon. Alternatively, the

variations in size and shape that a quasi-periodic orbit can exhibit may add
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valuable flexibility for mission planning. This type of bounded,

three-dimensional libration point trajectory is called a "Lissajous" orbit since

specific planar projections of these quasi-periodic trajectories may look like a

special type of Lissajous curve.

Howell and Pernicka 2 have developed a numerical technique for determination

of three-dimensional, bounded libration point trajectories of arbitrary size and

duration. Their numerical algorithm uses an analytic solution as a first

approximation and then constructs a trajectory continuous in position and

velocity. Their method is used in this study to define nominal paths in the

Sun-Earth+Moon problem. The notation "Earth+Moon" means that the Earth plus the

Moon are treated as one body with mass center at the Earth-Moon barycenter. The

numerical data is then curve fit using a cubic spline routine, although the use of

other curve fit methods 3 is possible. The assumed dynamic model is the elliptic

restricted three-body problem (ER3BP), where the primaries move on known elliptic

paths. The force model used here includes solar radiation pressure 4, the

gravitational attractions of the Sun and the Earth+Moon barycenter, and the

centrifugal force associated with rotation of the system.

The forces affecting the spacecraft orbit have differing levels of

uncertainty, and, unfortunately, the spacecraft will drift from the nominal path.

Both range and range-rate tracking also include inaccuracy in measurement. The

accumulated error in the spacecraft's position and velocity relative to the

nominal path after a predetermined period of tracking can be computed. This

error, or uncertainty, in the spacecraft state is measured through simulations,

commonly referred to as orbit determination error analysis, and is presented as

a vector of standard deviations of the states. In this work, the state vector

includes three position and three velocity states. The state uncertainty computed

in the error analysis can then be input to a station-keepin E algorithm that

computes control manuevers to return the spacecraft to the vicinity of the nominal

path. The algorithms incorporate certain minimal constraints for time between

manuevers, control magnitude, and distance from the nominal path before a control

manuever is input. For these algorithms, variations in orbital shapes and sizes

may have some effect on the station-keeping costs.

Coordinate Systems

The coordinate systems used

in this analysis have a common

origin at the primaries' center

of mass. Primaries with masses

ml and m2 such that ml z m2 are

assumed here. The infinitesimal

mass is denoted as m3.. These

masses (ml,m2,m3) correspond to

particles situated at points PI,

P2, and P3, respectively. The

barycenter is denoted as "B,"

and the resulting arrangement is

shown in Fig. I. The rotating

coordinate system is defined as

XRYRZR, and the inertial system

is identified as XIYIZI.
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Note that both coordinate systems are right-handed, and the X and Y axes for both

systems are in the plane of motion of the primaries. The rotating XR axis is

defined alone the line that Joins the primaries and is directed from the larger

toward the smaller primary.

Equations of Notion

The equations of motion for m3 (the spacecraft) relative to B as observed in
the inertial reference frame are now formulated. The sum of the forces on m3

resulting from both the gravity fields of masses ml (the Sun) and m2 (the

Earth-Moon barycenter} and from the solar radiation pressure can be used to

produce the following second-order vector differential equation:

" m2 - ( kS )=- G ( ml ) __ G (----3-) r + _. (1)
d 3 r -_-

The overbar denotes a vector, and primes indicate differentiation with respect to

dimensional time. All quantities are dimensional, as appropriate, and the

quantity "G" is the universal gravitiational constant. The scalars "d" and "r" in

Eq. (1) denote the magnitudes of vectors _ and _, respectively, depicted in Fig.

1. The dimensionless scalar "k" is the solar reflectivity constant, and "S °° is
the solar radiation pressure constant s . The position vector _ is written in

rotating components as

= x _R + y ?R + z _R (Z)

where X_,YR,ZR are unit vectors. The kinematic expression for _" is:

_" = (x"-O"y-28'y'-O'2x) XR + (y"+8"x+28'x'-O '2y) YR + z" ZR. (3)

Three scaled equations of motion for P3 can be derived using the following

definitions: the sum of the primary masses is one mass unit, the mean distance

between the primaries is one distance unit, and the universal gravitational
constant is equal to one untt by proper choice of characteristic time. The

equations of motion can then be simplified and scaled by also introducing the

nondimensional mass ratio H, "psuedo-potential" U, and the scaled solar radiation

constant s:
m2

u - (4)
m] + m2

U- (l-H) + H + 1 _2 y2 k s (5)d _ -_- (x2 + ) - T

where the dot denotes the derivative wlth respect to characteristic time. Then

the vector magnitudes, "d" and "r," are written in terms of scaled quantities as:

d = [(x + II R) 2 + y2 + Z2] 1/2, (6)

r = [(x - R + H R)2 + y2 + z2]1/2. (7)

The three second-order differential equations that result can be written in

terms of characteristic (scaled) quantities as

x - 2 8 y' - aU + _ y = Ux + _ y, (8)
ax

DU - 8 x = Uy - 0 x, (9)
y + 2 e x : O"'_

_. au
= a""_" = Uz. (i0)

These three equations can then be used to propagate the spacecraft state forward

in both the error analysls and station-keeping simulations.
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Reference Paths Generated for This Work

In the ER3BP, precisely periodic halo orbits exist, but nearly periodic

orbits are more practical and likely to be used in mission planning. Therefore,

the goal here will be to compare results for quasi-periodic Lissajous and nearly

periodic "halo-type" orbits. Fig. 2 depicts one orthographic view of the

Lissajous and halo-type orbits used here. The halo-type orbit is significantly

(approximately four times) larger in both the X and Y excursions from LI.

2 x105 LISSAJOUS ORBIT

il t ' ' ' 1
E 0
._o

• .=- - 1
N

-2 -1 0 1 2

y in kilometers x105
Fig. 2
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I
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Orthographic Depictions of the Reference Trajectories

Curve Fitting the Nominal Path

A numerical integration method developed by Howell and Pernicka 2 is used to

generate a set of reference points at specified times for both position (three

states) and velocity (three states), relative to the libration point of interest.

The method computes numerical data in a reference frame that is centered at the

libration point (in this case LI) and rotates with the primaries. However, the

state estimation techniques and station-keeping algorithms used in this work

require access to a continuous nominal path of acceptable accuracy. In one study,

Pernicka 6 found that station-keeping costs for a libration point orbit were

sensitive to the accuracy of the curve fit. A cubic spline interpolation routine

was selected to model the reference trajectory here; the results of using other

methods are summarized in the station-keeping section of this effort.

Examples of Experimental Design (DOE) Methods

DOE methods are used to purposefully change the most important inputs to a

process in order to analyze the output. The inputs are coded and alternately set

at predetermined values for each experimental run so that the design is

orthogonal; the relative contribution of each input can thus be judged

independently. The output of interest may be the mean response and its variation,

with the ultimate goal being to hit an output target value and minimize the output

variability. However, the results from the set of experimental runs also

determine the estimated function that relates the inputs to the output(s).

Experimental design methods are also used to reduce the required number of runs or

screen out relatively unimportant input variables. When only three inputs at two

different input levels are considered, a two-level, "full-factorial" design

consisting of every possible combination of input factors would require 23 = 8

total runs. This design allows the experimenter to obtain the full model with all

possible interactions. However, if 7 inputs in a 2-1evel design were used,

27 = 128 individual runs would be necessary. These 128 runs may be expensive in
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terms of both time and money. As a result, fewer runs may certainly be desired.

A full-factorial two-level design will include all input variables and their

interactions in the output equation model, but this may not be required. If some

interactions are known to be relatively unimportant, a fractional-factorial 7

design consisting of a fraction of the number of runs required in a full-factorial

can be constructed. For instance, for 3 inputs, a full-factorial would

necessitate 2 3 = 8 runs, while one type of fractional-factorial would require as

few as 4 runs to determine the significance of main effects (modeling no

interactions).

In a recent work by Garrett 8, several slmp2e, yet educational, examples of

the use of DOE are described. A similar example is included here: it is assumed

that the area of a rectangle can be measured precisely, but the functional

relationship between area and the length and width is not known. This example is

truly hypothetical, but it can be used to illustrate simple DOE computations. The

"design space" (where the computed model can be considered a good approximation to

the true system) is defined by 1 s width s 2 meters and 1 s length s 3 meters.

Here, "w" is used for width and "_" for length. Runs are accomplished at the

extreme values of the input variables, with w = I or 2 meters and _ = 1 or 3

meters; however, first these measurements are generally coded. The data is coded

by using the averages of both measurements and their ranges (highest value minus

lowest). With R(1) = range of _, R(w) = range of w, w = average of the w

extremes, and _ = average of the _ extremes, the coded settings are wc and _c:

w-_ t-_

I/hen coded, the extreme values become +1 and -1 for each input, and these values

are more simply denoted as "÷" and "-", respectively. A balanced design with 4

runs then yields a design matrix of

RUN Wc _c (Wc) (_c)

i - - +

2 - + -

3 ÷ -- --

4 + + +

The experiment is conducted using these high and low settings, and the measured

areas of the rectangle (outputs) are I, 3, 2, and 6 square meters for runs I

through 4, respectively. Schmidt and Launsby 7 discuss interesting hand

computational methods to determine the output equation; however, simple least

squares methods also provide identical results. The prediction equation for the

output is assumed to be
A
a = bo + bl wc + b2 _ + b3(wc)(_) (12)

A
where a = estimated area and the coefficients are computed using a least squares

method with

1 -1 -1 1 F1

c = 1 -1 1 -1 and _ = [ 3 in
1 1 -1 -1 2

1 1 1 1 6

This method yields

= (cTc) -1 cT_ = [bo bl b2 b3] T. (13)

A
a = 3 + Wc + 1.5 tc + .5 (wc)(tc). (14)

A similar method could be used to derive a prediction equation for the variance

(or the natural logarithm of the standard deviation) of the output 7. The
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resulting model in Eq. (14) is normally checked by completing test (confirmation)

runs at extreme values and at the midpoint of the design space. For this example,

that could mean using values of +1 for both wc and _ for an extreme run or 0 for

both inputs for the midpoint run. Suppose a confirmation run was conducted at the

extreme values and the resulting output was a = 6 meters. Using Eq. (14), the

predicted output is
A
a = 3 + 1 + 1.5(1) + .5(1)(1) = 6 meters.

For a confirmation run at the midpoints, the measured answer is a = 3 meters.

Using Eg. (14), the predicted output equation is

A
a = 3 + 0 + 1.5(0) + .5(0)(0) = 3 meters.

Hence, the confirmation runs verify the model; a significant disagreement would

require further investigation. (In fact, this is the exact functional model--it's

just coded.) When noise in the system exists, statistical tests are used to

test confirmation. The coded Eq. (14) can now be converted to use uncoded inputs
by using Eq. (11):

a = 3 + (2)(w - 1.5) ÷ (1.5)(2) ÷ (.5)(2)(w-1.5)(2) = (w)(_).

This example was simplified because we obviously knew the actual output
equation. In manufacturing or engineering problems, the relationship between

inputs and outputs Is only generally known, and DOE can be used to gain problem
insight. In the next section, the orbit determination error analysis methods used

in this effort are summarized. The foiiowing section describes the
station-keeping methods derived for this work and summarizes the controi-eost

comparisons of haIo and Lissajous orbits. Finally, modeling the inputs of the

station-keeping routine in an experimentaI design is presented.

ORBIT DETERMINATION ERROR ANALYSIS

Complete, exact knowledge of the state of a spacecraft in orbit is generally

not possible. Available measurements are usually some function of the state

variables and are not precise. For instance, a spacecraft in a libration point

trajectory in the Sun-Earth system may be tracked using range and range-rate

measurements containing random errors. The spacecraft may be affected by forces

inadequately represented in the dynamic model, and model parameters may be

uncertain. By definition, the iinearized system of equations used to model the

nonlinear system is a further approximation. These sources of error make

knowledge of the spacecraft state uncertain. Computation of the most likely

current state of the spacecraft in the presence of measurement and model

uncertainty is the focus of orbit determination.

Error analysis involves an investigation of the impact of various error

sources on orbit determination. The outputs of this error analysis are the

standard deviations of the states. These outputs could then be used to predict

how an improvement in measurement accuracy, for instance, would lessen state

uncertainty. One benefit of more accurate knowledge of the state might be a

reduction in station-keeping costs. A mathematical procedure can be developed to

combine all information about the spacecraft state, filtering this observed data

based on the varying degrees of uncertainty, to obtain a "best estimate" of the

state and an estimate of the resulting state variable uncertainties.

The measurement and dynamic models are first summarized, three error analysis

methods are briefly discussed, and then results are summarized. The three error

analysis methods used here are the Kalman filter, batch weighted least squares ,

and consider covariance analysis TM Each technique computes a covariance matrix
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at a specified epoch, and the positive square roots of the diagonal entries are

indicators of state uncertainty levels.

Measurement and Dynamic Models

The measurement and dynamic models used in the filter derivations are

Measurements: Zk = Mk Xk * _k, (15}

Dynamic Model: Xk+1 : @(tk+1,tk)Xk = @(k+l,k)Xk, (16}

where Zk is the measurement residual vector at time step k; Xk is the residual

state vector at time step k; Mk is the measurement matrix that is linearized about

the nominal path; @(k+l,k) is the state transition matrix at time step k+l

relative to time step k; and Vk is the measurement noise vector with assumed

statistics E(Vk):_ and E(Vk_)=Vk, where "E" is the expectation operator, _ is the

zero vector, and Vk is the measurement noise covariance matrix. Range and

range-rate measurements are assumed; the matrix, M, is then a time-varying matrix

of dimension 2x6, evaluated along the nominal path.

Error Analysis Methods Used

Early work in this area was designed to compare the error levels obtained
here to those found in other works and to determine error levels for use in

follow-on station-keeping simulations. Three methods of orbit determination error

analysis (using covariance analysis) were formulated: Kalman filter, batch

weighted least squares, and consider covariance analysis. The results of Kalman

and batch weighted least squares filters were virtually identical, as expected,

but nonetheless helped to confirm the analysis. Both methods were formulated to

compute state uncertainty after a predetermined number of tracking updates,

simulating range and range-rate measurements with associated error statistics.

Consider covariance analysis also uses a batch weighted least squares formulation

but includes parameter uncertainty. Model parameters that were initially

considered uncertain in this work were the planetary masses (through the

dimensionless mass parameter H), the locations of the tracking stations, and the

solar reflectivity constant. In general, at the epoch of interest, the state

uncertainty is considered the consequence of the accumulated uncertainties in the
. 5,9-11

model, the parameters of interest, and the measurements

Orbit Determination Error Analysis Results

A survey of input error levels used in similar error analysis studies serves

as a valuable introduction. The values of these uncertainties may be used to

compute diagonal entries of input covariance matrices for an error analysis, or,

alternatively, may be used as error sources in a statlon-keeping simulation.

Table I lists the input error levels assumed in several error analysis studies.

The errors are denoted by the symbols generally used in the derivation sections of

this work. The solar reflectivity constant is k; the tracking site location

uncertainty is S and is input as an equal uncertainty level for each of the site

coordinates xs, y,, z,; range tracking is R; range-rate tracking is RR; and the

uncertain mass parameters are He for Earth, Hs for the Sun, and pa for the Moon.

The last column contains the uncertainty in dimensionless mass parameter H that

would be "equivalent" to the errors listed for the individual mass parameters.

(Recall that H = (He + Hm)/(P" + He + Hm) for the three-body system of interest in

this work.) The approximate value of _(H) (standard deviation of H) is calculated
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from extensive (10,000) Monte Carlo trials for each of these studies. An entry in

Table 1 of "--" means the particular study did not indicate if an uncertainty of

this type was used.

Table 1

SURVEY OF ERROR ANALYSIS INPUT ERRORS

STUDY

ONE STANDARD DEVIATION ERRORS

k S R

(km) Ckm)

Mistretta 13 ISZ -- .010

14
Joyce

Efron 15,17

Rodriguez-

16
Canabal

IOZ .002 .015

lOZ .002 .015

-- .010 .015

13Z .0003 .010Longuski 17

IThis Work 13Z .010 •015

RR

(m/sec)

.007

.002

• 002

.003

• 001

.003

_e _s _m

( • km3/sec 2 _ )

F
1.000

.3986

.3986

m--

.4903

.3986

3.08

xlO a

1.327

xlO 4

1.327

xlO 4

_m

4030.7

1.327

.0726 2.335

xlO -5

.0490 1.411

xlO -7

.0490 1.411

xlO -7

.0100 1.231

xlO -7

.0490 1.411

xlO -7xlO 4
i

The error analysis conducted here assumes a 20-day tracklng arc wlth 3 passes
14

per day from 3 tracking sites. These assumptions closely match those of Joyce
Using this tracking schedule and the R and RR measurement errors listed for this

work in Table 1, the Kalman filter produces error levels presented in Table 2.

Table 2

RESULTS USING A KAII{AN FILTER FOR ERROR ANALYSIS

ONE STANDARD DE"CIATION LEVELS OF STATE ERRORS

y (km) z (km) x (mm/sec) y (mm/sec) z (mm/sec)

1.600 4.450 .430 .775 2.250

The error levels listed in Table 2 are a result of a covariance analysis for
the halo-type nominal path. The magnitudes of the error levels listed in Table 2

are, in fact, quite small; when additional error sources, such as mass parameter
and station location uncertainties, are included in a consider covariance

analysis, the resulting state error levels increase. The results in Table 3 are

from a consider covariance analysis incorporating R and RR tracking, station
location, and mass parameter uncertainties at the levels listed in Table 1 for
this work.
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Table 3

ERROR LEVELS PRODUCED FROM CONSIDER COVARIANCE ANALYSIS

Coordinate

One Standard Deviation Levels

Halo-Type Orbit Lissajous Orbit

x (km) 1.46 1.25

y (km) 2.64 3.35

z (km) 4.81 3.19

x (mm/sec) 1.40 1.25

(mm/sec) 1.85 1.41

(mm/sec) 2.49 2.51

It certainly may be of great interest to compare the error levels found in this

effort with the results of other investigations involving spacecraft in halo (or

halo-type) orbits near the interior Sun-Earth libration point. Table 4 lists the

results of four studies that do not include solar reflectivity as an error source

and have small differences in the nominal paths and force models.

Table 4

COMPARISON OF ERROR ANALYSIS RESULTS FROM SEVERAL SOURCES

One Standard Deviation Error Levels

Coordinate Rodriquez-Canaba116 Sim6 is Sim619

x (km) 2.7 1.5 1.73

y (km) 3.9 2.5 2.24

z (km) 3.4 15.0 5.48

(mm/sec) 2.4 1.0 1.41

(mm/sec) 3.5 1.0 1.41

z (mm/sec) 1.3 3.0 2.45

This Work

1 46

2 64

4 81

1 40

1 85

2 49

The differences in error levels listed in Tables 3 and 4 may not be

statistically significant; that is, station-keeping costs, determined through
simulations using these error levels, may or may not differ statistically s'12.

The results using one derived control scheme and the data in Table 3 are
summarized in the next section.

STATION-KEEPING SIMULATIONS

For a collinear libration point orbit, a small deviation from the(unstable)

nominal trajectory can lead to rather large drift from the path in a short time.

In effect, a station-keeping algorithm must combat both the current drift from the

path in addition to the exponential increase in the drift that is expected if no

correction is implemented. Any delay in the control actuation may allow the drift

to increase and thus compound the station-keeping problem. The goal of the

station-keeping routine is then to keep the spacecraft "close enough" to the

reference trajectory. The allowable deviations may depend on the simulation

experience with a given control algorithm and on mission constraints, including

the propellant cost that can be tolerated and the minimal time between control
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inputs. When the spacecraft is "near" the nominal trajectory, it is reasonable to

model the deviations from the reference path using a linear analysis.

Derivation of Method

For the linear control scheme developed here, the state transition matrix is

partioned into four 3x3 submatrices as

¢(tk, te) = =

Ck_ Dkel k Dk
(17)

A Av input (a 3xi vector), with magnitude denoted as Av, is assumed to be added at

a time te. The Av (delta-velocity) is added to the initial velocity states in the

numerical integration routine in order to change the deviation of the spacecraft

from the nominal path at some f_uture time. In this derivation, _k is the position

deviation (a 3xl vector) and Vk is the velocity deviation (a 3xl vector) of the

spacecraft from the nominal path at time tk, with k = 1, 2, 3 and 4. If ;_ is the

residual velocity (a 3xi vector) and _e is the residual position (a 3xl vector)

relative to the nominal path at time te, then a A-_ input at tm could be used to

predict pk for k = 1, 2, 3 and 4. For instance, when the initial position Xe

includes an initial velocity perturbation re, a delta velocity _-_, and an initial

position perturbation _e, the state propagation equation results in

i= _(tk,te) Xe = ¢(tk,te)

k _+
(18)

The cost function used to derive this control scheme is

+ _ T _3 + ;_ Tv ;3 + _I U _4 + _I Uv _4, (19)

where Q is a positive definite weighting matrix and R, Rv, S, Sv, T, Tv, U, and Uv

are positive semidefinite weighting matrices. The cost function can be written in

terms of A-'_by usin E substitutions for _k and &_ with k = 1, 2, 3, and 4, derived
from Eqs. (17) and (18). The minimum is then Av =

-[Q+BTRBI + B_SB2 + B_TB3 + BIUB4 + DTRvDI + D_SvD2 + D_TvD3 + DIU_D4] -_

x[(BIRB_ + B_SB2 + B_TB3 + BITB4 + DTR_D_ + D_SvD2 + D_TvD3 + DIU_D4);_+

(BTRAI+ B_SA2 + B_TA3 + BIUA4 + DIRvC, + D S C2 + D_TvC3 + DIu c4)  ].

A simpler version of this controller can be used by setting, for instance, the

weighting matrices U and Uv equal to the 3x3 zero matrix. This modified

controller is the one used in the following section.

Comparison of Halo-Type and Lissajous Orbits

The cost of maintaining the spacecraft in orbit for 2 years is selected as

the comparison value. For each simulation run, tracking updates, with assumed

error levels listed in Table 3, are input every 20 days. Solar radiation pressure

uncertainty is also input as an error source with magnitude listed in Table 1.

The errors are modeled as zero-mean Gaussian random variables. Each simulation of

the station-keeplng algorithm will be a random trial with the random variable of
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interest being the total magnitude of the station-keeping costs (AVT) for the

2-year simulation. A sequence of 30 Monte Carlo station-keeping simulations

produces a random sample of 30 random variables. Sample statistics, such as means

and standard deviations, can then be calculated, and statistical tests can be

conducted to compare the mean control costs for halo-type and Lissajous

orbits 5'12 Table 5 contains the results of one set of simulations using 30 Monte

Carlo trials for each type of orbit.

Table 5

COMPARISON OF STATION-KEEPING COSTS

Lissajous Orbit Halo-Type Orbit

Av E AVT Std Dev Range Avg AVT Std Dev Range

(m/s) (m/s) (m/s) (m/s) (m/s) (m/s)

.8450 .1603 .57 - 1.15 .8124 .1233 .62 - 1.08

Statistical hypothesis tests conclude that the 2-year mean control cost, using the

two nominal paths and this particular controller, are equal. The conclusion of

equal station-keeping costs for all nominal paths near this libration point and

any control scheme cannot be drawn from this work.

Comparison of Station-Keeping Costs for Different Curve Fitting Options

Various curve fitting methods have been developed to model the nominal paths.

While cubic splines are used here, least squares curve fits for a trigonometric

series and linear interpolation routines have also been tested. The data in Table

6 summarizes efforts to date. The curve fits are indexed by the number of terms

included in the Fourier series. The cubic spline and linear interpolation schemes

are indexed by the time between points.

Table 6

COMPARISON OF CONTROL COSTS BY CURVE FITTING TECHNIQUES

Cubic Spline

Days between points = 3, 6, 9

Fourier Series

Terms Used = 28, 91, 121, 161

Linear Interpolation

Days between points = .5, I, 2, 6

Average 2-Year Cost (meters/sec)

1.234, 1.801, 10.324

9.577, 8.147, 1.419, 1.414

1.290, 1.307, 1.333, 38.604

EXPERIMENTAL DESIGN RESULTS

The process of interest here is station-keeping for a 2-year halo-type

Lagrange point orbit in the Sun-Earth+Moon elliptic restricted three-body problem.

The input variables include tracking errors (track), solar radiation pressure

(SRP) and mass ratio (mass) uncertainties, orbit injection errors (inject), and

thruster (thrust) errors. The outputs of interest are the 2-year control cost

(AVt) and its variance. Other inputs could be considered, and additional outputs,

such as the number of AV inputs required or the average separation time between

control inputs, could also be evaluated in future efforts. The relationship of

the inputs, the process, and the outputs is depicted in Fig. 3.
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INPUTS PROCESS OF INTEREST OUTPUTS

TRACKING ERRORS (TRACK)

SOLAR RADIATION PRESSURE UNCERTAINTY (SRP)

MASS PARAMETER UNCERTAINTY (MASS)

ORBIT INJECTION ERRORS (INJECT)

THRUST INPUT ERRORS (THRUST)

STATION-KEEPING

R-YEAR

CONTROL

COST (AVt)

AND ITS )

VARIANCE (S2(AVt))

Fig. 3 Process of Interest

For this analysis, a fractional factorial two-way design was selected in

order to limit the total number of runs. A fractional factorial 2S-I design 7

allows use of only 16 runs to plck out contributions of the 5 main inputs and I0

two-way interactions. The design matrix, with only the main effects listed, is
depicted in Fig. 4.

RUN INPUT VARIABLES

a b c d e=abcd

TRACK THRUST SOLAR MASS INJECT

I .... +

2 - - - + -

3 - - + - -

4 - - + + +

5 - + - - -

6 - + - + +

7 - + + - +

8 - + + + -

9 + ....

10 + - - + +

11 + - + - +

12 + - + + -

13 + + - - +
14 + + - + -

15 + + + - -

16 + + + + +

Fig. 4 Design Matrix

A full factorial would enable analysis of 5 main effects, I0 two-way

interactions, I0 three-way interactions, 5 four-way interactions, and I five-way

interactions. Generally, interactions above two-way are not significant

contributors to a model . The modeled interactions not depicted in Fig. 4 are ab,

ac, ad, ae_ bc, bd, be, cd, ce, and de. Note also that the main effect "inject"
is aliased with the abcd four-way interaction. The full factorial two-level

design would allow analysis of all possible interactions that could affect the

output. It would not allow curvature analysis (quadratic effects), but these

could be analyzed using a sequential central composite design approach 7.

Investigation of quadratic effects would be necessary only if confirmation runs

indicate poor agreement at the midpoint of the design space. The design space is

determined by the extreme values selected for each input. That is, the low and

high settings for each input determine the region over which the approximate
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output equations are defined. A large range for an input will also have a great

bearing over whether it will be found significant. For this design, the low and

high settings for each input are depicted in Table 7.

Table 7

LISTING OF DESIGN INPUTS AND SETTINGS

Input Settings

Low (-) High (+)

Track

x 1KM 3 KM

y 2 KM I0 KM
z 4 KM 15 KM

x dot .0010 m/sec .008 m/sec

y dot .0015 m/sec .010 m/sec
z dot .0020 m/sec .015 m/sec

Solar 2.5Z 15Z

Mass 1.231xi0 -7 5.000xi0-6

Inject

Each position coordinate

Each velocity coordinate

Thrust (each direction}

1.5 KM 50 KM

.001 m/sec .05 m/sec

2.5% 10%

These input settings are representative of those used in other orbit

determination error analysis and station-keeping studies. (See Tables I and 4.)

The resulting output equations for the predicted AV (here denoted as AO) and

natural logarithm of the output variance ( denoted as In(_)) are

A_ = 2.9348 + 1.3627 Track + .2953 Thrust + .0263 Solar + .0028 Mass

- .0904 Track-Thrust -.0605 Track-Solar -.0215 Thrust-Solar

- .0103 Track-Mass - .0065 Thrust-Mass + .0395 Solar-Mass +

- .0090 Solar-lnject + .0551 Thrust-Inject + .0094 Mass-Inject

- .0299 Track-Inject + .05 Inject, (20)

in(_) = 0.2027 + 0.5948 Track + .2334 Thrust + .1221 Solar + .0567 Mass

- .1614 Track-Thrust -.0959 Track-Solar + .0093 Thrust-Solar

+ .0517 Track-Mass + .0074 Thrust-Mass - .0297 Solar-Mass

- .0339 Solar-Inject - .0394 Thrust-Inject

+ .0238 Mass-Inject - .0127 Track-Inject + .0292 Inject. (21)

Additional experimental runs showed that the output model confirmed at the design

midpoint and at both extremes. Often, this sort of model is used to determine

optimal input settings: in order to minimize both AV and in(S) in Eqs. (20) and

(21), all inputs should be set at the minimum settings. However, a more realistic
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use of these equations is for sensitivity analysis: the size of the coefficient

of each input is a measure of that variable's influence on the output. These

results show that trackin E and thrust input errors are responsible for a larEe

portion of the control cost. By reducin E these two errors to their minimum,

nominal savings on the order of 50% are predicted.

CONCLUSION

With the continuinE importance of solar research, the use of libration point

orbits between the Sun and the Earth is both an interestin E and valuable area of

effort. The need for orbit determination error analysis in conjunction with

pre-mission station-keepinE simulations was the original drivinE force behind this

work. The results of three error analysis methods were compared with other

similar libration point studies. The outputs of the error analysis were the six

states' standard deviations. These error levels could then, in turn, be used as

error sources in Monte Carlo simulations of derived station-keeping routines.

With nominal paths that could be constructed as nearly periodic halo-type, or

distinctly quasi-periodic and smaller Lissajous trajectories, the error analysis

and station-keepinE results may differ by the type of orbit selected. Statistical

tests for the equality of the average 2-year control costs using halo-type and

Lissajous paths stronEly sugEest that there is no difference in mean

station-keeping costs. It should, however, be noted that the results are

presented for only one particular control alEorithm and for two specific nominal

trajectories. Experimental design methods are then used to determine the

approximate functional relationship between the input uncertainties and the output

2-year control cost. This type of functional relationship seems more useful than

a series of tabular entries of control costs, each corresponding to a different

set of input error levels.
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