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ABSTRACT

Motivated by the recent explosive development of results in the area of parametric

robust control, this paper presents a new technique to identify a family of uncertain

systems. The new technique takes the frequency domain input and output data

obtained from experimental test signals and produces an "interval transfer function"

that contains the complete frequency domain behavior with respect to the test signals.

This interval transfer function is one of the key concepts in the parametric robust

control approach and identification with such an interval model allows one to predict

the worst case performance and stability margins using recent results on interval

systems. The algorithm is illustrated by applying it to an 18 bay Mini-Mast truss

structure.

1. INTRODUCTION

It is well known that obtaining an accurate mathematical description of a system is

impossible, usually very costly and often increases the complexity of the corresponding

control mechanism. Robust control deals with systems described as a family consisting

of a nominal model with uncertainty around it. In particular, parametric robust

control deals with systems whose parameters of interest vary in known independent

intervals. The simplest form of such a system is called an "interval system" wherein

the model consists of a family of transfer functions with numerator and denominator

coeffcients varying in prescribed independent intervals.

A recent trend in the area of system identification is to move toward a new

direction in which one tries to model the system uncertainties to fit the available

analysis and design tools of robust control. The motivation for this direction of

research is clearly stated in [1]. The excellent collection of papers dealing with this

important issue extensively is also found in [2] and references therein (also see [3,4,5]).

The main emphasis of these results is either to classify the plant uncertainty as a

various form of norm bounded uncertainties_ _such as H _, ll, and structured singular

values or to find the optimal nominal models to fit their respective robust control

design methods.

Commonly, an interval transfer function is interpreted as a family of transfer

functions whose coefficients are bounded by some known intervals and centered at

the nominal values. In many cases, this type of framework is unnatural and physical

parameter perturbations do not correspond to transfer function coefficients. In order

to relax this limitation, approaches to deal with linearly or multilinearly correlated

perturbations have been proposed. On the other hand, if we observe recent devel-

opments in the interval system area we see that the nominal system has very little

significance. These results in fact emphasize the boundary properties of the family

of systems under consideration. In fact, virtually all the important results we enjoy

today in this field are based on the boundary generating extreme points, edges, and

segments of the interval system.

Following the motivation described in [1], suppose that the behavior of the plant

is described by some known test input and its corresponding measurement output.

Due to many reasons such as noise, inaccurate measurements etc., a fixed linear time-



invariant identified model will almost never exactly represent the data obtained from

the plant. Our aim in this paper is to obtain a reasonable interval transfer function

model around (not necessarily centered in) the nominally identified transfer function

so that the entire frequency domain behavior of the physical plant is completely con-

tained in that of the model. We give a systematic and simple algorithm to accomplish

this task. We also discuss the issue of design validation of the obtained interval trans-

fer function. Finally we demonstrate this practical technique by applying it to an 18

bay Mini-mast truss which has been extensively used for various large space structure

control problems.

2. PROBLEM FORMULATION

Consider the following configuration shown in Figure 1.

test input . system

Figure 1.

m-

test output

In system identification one applies test inputs and measures the system response

in order to identify the parameters of an appropriate proposed mathematical model.

It is also common that these test signals are represented in a form of frequency domain

data. In system identification literature there are numerous techniques available (see

[7] and references therein) to determine a best possible linear time- invariant model

that fits this set of frequency domain data. Suppose that the test frequencies are

wx,w2,...wN and the complex numbers u(jwl),y(jw,) denote in phasor notation the

input-output pair at the frequency wl. Let

y(jw,) := D(jw,)u(jwi), i= 1,2,-..,N (2.1)

denote the test data generated from an identification experiment. Suppose that GI(s)

is the transfer function of a linear time-invariant system which is such that GI(jw)

is closest to D(jw) in some norm sense. In general it is not possible to find a single

rational function GZ(s) for which Gz(jw,) = D(jw,) and the more realistic identifica-

tion problem is to in fact identify an entire family G(s) of transfer functions which is

capable of "explaining" the data in the sense that for each data point D(jwi) there

exists some transfer function Gi(s) e G(s) with the property that G,(jwl) = D(jwi).

The family G(s) can be parametrized in many alternative ways. For instance an un-

structured approach to describing G(s) using a normed algebra is to let each element

G(s) of G(s) be described as G(s) = Gt(s)+ AG(s) where the norm IAG(s)I < p. In

such a case the family G(s) is identified once Gr(s) and p are determined. In general

the identification algorithm should also be efficient in the sense that the family G(s)

that it produces should be ideally minimal among the set of all such families that
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explain the data. In the unstructured case described above this translates to choosing

a small value of p.

In this paper our objective is to develop an identification algorithm in a frame-

work where the family of linear time-invariant systems G(s) is obtained by letting

the transfer function coefficients lie in intervals around (not necessarily centered in)

those of the nominal GI(s). Of course the identification requirement is that

D(jw,) C G(jw,) V wi. (2.2)

Let

We define

and

no + his -I- n2s 2 + nss 3 -4- ''' + nnS n

G'(s) := do + dis + d2s 2 + d-_ _ :. - + dns n

ho + his + h2s 2 + hss z + "" + hns n
a(s) := =

do+ dis + d_s2+ dss3+... + d,s-

(2.3)

(2.4)

G(s) := {G(s) : hi • [ni- w,_,c_,,n+ w,_ie+],di• [di- wd,ed-_,d+ wa,e+_], V i}
(2.5)

where

W := [ Wdo "''Wd= Who "'" Wn_ ]

_+ .-- [ £d+0 -'- £+ ...

:- ... < <0 ... ].
(2.6)

The components of w are to be regarded as weights chosen apriori whereas the es are

to be regarded as dilation parameters to be determined by the identification algorithm

and the data D(jwi)

+ and e+ insteadRemark 1. Note that in the expression in eq. (2.5) we use vectors %i di

of a single e. This setting allows nl and di to not necessarily be the center point of the

intervals in which hi and di, lie respectively. This flexibility is important to achieve

the minimum possible size of the family G(s).

The requirements on the identified interval model G(s) become:

1) Membership Requirement: D(jwi) • G(jwi) Y i.

2) Size Requirement: II_e+ H as small as possible.

3) Frequency Response Requirement: the weights w must be chosen so that the

frequency response of G(jw) is bounded as tight as possible for every frequency.

It is important to note that both size and frequency response requirements are

crucial because smaller intervals do not necessarily map to smaller image sets. The

frequency response requirement ensures that the frequency domain image set be as

small as possible.



3. INTERVAL SYSTEM MODELLING

Our objective is to find the set, an interval system G(s), to satisfy the three require-

ments given in the previous section. As described above the procedure is divided

into two part. First, we identify a linear time - invariant model GI(s) which repre-

sents the test data D(jw) as closely as possible. A variety of algorithms are available

in the system identification hteratures. We use a least squares algorithm which is

widely known [7]. Then using this identified model as a nominal model, we create

the tightest intervals around each coefficient of the nominal transfer function GI(s)

while satisfying the membership and frequency response requirements.

3.1. Nominal System Identification

In this subsection, Since the purpose of this paper is not to deal with traditional single

system identification problem, we briefly describe a standard method to identify a

nominal transfer function whose frequency response fits the given test data D(jwi)

as closely as possible. The method we use here is widely known as the weighted least

square method [7]. The least square approach to curve fitting a transfer function in

the frequency domain may be found in [8]. An appropriate order of model may be

determined by checking the singular values of the Hankel matrix generated from the

impulse response data. Under the assumption that the data is noise free, the number

of nonzero singular values determines the order of the system. The details of this

approach is found in [9]. After determining the appropriate order of the system, we

let the nominal transfer function be

n(s) (3.1)
GI(s) .- dis)

The nominal transfer function coefficients must be selected to minimize the following

index:

N

{W'(jw,){Re[D(jwi)d(jw,)- n(jw,)]} 2 + {Im[D(jw,)d(jw,)- n(jw,)]}2}.
i----1

(3.9.)

This least square problem generates 2N linear equation for 2n unknown coefficients

of the transfer function. The weight W I may be selected by finding the minimum

variance estimator of unknowns. The details of methods for selecting the normalized

least square weight WX(jw) and its effect on the identified model are discussed in [7].

The reference [7] also discusses the problem of selecting an appropriate order of the

transfer function in detail. In general, the relative error in the valley parts of the

frequency response is more significant than the one in the peak parts, it is necessary

to assign high weights for the frequency ranges in the valley parts of the frequency

response.

Using this idea, we select the normalized least square weight WI(jw) and improve

the identified model by comparing the identified model and the test data.
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3.2. Weight Selection

As shown in eq. (2.5), the size of the interval of variation for each coefficient of the

family G(s) depends on w and e. In this subsection, we consider the problem of

finding an appropriate set of weights w. The weight selection procedure is extremely

important because inappropriate selection of weights may result in an unnecessarily

large family. This results in a large image set in the complex plane, even though the

intervals themselves may be small.

It is natural to think that a weight represents the average sensitivity of a coef-

ficient of the nominal model with respect to the variation of data points. Thus, we

establish the following reasonable algorithm for selecting weights.

Suppose the test data consists of N data points obtained at corresponding fre-

quencies, i.e.,

O(jw) := {O(jw,) = a, + j_,, i = 1,2,...,N}. (3.3)

Let us define the lth model set as follows:

D(jwl),G,(j,_) -- a'(j,,,,),
i=l

i=l,2,..-,l-l,l+l,...,N
(3.4)

In other words, the model Gt(jw) is identical to the nominal identified model GI(jw)

with the /th data point replaced by the Ith component of the test data D(jw). Now

we construct the/th identified model, which we call G[(s) which is identified from the

I th data set Gl(jw). Let

4 + + 4,' + + +
(3.5)

and

P:=[n0 n_ "'" n_ do d_ ... do]. (3.6)

If we assume that lG,(jw) - G[(jw)] is small, the sensitivity of the coefficients of the

nominal model with respect to variations in the l th data point is described as

0p

8GX(jwl) "

Collecting the sensitivity of the coefficients of the nominal model with respect to the

variation of all the data points, l = 1, 2,.. •, N, we have

c_p

8G'(jw)

o___ga__

or,
OGI(_N)

I, o-
. °.

l_n--n_l Ido-d_l "'" Id,_-d_[
Inn-n_l Ido-do2l "'" l&-d_l

NI_n--_nl Ido-d_l "'" Idn d_l

(3.8)



The weights are then defined as the average of these for each coefficient:

W:=

1 l•.- E1x I,_,_- ,-,,,I EI_ lao- a_ol...

(3.9)

3.3. Interval System Identification

In this subsection, using the weight that represents sensitivity of the coefficients of the

nominal transfer function, we develop an interval model that satisfies three conditions

given above. After we determine an appropriate weight vector, we need to find i±

to satisfy the given requirement. We now first consider the membership requirement.

Recall the nominal system given in eq. (2.3) and substitute s = jw, then we have

,_(j,,,)
d(jw)

no + jwnl - w2n2 - jw3n3 + w4n4 + jwSns ....

do + jwdl - w2d2 - jw_d3 + ¢a4d4 + jwSds ....

('o.,o -- W2T/,2"+ W4'D..4.... ) + j(tanl -- o.,3nz + ¢aSn5 .... )

(do-w2d2 + ao4d4 .... ) + j(wdl - oaZd_+ wSds.... )

:= neVen(w)+ jn°dd(w) (3.10)
dovon(_)+ jdodd(_)

Since the nominal model transfer function Gt(s) cannot perfectly represent the data

set D(jw), we have the following relationships for a particular frequency wi.

D(jwi) = ai + j_i

_ GI(jwi)

,.,o,,=,(,,,,)+ j,_od,_(,.,,)
d'v_n(wi) + jd°dd(wi) "

The difference may be added to the coefficients of the nominal model as follows:

(3.11)

_ + j Z_
(rz0 -- w_ng. + "") + j(wiTzl --w_n3 + "")

(do -w_d, + ...) + j(w,d_ -oa_ds + ...)
(3.12)

where

?Z i : = Tt i _- Wni En i

di := di + Wdiedi, Vi. (3.13)

If we rewrite this in terms of a linear matrix equation, we have

A(wi, ai,_Si)We_, i = B(w,,ai,_i) (3.14)
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where
A(wi, ai,fl,) :=

.... 1 0 w_ 0 -w_ t 0 ..-]

• .- 0 _i 0 -_ 0 _ J (3.15)

and B(wi, ai, f_i) :=

W:z

_Ei :_-

Wd o

Wdl

eL • _, _,• • dn no

Who

Wn 1

(3.16)

(3.17)

-ai(do - w?d2+ w'_d4.... ) + fli(widl- w_da+ w[ds.... )
+(',o - _,,_ + ,,¢,,4.... )

-_i(do - w_d2+ w4d4.... ) --ai(widl- w_da+ w_ds.... )
+(_,nl - _n_ + _,_, .... )

(3.18)

Here we assume that without loss of generality A(wl, ai, _i) has full row rank. It

is well known in linear algebra literatures [10] that the smallest norm solution _ei can

be computed by

g_ = A(.)T[A(.)A(.)T] -I B(.). (3.19)

After finding gi for all i = 1, 2, -, N, we determine the interval as follows:

- + max{O, e ie,.,,, := min{O, ei_,} e,.,, := ,.,,.} (3.20)

- , ed,,} (3.21)ed, := min{O, eak}i e+ := max{0, i

for all k. Clearly, the procedure guarantees three requirement given earlier.

4. MODEL VALIDATION

Model validation can be accomplished by comparing the frequency domain charac-

teristics of the obtained interval model and the test data. We use polar plots and

Bode plots to accomplish this task. The polar and Bode plots of the test data is

assumed to be given. Therefore we here only discuss the problem of obtaining polar

and Bode plots of a proposed model interval system. The polar plot of an interval

system is obtained by determining the image set of the set of transfer functions at a

fixed frequency w and taking the envelope of such sets obtained by sweeping over w

ranging from 0 _ o¢. This is done via the following theorems. The proofs of these

theorems may be found in [11]. Before we stating them some notation is necessary.

Let G(s) be an interval transfer function family:

N(,) }G(s) := C(8) - D(s) I N(8) e .N'(s),D(s) e 7)(s) (4.1)



where dV'(s) and _D(s) are families of interval polynomials. The magnitude and phase

of a transfer function G(s) at a frequency w are defined as #a(W) and Ca(w), respec-

tively. It is natural to define the maximum and minimum values of #G(W) and CG(W)

at each frequency w.

#G(W) := inf _ta(w)
G6G

/_G(W) := sup #c(w) (4.2)
G6G

and

CG(W) := inf Ca(w)
G6G

CG(W) := supCa(w). (4.3)
G6G

Let

_¢(s) := {K_(s) li = 1,2,3,4}. (4.4)

where K_C(s) is the ith Kharitonov polynomial associated with the interval polynomial

A/'(s) and similarly, we define K_v(s) to be the set of Kharitonov polynomials associ-

ated with _D(s). We now introduce a spedal set of segments that joint appropriate

pairs of Kharitonov polynomials. These segments are known as extremal segments.

SjC(s):=

{AKi(s)+(1-A)K_(s)IAc[O, 1],(i,j) e{(1,2),(1,3),(2,4),(3,4)} (4.5)

and Sv(s) isdefined similarly.

Introduce the followingtransferfunction sets:

GK := [O(s) [ N(s) 6 lCz(s),O(s) • ICy(s) (4.6)

GE := [ D(s) ](N(s),D(s)) • (Af(s) x :D(s))z (4.7)

where

(A/(s) x/:)(S))E := {(N(s) x D(s)) ]

N(s) • K:#'(s),D(a) • Sv(s) or N(s) • S_¢(s),D(s) • K:v(s)}. (4.8)

Theorem 1. [11] For every frequency w > O,

=

=

Theorem 2. [11] For every frequency w > O,
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Theorem 3. [11] The image set of the interval transfer function G(s) evaluated at

s = jw in the complex plane is bounded by the image of its corresponding eztremal

subsets:

OG(jw) C GE(jw)

where 0(.) denotes the boundary of a set.

Once the image set is generated at a fixed value of w = omegai one can verify if the

given data point D(wl) is contained in G(jwl) or not. This verification can be carried

out for every value of wi to verify whether or not the proposed interval model explains

the experimental data.

In the next section, for the sake of illustration we apply these ideas to a large

space structure experimental facility developed at NASA's Langley Research Center.

5. APPLICATION TO A MINI- MAST SYSTEM

5.1. Model Description

The Mini-Mast system shown in Figure 2 is a 20.16 meter long deployable truss

located in the Structural Dynamics Research Laboratory at NASA Langley Research

Center. It is used as a ground test article for the research in the areas of structural

analysis, system identification, and control of large space structures. The Mini-Mast

was constructed from graphite-epoxy tubes and titanium joints, by using precision

fabrication techniques. The 102 measurements shown in Figure 2 were derived using

51 noncontacting displacement sensors distributed from Bay 2 through Bay 18. Three

shakers are located circumferentially around the truss at Bay 9 and their locations are

selected primarily to excite the low frequency modes below 10 Hz. There are three

modes which consist of two bending and one torsion mode in this low frequency range.

These three modes are designed to be separated from the other frequency modes.

The experimental data used in this example are obtained by using one displacement

sensor output at Bay 9 from one input. In this example, we use the experimental data

within the 45 radian/sec low frequency range with 180 frequency data points. This

low frequency range covers the three low frequency modes described earlier. Figure

3 shows the frequency response test data.

5.2. Interval Model Identification

Using the weighted least square method described earlier, we select Wr(jw) shown in

Figure 4. The identified model obtained is

no + his -]- n2S 2 -_- n3 s3 _- n484 _- ass s

GI(s) = do + dis + d2s 2 + dzs a + d4s 4 + dss s + s 6

where

f



no = -5.78 x 10 4 do = 2.96 x 107

nl = 5.88 x 102 dl = 2.15 x lO s

n2 = -8.74 x 102 d2 = 1.10 x 106

na = 0.073 d3 = 2.75 x 103

n4 = -0.967 d4 = 2.21 x 10a

n_ = 3.48 × 10 -s d5 = 2.58

The eigenvalues of the identified model transfer function are as follows:

Model no. Eigenvalues Mode

1 -7.11 × 10 -2 ± j5.356 first bending mode

2 -4.22 × 10 -1 =k j26.302 first torsion mode

3 -7.99 x 10 -1 i j38.616 second bending mode

The magnitude and phase comparison of the test data and the identified model

are given in Figures 5 and 6. In Figures 5 and 6, the dashed fines denote the frequency

response of D(jw) and the solid lines denote the frequency response of GX(jw). The

dotted lines in Figure 6 indicates the error in magnitude (i.e., ID(jw) - GZ(jw)l) for

illustration.

We now create intervals around this nominal identified model. The weight selec-

tion method described in Section 3.2. gives the following weights for each coefficient:

Who = 2.7053 x 10 Wao = 3.9152 x 10 z

w m = 1.2041 Wdl : 2.2715 X 102

w_ = 2.3214 X 10 -1 wa_ = 5.8095 X 10

w,_3 = 4.0113 X 10 -z wd3 = 1.5250

w m = 2.4768 x 10 -4 Wd4 = 5.9161 X 10 -2

w,_5 : 2.9620 x 10 -6 was = 1.2520 x 10 -a

This set of weights produced the

G(s) :=

following interval system:

do+ dl, + d2s2+ + d4+ +

where

_o C [-6.0061,-5.6661] x 104

?Zl _ [ 4.7696, 7.8401] X 102

_2 C [--8.9589,--8.6096] X 102

_a C [--4.9791, 5.6904] X 10 -1

fi4 C [--9.7491,--9.3729] X 10 -1

fZ_ C [--0.8570, 1.1648] x 10 -4

d0 C [2.9361, 2.9795] x 107

dl • [2.0663, 2.2335] x 10 "_

d2 • [1.0923,1.0986] x 106

d_ • [2.6720, 2.8406] x 10 a

d4 • [2.2090, 2.2186] x 10 _

d5 • [2.5255, 2.6190] x 100

5.3. Model Validation

The following figures show that the interval model obtained here is a valid interval

model for the given test data set. First, Figure 3 shows the polar plot of the test

data for every measured frequency. Each mode of the polar plot has been separated in

10



Figures 7,8, and 9 for illustration. These figures show that every data point of the test

data is bounded by the image set generated by the interval model at the corresponding

frequency. Figure 10 was drawn for the entire frequency range. Similarly, Figures 11

and 12 show the magnitude and phase plots of the test data and the interval model.

Clearly, both magnitude and phase plots of the test data are contained in the tightly

bounded tubes representing the boundary of the frequency responses of the interval

system.

6. CONCLUDING REMARKS

A new algorithm to construct an interval transfer function from available frequency

domain data of the plant is presented. This model captures the complete frequency

domain characteristics that a single identified model cannot capture. This interval

model can be directly useful to analyse the robustness properties of any proposed con-

troller using the well developed theory of parametric robust control. Such an interval

model can predict the worst case stability margins associated with the controller.

This serves as a lower bound on the worst case stability margin of the actual (rather

than the model) system.
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Figure 9. Image set of third mode
I

 oooll'!
-0.01 -0.005 0 0.005 0.01

Real

Figure 10. Image set of the system
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Figure 11., Magnitude plots of interval, model and, experimental data
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Figure 12. Phaseplots of interval model and experimental data ,
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