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The North Atlantic Bloom Experiment (NABE) of JGOFS presents a unique

opportunity and challenge to the data management community because of the

diversity and large size of biogeochemical data sets collected (Figure 1). NABE was

a pilot study for JGOFS and has also served as a pilot study within the US NODC

for management and archiving of the data sets. Here I present an overview to some
of the scientific results of NABE, which will be published as an Introduction to a

special volume of NABE results in Deep-Sea Research later this year. An overview
of NABE data management is given elsewhere in the present report.

This is the first collection of papers from the Joint Global Ocean Flux Study

{JGOFS}. Formed as an international program in 1987, JGOFS has four principal

elements: modelling and data management, multidisciplinary regional process

studies, a global survey of biogeochemical properties and long-term time series
observatories. In 1989-90 JGOFS conducted a pilot process study of the spring

phytoplankton bloom, the North Atlantic Bloom Experiment (NABE). JGOFS

decided to conduct a large scale, internationally-coordinated pilot study in the
North Atlantic because of its proximity to the founding nations of the project, the

size and predictability of the bloom and its fundamental impact on ocean bio-

geochemistry (Bfllett et al., 1983; Watson and Whitfield, 1985; Pfannkuche, 1992}.

In 1989, six research vessels from Canada, Germany, The Netherlands, the United

Kingdom and the USA and over 200 scientists and students from more than a

dozen nations participated in NABE. Some of their initial results are reported in
this volume.

The spring bloom in the North Atlantic is one of the most conspicuous
seasonal events in the world ocean. Coastal Zone Color Scanner (CZCS) imagery

shows that the bloom is manifested as a sudden explosion of ocean color which

fills the basin north of about 40 degrees latitude in April and May each year (see

cover; ESAIAS et al., 1986; US JGOFS, 1989). It must seem surprising to anyone

examining these beautiful images to learn that until the early part of this century,
there was scant mention of the bloom in the literature at all. As MILLS (1989, p.

121) states:

"A phenomenon as striking as the sudden appearance of phytoplankton

cells during spring in temperate and high latitudes should have been

noted very early, perhaps even incorporated into fishermen's folk- wis-

dom. Yet there is little mention of phenomena that in modem terms would

be called the spring bloom in the scientific literature of the early nine-

teenth century...Plankton blooms, during the first decade of the twentieth
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century, were reified; the concept became the expression of a new and
influential approach to the biology of the seas."

Mills describes how the bloom concept was defined by the Kiel School of

oceanography following Victor Hensen's pioneering Plankton Expedition of 1889

(Mills, 1989). Later the concept was formulated in quantitative terms by Riley

(1942) and Sverdrup (1953), following on the initial model provided by Gran and
Braarud (1935; see Platt et al., 1991 for a recent discussion). NABE was a

centennial celebration of Hensen's expedition (Ducklow, 1989).

Figure 2 shows the oceanographic context of NABE. In the eastern North

Atlantic, deep convection in late winter supplies the upper ocean with 2-14 [mu] g-

atoms ([mu]Mol) of nitrate which supports new primary production following
restratiflcation in April-May. In the absence of removal by zooplankton, this

process culminates in the accumulation of phytoplankton biomass. Seven primary

locations were occupied during NABE in 1989 (Table 1). Stations at 18 at 72 North

were only visited by the METEOR (FRG) during the Hensen centennial "Plankton

89 - Benthos 89" expedition. Passow and Peinert (1992) provide a brief overview of

conditions at 18 North in their paper on plankton and particulate fluxes. The

stations in the western Atlantic were part of the Canadian JGOFS "Western

NABE." HARRISON et al. (1992) is an in-depth analysis of upper ocean processes

at the 40 West stations. The stations at 47 and 59 North were studied intensively
during multiple occupations by Germany, The Netherlands, UK and USA. Lochte
et al. (1992) and Weeks et al. (1992) summarize multinational observations on

plankton ecology, chemistry and physics at 47N and 59N, respectively.

NABE investigations took place in a region of the ocean with strong mesoscale

eddy structure and horizontal advection. Pingree (1992) describes drogue studies

of currents in the study region. Robinson et al. (1992) report an altimetric study

which revealed the existence of three anticyclonic eddies and other complex

mesoscale and submesoscale variability in the 47N study area Figure 3). The
structure of chlorophyll fields sensed by airborne LIDAR (Yoder et al., 1992; Hoge

and Swift, 1992) coincided at the same spatial scales as the physical field,

indicating intimate causal connections between the mesoscale circulation and

biological dynamics of the bloom (Figure 4). Most of the larger scale variability in

the chlorophyll field was oriented in the North-South direction, as originally

hypothesized. Complex hydrographic structures in the southem part of the NABE

study region were observed during the METEOR occupations at 18 North (Podewski
et al., 1992).

Perhaps the most important early scientific contribution of NABE is the

development and refinement of analytical techniques for CO2, and the collection

of a large data set on seasonal and spatial trends in surface pCO2 (Watson et al.,

1991). Less than a decade ago, as JGOFS was first being discussed, Brewer (1986)

asked, "What controls the variability of C02 in the surface ocean?" After NABE,

there can be little argument that in temperate seas, this variability is strongly tied

to the dynamics of the bloom. Chipman et al (1992; Figure 5) and Goyet and
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Brewer (1992) observed that CO2 was depleted in the upper 150 m at 47N by 2820

[mu]mol m-2 during the bloom, and point to the importance of specifying small-
scale variations in surface CO2 which can have a large impact on our estimates of
air-sea fluxes.

Phytoplankton blooms are driven by an excess of production over consump-
tion and export, leading to accumulations of biogenic material in surface waters.

Several papers in this volume report rates of primary production in excess of 80
[mu]mol C m-2 d-1 (1000 gC m-2 d-I or ca 3000 [mu] mol m-2 over 36 d; Figure

6), a figure agreeing well with the direct observations of CO2 depletion reported by

Goyet and Brewer. Chipman et al (1992) also show that 14C estimates of primary

production in bottles were consistent with direct observations of CO2 depletion in

the mixed layer (Figure 7). Martin et al. (1992) report on determinations of trace

metal contamination in productivity bottles used by NABE investigators. Their

findings, in conjunction with the comparisons Just described, suggest that when

performed carefully using moderate clean technique, the NABE productivity proto-

cols yielded a high-quality data set (Figure 8). Marra and Ho present a 2-

dimensional (Z-t) model which represents the triggering of the bloom following

restratification at 47N. A related approach stressing the importance of diurnal

heating is given in Taylor et al., (1992). Gardner et al. (1992) used a transmissom-
eter to demonstrate both diurnal cycles and a longer term increase in small

particle stocks, both of which phenomena were closely tied to bloom dynamics

(Figure 9).

High rates of new production during blooms are supported by high concentra-

tions of nitrate supplied during winter mixing. Koeve et al., (1992) observed great

spatial variability in nitracline depth at 18 North, where nitrate was already

depleted in the surface layer. Although models predict that under bloom condi-

tions up to 70-80% of the total primary production may be supported by nitrate

(new production; Fasham et al., 1990), NABE observations generally indicated

lower f-ratios of 30-45% (40W: Harrison et al., 1992; 59N: Sambrotto et al., 1992;

47N: Martin et al., 1992). These findings suggest that processes supporting

regenerated primary production such as grazing and microbial activity were
already proceeding at comparatively rapid rates during the bloom. Determinations

of the size distribution of primary (Jochem et al., 1992; Joint et al., 1992) and new

(Sambrotto et al., 1992) production indicated that over 50 % of the production was

by ceils less than 5 [mu]m, which tend to be more closely coupled to regenerative

processes than larger cells like diatoms and dinoflagellates.

Studies of heterotrophic plankton ecology and rate processes were an impor-

tant feature of NABE which confirmed the hypothesis that supplies of regenerated

nutrients were abundant during the bloom. As expected, mesozooplankton (largely

copepods) contributed just a small portion to the plankton biomass, and grazed

only a few per cent of the daily production (Figure 10; Morales et al., 1991; Dam et

al., 1992; Harrison et al., 1992). Several papers estimate that the contribution of

mesozooplankton fecal pellets to measured vertical export rates, ranged from ca

10-100%. Passow and Peinert (1992) found that viable diatoms made up about
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30% of the vertical flux at 33N. Head and Home (1992) speculate that in future
studies, analyses of phaeophorbide pigments in sediment traps might characterize
the balance between grazing and diatom autolysis as contributors to the export.

Another key finding of NABE was the unexpected importance of microbial
activities during the bloom. Simple models of bloom dynamics postulate a period
characterized low grazing and high exports of uningested diatom cells. In contrast,
NABE investigators on both sides of the Atlantic observed rapid successions of
pigments, phytoplankton (Figure 11) and microzooplankton following the onset of
the bloom at tropical to subpolar latitudes (Barlow et al., 1992; Sieracki et al.,
1992). Veldhuis et al., (1992) document postbloom summer phytoplankton com-
munity structure and dynamics. A large and diverse fauna consisting of
nanoflagellates, ciliates and dinoflagellates (Burkill et al., 1992; Verity et al., 1992)
consumed up to 100% of the daily production at 41- 47W, and 47-59N. An
interesting speculation arising from NABE is that this intense activity by protozo-
ans not only fuels primary production by ammonium and urea excretion, but also
drives the vertical flux through predation by mesozooplankton {Weeks et al.,
1992). Thus although mesozooplankton herbivory was insignificant, these larger
animals may have exerted top-down control on the grazer assemblage and contrib-
uted to the vertical flux by repackaging smaller grazers into fecal pellets. Such a
scenario may explain the high rates of mesozooplankton respiration discussed by
Lenz et al., (1992). Honjo and Manganani (1992) present their observations of
fluxes to the deep sea at two NABE stations.

Grazer activity may also have stimulated bacterial production. A bacterial
bloom lagging the phytoplankton bloom by 10-20 days was observed at 41-47W
and 47-59N (Li et al., 1992; Ducldow et al., 1992). Bacterial production averaged
20-30% of primary production it was unlikely that these levels were supported by
exudation from phytoplankton. Grazer-mediated release and particle decay (cf
Martin et al., 1992) are logical sources of sustenance for the bacteria. The large
pool of dissolved organic carbon (DOC) may also have contributed to bacterial
production. Kirchman et al., (1991) observed that bacteria utilized 25% of surface
DOC (50 [mu]mol kg-l} in experiments conducted at 47N. Lochte et al. (1992)
suggest that bacteria using DOC at efflciencies of ca. 20-30% could explain net
consumption of 110 mMol m-2 d-1 at 47N. Based on NABE measurements of DOC
stocks, Peltzer et al (1992) and Martin and Fitzwater (1992) suggest upward
revisions of the size of the oceanic DOC reservoir to 1680-1800 Gt. Are
bacterioplankton the filter through which DOC produced by plankton in the upper
ocean passes into the ocean interior? The processes responsible for forming and
_j-cling the oceanic DOC pool are Just beginning to be addressed. NABE continued
in 1990 with coordinated studies by the UK, Germany and The Netherlands.
Savidge et al., (1992) described the ambitious attempts by BOFS to conduct
Lagrangian observations of the bloom in the eddy field between 46 and 50 North.
Lagrangian studies of the survival and evolution of microbial communities in
Mediterranean outflow eddies ('Meddies") studied by the French JGOFS program
are presented by Savenkoff et al., (1992). Pfannkuche (1992) presents time series
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observations of the benthic response to organic matter sedimentation at 47 North
between 1985-1990.

NABE, the first JGOFS process study and first large- scale multinational
study of ocean biogeochemistry, has revealed that the North Atlantic phytoplank-
ton bloom was a complex phenomenon with many unexpected features. Its most
surprising attribute was intense nutrient regeneration activity supported by large
stocks of microbes, and presumably, high rates of respiration. Yet over the 30-40
day observation period at 47N, CO2 was depleted from the mixed layer with great
efficiency, at about 75% of the rate of primary production. This apparent paradox
calls into question the oft-quoted identification of C02 drawdown with new

production, and requires new models of bloom dynamics for its resolution. The

strong connection between the mesoscale physical and biogeochemical fields
demonstrate the need for eddy-resolving coupled circulation/biogeochemical models

to help understand oceanic blooms.
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borne oceanographic LIDAR (AOL}. Deep-Sea Res. {Special NABE Volume, in

press}.

Table I. JGOFS North Atlantic Bloom Experiment.
Operations at main stations in 1989.

Station Dates Nations Deep Traps

18N, 31W 23.8 - 8.4 FRG m

33N, 20W 13.4 - 25.4 FRG USA

30.8 - 7.9 NL

40N, 47W 27.4 - 4.5 CAN

45N, 41W 8.5 - 13.5 CAN

47N, 20W 24.4 - 9.5 USA FRG, NL

5.5 - 24.5 FRG UK, USA

11.5 - 18.5 UK

18.5 - 31.5 USA

1.7 - 8.7 UK

16.7 - 26.7 UK

10.8 - 25.8 FRG

22.8 - 25.8 NL

59N, 20W 19.4 - 20.4 USA UK, FRG

25.5 - 5.6 UK

26.5- 10.6 FRG

6.6 - 7.6 USA

14.6 - 21.6 UK

30.6 - 5.7 USA

19.7 - 8.8 FRG

3.8- 10.8 UK

5.8- 17.8 NL

72N, 8W 16.6- 10.7 FRG FRG

Other

drifting traps

drifting traps

NASA overflight

drifting traps

drifting traps

drifting traps

NASA overflights

Geosat altimetry

drifting traps

NASA overflights

ONR MLML mooring

drifting traps
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