
PRE@EDtPiG PAGE BLA,_!K ?,lOT F1LM_ED 22g

N93-24935

Data Management for JGOFS: Theory and Design

Glenn R. Flierl, James K.B. Bishop, David M. Glover,

Satish Paranjpe

Introduction

The Joint Global Ocean Flux Study (JGOFS), currently being organized under

the auspices of the Scientific Committee for Ocean Research (SCOR), is intended
to be a decade long internationally coordinated program. The main goal of JGOFS
is to determine and understand on a global scale the processes controlling the

time-varying fluxes of carbon and associated biogenic elements in the ocean and

to evaluate the related exchanges with the atmosphere, sea floor and continental

boundaries." "A long-term goal of JGOFS will be to establish strategies for observ-

ing, on long time scales, changes in ocean biogeochemical cycles in relation to

climate change." Participation from a large number of U.S. and foreign institutions

is expected. JGOFS investigators have begun a set of time-serles measurements

and global surveys of a wide variety of biological, chemical and physical quanti-
ties, detailed process-oriented studies, satellite observations of ocean color and

wind stress and modeling of the bio-geochemical processes. These experiments

will generate data in amounts unprecedented in the biological and chemical

communities; rapid and effortless exchange of these data will be important to the
success of JGOFS.

Microcomputers and workstations have dramatically altered the gathering

and analysis of oceanic data. While the convenience and ease of use of these
machines make them ideal for an individual working on his or her data, the

process of exchanging data or collecting relevant information from archived data
sets is still difficult and daunting. Everyone uses different formats with different

procedures for manipulating data; there is relatively little chemical and biological
data available in the archives at NODC and it must be ordered in batch and arrives

on a magnetic tape. We believe that this difficulty can be overcome--it should be

possible for the user of a small computer connected to a network to be able to
locate and work with data at NODC or indeed anywhere in a distributed data base

without regards to its location or format.

Envision being able to sit at a microcomputer and ask what sets of phosphate
data are available and then, based on the reply, ask for some suitable subset. The

data could be imported to your local storage where it would arrive in the format

you are accustomed to using for your own data or it could be used directly for

creating a plot or as part of a calculation. Essentially, the JGOFS distributed data

archive, as well as large amounts of historical data, would appear to be an

extension of one's own data base--as readily available and as familiar in struc-

230 Proceedingsof the OceanClimateDataWorkshop

ture. The user would not need to know where the data is physically located nor
how it is actually stored. We believe that the synthesis of the data from large
experiments can only be accomplished when this kind of data exchange can occur
(see Codd, 1990 for a discussion of the advantages and disadvantages of distrib-
uted database management).

Approach

Our approach to data management has been to construct a system in which

the data (ideally) is not gathered into a central archive but rather resides at the

originator s site and represents the PI's current best version of the data set. The
storage format is likewise the PI's choice. Others can access the data without

regard to storage method or location.

We are faced with requirements to manage and integrate extremely diverse
sets of data. At the same time, many of the potential JGOFS PI's do not have

extensive experience with large computers and data bases. With the rapidly

growing capabilities of microcomputers and greatly reduced cost of workstations,
however, we expect that most data gathering and preliminary analysis will be done
on such machines. Based on these considerations we have built our JGOFS data

system to satisfy two primary requirements: 1) A simple, usable, and flexible data
base for micros/ workstations which can be used for data management of an

individual PI's data sets and those which he or she collects from other investiga-

tors and archives. 2) Straightforward (or if possible even transparent) linkage to
data sets on networked (SUN, VAX ... Cray) machines. Many data base programs

exist for small machines and, in and of itself, there is little value in developing

another one. Rather, we have begun building an "object-oriented" (to be defined in

more detail below) data base which has many unique features making it especially

suitable for experiments such as JGOFS and WOCE. For the new initiatives on

Global Change, data management will likewise be of fundamental importance

(Nail. Acad. Sci., 1991). Systems such as ours provide the flexibility to handle

such widely diverse data sets from many different sites and to integrate the
information into useful form.

Object-Oriented Data Bases

The basic element of the so-called "object oriented" programming languages

and systems is an "object" which is a combination of data and programs capable of

manipulating both the internal data and information passed from outside (Fig. I).
(We summarize the unfamiliar terms in Table 1 for reference.) The user does not

deal directly with the internal information (and is therefore shielded from the

complexities of its storage and format) but instead communicates with the pro-

gram part of the object by passing it "messages" which cause it to calculate the

appropriate response and return a message to the inquirer. Thus, the details of

the manipulations are also generally hidden from the user; rather each object can

receive a documented set of messages to which it responds with a documented set

Glenn R. Fllerl, dames K.B. Bishop, David M. Glover, Satish ParanJpe 231

of replies. We shall call the program part of the object the "method" (this terminol-
ogy is a little simplified over that of object oriented languages such as SMALLTALK).

Object-oriented languages are gaining popularity because their modular struc-
ture allows building complex programs from simpler, individually tested compo-

nents. Refer to Meyer (1988) and Date (1990) for discussions of this type of

language. A more recent review, by Wegner (1990) describes detailed distinctions
between conventional systems and those built using "object-based" or "object

oriented" techniques for structuring. The inherent modularity of object-oriented

programming allows for rapid testing of new ideas and easy changes, since usually
only one object is involved and the other objects which have been combined to

perform some operation can proceed unchanged (Waldrop, 1987).

Table 1 Definitions

object: a combination of data and program into an entity which interfaces

with user programs.
message: information passed between user programs and objects or between

various objects.
method: the program part of an object. Receives messages massages the

relevant data sets and returns messages with the appropriate answers.

dictionary: a table connecting the name of an object with the data file and the

method which make up the object.
constructed object: an entity which appears to be an object to user programs

but which actually has no data set directly associated with it; instead the method
for the constructed object requests information from other methods and manipu-
lates the data in the replies to generate the data necessary to respond to the

requests from the user.
server, the program responsible for channeling messages to the proper meth-

ods. It will also deal with the connections to networks and talk with servers on the

other machines.
relational data base {RDB_. a data base which deals with data sets organized

as tables. Relations among various data sets are based on commonality of infor-
mation in one or more columns of each of the data sets. E.g., two separate tables

could represent the results of different investigators' processing of data from water

samples; the data sets would be inter-related using the commonality of cast and
bottle numbers.

inventory: a listing of data in a local data set
catalog: information about the existence contents, and procedures for ac-

quiring various data sets; may also contain additional information to help users

judge the relevance of the data base to their particular needs.
..

While a subroutine in FORTRAN, such as a matrix inversion routine, repre-

sents a simple form of an object, the concept gains considerably in power when

applied to data objects (c.f., Dittrich and Duval, 1986). By packaging data with

232 Proceedings of the Ocean Climate Data Workshop

programs, the user need not know the detailed methods and formats of data
storage and can deal with any data in the system on an equal footing. Any

program which can retrieve information from one object or data type can retrieve

similar information from any other data set in the system (or on the network).

Plotting routines, for example, can plot data from the user's own machine or from

elsewhere with equal facility. Figure 2 illustrates this point, superimposing data
from Stommel's atlas (stored on a PC and from the North Atlantic Bloom experi-

ment (on a SUN). The commands producing the plot are also shown; note the

commonality between the "function" style of referencing the data objects.

The basic set of queries and answers has been carefully defined to permit

transfer of hierarchically structured data of all types including character, integers

and real numbers, vectors and tensors. We have studied a number of general

formats for guidance on the requirements for an interchange protocol; ours

corresponds to netCDF, with extensions and reorganization to better represent

geophysical data. Also comments and attributes of the data (e.g. units) can be

passed along with the data itself. Queries include the option of subsetting the data

in various ways. Some methods can handle messages beyond the basic set. For

example, the method for the CTD data in the North Atlantic Bloom archive deals
with data at 2 decibar intervals but permits the user to select different increments

(e.g. 100 decibar) to reduce the volume of data. Likewise it would be desirable to

retrieve satellite data in discrete data form by asking for the value averaged over

specified latitude and/or longitude bands. We are working on an example of such
a method for numerical model output and for objective maps. Each method will be

able to handle a message asking it for help on the method's capabilities. There

must be an association between the name of a data object (e.g. '#bot" for the bottle

data from the Bloom study), the data files (bloom/bot*), and the proper method

(bloom/jgbl) for handling messages working with the data in these files. This

association is contained in a dictionary. ' Figure 3 shows part of the dictionary for

the JGOFS North Atlantic Bloom Study. Note that there could be for example

several distinct CTD-formatted data bases which would be known to the system as

different objects but which share the same method. The relationship is therefore

one-to many a single method may apply to many different data sets. New data sets
are added to the system in a simple way. The data must be placed on a machine

which is connected to the network (this will often be the case already) and a

method and dictionary entry provided. In many cases, users can choose to put
their information in a form already handled by an existing method so that a new
one need not be written. Thus for most data sets the data can be made available

simply by providing a dictionary entry. We envision the data manager for the
JGOFS program as having the responsibility for maintaining the catalog and

verifying that the data is accessible. For the bloom study, we have constructed a

prototype information object which can be viewed with the same software as any

other object and can tell the user, for example, which data sets have total CO 2
measurements (Figure 4). Programs working in a 'data independent" way with the

JGOFS data base will communicate with a 'server" (Fig. 5) which consults the

dictionary and passes information and requests to the proper method. The server

then returns the data to the program. In this sense, the server acts like an input

Glenn R. Flierl, James K.B. Bishop, David M. Glover, Satish ParanJpe 233

subroutine which the main program calls to get data from files. However, the

server also acts to gather data from across the network. If desired, the server may

send a message to a server on a different machine, asking for particular data

objects. Subroutines which interface with the server directly have been con-
structed.

Data Base Operations:

Up to this point, we have described essentially a 'data independent" method

for exchanging data and working with a distributed data base. But data base

systems also provide routines for manipulating data. For example, a relational

data base which basically works with tabular data in columns with column

headings, usually permits selecting by row or column and joining two tables

together based on common columns (e.g. tables of data from two PI's working with

water samples from the same Niskin bottles could be joined by matching the cast

number/bottle number).

(see Figures 3 and 4)

An object oriented system permits data operations in a very simple and
flexible manner: in addition to objects directly related to a set of data. the server

will be able to deal with what we might call constructed objects" (Fig. 6). While

these appear functionally the same to the user's programs, the data retrieved from

these objects is, created "on the fly." Since each of the methods for constructed

objects is an independent program, the system is indefinitely extensible. While

this discussion has been phrased in terms of a relational model the individual

data sets may be organized hierarchically or in some other manner. We have

currently implemented the operations of selecting data by various criteria, choos-

ing which columns to examine, mathematical operations and a Join facility. In
addition we have prepared examples of more specialized oceanographic operations

such as dynamic height computation and mapping onto many different map

projections.

We comment briefly here on the distinction between our proposed system and

"data independent" formats such as the common data format CDF (Treinish and

Gough, 1987), GF-3. DIF the UNIDATA program, etc. These efforts provide a

flexible approach to storing all kinds of data and sets of subroutines for retrieval

and, in some cases, manipulation and plotting of the data. In the case of CDF and

GF-3. arbitrary data types are accommodated and the organization of the data can

be specified. However these efforts are "top-down," in the sense that all data must
be entered into the specified (general) format, the procedures for accessing the

data are generally oriented towards large machines (e.g., FORTRAN and magnetic

tape-based for GF-3), and most of the software comes down from one group. In

contrast, we are adopting a "bottom-up" approach for which the goal is for each
user to be able to work with data as if it were all stored in the fashion he or she

prefers. There is no requirement to conform to a common standard (although if the

234 Proceedingsof the OceanClimateDataWorkshop

individual's preferences are quite different from anyone else's, it will be necessary
to write a method). Given the proliferation antl increasing power of microcomput-
ers and the wide variety of systems for handling data (RS-1, STATPACK,... as well
as those mentioned previously), we cannot expect a process of forcing the users
into a common mode to be very successful: it will not be possible to have all the
functionality desired by every user available in any single program. The approach
we propose allows individuals to use freely the data storage and manipulation
techniques they prefer, while still having straight-forward access to the entire
JGOFS data base.

At the same time, it is important to take advantage of these other efforts, both
from the point of view of the data already available therefrom and because of the
expertise and experience others have had. Our low level interchange protocol is
essentially a general data format, and we have designed it after careful consider-
ation of the previous efforts in this area (though, of course, the details are largely
hidden from most users by the method programs).

Using the JGOFS System

To illustrate ways of using the system we describe two different approaches

(Fig. 7): 1) For users without other data bases or those who prefer to use one of

our general formats for storing their data we provide a fairly extensive set of tools
for handling the data. These are the programs and constructed objects that we will
use in our own work. In addition, as more scientists use the system and develop

their own software, we can provide an extensive set of "groupware ' so that one

may be able to find a routine to execute the desired operation. The system will

have much of the functionality of conventional data bases. Remotely-stored data
can be either retrieved and saved on the local storage medium or may be used

directly. 2) For users who are already handling data with a commercial data base

system (e.g. LOTUS), the system would most likely be used with a program which
talks to the server and writes results out in the form of a LOTUS data set (called

"extr" in the PC version). It is then possible to retrieve remote data sets and have

them arrive on the local system ready to be used directly--as far as the user is

concerned the remote data sets are stored in LOTUS format. Secondly, by using a

method" for converting LOTUS data. one could take advantage of data manipula-

tion capabilities of the data base system which may not exist in LOTUS. Essen-

tially the program would ask the server to use a constructed object which itself

requests other data from the server. This request for other data is passed along to
the "method" for LOTUS data which retrieves the information from the LOTUS

files. The data flows back to the constructed object which transforms it and passes

it back to the main program. If the main program writes the results from an object
out in LOTUS format, the desired result is obtained: a new LOTUS file has been

created by operating on one or more old LOTUS files. The flow of data in this kind

of operation is sketched in Fig. 7d. Note that some of the information could
actually come across the network from files in completely foreign formats. Remem-

ber that the use of LOTUS in the paragraph above is only for example and is by no

Glenn R. Flierl, James K.B. Bishop, David M. Glover, Satish Paranjpe 235

means restrictive: similar capabilities can be made available to DBASE, netCDF,

GF-3 etc. users.

Our data base system thus has five important features which distinguish it

from conventional and available systems: 1) the ability to handle data in arbitrary
formats 2) data transfer from remote, networked data sets 3) extensible---data

manipulation routines or relational functions can be added at any time 4) new

data can be added to the system in a simple way without a lengthy conversion 5)

this system can be used either interactively or with user-written programs. We
believe, based on experiences with various data sets and large oceanographic

experiments, that these features are very valuable for JGOFS, WOCE, and Global

Change.

Implementation

User Programs, Methods, Constructed Objects,

In our implementations, methods are separate processes which transfer infor-

mation via interprocess communications routines. When the data object is opened,

the method is started up and parameters are passed to it. The calling process then

begins to receive information from the method as outlined in the 'Interchange
Protocol" section below. Because of the differences between a multiprocessing

system such as UNIX and MS-DOS, we discuss each of these separately.

UNIX: In the UNIX implementation, the request to open a data object is passed

via a queue to a resident server daemon. This forks a process to analyze the

request, do the dictionary lookup, and begin the method. If the method program is
local, it is started up and the parameters are passed to it using normal stdin/

stdout pipes. The responses from the method are returned to the user program on

the queue (Fig. 8). On the other hand, if the method is on a remote machine, the

request is transmitted via a socket to a resident server on the remote machine.

which again handles dictionary lookup, and starts up the method process. This
time, however the responses from the method are passed back via the socket to

the user process (Fig. 9).

MS-DOS: Here we have implemented a small resident set of routines which

handle starting a subprocess and passing information back and forth. The user

program first must release unneeded memory (this is often done as compiler
options); it then handles the dictionary lookup and executes an interrupt to the

server. The server executes the method process. The method generates an inter-

rupt to the server, which then flips control back to the user program. Message
passing then occurs as a sequence of such tips; the message string is pointed to by

the registers at the time of the interrupt, and the server copies the string from the
sender's area to the receiver's area when control is exchanged. The communica-

tions routine uses the serial port. First the user connects to the networked server

236 Proceedingsof the OceanClimateDataWorkshop

with a standard login process. The desired object is accessed with a method which
talks to the serial port (e.g., v24 for 2400 baud).

Interchange Protocol

At the core of the object oriented system is the interchange protocol. It must
be sufficiently flexible to transmit data and information of many different kinds yet

also simple enough that writing methods and inverse methods is not too difficult.
At the same time, it place serious limits on the system if not sufficiently flexible.

We have based our interchange format on netCDF, expanded to include hierarchi-
cal structure and comments. We begin our description of the basic protocol by

discussing the replies which come from the method:
1. Comments: Plain text descriptive material which is transmitted with the data

set. Here the scientist can describe details of the data acquisition, processing,

and interpretation. References to relevant articles can be provided. Such
information is vital for a data set which has long-term value.

2. Variables: The data is identified by named variables. These are grouped into

different levels (e.g., cruise header, station header, station data). Within each

group is a sequence of variable declarations. These consist of
A. Variable name: These must be unique within a data object. There is also a

considerable advantage to using common names and units throughout a

program (some of this work can be done by the method).
B. Size, Dimension_.. For vector/ tensor quantities, these give the total size

and the shape of the information.
C. Attributes: Here is given ancillary information on the variable. These take

the form of strings attribute=value, along with a count.
3. Data: The data values are all transmitted as ASCII strings so that there is no

intrinsic data typing. To understand the sequence of data transmission, con-

sider a 3 level hierarchy as sketched in Figure 10. The first row of each level is

transmitted; then the second and following rows at the lowest level. When data

is one of the higher levels changes, then that row is sent along with the

appropriate data from lower levels.
4. End: Signals all the data has been returned. Note that the data model em-

ployed is effectively equivalent to a relational model (augmented by comments

and attributes) if one defines an operation which ungroups or flattens the data

set and a grouping operator. Thus, we expect all of the operations common with

relational databases can be implemented with our expanded model, although

some care is required in order to automatically ungroup and regroup data.

Next consider the queries which the method may receive. When it first begins,
the method receives a set of parameters--in the examples, these appear as

arguments with the method or object name appearing as the function. Among

these parameter strings, each method is expected to handle

1. Projection: Choice of which variables the method is to return.
2. Selection: Restrictions, based on the usual logical operations <,=, >,<=,<>, >=.

These selections are ANDed together.

3. Help: (Not implemented in prototypes.) Methods should be able to inform the

. Glenn R. Flied, James K.B. Bishop, David M. Glover, Satlsh ParanJpe 237

calling programs about the kinds of arguments they can handle. As described

previously, methods may handle more than Just these parameters; for example,
the mathematical method deals with strings of the form variable=expression,

with the variable perhaps being a new name and the expression being a

standard FORTRAN style mathematical formula.

After the initial parameters are passed and checked, the method then simply

receives requests for the next chunk of information and returns the next "row" of

data. Or it may receive a request to terminate.

Summary

We have constructed prototypes of the servers, methods, and constructed

objects. We have much of the North Atlantic Bloom data entered into the system,
along with various historical data sets and (separately) data from the SYNOP

program. The process of documenting and training users will begin this year;
assessment of the merits of the approach are still to come. However, we believe

that, for on-going projects, on-line access to current data sets has many advan-

tages. Likewise, the idea of building "extensible" data systems, analysis packages,

and graphics packages should offer significant improvements in our abilities to
share software.

References

Codd, E.F., (1990), The Relational Model for Database Management, version 2,

Addison Wesley Publishing Co. Reading, MA, 538 pg. Date, C.J., (1990), An
Introduction to Database Systems, vol. 1, Addison-Wesley Publishing Co.,

Reading, MA. 5th edition, 854 pp.

Dittrich, K. and U. Daval, (ed.), (1986), Proceedings of the 1986 International

Workshop on Object-Oriented Database Systems. IEEE Computer Society

Press, Washington, D.C., 237 pp.

Meyer, B., (1988), Object-Oriented Software Construction, Prentice Hall, New

York, N.Y., 534 pp.

National Academy of Sciences - National Research Council, (1991), A U.S. Strategy
for Global Change Data and Information Management. (in prep.) Committee

on Geophysical Data, Board on Earth Sciences and Resources. Nail. Acad.

Press, Wash., DC, ca 33 pp.

Treinish, L.A. and M.L. Gough, (1987), A software package for the data-independent

management of multidimensional data. Trans. Am Geophys. Union, EOS, .

68(22): 633-635.

238 Proceedings of the Ocean Climate Data Workshop

Waldrop, M.M., (1987), Artificial intelligence moves into the mainstream. Sc/ence,
237: 484-186.

Wegner, P., (1990), Concepts and Paradigms of Objected Programs. OOPS Messen-

ger (ACM), 1" 7-87.

USER

PROGRAM

REPLmS ,_

METHOD

OBJECT

COMMUNICATION PROTOCOL

Figure 1. A data object packages together data and a program called a method. The data system
accesses the information solely through requests and replies sent to the method. This communication

protocol ts common for all methods.

Glenn R. Fllerl, James K.B. Bishop, David M. Glover, Satish ParanJpe 239

-I

Q.

0 !

1000

2O00

3000

4OO0

I I I I I I , I I I , 1 i] J I !

m

i I

7

I I I I I I I I 1 I I I I

3 4 5 6

Oxygen

F'Igure 2. This figure was prepared with the following commands entered to MS-DOS (through the
menu system):

window 3 4000 7 0

axis x .25 Oxygen I x

axis y 500 Pressure 1000 xxxx

plot all (c:data wunsch, *,station=75) 02 press
plot v24(#bot(*,station=24,cast=1) 02 press -3

The flrst line sets the data units for the lower left and upper right corners of the viewport. The next

two draw the axes. The third plotted the solid llne from data stored in an indexed version of the

Stommel and Luyten forrn (one integer per variable, scaled suitably). Station 75 was at latitude 36.25

and longitude -22.77 and was taken in July 1981. The last line plotted the marked points from the

North Atlantic Bloom bottle data (Williams, priv. comm.) on 5/10/89 at 41.097, -23.030. The "v24"
method communicated over the serial line to the server.

240 Proceedings of the Ocean Climate Data Workshop

F_gure 3

This is part of the dictionary gofs.dct for the North Atlantic Bloom study data.

The data sets were compiled by George Heimerdinger for this archive. The first

part represents the form filled out by the PI.
&form

pi=nd

ship=nd,cruise=nd
stations=nd

depthmin=nd,depthmax=nd

latmin=nd,latmax=nd,lonmin=nd,lonmax=nd

datemin-nd,datemax=nd

instrument=nd

&repeat

parameter=nd,description=nd,units=nd

#tco2= 18.83.0.1 l : :/ d2 / guest /bloom /j gbl(/ d2 / guest /bloom /bre)

pi=P.Brewer

ship=AII,cruise= 119.4-119.5
stations= 17-13

depthmin=2,depthmax=3503
latmin = 41.097, latmax= 59.763, lonmin =- 23.030, lonmax= - 17.647

datemin=89/04/22,datemax=89/06/06

instrument=bottle

parameter=press, description=nd,units=decibars

parameter=alk, description=nd,units=uEq/kg

parameter=tco2,description=nd,units=uMol/kg

parameter=doc,description=nd,units=uMol/l

parameter=doc_sd,description=nd,units=uMol/l

#poc= 18.83.0. I I ::/d2/guest/bloom/jgbl(/d2/guest/bloom/duc)

pi=H.Ducklow

ship=AII, cruise = 119.4-119.5
stations= 15-13

depthmin=2,depthmax=3468

latmin=46.25, latmax=59.763, lonmin=-20.808, lonmax=- 17.647

datemin=89/04/22,datemax=89/06/06

instrument=bottle

parameter=press,description=nd,units=decibars

parameter=poc,description=nd,units=uMol/l

parameter=pon,description=nd,units=uMol/l

parameter=thylncorp,description=nd,units=pMol/I/hr

parameter=leuincorp,description=nd,units=pMol/I/hr

parameter=bactabund,description=nd,units=cell/l

#bot= 18.83.0.11 ::/d2/guest/bloom/jgbl(/d2/guest/bloom/bot)

Glenn R. Flied, James K.B. Bishop, David M. Glover, Satish ParanJpe 241

pi=R.WiIIiams

ship =All, cruise= 119.4-119.5
stations= 17-16

depthmin=0,depthmax=3503
latmin=41.097,1atmax=59.763,1Onmin=-23.030,1Onmax=- 17.647

datemin=89/04/22,datemax=89/06/06

instrument=bottle

parameter=press,description=nd,units=decibar

parameter=depth,description=nd,units=m

parameter=temp,description=nd,units=degC

parameter=theta,description=nd,units=degC

parameter=sal,description=nd,units=ppt(psu)

parameter=o2,description=nd,units=ml/l

parameter=o2sat, description=nd,units=mi/l

parameter=aou, de scription=nd, units =percent

parameter=no3,description=nd,units=uMol/l

parameter=no2,description=nd,units=uMol/l

parameter=po4,description=nd,units=uMol/l

parameter=sio3,description=nd,units=uMol/l

#ctd= 18.83.0.11 ::/d2/guest/bloom/jgbl(/d2/guest/bloom/ctd)

pi=R.Williams

ship=AII,cruise= 119.4-119.5
stations= 17-16

depthmin=0, depthmax=3518

latmin=41.097,1atmax=59.763,1onmin=-23.030,1onmax=- 17.647

datemin=89/04/22,datemax=89/06/06

instrument=ctd

parameter=temp,description=nd,units=degC

parameter=sal,description=nd,units=ppt(psu)

parameter=o2,description=nd,units=ml/1

parameter=theta, description=nd,units=degC

parameter=sigmat,description=nd,units=kg/m

&end

#info=/d2/guest/bloom/infos(gofs.dct)

242 Proceedingsofthe OceanClimateDataWorkshop

Figure 4

A dialog inquiring about data objects in the North Atlantic Bloom Study

containing total C02 information.

/d2/guesttbloom> table

Input object(with projection/selection)?

#info(*,parameter=tco2)

1 object 2 objdef 3 pi 4 ship

5 cruise 6 stations 7 depthmin 8 depthmax

9 latmin I 0 latmax I i lonmin 12 lonmax

13 datemin 14 datemax 15 instrument 16 parameter

17 units

variable number or range xx,xx? (0 to finish,-1 for list)

1,3

variable number or -anse xx,xx? (0 to finish,-1 for list)

9,12

variable number or range xx,xx? (0 to finish,-1 for list)

O

Convert to real numbers? (0=no, 1=yes)

O

Stop at beginning of group? (0=no, 1 =yes)
O

object obJdef pi latmln

#tco2 Jgbl(/d2/guest/bloom/bre) P.Breyer 41.097

#pco2 jgbl(/d2/guest/bloom/tak) Takahashi 41.097

latmax

59.763

59.763

lonmln

-23.030

-23.030

lonmax

-17.647

-17.647

Glenn R. Flierl, James K.B. Bishop, David M. Glover, Satish ParanJpe 243

OBJECT IVIETHOD DATA

Figure 5. A server connects the user program to the proper method and data. A dictionary contains
the mapping between object names, method and data. Note that one method can be used with

multiple data sets. The server can talk over communications lines to servers on other machines as
well.

244 Proceedings of the Ocean Climate Data Workshop

COMMUNICA_ON PROTOCOL

METHOD

OBJECT
_!

CONSTRUCTED OBJECT

Figure 6. A constructed object consists of a method which builds a new data object from one or more
data objects. Because it uses the communication protocol for both its input and output, it can be
accessed by user programsjust as another object, and it can work with inputs from any data objects

in the system.

Glenn 1_ Flied, James K.B. Bishop, David M. Glover, Satlsh Paranjpe 245

PLOTTER

REPORT GEN.
SERVER

METHOD

METHOD FOR CONSTRUCTED OBJECT

Figure 7a. Using the data system as a primary database: The upper part of the flgure depicts local
operations, such as reading data from various tables, merging them, and plotting the results. In this
case, the user would often choose a single storage technique and use only a default method. In the
middle is sketched a constructed object, used for data transformations. The lower part shows
gathering related data from the network for local display.

246 Proceedings of the Ocean Climate Data Workshop

PROGRAM

TO WRITE

LOTUS

DATAHLE

LOTUS DATA

LOTUS

METHOD

METHOD FOR CONSTRUCTED OBJECT.

Figure 7b: Using the data system to gather data for another database (LOTUS is used as an
example). In this case, the primary interaction is through a program which translates data objects
into flles readable by LOTUS. The program can be used over the network to import data for local use.
Database operations beyond those supported by LO'II]S can also be accomplished by running the
local data set through a lOTUS method, then through a constructed object method, and then through

the program to write a new LOTUS file. Such a procedure could be used, for example, to add a
dynamic height column.

GlennR. Fllerl, JamesK.B. Bishop,DavidM. Glover,SatishParanjpe 247

USER

PROGRAM

I

I

I

I

I

!
i

M

E

S

S

A

G

E

Q

U

E

iu
IE
i
I
i
!

i

!

Figure 8.

s
j •

j %

/

! l
!

l DICT. ,
% s J

s

APPLICATION

HANDLER

J
s

s

J •

c f_

_OD

Flow of information in UNIX implementation for a local method. The server watches the
queue and starts the application handler which looks up the object in the dictionary and starts the

method. The protocol is passedfrorn the server via a queue to the handler and then via a pipe to the
method.

248 Proceedings of the Ocean Climate Data Workshop

USER

PROGRAM

l

M

E

S

S

A

G

E

UI

E]

UI

Ei

_J

APPLICATIOI_

SOCKET

METHOD

REMOTE MACHINE

Figure 9. Flow for a remote method. The handler now communicates via a socket to the remote
machine's server, wh/ch starts the method and connects it to the socket.

Glenn R. Flied, James K.B. Bishop, David M. Glover, Satish Paranjpe 249

Cruise I: ship, dams

Station l: fat, Ion, time ...

press, temp, 02, pco2...

Station 2: lat, Ion, time ...

press, temp, o2, pco2...

Station 3: lat, Ion, time ...

press, temp, 02, p¢o2...

Cruise 2: ship, dates

Station I: laL Ion, time ...

press, romp, o2, pco2...

Station 2: lat, Ion, time ...

press, romp, o2, pco2...

Fajure i 0. Hierarchical structure for a multVcrulse data object.

