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HIGH-ORDER "CYCLO-DIFFERENCE" TECHNIQUES: AN ALTERNATIVE TO
FINITE DIFFERENCES

Mark H. Carpenter "and John Otto t

ABSTRACT

The summation-by-parts energy norm is used to establish a new class of high-order finite-difference

techniques referred to here as "cyclo-difference" techniques. These techniques are constructed cycli-

cally from stable subelementsl and require no numerical boundary conditions; when coupled with the

simultaneous approximation term (SAT) boundary treatment, they are time asymptQtically stable for

an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are

ideally suited for parallel implementation, but do not require special collocation points or orthogonal

basis functions. The principal focus of this work is on methods of sixth-order formal accuracy or less;

however, these methods could be extended in principle to any arbitrary order of accuracy.

INTRODUCTION

A great deal of effort has recently been placed on high-order finite-difference techniques (both

central and upwind) for direct numerical simulations. A significant problem that faces the high-order

finlte-difference community is the closure of those boundary schemes that retain the formal accuracy

of the underlying method and do not cause instability. To retain the Nth-order formal accuracy of

the interior scheme for an arbitrary hyperbolic equation, the numerical boundaries must be closed

with an accuracy of no less than (N - 1)th order [1]. Such closures often cause numerical instability

and cannot be used. (e.g., [2]). Recently, a precise means of determining boundary closures that

maintain both stability and accuracy has been developed based on the summation-by-parts energy

norm. (See references [3], [4], and [5].) A numerical discretization that satisfies specific criteria on the

discretization matrix A* automatically satisfies a discrete energy norm. Central-difference schemes
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automatically satisfy theseproperties in their interior. The task is, therefore, to find high-order
closuretechniquesat the boundariesthat maintain the specificform of the matrix A'. This can be

a daunting task, but can be accomplished [2], [4], [5].

One of the advantages of spectral techniques is that the ambiguity of numerical boundary treat-

ments is not present. The global nature of the method relies on a specific stencil at each point. Each

individual point may be unstable, but the scheme as a whole is stable and accurate. This notion

motivates us to develop a new class of finite-difference schemes. Like central-difference and spectral

techniques, they are not biased in the direction of a physical eigenvalue and, therefore, do not re-

quire eigenvalue decomposition when used for general hyperbolic equations. Unlike central-difference

techniques, each point has its own specific stencil. Although individual stencils may appear to be

unstable locally, the global method is stable and accurate. Taylor series analysis guarantees that each

point has a local order property. The use of a specific energy norm to derive the stencils guarantees

that the resulting global scheme will be stable.

Another problem with high-order finite-difference techniques, as well as spectral single-domain

techniques, is their implementation on parallel machines. For conventional finite-difference techniques

(central or upwind difference), as the order of accuracy increases, the stencil width also increases.

This results in increased overhead in communicating between processors. Spectral element techniques

are both efficient and accurate methods for implementation on parallel machines [6]. The problem

is divided into several domains, and each domain is assigned to a processor. Only one point of the

stencil coexists on multiple processors in spectral element techniques. Information transfer between

processors is kept to a minimum under these circumstances.

Cyclo-difference techniques are a combination of high-order finite-difference techniques and spec-

tral element techniques. They rely on an existing energy-norm proof to establish their stability for

the hyperbolic system and require no special boundary closure stencils. These techniques can eas-

ily be split on multi-processor environments. This flexibility results because the discretizations are

composed of many subelements that each satisfy an order and stability property. The subelements

are then patched together recursively such that the resulting scheme retains the same stability prop-

erties. For parallel implementation, they can easily be broken at the patch location, which results in

a minimum of communication for an arbitrarily high-order scheme.

SUMMATION-BY-PARTS ENERGY NORM

Stability of Continuous S_¢stem

As shown in reference [5], the summation-by-parts energy norm mimics, at the semidiscrete level,

the continuous behavior of the principle of the conservation of energy. Because the entire foundation
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of the cyclo-differencemethodologyis basedon this norm, a completederivation of the conservation
of energyprinciple in the continuousand the discretecaseis presented.The model problem is the

hyperbolic equation definedby

OU OU

O---[-+ Ox - 0 0<x<l,t>0 (1)

U(O,t)= f(t) t > O (2)
L

U(x,0) = ¢(x) 0 < x < 1 (3)

We begin by defining an energy as E(t) = U 2, t > 0. If the energy is differentiated with respect to

time and the values of Ut from equation (1) are substituted, then integration over the domain yields

,[ o<.,)]E, (t) = fo Ox J

The definite integral in equation (4) is performed to yield

t _>0 (4)

Et (t) = -[U2(1,t) - U2(0,t)] (5)

and the boundary conditions are substituted from equation (2) to yield

Et (t) = - [U2(1,t) - f2 (t)] (6)

If certain properties on the boundary condition f(t) are assumed, the equation is dissipative (decays

energy) for all time. For example, if f(t) = 0, then the system energy is uniformly dissipative.

Stability of Discrete System

Discrete spatial operators that satisfy very specific properties are shown to be stable in a manner

analogous to that used in the previous proof of stability. These operators satisfy the summation-

by-parts energy norm. For example, given the scalar hyperbolic equation Ut + U, = 0, a general

semidiscretization can be written as Ut + A* U = O, where A* is the spatial discretization matrix that

is presumably consistent to some order. This matrix A* can, in general, be decomposed into the form

A* = P-_ Q (7)

This decomposition is in general not unique. If a decomposition can be found such that

1. Symmetric P : (P = pT) (Pi,j = Pj,i)

2._ PositivedefiniteP : (W T P W > O)
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3. Nearly skew-symmetric Q :

4. qN,N > 0 and qi,1 =--qN,N

(qi,j = --qj,i -F 2_i,1 _l,j ql,1 "1- 2_i,N _N,j qN,N)

then the discretization matrix A* automatically satisfies the summation-by-parts energy norm. (See

reference[51.)

To illustrate that this stability property results directly from the form of the matrices P and Q,

a proof is presented for the semidiscrete form defined by equations (1) and (2). Note that the spatial

discretization operator can be written in the form

PU_ -- QU; U_ = p-tQV (8)

where p-1 exists and U is the vector of discrete values (U1, U2, U3,... UN-2, UN-1, UN) T. The semidis-

crete version of equation (1) becomes

OU

P--_- + QU = 0 t >_O (9)

We define the discrete energy as

E(t) = (uTpu) t>_ 0 (10)

where P must be positive definite to ensure that E (t) is a strictly positive number. Equation (10)

is differentiated with respect to time to yield the expression

OU T uT c_V
Et (t) = [ _ P U + P --_] t >_ 0 (11)

Because P is symmetric (P = pT), equation (11) becomes

ou
Et(t) = 2[V TP--_] t> 0 (12)

The semidiscrete expression [equation (9)] is substituted into equation (12) to yield

Et(t) = 2[-UT QU] t >_ 0 (13)

By using the matrix Q and the relationship between the values q0,0 and aN,N, one obtains an energy

of the form

Et (t) = -2 qN,N[ U_¢ - U_] (14)

The boundary =c0nd!tion defined in equation (2)issubstituted to yield ......

Et (t) = -2 qN,N[ U_v - f2(t)] (15)

Note that the time rate of change of the discrete energy defined in equation (15) is identical in form

(to within a positive constant) to that of the continuous case equation (5).
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CYCLO-DIFFERENCING

Conventional central- and upwind-difference techniques use one stencil for the inner portion of

the spatial domain and auxiliary formulas at the boundaries such that the resulting scheme is stable.

Spectral element techniques use orthogonal basis functions to define local elements and then connect

them with various methods that range from spectral patching to flux balances [7]. The simplicity

and stability of the cyclo-differencing relies on a very specific property of the summation-by-parts

energy norm. Assume for a particular set of discrete points zj j = 1, N that a stable discretization

has been isolated that satisfies all criteria of the summation-by-parts energy norm. The resulting

semidiscretization written in matrix form is P/_t = Q/-_, where

p .._

Pxj Pl,2 Pl,N-1 Pl,N

Pl,2 P2,2 P2,N-1 P2,N

PI,N-1 Pt,N-2 PN-I,N-I PN-1,N

Pl ,N P2,N P N-1,N P N,N

; Ut =

ou,/ot
ou2/ot

OUN-1/Ot

ouu/ot

--qN,N qx,2 ql,N-x ql,N

--ql,2 0 q2,N-1 q2,N

--ql,N-1 --ql,N-2 0 qN-1,N

--ql,N --q2,N --qN-1,N qN,N

; 0=

U1
U2

UN-1

UN

Note that P is symmetric (and positive definite) and Q is skew symmetric except for the elements

q1,1 and qN,N, where q1,1 = - qN,N. Also note that the grid-spacing A has been factored out of the

matrix Q. No attempt has been made to specify the value of the constant N. A cyclo-difference

scheme is constructed by recursively patching the stable base schemes together, which is illustrated

by the following example. Assume that the discretization involved 2N - 1 uniformly distributed

points instead of N points. We can use the properties of the matrices P and Q (of dimension N)

to define a discretization over the 2N - 1 points that satisfies all criteria of the summation-by-parts

energy norm, and is therefore stable for any system of hyperbolic equations. We define this new
A ^ ^ A

semidiscretization on the equation Ut + Ux = 0 as PUt = Q U and construct it as
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P

P1,1 Pl,2

Pl,2 P2,2

Pl ,N- I Pl,N-2

PI ,N P2,N

0 0

0 0

0 0

0 0

0 0

0 0

PN-1,N-1

PN-I,N

0

0

0

0

0

0

PI ,N

P2,N

PN-I,N

PN, N _ PI,I

Pl,2

Pl,N- I

Pl ,N

0

0

0

0

0

0

Pl,2

P2,2

0 0

0 0

0 0

0 0

0 0

0 0

Pl,N- I PI ,N

P2,N- _ I_,N

PI,N-2 PN-I,N-I PN-I,N

P2,N PN-I,N PN,N

--qN, N ql,2

--ql,2 0

--ql,N-1 --ql,N-2

--ql,N --q2,N

0 0

0 0

0 0

0 0

0 0

0 0

ql ,N-1 q l ,N

q2,N-1 q2,N

0 qN-1,N

--qN-I,N 0

0 --ql,2
0

0

0

0 --ql,N-1

0 --ql,N

0

0

0

0

0

0

ql,2

0

0 0

0 0

0 0

0 0

0 0

0 0

ql,N-1 qx,N

q2,N-1 q2,N

--ql,N-2 0 qN-1,N

--q2,N --qN-t,N qN,N

where U = [U1, U2,... UN-1, UN, UN+I,.. U2N-2, U2N-1] T. Note that the qN, N element is precisely

zero because the contributions from q1,1 and qN,N have equal magnitudes but opposite signs. These

new matrices 15 and Q satisfy the summation-by-parts energy norm for precisely the same reasons as

the original matrices P and Q. If the matrices are assembled in this manner, then the matrix/5 is

symmetric and the matrix Q is skew Symmetric except for the (1, 1) and (2N- 1,2N- 1) elements;

these coefficients are again equal in magnitude but opposite in sign. Because the matrix/5 can be

decomposed into the summation of two matrices/51 and/52, each of which is positive definite (one,

but not both, could be positive semidefinite), the resulting matrix 15 is positive definite. The new

scheme is therefore stable because the summation-by-parts energy norm is satisfied. In practice, the

scheme would be implemented as/-:t = p-i d)/_. The inversion of the matrix 15 could in general be

quite complicated.

In short-hand notation, the new matrices 15 and Q can be written in terms of the original matrices

Pand Q as
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p: 0] 1[0 0]0 P ; (_ = K Q

This nomenclature is not precisely correct because the new matrix/5 is (2N - 1 × 2N - 1), and the

original P is (N × N). More precisely, the last row of the first matrix P and the first row of the

second matrix P lie on the same row of the new matrix/5, with the inevitable intersection of matrices

at the point PN,N. For the purposes of this work, this nomenclature will not cause any ambiguities.

Thus far in the derivation, we have assumed that the grid spacing in the first subdomain was

the same as that in the second domain. In general, this assumption is not necessary, which we will

demonstrate. Suppose that the first interval is discretized with a grid spacing A 1 and the second
1

with a spacing A2. The resulting semidiscretizations would be P Ut = _- Q L_ and PUt - _ Q L_,

respectively. Each respective discretization is multiplied by the appropriate grid spacing to yield

A1 P L_t = Q f) and A2 P Ut = Q U, respectively. The two subintervals are combined into one to

yield the matrices/5 and Q of the form

0 AsP ; (_ = 0 Q

The stability of the resulting scheme is guaranteed by the summation-by-parts energy norm for any

arbitrary spacing discontinuity. In practice, the scheme would be implemented as Ut = /5-a (_r.

The inversion of the matrix/5 could in general be quite complicated. All information that pertains

to the discontinuity in spacing is incorporated into the/5 matrix.

This procedure of appending new subintervals onto an already existing method can be repeated

recursively as many times as desired. In fact, even two dissimilar methods (each of which satisfies

the summation-by-parts energy norm) can be appended to one another on any arbitrary grid-spacing

interval. One constraint which the resulting cyclo-difference schemes must satisfy, is that the total

number of grid points must be of the form Nt = M (N - 1) + 1, where Nt is the total number

of points and M is the number of subintervals that are used. The procedure for grid refinement,

therefore, involves an increase in the number of subintervals M in the solution.

HIGH-ORDER CYCLO-DIFFERENCE SCHEMES

Second Order

We now present a variety of cyclo-difference schemes of various order and width. In this work, we
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will concentrateon schemeswith uniform grid spacingwithin eachsubelement(but not necessarily

the samefrom elementto element). The first schemeof practical interest is the second-orderscheme
definedon a subelementof three grid points. The scheme represents the optimal second-order scheme

on three uniformly spaced grid points and, in matrix notation, is given by

m

-3/2 2 -1/2]
= -1/2 0 1/2

1/2 -2 3/2

It is readily shown that A m = p-x Q, where

['1/400][-3/81/2
P = 0 1 0 ;Q = -1/2 0

0 0 1/4 1/8 -1/2

-1/8
1/2
3/8

This scheme is extended to five grid points to yield/5 and Q of the form

1/4
0

P= 0
0

0

0 0 0 0

1 0 0 0

01/20 o
0 0 1 0

0 0 01/4

-3/8 1/2-1/8 0 0
-1/2 0 1/2 0 0
1/8 -1/2 0 1/2 -1/8
0 0 -1/2 0 1/2
0 0 1/8 -1/2 3/8

Because of the diagonal nature of the matrix/5, /5-1 is easily found; the resulting numerical scheme

is

m

-3/2 2 -1/2 0 0

-1/2 0 1/2 0 0

1/4 -1 0 1 -1/4

0 0 -1/2 0 1/2

0 0 1/2 -2 3/2

The procedure is extended recursively to an arbitrary number of subelements to yield a cyclo-

difference scheme of the form
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-3/2 2 -1/2 0 0 0 0 0 0 0 0 0 0

-1/2 0 1/2 0 0 0 0 0 0 0 0 0 0

1/4 -1 0 1 -1/4 0 0 0 0 0 0 0 0

0 0 -1/2 0 1/2 0 0 0 0 0 0 0 0

0 0 1/4 -1 0 1 -I/4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1/4 -1 0 1 -1/4 0 0

0 0 0 0 0 0 0 0 -1/2 0 1/2 0 0

0 0 0 0 0 0 0 0 1/4 -1 0 1 -1/4

0 0 0 0 0 0 0 0 0 0 -1/2 b 1/2

0 0 0 0 0 0 0 0 0 0 1/2 -2 3/2

This scheme is uniformly second-order accurate and satisfies the summation-by-parts energy norm.
3

In addition, the scheme does not rely on auxiliary stencils at the boundaries. The operation count is

of the count for the conventional second-order scheme and, as will be shown later, behaves noticeably

different.

In general, a closed-form expression for i{* will not be available because the inverse of P will not

be known analytically. Therefore, a banded solver of width 2N - 1 (the number of points in each

subelement) can be used on the matrix P to efficiently invert the matrix. Although banded solvers

are efficient in comparison with full solvers, they can not compete with explicit schemes in which no

numerical inversion of the matrix P must be performed. The previous example demonstrates that

methods with a diagonal matrix P can be immediately inverted. By only concerning ourselves with

those numerical methods that possess this property, we are being overly restrictive. In general, if P

has a first and a last row that consists entirely of zeroes except for the diagonal element, then each

subelement of the resulting matrix 15 decouples and the inverse can be performed analytically. The

resulting scheme has an explicit, not implicit, operation count and can compete with conventional

finite-difference schemes of comparable spatial accuracy.

Third Order

A uniformly third-order scheme can be generated with a minimum of four discrete points.

discretization matrix A*, which is third order and occupies four points, can be represented as

The

-11/6 3 -3/2 1/3
-1/3 -1/2 1 -1/6
1/6 -1 1/2 1/3

-1/3 3/2 -3 11/6

If A* is decomposed into P-' Q, the resulting relationships for P and Q are
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p

r3 3eo r3-11 r2-1-21 rl -(54 r3-r2+9 rl) 120 r3+5,2+33 rl
312 78 312

360 r3-11 r2-[-21 el 207,3+7 r2-l-15 rl -(72 r3+55 r2+51 rl) -(54 r3-,2+9 rl)
312 39 312 78

--(54 r3-r2+9 r l) --(72 r3+55 r2+51, rl) 207,3_7 r2-[-15 rl 360 r3--11 r2+21 rl
78 3i 2 39 312

120,3+5,2-t-33,1 -(54 r3-r2+9 rl) 360 r3-11 r2+21 rl r3
312 78 312

Q

--(288 r3-r2+9 rl) 384 r3+3 r2_25,1 --(24 r3+r2+4 rl) 576,3+37,2+135 rl
1 7 104 13 936

--(384 r3-F_ r2+25,1) 0 576 r3+11 r2-1-57 rl -(24 r3+r2+4 rl)
104 104 13

24 r3+r2+4 rl -(576 r3+l 1 r2+57 rl) 0 384 r3+3 r2+25 rl
13 104 104

-(576 r3+37 r2+135 rl) 24 r3+r2+4 rl -(384 r3+3 r2+25 rl) 288 r3-r2+9 rl
936 13 104 117

The final criteria to be met is that the matrix P must be positive definite. Even if this scheme

was stable for arbitrary rl, r2, and r3, the amount of work necessary to invert the matrix P would

make the scheme prohibitively expensive. Therefore, the free parameters are used to decrease the

bandwidth of the matrix P. If we set r3 = 1, r2 - 9 r3, and rl = -5 r3, then P and Q result of

the form

p

1 1/2 0 0
1/2 5 -1 0
0 -1 5 1/2
0 0 1/2 1

;Q

-2 11/4 -1 1/4

(-11)/4 0 15/4 -1

1 (-15)/4 0 11/4

(-1)/4 1 (-11)/4 2

With Gershgorin's Theorem, the matrix P is shown to be positive definite. The original matrix

satisfies the summation-by-parts energy norm and is stable for the hyperbolic system. Unfortunately,

not enough free parameters exist in the decomposition to make P diagonal. The work involved inu_ng

a cyclo-difference scheme generated from P and Q would be seven multiplications and additions per

node: four from the Q matrix and three from the inversion of the tridiagonal matrix/5. An operation

count this high would not make the resulting scheme competitive with other third or higher order

schemes.

To obtain high-order schemes in which P can be diagonalized, or at least decoupled from the

other subelements, nonoptimal schemes must be used. Consider, for example, the family of uniformly

third-order schemes that can be defined on five uniform points. Because each point allows a new

degree of freedom, a wide variety of different schemes can be developed. Assuming that the following

constraints are imposed: (1) uniform third-order accuracy exists from five points,. (2) a P and Q

exist that satisfy the summation-by-parts energy norm, and (3) a matrix P exists that has a first

and last row composed entirely of zeros except the diagonal element. Matrices P and Q result of the

form
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P

1 0 0 0

0 -(13 rl-352) 7 r1-160 -(T rl-160)
12 6 12

rl--592) 7r1-160
0 7 rl-160 -(25 126 6

0 -(7 rI-166) 7 rl-160 7-(13 ri-352)
12 6 12

0 0 0 0

0

0

0 ;

0

1

Q

3 r1-120 -(9 rl-256) 9 r1-208 -(3 r1-64) 9 r1-184
32 24 16 8 96

9,1-256 0 24 - rl 3 r1-64 -(3rl--64)
3 8

-(9_242°8) rl - 24 0 24 - rl 9rl-2O8
16 16

3 rl-64 -(3 r1-64) rl -- 24 0 -(9 _1-2861
S 3 24

-(9 r1-184) 3 rl-64 -(9 rl-208) 9 rl-256 -(3 r1-120)
96 8 16 24 32

The characteristic polynomial of the matrix P is

(A-1)2(2A + rl -32)[12A 2 + (45rl - l104) A + 9rl 2 -- 560rl + 8192] = 0

32-,1 and -45rI_-1104 _ V_V'531r12-24160rl-[-275200 For values offor which the roots are A = 1, 2 ' 24 24

_SO-Sv_ all eigenvalues are positive, and the method is stable. The resulting matrix A* canrl < 9 ,

be written as

_ __.

3 r1-120 -(9 ri--256) 9 rl --208 --(3 r 1--64) 9 rl --184

24 16 _ 96-(7 rl-160) 2 rl-48 __!I-16
6r1-192 6 r1-192 ri-32 6 ri-192 6r1--192

± -_2 0 2 -_kl
3 3 125 rl-96 -(2 rl-48) 7 rl-160 rl-48

6 r1-192 6 rl-- 192 rl--32 6 rl--192 6 r1--192

-(9 r1-184) 3 rl--64 -(9 rl--208) 9 rl--256 --(3 rl--120)
96 8 16 24 32

Note that for a value of rl = !_ the resulting scheme is

p

1 0 0 0 0

0 32/7 0 0 0

0 0 12/7 0 0

0 0 0 32/7 0

0 0 0 0 1

Q

(-45)/28 44/21 (-1)/7 (-4)/7 19/84

(-44)/21 0 8/7 32/21 (-4)/7

1/7 (-8)/7 0 8/7 (-1)/7

4/7 (-32)/21 (-8)/7 0 44/21

(-19)/84 4/7 1/7 (-44)/21 45/28
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(-45)/28 44/21 (-1)/7 (-4)/7 19/84
(-11)/24 0 1/4 1/3 (-1)/8

1/12 (-2)/3 0 2/3 (-1)/12
1/8 (-1)/3 (-1)/4 0 11/24

(-19)/84 4/7 1/7 (-44)/21 45/28

Other third-order subelementsexist for a uniform grid, but requirea larger stencil. Their operation

count is necessarilylarger than thosealreadypresentedand will not bepursued in this work.

Fourth Order

The optimal fourth-order schemes defined on five grid points produce a subelement A* that can be

decomposed into P and Q of the form

p __ ,

1 2/3 0 0 0

2/3 20/3 (-10)/3 4/3 0

0 (-10)/3 32/3 (-10)/3 0

0 4/3 (-10)/3 20/3 2/3

0 0 0 2/3 1

Q

(-9)/4

(-31)/9

= 2

-1

7/36

31/9 -2 1 (-7)/36

0 6 (-32)/9 1

-6 0 6 -2

32/9 -6 0 31/9

-1 2 (-31)/9 9/4

(-25)/12 4 -3 4/3 (-1)/4

(-1)/4 (-5)/6 3/2 (-1)/2 1/12

1/12 (-2)/3 0 2/3 (-1)/12

(-1)/12 1/2 (-3)/2 5/6 1/4

1/4 (-4)/3 3 -4 25/12

Gershgorin's theorem can be used to prove that the matrix P is positive definite. The scheme satisfies

all criteria of the summation-by-parts energy norm and is, therefore, stable for hyperbolic systems.

Note that the resulting scheme is pentadiagonal in the matrix P and would require a banded solver in

the cyclo-difference mode to invert. The operation count of just the P matrix inversion would be 5N,

which is not competitive with other explicit formulations. As the order of accuracy increases with

optimal formulations, the bandwidth of the matrix P will also increase, which makes these schemes

impractical. In addition, for N sufficiently large, the resulting schemes are unstable and cannot be

used.
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A subelementof uniformly fourth-order schemesthat is stable and explicit can be derived by

consideringsix uniformly distributed discretepoints. Oneadditional degreeof freedom from each

point enablesall of the constraintsto be met. As with the third-order subelements,a matrix P that

decouples is sought. Matrices P and Q that satisfy these constraints are

e m

1 0 0 0 0 0

--(279? r1--40008700) 287 r|--23_8300 --(249 r1--1862000) 267 r|--2348300
o 2745420 183028 183028 549084 0

0 _87 ri--2348300 -- 2999 ri--209|9400 --(249 ri--1862000)183028 ( 915140 ) 557 rl--3154500183028 " 183028 0

--(249 r1--1862000) 557 rl--3154_00 --(2999 rl--20919400) 287 rl--2348300
0 183028 183028 915140 183028 0

0 287 ri--2348300 --(249 ri--1882000) 287 ri--2348300 --(2797 ri--40008700)
549084 183028 183028 2745420 0

0 0 0 0 O 1

7_ rl--26_5360 --(864 r1--14247875) 86_ r1--?384325 --(288 r1--1698625) 432 r1--1976275 --(864 r1--3266195)
]143925 2745420 1372710 457570 1372710 " 13727100

864 r1--14247675 0 --41464 r1--11209525) 2028 rl--6385925 ._952 rl--2851075) 432 r1--1976275
2745420 1372710 1372710 915140 1372710

--(664 r1--7384325) 1464 r1--112095_ 0 --(882 rl--2557325) 2028 rl--6365926 --(268 ri--1898825)
1372710 1372710 686353 1372710 457870

288 r1--16988_5 --(2028 rl--6385925) 882 rl--2557325 --_1464 r1--11209525) 664 rl--7364325
457570 3372710 886355 0 ' '13_2710 1372710

--(432 r1--1976275} 952 rl--2851075 --(2028 rl--6385925) 1464 r1--11209525 --(864 r1--14247875)
1372710 915140 1372710 1372710 0 2745420

864 rl--3_66195 --(432 r1--1978275) 288 r1--1698825 --(864 r1--7384325) 864 r1--14247875 --(72 rl--2655360)

13727100 1372710 457570 1372710 2745420 1143925

The roots of the characteristic polynomial of the matrix P are _ = 1, -16rr!+3642325 4-
457570

5_/_[lOlr12-2874060rl'_'20964334625 and-5396rlJr4°456475 -_- 5_/1076752r12--13981396400rl'l-48389568578125 For

457570 _ 1372710 1372710

3627973675 125_/425258307391537(a numerical value of about 5733), all eigenvalues arevalues of rl < lS316s lS31es

positive, and the method is stable.

Fifth Order

Optimal subelements of fifth-order accuracy are not pursued in this work. Instead, a uniformly fifth-

order accurate scheme defined on seven evenly spaced points is derived. The matrices P and Q are

defined by

P z

1 0 0 0 O 0

0 1069 r1+292170384 --(89 r1+7400232) 883 r1+44908416 --(863 rl Jc44908416) 69 r1+7400_
25286256 1053594 8428752 12643128 4214376

--(89 rlJr7400232) 2627 r1-_-11311560 --41111 r1--41866272) 809 r!--|3_79392 --(863 rlJr44908416)
0 1053594 12643128 4214376 4214376 12_43128

0 863 r1-_44908416 --(1111 r1--41866272) 1489 r1--72846720 --(1111 r1--41866272) 883 r1÷449084|6
8428752 4214376 4214376 4214376 8428752

-(663 rl Jr44908418 ) 809 r1--13279392 --(llll rl--41866272) 2627 r1-1-11311560 --(89 r1_7400232)
0 12643128 4214376 4214376 12643128 1053594

O 89 r1+7400232 --(863 r1_44908416) 863 r1_-44908416 _ |0(_9 rl Jr292170384.4214376 12643128 8428752 25286256

0 0 0 0 0 0

0

0

0

0 ;

0

0

1
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Q tm

--(25 r1_26938800) 125 rlt43031322 --(125 r1÷11423502)
1264_12_ 10535940 4_14376

--_125 r1+43031322) 1255 rl--486936
....... 10535940 0 25286255

125 r1÷11423502 --(1255 r|--458936)
_2_4376 25286256 0

--(125 r1+887562) 185 rl--28229184 --(305 r1--88559864)
3160782 2107186 4214376

125 rl--4380408 --(715 rl--127212408) 680 FI--204436503
4214376 8428752 6321564

--(25 r1--1505235) 1475 r]--205934976 --(715 r1--127212408)
2107188 31807820 8428752

,125 r] --9648378" --(25 rl --1508238) 125 r1--4380408

83215640 2107188 4214376

125 _It567582 -(125 _1-4350405) 25 r1-1508238 -(125 rl-9e48376)
3160782 4214376 2107168 63215640

--(185 rl --28229184) 715 r1--|27212408 --(1475 rl--205934976) _5 rl--1508238
2107188 8428752 31607820 2107188

305 r1--88569864 --(680 r| --204436503) 715 rl --127212408 --(125 rl --4380408)
4214376 632]564 8428752 4214376

0 305 r1--88569864 --_185 rl--28229184) 125 r1_887562
42.376 2107168 316078_

-(305 r1-88569864) 1255 rl-455936 -(125 _1+11423502)
4214378 0 25288256 42]4376

185 r1--28229184 --(1255 rl--485936) 125 r1_43031322
2107188 25286256 0 1053_940

--(125 r1+887582) 125 ri+11423502 --(125 r1÷43031322) 25 r1_26938800
3160_8_ 4214376 10535_U ' 12643128

The matrix P is positive definite for values of vl > 172357 (determined numerically). This

uniformly fifth-order scheme satisfies the summation-by-parts energy norm and can be used as the

subelement for generating a cyclo-difference scheme. The resulting scheme will be explicit in nature

because the matrix/_ can be inverted analytically.

This basic procedure can be used to generate schemes of arbitrarily high order, although none

with an accuracy of greater the fifth order was generated in this work.

STABILITY OF THE CYCLO-DIFFERENCE SCHEMES

The summation-by-parts energy norm was used to develop the cyclo-difference schemes in a

semidiscrete context. The theoretical CFL for various Runge-Kutta (R-K) schemes must still be

determined. Because each point in a cyclo-difference scheme uses a different stencil, the use of

Fourier techniques to obtain a CFL is not applicable. A numerically determined eigenvalue spectrum

provides a practical means of obtaining the CFL of the various schemes.

A necessary condition for Lax stability of a semidiscretization is that the eigenvalues of the spatial

discretization operator (scaled by At), lie within O(At) of the stability region of the time integration

formula as At --, 0. This condition allows for exponential growth of the solution in time, but at a

rate that is independent of the grid density, which guarantees convergence as Ax --, 0. For time

asymptotic stability, all eigenvalues of the spatial discretization operator (scaled by At) should lie
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within the stability region of the time integration formula for all At. This condition guarantees

that the solution in time will remain bounded if the solution to the original governing equation is

bounded. The determination the CFL of a discretization is thus reduced to solving for At such that

the resulting stability region of the time integration formula encompasses all spatial eigenvalues.

Figure 1 shows the eigenvalue spectrum of the cyclo-difference schemes as determined from a

numerical eigenvalu.e determination. For each case, the number of grid points is 61; this number

satisfies the grid constraints for all cyclo-difference schemes presented thus far. Note that the structure

of the spectrum is not continuous, but seems to cluster into specific portions of the complex plane as

for conventional finite-difference techniques. (See reference [2].) In addition, this clustering becomes

more pronounced as the order of accuracy increases.

Table I shows the CFLs of the various schemes determined from a numerical eigenvalue deter-

mination. In all cases, the grid used contained 61 points. Very little sensitivity to grid density was

observed between 31 and 61 grid points. The four algorithms used in the study were : 1) cyc23, 2)

cyc35, 3) cyc46, and 4) cyc57. The first number indicates the formal accuracy of the scheme; the

last number is the number of grid points occupied by the subelement stencil. The cyclo-difference

schemes are then generated by recursively appending the subelements. Note that each scheme can

only run on a grid of M(N - 1) + 1 points, where N is the element size and M is the number of

elements.

(R-K i CFL CFL CFL CFL

Order Cyc23 Cyc35 Cyc46 Cyc57

2nd Unstable Unstable Unstable Unstable

3rd 1.16 1.23 1.08 0.87

4th 1.89 2.01 1.77 1.42

Table I. CFL of cyclo-difference schemes determined from eigenvalue determination.

Note that in each spatial operator, the fourth-order R-K is more efficient (in terms of CPU time,

rather than storage) than the third-order R-K to advance the solution in time.

Interestingly, equation (14) was obtained without imposing the boundary conditions. Reference [5]

demonstrated that the method of imposing physical boundary conditions is important to the overall

stability of the method. Two counter examples showed that the property of time asymptotic stability

could not in general be guaranteed for discretizations that satisfy the summation-by-parts norm.

The underlying reason for growth in time is the effect of the boundary operator on the structure

of the norm matrix p-1. Recall the semidiscrete form of equation (1): Ut = p-1 Q. If the boundary
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operator D is imposed, the semidiscrete form Ut = D p-1 Q results, for which D p-1 may not be a

norm. In the scalar case, this result is not a concern if the matrix P is a restricted full norm (Strand

[4]) or if D p-1 =_ p-1 D. A restricted full norm is defined when the diagonal is the only nonzero

element in the first (or last) row and column of the matrix P. The cyclo-difference schemes satisfy

precisely the definition of the restricted full norm and, therefore, are automatically stable for the

scalar wave equation.

Unfortunately, even for cases where P is a restricted full norm, stability cannot be generalized

to the case of a general hyperbolic system. The SAT method proposed in reference [5] can be used

to guarantee stability for the hyperbolic system. The SAT method involves the indirect imposition

of the boundary conditions, which is accomplished by adding a term to the derivative operator that

is proportional to the difference between the discrete value UN and the boundary term f(t). Rather

than directly satisfying the boundary condition by imposing UN = f(t), the SAT method solves a

derivative equation throughout the entire domain including the boundary points.

ORDER PROPERTIES OF CYCLO-DIFFERENCE SCHEMES

Time Dependent

Several test problems (both steady and unsteady) are used to establish the accuracy of the cyclo-

difference schemes. Because Taylor series analysis was used in all c_es to derive the schemes of a

particular order, these schemes are expected to behave to at le_t the Order of the local truncation

error. Consider the method-of-lines approximation to the scalar wave equation

OU OU

--_-+_-x =0 -l<x<l,t>O (16)

U(t,-1) = sin 2_r(-i - t); U(O,x) = sin2rx -l<x<l, t_O (17)

with the exact solutions given by

U(t,x) = sin 2r(z - t), -l<z<l, t>0 (18)

The spatial discretization is accomplished by the new cyclo-difference schemes of various order; time

was advanced with a four-stage R-K time-advancement scheme (formal nonlinear accuracy of fourth

order) with a CFL of 0.25 to a time level of 25. Further temporal refinement showed no improvement

in the solution accuracy.

Uniform Mesh

We begin with a discretization on a uniform mesh. Table II shows the results from a grid-refinement

study performed with each algorithm.
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.Grid logL2

Cyc23

16

17

19

21 -1.662

25

29

31 -2.083

33

37

41

61 -2.710

81

91

101

121 -3.316

Cyc35

-0.7378

-0.6959

-1.625

-2.066

-2.218

-2.587

-3.521

-3.914

-4.248

-4.547

Cyc46

-1.347

-1.740

-2.276

-2.722

-3.736

-4.249

-4.455

-4.638

-4.956

Cyc57

-1.530

-2.059

-2.760

-3.273

-4.620

-5.678

-6.435

Table II. Accuracy of new cyclo-difference schemes as function of grid density.

Once a scheme has achieved a certain minimum grid density it will exhibit an order property; by

doubling the mesh, the error will decrease by a factor of 2 k, where k is the order of the scheme. The

slopes for each scheme, as determined between grid densities of 31 (37 for cyc57) and 121 points,

were -2.05, -4.05, -4.45, and -6.10, respectively.

Note that the apparent accuracy of some of the cyclo-difference schemes is higher than the pre-

dicted local truncation error. This result is more apparent in the schemes with an odd order, namely

the cyc35 and the cyc57. The cyc46 does not obtain an accuracy that is significantly greater than

the theoretical accuracy. Borrowing from the finite-element terminology, this increased convergence

rate shall be referred to as "superconvergence."

Discontinuous Mesh

We noted earlier in the derivation of the underlying principles of cyclo-differencing that two subinter-

vals of unequal spacing could be joined at an interface without destroying the accuracy or stability

of the formulation. The discretization matrices P and Q were defined by

] [ ]p= 0 Q 0
A2P ; O 0 Q

Table Ill(a) shows the results of a grid-refinement study for which the ratio of grid spacings between

subintervals was not one (41 :_ 1). The model problem was that used in the previous test case
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(equations(16) to (18)), and the spatial discretizationwas the cyc35 algorithm. Time advancement

was as previously described. In each case, the spatial domain was divided into two regions, and one

half of the total number of points was distributed uniformly throughout each domain. This gave rise

to grid spacings A1 and A2 in each domain, respectively. Table III(a) shows the logarithm of the L2
41 Inerror for each discretization as a function of grid density, for a variety of spacing ratios p = X_"

all cases, the finest concentration of mesh points occurred at the outflow boundary.

Grid

41

81

121

161

log L2

p = 1 p = 3/2 p = 3 p = 5

-2.587

-3.914

-4.547

-5.046

-2.469

-3.715

-4.521

-5.052

-1.864

-3.197

-3.974

-4.559

-1.849

-3.123

-3.915

-4.315

Table III(a). Accuracy of cyc35-difference scheme for discontinuous mesh spacing as function of

grid density.

The magnitude of the error increases as the mesh discontinuity increases. This is because of the

increased effective grid density that results from clustering the mesh points near the outflow boundary.

The scheme still behaves with a fourth-order accuracy on this problem. Note that the slope of error

decay for the p = 5 case is -3.96 between N = 81 and N = 161 and that the cyc35 scheme is still

superconvergent.

Table Ill(b) shows a similar comparison with the other cyclo-difference algorithms; all cases were

run with a grid ratio of p = 5.

Grid

cyc35
41 -1.849

61

81 -3.123

97

121 -3.915

161 -4.315

logL2

cyc46

-2.317

-3.279

-3.983

-4.476

cyc57

-3.251

-4.449

-5.004

Table Ill(b). Accuracy Of cyclo-difference schemes for discontinuous mesh spacing (p = 5) as

function of grid density.

The slope of the error decay in the cyc57 scheme between points 61 and 121 is -5.82. The odd-order

schemes, even in this discontinuous case, appear to be superconvergent.
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Steady State

The second test problem is the solution of the flow through a supersonic nozzle. The governing

equations are the quasi-one-dimensional Euler equations. For this problem, an exact steady-state

solution exists and can be used to compare the accuracy of the new cyclo-difference methods. The

governing equations are

0 0

-_(pA) + _x (puA) = 0

0 _ i)A

-_(puA) + -_x[(PU2 +p) A] = pox

0 0

(petn) + _[(pet +p) uA] = 0 (19)

_2

where A = A(x) and et = Cv T + T" Boundary conditions are imposed on the inflow plane for all

three equations, and A(x) is prescribed such that the flow remains supersonic throughout the entire

domain. A four- and a five-stage R-K were used to time advance the solution to the steady state

(machine precision of 10-13). Residual smoothing was used to accelerate the convergence rate for the

various schemes. Table IV shows a comparison of the L_ error that resulted from each of the four

cyclo-difference schemes on various grids.

Grid

121

181

241

log L_

Cyc23 Cyc35 Cyc46 Cyc57
-4.122 -5.450 :6.410 -6.851

-4.474 -6.153 -7.178 -7.916

-4.723 -6.653 -7.703 -8.666

Table IV. Accuracy of Cyclo-difference schemes as function of grid density for one-dimensional

nozzle flow.

Note that by doubling the mesh, an error decay is produced with a slope of -2.00, -4.00, -4.29, and

-6.00, respectively. These slopes agree with those obtained in the time-dependent case for simple

linear advection. Again we see that the odd-ordered schemes are superconvergent.

Note that conventional second-order methods (as well as higher order central methods) with

suitable boundary conditions will no..._!tconverge to steady state for this and many other practical flow

problems. The residual decreases only one order and then remains at this point indefinitely. This
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non convergenceis because the interior scheme is entirely dispersive; thus, the only dissipation in the

spatial scheme comes from the boundary closure terms, which generally are not sui_cient to damp

the odd-even ('qr" in Fourier space ) mode that can develop under non-linear circumstances. Higher

order damping is explicitly added to these central-difference schemes to ensure that a steady-state

solution can be found. The cyclo-ditference schemes, by virtue of their cellular construction, are

stable for the _r mode and can be used without additional damping. In practice, additional damping

makes the scheme converge more rapidly as expected.

CONCLUSIONS

A new methodology referred to as "cyclo-differencing" is presented for defining stable high-order

finite-difference schemes. They are similar to spectral element techniques of some arbitrary order,

and are ideally suited for implementation on parallel machines. Unlike spectral element techniques,

their existence does not rely 'on orthogonal polynomials or nonuniform grids. In principle, they can

be devised of any order accuracy, although only schemes of sixth-order accuracy are pursued in this

work. These new techniques rely on the summation-by-parts energy norm to establish formal stability

for the scalar hyperbolic case. In addition, if the newly devised SAT method for imposing boundary

conditions is used in conjunction with cyclo-differencing, then the resulting numerical method is

formally stable for the hyperbolic system.

The cyclo-difference techniques are similar to central-difference techniques in that they are stable

for right- or left-running waves, with appropriate placement of the physical boundary conditions. A

decided advantage is that no numerical boundary conditions are required near the walls. Thus, high

order accuracy is assured throughout the entire domain. In addition, the cyclo-difference schemes can

be patched together across arbitrary grid discontinuities, and still retain their accuracy and stability.

A series of test problems are used to demonstrate the efficacy of the cyclo-difference methodology.

The scalar advection equation is used to show the formal stability and accuracy of the second-

to fifth-order cyclo-difference schemes. For the odd-order cyclo-difference schemes, the property of

superconvergence is observed; specifically, these schemes converge at a rate one order higher than their

theoretical accuracy on both uniform and discontinuous grids. A one-dimensional nozzle problem

is used to demonstrate the robustness of the cyclo-difference techniques. Steady-state solutions,

consistent with the order property of the spatial operator, are obtained without the addition of

artificial damping to the formulations. Finally, the viscous Burgers equation is solved to demonstrate

the use of the cyclo-difference technique for a nonlinear parabolic problem. Again, robust and accurate

solutions are obtained in all cases.
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APPENDIX A

Viscous Stability

Assume P 0u-_ = Q U, where P and Q are matrix operators and U is a vector of discrete values. The

proof of stability for the cyclo-difference scheme developed in this work relies on very specific forms

for the matrices P and Q. Specifically, P = pT and is positive definite; Q = Q,,_ + Qok, where the

only nonzero elements of Q,k are qo,0 and aN,N, and qo,o -- --qN,N ---- --_; (_ > 0). This form of the

derivative operator leads directly to a stable second derivative operator. We begin with a derivation

of the continuous energy for the one-dimensional heat equation

OU cg_U
_ Z Old 0<x<l,t_0

U(O,t) = f(t); U(1,t) = g(t)

u(z,0) = ¢(z) 0 < x < 1 (A. 1)

Note that boundary conditions based on the derivatives at x = 0 or x = 1 could have been imposed.

1 U s) is formed by multiplying equation (A. 1) by U. Integration over theAn energy (defined as

domain results in

fo' 02(U)1 dx t > 0 (A. 2)(t) = [--ad U Oz2

Integration by parts yields an expression of the form

fo OU 2Zt(t) = ad[U(1,t) Ux(1, t) - U(O,t) Vx(O,t)] - ad(-_z ) dx t>_ 0 (A. 3)

The energy takes the form of a negative definite quantity plus the boundary data that involve the

function and its derivatives at the boundaries.

If the second derivative in equation (A. 1) is formed by twice operating with the first derivative

operator, the semidiscrete form of equation (A. 1) becomes

OU

O-'-t = ad P-1Q P'I Q U t >_ 0 (A. 4)

If P is symmetric (P = pT) and is positive definite, then p-1 is symmetric and positive definite.

Similarly, because Q = Q,_,_ + Q_k, we have Q = 2 Qa_m - QT. By operating on equation (A. 4)

from the left by U T P and using the relationships between Q and QT, we obtain

Et (t) aa [2 U w T p-X U T QT P-1= Q,_m QU- QU] t>_ 0 (A. 5)
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where Et is the time rate of change of the discrete energy defined by E(t) = U T P U. In defining

V = Q U, the second term on the right side of equation (A. 5) is negative definite. Because of the

sparseness of the matrix T _-;(O) ] and equation- v(o)Q,v,,,, the first term reduces to a [U(1) au

(A. 5) becomes

Et(t) = ad 2a U(1)_-x(1 ) - _x-x(0) - V t> 0 (A. 6)

To within a positive constant, this expression for the discrete energy is identical to that obtained from

the continuous case. Therefore, the discrete energy will behave like the continuous energy. However,

note that this analysis is linear and does not guarantee stability in some problems of practical interest.

For example, the same argument could have been used to demonstrate the stability of forming U2x

from two central-difference first derivatives. In fact, if U2x is formed in this manner, no damping

would result for the 7r mode in Fourier space, which ultimately would result in the growth of the

odd-even mode in physical space.

The cyclo-difference schemes do not appear to be as susceptible to the odd-even mode instability

as the conventional central-difference schemes because a different stencil is used at each point. For

example, consider the cyc35 scheme with the parameter rl = 16. The resulting subelement A* =

p-1 Q is

-9/4 14/3 -4 2 -5/12

-1/3-I/2 l -1/6 0

1/12-2/3 0 2/3 -i/12

0 i/6 -1 1/2 i/3

5/12 -2 4 -14/3 9/4

By forming the viscous derivative by the sequential operation of the first derivative operator A_ -

A ° A*, we obtain

Art _

3 -9 10 -5 1

1 -2 1 0 0

0 1 -2 ! 0

0 0 1 -2 !

1 -5 10 -9 3

The interior of this matrix is identical to the conventional second-order viscous derivative and is

not susceptible to the odd-even mode. Truncation analysis shows the resulting viscous matrix to be

uniformly second order.
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To test the convergencerate of the viscous terms and the overall influence of the odd-even mode,

the viscous Burgers equation is used. The equation is defined by Ut + (0.5 U2)_ = # U_, with

boundary conditions U(0, t) = Uo and U(1, t) = 0. The exact steady-state solution is given by

U(x) = UoO + expiRe (z i)

where Re = Uo/p and 0 is the solution of the equation

- 1 exp(-U Re)
U+I

and can be used to determine the error on a particular grid for this problem.

Table A.I shows the results of a grid-refinement study on the viscous Burgers equation.

Grid

51

53

55

101

103

201

205

401

403

fourth Cyc35 Cyc46 Cyc57

-2.009 -3.547

-3.408

-4.879

-6.369

-3.405

-4.663

-5.882

-7.087

-4.496

-6.233

-7.561

-2.975

-4.719

-6.807

-8.596

Table A.I: Error from various cyclo-difference schemes on the steady-state Burgers equation.

The loglo of the L2 error are plotted as a function of the grid density. The convergence rate for

the fourth, Cyc35, Cyc46, and Cyc57 methods are 4.9, 4.0, 5.1, and 6.5, respectively, as determined

between the 101 and 401 points. The viscosity was/_ = 0.04 which results in Re = 25.

APPENDIX B

Periodic Stability

At least two cycles of the fundamental subelement are required to define a cyclo-difference scheme

(which includes two boundaries and one patch). Schemes of greater grid density can be constructed

by cyclically patching an arbitrary number of subelements together. The cyclo-difference schemes

can be used, however, on a periodic domain. By construction, we will show how to generate a stable

periodic scheme from any of the cyclo-difference schemes.
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The periodic assumptionis implementedby first requiringthat grid points 1and N are equivalent.

Hence, the last row and column from the cyclo-difference scheme can be eliminated. (With this

requirement, the minimum number of subelements required for the periodic case is three.) If points

1 and N are equivalent, then the stencils that require grid point N are "wrapped around" to point 1.

Similarly, the stencil at point 1 is replaced with the interfax:e stencil symmetrically relates points on

either side of grid point 1. The resulting cyclo-difference stencil is now periodic, and each subelement

is indistinguishable in terms of position. Unlike conventional central-difference schemes, the resulting

stencil is not skew symmetric. The eigenvalues of the stencil are all on the imaginary axis because

Ap = p;1 Qp, and Qp is entirely skew symmetric.

The periodic versions of the cyc23 and cyc35 schemes are presented to illustrate this procedure.

The periodic cyc23 scheme with three subelements (seven points) and truncated to six points, can

be written as

Ap

0 1 -1/4 0 1/4 -1

-1/2 0 1/2 0 0 0

1/4 -1 0 1 -1/4 0

0 0 -1/2 0 1/2 0

-1/4 0 1/4 -1 0 1

1/2 0 0 0 -1/2 0

The matrix Ap = pp-1 Qp, where P is the diagonal matrix characterized by [1/2, 1, 1/2, 1, 1/2, 1] on

the main diagonal; Qp is entirely skew symmetric. By definition, we know that a skew symmetric

matrix has eigenvalues on the imaginary axis. The semidiscrete energy of the system defined by

U T Pp U will be unchanged for all time with this discretization.

A comparison of the eigenvalues for this discretization with those of the conventional second-

order periodic central-difference stencil on six points is interesting. The characteristic polynomial

for the matrixApis A2(16A 4 + 51A 2 + 36) = 0, which results in theeigenvalues A = 0 and

A = + _-_ X/17 + v/_i for which the maximum eigenvalue is + 1.46024. The conventional

periodic second-order scheme produces a characteristic polynomial A2 (4 A2 + 3) 2 = 0 for which the

maximum eigenvalue is x/_i. These eigenvalues are distinctly different; the effective CFL will be

smaller for the cyc23 than for the conventional second-order scheme.

'i

For simplicity, the diagonal form of the cyc35 scheme (r1=160/7) will be used to illustrate the

periodic form of the operator. The subelement A5 takes the form
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A5 _-

4s 44 -I/7 -4/7 !9
- _ 2"i s-_
-5-i 0 1/4 1/3 -1/8
1/12 -2/3 0 2/3 -1/12
1/8 -1/3 -1/4 0 11

4/7 1/7 -'4
84 21 58

Three subelements are used, and the resulting scheme is reduced by one row and column,

yields a matrix Ap of the form

which

Ap

0 2_
51

11 0
24

1/12 -2/3
1/8 -1/3

_ 2/7168

0 0

0 0

0 0
0

168

-1/8 o
-1/12 o

'_ 0
24

-1/14 -2/7 _ 0 0 0 -i-_'9 2t 7 1/14 _5_2,
1/4 1/3 -1/8 0 0 0 0 0 0 0

0 2/3 -1/12 0 0 0 0 0 0 0

-1/4' 0 _ 0 0 0 0 0 0 0

1/14 -_ 0 _ -1/14 -2/7 ,681-9-9 0 0 0

0 0 -_ 0 1/4 1/3 -1/8 0 0 0

-0 0 1/12 -2/3 0 2/3 -1/12 0 0 0

0 0 1/8 -1/3 -1/4 0 _4 0 0 0

0 0 -1-'_ 2/7 1/14 -_ 0 _ -1/14 -2/7
0 0 0 0 0 0 -'_ 0 1/4 1/324

0 0 0 0 0 0 1/12 -2/3 0 2/3

0 0 0 0 0 0 1/8 -1/3 -1/4 0

The matrix A t, = P_' Qp, where P is the diagonal matrix characterized by [2, 32/7, 12/7, 32/7,

2, 32/7, 12/7, 32/7, 2, 32/7, 12/7, 32/7] on the main diagonal and Q,, is entirely skew symmetric. The

semidiscrete energy of the system defined by uTp,,u will be unchanged for all time with this discretiza-

tion and is, therefore, stable when advanced with a stable time-advancement scheme. The character-

istic polynomial for the matrix Ap is x 2 (x 5 + 2) (9408 x s + 23545 x 6 + 18219 x 4 + 4302 x 2 + 243) = 0.

The roots of this polynomial are strictly imaginary and are bounded by the points 4- x/_i. Because the

cyc35 scheme exhibits superconvergence properties, it can be compared with the conventional periodic

fourth-order central difference expression defined on twelve grid points. The characteristic polynomial

for the central difference case is x 5 (9 x 2 + 16) (16 x 2 + 27) (48 x 2 + 49) (20736 x 4 + 19296 x 2 + 3721) =

0. All roots are imaginary and are bounded by the points 4-_i. Again, note that the cyc35 scheme

has a slightly more restrictive CFL than the conventional central-difference method on twelve points.
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Figure 1. Eigenvalue spectra for second- to fifth-order cyclo-difference schemes with 61 gridpoints.
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