
QUATERIIION NORMALIZATION IN SPACECRAFT ATTIT1J)E DETERMINATION
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Attitude determination of spacecraft usually utilizes vector measurentents such as sun, center of Earth,

star, and magnetic field direction to update the quaternion which determines the spacecraft orientation with

respect to some reference coordinates in the three dimensional space. These measurements are usually

processed by an extended Katman filter (EKF) which yields an estimate of the attitude quaternion.

Two EKF versions for quaternion estimation uere presented in the literature; namely, the multiplicative

EKF (NEKF) and the additive EKF (AEKF). In the multiplicative EKF it is assumed that the error between the

correct quaternion and its a-priori estimate is, by itself, a quaternion that represents the rotation

necessary to bring the attitude which corresponds to the a-priori estimate of the quaternion into

coincidence with the correct attitude. The EKF basically estimates this quotient quaternion and then the

updated quaternion estimate is obtained by the product of the a-priori quaternion estimate and the estimate

of the differe_e quaternion, in the eckditive EI(F it is aSSUlned that the error between the a-priori

quaternion estimate and the correct one is an algebraic difference between two four-tuple elements and thus

the EKF is set to estimate this difference. The updated quaternion is then coac_Jted by adding the estimate

of the difference to the a-priori quaternion estimate.

If the quaternion estimate converges to the correct quaternion, then, naturally, the quaternio_

estimate has unity norm. This fact was utilized in the past to obtain superior filter performance by

applying normalization to the filter maasurement update of the quaternion. It was observed for the AEKF

that when the attitude changed very slowly between measurements, normalization merely resulted in a faster

convergence; however, when the attitude changed considerably between measurements, without filter tuning or

normalization, the quaternion estimate diverged. However, when the quaternion estimate was normalized, the

estimate converged faster and to a lower error than with tuning only.

In last year's sye_oosium _e presented three new AEI(F normalization techniques and we compared them to

the brute force method presented in the literature. The present paper presents the issue of normalization

of the NEKF and examines several NEKF normalization techniques.
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I. I IITll_ loll

The noremlization of the attituck_ quaternion in the AEKF was presented in past work [1,2]. Several

techniques were developed and briefly tested. Those techniques included the following: brute force

normalization of the quaternion (BF), considering the nor_natized quaternion a spseudo-measurement' and

udpating the quaternion in the usual manner (OPN), considering the magnitude of the norm a 'pseudo-measurement'

and updating the quaternion in the usual mmner (NPM), and finally developing the AEKF algorithm with a

normalized attitude matrix, or the _tinearized orthogorualized matrix' normalization (LON). Each method was

shown to inlprove the attitude estimate and to speed convergence of the filter.

Several normalization techniques are also presented for the NEKF. We found that normalization in the

NEKF is necessary to avoid divergerme, even when the attitude does not change cor_siderak_ty between
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measurements. In the _KF there are three points in the _te cycle at Which normalization can be

perforf_ed. We present the method,'_ for each, al_ with QPM _ M_ methods, devel_ for the MEKF.

Each of the AEKF and NEKF methods are tested with data from a spacecraft in which the attitude does not

change considerably between measurements. Fine Sun sensor, Earth sensor, magnetometer, and gyro data are

used from each spacecraft. Finally, the results of the NEI(F normalization methods are compared to those of

the AEI(F. Tests using data from a spacecraft undergoing high turning rates are currently being conducted

but were not reach/ for publication in this paper.

In the next section we summarize the use of the AEKF and NEKF for attitude determination. In section

ill we explain the role of quaternion normalization in the AEKF and NEKF. In the following sections we

present each of the normalization methods for both fitters. Test results using simulated Earth Radiation

Budget Satellite (ERBS) and Upper Atmospheric Research Satellite (UARS) data are given in Section Vl and the

conclusions follow in Section V]l.

It. TiEE EICF ALGORITHM

The EKF algorithm is based on the following assumed models

System model: X = _(X(t),t) + w(t)

Measurement model: _k = _k(_(tk)) +-V-k

where: X(t) = state vector

_(t) = zero mean white process

_k = zero mean White sequence

(I)

(2)

The measurement update and the propagation of the state estimate and of the error covariance are performed

Xk (+) = Xk (-) + Kk[Zk " hk(_k(-))] (3)

Pk(+) = [! " KkHk]Pk(')[I " KkPk(')]T + KkRkKkT (4)

X(t) = _(_(t),t) (5)

as

Where:

f(_(t,t) I

P(XCt),t) = _ I

_(t) I

h(X(t))I

,(_(-))- I
_(t) I

P(t) = F(X(t),t)P(t) + P(t)Ft(X(t),t) + Q(t) (6)

X(t)= X(t)

x(t) = x(t)

Pk = estimation error covariance matrix

Rk = covariance of the White sequence , Y-k

Qk = spectral density matrix of the white process, _k

Kk = gain matrix

The state vector is given ms

Where: g = four quaternion co_oor_nts

= three gyro bias components

xT i gT0 bT l= I
L J

(7)
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Note that equation (3) is the combination of the following

Xk(+) = X k(-) +. _Xk(tk)

_(tk) = _k_k

=Z, "h_C__k(-))

where: Y-k = effective measurement or residual

Zk = actual measurement

hk(_k(-)) = the estimate of the actual maasur(mlent

(8)

(9)

(10)

The relationship between (3) and (8) has been presented in.past work (3]. The first four conq_ts of -_k

are corrections to the g estimate by the EKF,.c_=notecl as _. These are added to gk(-), the best estimate of

g, to give gk(+). The renmining elements in _-k are the corrections to the gyro bias which are also then

added to the best estimate of the gyro bias.

In the NEKF the quaternion elements of x are treated differently. The definition of x is given as

F 1

_T(t k) = I T _bT I (11)
L J

F 1

where: T = I t, e, # I = three small angles based on the assumption that the error quaternion is composed of

L J three small angles (vector) arid 1 (scalar)

_b = corrections to the gyro bias

The correction to the quaternion, given as dgk, is then constructed according to

dgTk= _ l_elv= I 1] (12)

and the quaternion is L_odated as

gk(+) : gk(-)dgk "1 (13)

t_hereas the gyro bias is L1:x_ated according to (8). The udpated gyro bias coml_ts arw:l gk(+) are auge_=nted

into the state vector (7). For further discussion of the NEKF see [4].

The dynamics for both filters has been presented extensively in previous work and wilt not be included

here. For reference see [1,2,3].

Ill. TIlE ROLE OF QUATERNION MOMMALIZATIOM

The state measurement upclate equations are given in (B) for the AEKF and in (12) for the NEKF. Unless

convergence has been attained, the t_0dated quaternion g(+), is not necessarily normal, even if g(-) is. We

know, however, that the quaternion which the algorithm is trying to estimate is necessarily nor_l. We can

then enforce normalization on gk(+) with the hope that the enforcement of this quality of the correct

quaternion will direct the estimated quaternion in the right track and will enhance its convergence.

Indeed, it was found in the past [2,5] that normalization is helpful. In particular, it was four=d that ut_en

the attitude varies slowly between maasurm_mts, normalization, sltho_Jgh not necessary, resulted in a faster

convergerme; however, when the attitude chat_gt_d raq_idly between measurements, either filter tunir)g or

normalization were necessary to avoid divergence. The use of normalization is supenior to tuning because,

first, tuning involves a tedious trial and error process, second, tuning is not a rolx_st solution, and

third, with quaternion normalization the final attitude estimate is closer to the correct quaternion.

iV. AEKF MOEMALIZATIOM TECNNIOUIE$

Following is a summary of the AEKF normalization methods. The details are given in [1].
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4.1 Brute Force Norlmtization (BF)

After _k has been computed in (8) the quaternion part of the state is normalized as

and is augmented into Xk(+). This method was first presented in [5], where it was shown that the operation

performed in (14) is equivalent (to first order) to

,akT"The final term, dCJk(+) , is a residual term, not found in (8) that must be compensated for in the

filter computations. This term is retained after the normalization is performed and accounted for in the

next stage of the filter operation. This mode of normalization does not affect the covariance computation

of the EKF [5]. This computatior_ constitutes an outside interference in the EKF algorithm and adds a

certain complication to the algorithm.

4.2 Quaternion Pseudo-measurement (QPN)

where: Hn, k

_n,k

In this algorithm the updated quaternion, 9k , is used to form a pseudo-measurement as follows

The pseudo-measurement Y'n k is, of course, a normalized quaternion.

on this measurement. The'relationship between the measurement Y-n,k

_,k = "n,k_ + -_,k

= diag[1,1,1,110..O]

= white measurement error

(16)

A measurement update is performed based

and the state vector is formulated as

(17)

The covariance, Rn,k, of _n,k is set to be the diagonal matrix

Rn, k = diag [r',rz,r_,r I] (187

where r is a small runber. By adjusting the value of r we determine the degree of the !reposed normalization

on qk(+).The QPN is performed after the state updatew so the apriori state estimate is X_k(÷). The output

of this update is the full state vector, not just the estimate of x which is the difference between _-k and

itS estimate X_k(+). The state update is performed as

: k (197

where Kn k is computed using the updated covariance which corresponds to Xk(+) and ti n k and Rn k above. The
. e . . f ,

covarlance is then recoccxJted according to (4) and the rte_ state and covarlance are propagated as before.

It is iq)ortant that r be well tuned. If r is too slmtt the fitter wilt attempt to replace the

quaternion estimate by the noPimtized quaternion, tiouever, a small r increases the variance of the

quaternion estimation error, and a high credibility is assigned to the normalized quaternio_ even when it is

not yet the correct quaternion. Wew measurements are not allowed to alter the quaternion estimate atld the

filter is stuck on a wror_ estimate. This required tuning gives the algorithm a disadvantage. This

disadvantage is overcome when the following normalization scheme is used.

;.3 Magnitude Pseudo-maasurefae_t (MPM)

In this scheme we use the square of the quaternion Euclidean norm, whose magnitude is assumed to be 1,

as the measurement; that is

526



Zn, k = 1 ÷ _ok (20)

where vn k is assumed to be s white measurement noise with variance r. This measurement quantity is a non-

linear f_ction of the quaternio_ coliC)orients. The effective measurement, Yn,k' is computed as

Yn,k = Zn,k " [q(+)1,k i + q(+)2,k z + q(+)3,k t + q(+)4,k *] (21)

Following the derivations of [1] this is rewritten as

Yn, k = I - Igj,kl'

and Rn, k = r. This method does not have the tuning problems of the QPM.

measurement of g is precise, it implies that the measurement of Igl t is precise. So the estimate of q does

not stick to a wrong vstue, since the variance of q doesnlt approach the value of r.

(22)

A smalL r does not impLy that the

4.4 Linearized Orthogonatized Matrix (LOM)

that

When the quaternion is of unit length the attitude matrix, A(g), is orthonormal.

1
.

A*(g) = -- A(g)

is orthonormal and is the closest ortho_rmal matrix to A(g).

rather than A(g), practically enforces normalization.

It was proven in [6]

(23)

Using A*(g) in the development of the AEKF,

V. MEKF NORMALIZATION TECHNIQUES

The normalization methods developed for the NEKF ere presented here. In contrast to the AEKF algorithm,

nonPalization is essential in the MEKF to avoid divergence. The first three methods, discussed in the

ensuing, force normalization during the udpate of the quaternion. The final two methods are pseudo-

measurement techniques similar to those presented for the AEKF.

5.1 Forced Normalization

After gk(+) has been computed in (13), normalization is forced as

No compensation is performed because no co_sequent divergence of the MEKF has been reported in the

{{terature [7]. We refer to this method as 'normaLized q'.

The next method of forced normalization is to normalize dg from (12). This is performed as

I=JI = (_l,k' + _Z,k' + %,k' * 1)_ (2S)

• dqi,k(*)/Idgl (26)i,u(*) :
dq4, k 1/Idgl

The normalized ckJ*k is then used in (13) to compute gk" This method is referred to as 'normalized dq,.

The final method forces norllmlization of the three small angles which for_, the attitude portion of the

NEKF state, given in (11). Each of the angles is scaled to yield

t* = 2lilt = + e' + _= + 4] _ (27a)

• 4]_• = 2el(t= + e = + _= + (2To)
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f* - 2_/[0' + O= + #= + 6]_ (27c)

The elments of 49 are computed ms

Ckll,k:= _4: (28a)

dq2,k * = Y_. (28b)

, dq3 k = _ (28c)

ckq4, k = 21C_ z + e' + ;= + 43 _ (28d)

t

Performing the scaling given in (27).results in the clg given in (28) being normal, The normalized

is then used in (13) to compute _k(+). This method will be called 'normalized alpha', in reference to

the vector, i, of sa_all angles in (11)•

These methods constitute an outside interference in the NEKF algorithm. The covariance matrix is not

affected. The complication of co_l_sation is not added sine divergence was not detected•

5.2 Quaternion Pseudo-measurement (QPN)

In this method we normalize the small angles of (11) and use them as the ,pseudo-n)easurenrRnt,.

retationship between dg and the angles is given in (12) and is repeated here.

Normalizing dg gives

_1 = ;/2 c_2 = ;/2 _ : ;/2 ck:[6 = 1 (29)

dq i
dq i =

(dql_ + dq2' + d_'+ 1)

(30)

The

Use (30) in (29) to obtain

*w = (31.)
"/k = (31b)

= (31c)

or

/r *11r "lie= I:d[,, e = pe, ; = I:W (32)

where p = 2(0' + e = + _' + 4) "_

Mote that dq4 is not a part of the fitter state. Me assign it a value such that dg
will be nor_l after the

OPN update. Following is a summary of the algorithm computations in the order in which they are performed by

the filter.

First p from (32) is computed using the updated angles of (10). The pseudo-measurement _ is the_

comrxJted as

z 1 = 1=4t z 2 = Pe z3 = I_ (33)

The vector ! is related to the state vector as z = Mx + n, where x is given in (10). The measurement

matrix, Hn, and the noise covariance matrix, Rn, are, therefore, defined as

= [X3x ] IzO3x 3] (34)
H = [diag r ]3x3 (35)

where r is a small numer. A Kalman update is performed and the hem covariance matrix is ccqouted as follows

Kn = PC+)HnT[HnP(+)Hn T + Rn ]'1 (36)
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_x (÷) = x(+) + Kn[Z - Hrr_X(÷)]

KnHn ]T Tp*(+) = (I - KnHn)P(+)(I - + KnRnK n

(37)

(38)

mere P(+) = updated covariance matrix (before normalization)

x(+) = results of measureee_t update given in (9),

with x I = t, x 2 = B, x3 = A

The elements of _ are computed as

°I "_ "W

where the angles, # , • , and

computed as

c:_* 2 "* = /_*/2 (39)mI." =,*]2 :&*/2 uq3

+ "I

are the first three c+ts of x*(+). The fourth element of

"t

= 2(1' + e' + _' + 4) "y+ (40)
ckq 4

is

Finally, the quaternion is computed using (13).

g k (+) = gk(+)_ (41)

This method exhibits the same tuning probtm as the AEKF OPM. Here, too, it is iq_ortant that the r

be welt tuned to avoid getting the quaternion estimate stuck on the wrong value. Again this presents

somewhat of a disadvantage for this method.

5.3 Magnitude Pseudo-measurement

This method uses the magnitude of the normalized angles (10) as the measurement. Recall from (32)

p= 2(_' +e' +_, + 4) "_ (42)

We use p to normalize the angles

#n = p#' en = Ioe' #n = 1o_ (43)

Following (11), we rewrite (44) as

_=_ (44)

The magnitude of =
-n

is related to the estimate of the individual angles as follows

I_1' = p'(t' + e' + _') (45)
71"

The measure_mt z is defined as

z ffi I_1' ÷ n (46)

The effective measurement to be processed by the NEKF is then given ms

y = z -I_1' (47)

We need to express y as a linear combination of the difference between a_n and _.

(47) yields

Substituting (46) into

=

y = I.%.,I,+n - I_I' (48)
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Define 6_ as

Substituting (49) into (48) gives

r . . 1

L J

(69)

y : (# ÷ 6t) z + (e ÷ &e)= ÷ (# ÷ 6_) z - (t:*e:+_ :) - n

NegLecting squares of &#, &e, &_ yields

(50)

(51)

or .I'.I

I,_9 I

k J

(S2)

This defines the measurement matrix, Hn, as

, = (2;, 0, 0, 05 (53)

The _ algorithm is then carried out as foLLows.

First p= is computed and used to obtain y.

y = (p= - 1) (54)

Then Hn is computed and a malt vatue is assigned to r, the uncertainty corresponding to n of (66).

Kalman update is performed and the covariance is updated.

Kn = P(+)HnT/[HnP(+)Hn T + r! (55)

X*(+) = _(+) + Kn[Y - Hn_X(+)] (56)

t

P (+) = (! " KnHn)P(+)(! - KnHn ]T + KnRnKn T (57)

where PC+) = updated covariance matrix (before normttzation)

x(+) = resutts of measurement update given in (9),

with X 1 = t, X2 = e, X3 • J

The normalized dg is then constructed.

-/t

Again, since dq 6

update.

"/_ "tt "/t "/_ "1l "/t

dq 1 =_ ' dqZ =_e , dq3 =Y_ (58)

is not a part of the state we assign it a value such that dg wilt be nomat after the le_

dq6"* • 2(9*' + e*= + _*' + 6) "_ (59)

The quaternien is then updated according to (13).

*t " "t° 1

g k (+) = gk(+)dg (60)
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This method is not subject to the tuning proi_lems of the QPN for the same reasons as those given above

for the AEKF NPN.

V[. ItESlA.TS

The algorithm presented in this paper were tested using clean, nominal simulated data from the Earth

Radiation Budget Satellite (ERBS) and noisy simulated data from the Upper Atmospheric Research Satellite

(UARS). Two UARS datasets were created. One contains simulated data from a nominal 1 revolution per orbit

(RPO) attitude and the other contains a 0.5 deg/sec simulated yaw maneuver. The ERBS data is taken with the

spacecraft in its nominal 1 RPO attitude. The initial attitude error was 5 degrees aM the value of r for

the QPN and NPN algorithms was 10 -5 for both the AEKF and the NEKF. We studied the behavior of each

algorithm early, which we refer to as the transient period, ancl after convergence was achieved, which we

refer to as steao_y state. Note also that each of the figures included starts with the first update, not with

the initial attitude error of 5 degrees.

We first cocMoared the AEKF normalization algorithms. All of the methods, including not normalizing at

all, converged quickly. Figure 1 shows the first 5 seconds using ERBS data. The BF converges the quickest

and the LON the stowest. The QPN an(/ NPN are similar to not normalizing. Figure 2 shows the transient

period using the 1 RPO UARS data. ALL the methods converge quickty; the QPN has a slightly lower initial

RSS attitude error. In the stea<ly state, all the methods, including not normalizing at all, achieved

similar, low RSS attitude errors. Figure 3 shows results from the UARS yaw maneuver. The LON has the

lowest error.

For the NEKF, normalization was fo_d to be essential. Figure 4 shows the NEKF transient results from

the UARS 1 RPO data. ALl the methods converge quickly. The results of not normalizing don't converge as

low as the normalization results, and beyond the 10 seconcis shown begin to diverge. In steady state, all

the normalization methods achieved low RSS attitude errors. Figure 5 shows resutts from the UARS yaw

maneuver. The three BF methods are slightly better than the QPN and NPN methods. Figure 6 shows steao_/

state results, using ERBS data, for the three BF methods. The 'normalized dq' and 'normalized alpha'

results are slightly better than the 'norlnalized q_ results.

Finally, the two filters were compared. Figure 7 shows the BF method for the AEI(F versus the

'normalized dq m method for the NEKF, in the transient period, using ERBS data. The AEKF converges a little

faster than the NEKF. Figure 8 shows the stea<Ff state results from the UARS yaw maneuver, comparing the

AEKF LON and BF to the NEKF 'normalized q'. The NEKF 'normalized q' method has a tower RSS attitude error.

The results of these comparisons of the two filters, in both the transient and stea<_y state periods, were

found to be true for the other methods as well.

VI l. CONCLUSIONS

We four_J that all of the normalization mathoda presented work well and yield comparadole results. In

the AEKF, normalization is not essential since the data chosen for the test ck)es not have a rapidly varying

attitude. In the NEKF, normalization is necessary to avoid divergence of the attitude estimete. When the

spacecraft experiences low angular rates, all of the methods for each of the filters have similar behavior.

The choice of which algorithm to select as superior depc, r_s on the complexity of each algorithm. The

pseudo-maasureamnt techniques, for both the AEKF and NEKF, blend the normalization into the Kalman filter

algorithm, but they don't represent an actual physical measurement, and are therefore somewhat obscure in

their derivation. In addition, the QPN method requires the axJded burden of tuning. The AEKF BF algorithm

is complicated by the need to cowc_ate. The LON method blends naturally into the filter develof_lment,

using a normatized attitude to derive the fitter update equations. The LON is the slowest to converge but

achieves the lowest RSS attitude error. In the NIEKF, the brute force technique of normalizing the

quaternion is the easiest to implement and is the most straight forward, but the other two brute force

techniques have slightly better performance. All of the algorithm wilt be further tested with data from

UARS undergoing a high turning rate. This may help to deterline _ich of the algorithm, for each of the

fitters, his the best performance and may further sub6tantiate the claim that under high rates no_lization

helps Sl:)a_-dconvergence and eliminate the need for tuning.

531



0.8

"_ 0.6

lm

_m

1,1,1
0.4

__=
<

O.2

o.o

i
MPM

QPM and No Normalization

BF

0 1 2 3 4 5

TIME (sec)

Fig. 1. ERBS AEKF: BF, QPM, MPM, LOM and No Normalization

A

o_
G)

"o

I.g

o
"o

41.

10

BF, LOM, MPM, and No Normalization

/

/
QPM

Fig. 2

4 6 8

TIME (sec)

UARS AEKF: Noisy Data, 1 RPO Attitude

10

532



O.O3332

A

o_

"o

I,LI

'10

,,¢

O3
O3
n-

O.O3330

0.03328

0.03326

0.03324

0.03322
8O

NONE QPM

"_ /,_.

MPM

BE

,*°. ....... •....... .. ...... "_
Oo....... *" ............ • .........

• _ ...... • = " ....... °_ .............. • ........ • ...... J ....... •. .............. • ....... • .............................;o__ .............."....---*....r ...... "---_ ...... .

I

90 100

TIME (sec)

Fig. 3. UARS AEKF: Yaw Maneuver, Noisy Data

o)

"o

I--

o
L.

IJJ

"o

O3
O3

o

0

MPM, Normalized q, normalized alpha, and none

7
OPM

J

Fig. 4.

None

QPM '_'
I I 1 I

2 4 6 8

TIME (sec)

UARS MEKF: Noisy Data, 1 RPO Attitude

533



0.03324

A

d,)
"O
v

uJ

G)
"o
-.I

03
03
n."

O.O3323

0.03322

8O

.

_'', QPM

, --, /

_ ' .... MPM

'-_ _ '...., /
_ ........_...f .....;<.....

, ,

Methods

1 '

90 100

TIME (sec)

Fig. 5. UARS MEKF: Yaw Maneuver, Noisy Data

0.0090

o}

"o

t,
1=.

tu

"o

.m

03
03
n-

o. oo85

0.0080

0.0075

lOO

i I
I I
I I

II
I I

Normalized q

|1
II I !m'_1 I I

t I1 'VI I

Normalized dq and alpha _1

I i
i I

i I I

ii ;I

I U
!

I/ I
! l

I
I

Fig. 6.

!

150

TIME (see)

ERBS MEKF: Normalized q, dq, and alpha

2OO

534



0.8

A

In

uJ

G
"o
"1

°_

Or)

0.6'

0.4,

0.2

0.0

_ z_Normalized dq

AEKF BF

",, \ /

I I w I

0 1 2 3

TIME (SEC)

I

4 5

Fig. 7. ERBS BF Normalization: AEKF vs MEKF

A

o)
o

qD

t,.

ill

G)
"0
:3

03
(/)

0.03325

O.03324

0.03323

AEKF BF

"_'t % /

---_

"''' ; .... ",%..
--_ %--, •

I "--'-'% ""\ '
.°.1

----___j --_

7-,--,z
AEKF LOM

MEKF Normalized q

0.03322 i
80 90

,b ......

x_.

TIME (sec)

O0

Fig. 8. UARS AEKF LOM,BF vs MEKF Normalized q: Yaw Maneuver, Noisy Data

535



IX. REFERENCES

1. Bar-ltzhack, I.Y. and Deutschmann, J., "Ouaternion Normatization in Additive EKF for Spacecraft Attitude

Determination", Flight Mechanics/Estimation Theory Symposium, NASA Gocldard Space Ftight Center, May 1991.

2. Bar-ltzhack, I.Y. and Deutschmann, J., "Extended Katman Filter for Attitude Estimation of the Earth

Radiation Budget Satellite", AAS Astrodynamics Conference, Portland, Oregon, Aug. 1990.

3. Deutschmann, J. and Bar-Ztzhack, I.Y., " Extended Kalman Filter for Attitude Estimation of the Earth

Radiation Budget Satellite", Flight Mechanics/Estimation Theory Symposium, NASA Goddard Space Flight Center,

May 1989.

4. Ber-Itzhack, I.Y. and Harman, R.R., "True Covariance Simulation of the EUVE Update Fitter", Flight

Mechanics/Estimation Theory Symposium, NASA Goddard Space FLight Center, May 1989.

5. Bar-ltzhack, I.Y. and Oshman, Y., "Recursive Attitude Determination from Vector Observations:

Quaternion Estimation", IEEE Transactions on Aerospace and Electronics Syster_, Vol. AES-21, Jan. 1985,

pp. 128-136.

6. Giardina, C.R., Bronson, R., and Watten, I., "An Optimal Normalization Scheme", IEEE Transactions on

Aerospace and Electronics Systems, Vot. AES-11, July 1975, pp. 443-446.

7. Murrell, J.W., "Precision Attitude Determination for Multimission Spacecraft,,, AIAA Guidance and Control

Conference, Pato ALto, CA, August 1978.

536


