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NEURAL NETWORKS: WHAT NON-LINEARITY, TO CHOOSE )/
Vladik Kreinovich, Chris Quintana*

Abstract. Neural networks are now one of the most successful learning formalisms. Neurons

transform inputs zl,..., z, into an output f(wlzz + ... + w,z,), where f is a non-linear function
and wi are adjustable weights. What f to choose? Usually the logistic function is chosen, but
sometimes the use of dit_'erent functions improves the practical efficiency of the network.

We formulate the problem of choosing f as a mathematical optimization prgblem and solve
it under different optimality criteria. As a result, we get a list offtmctions ]that are optimal
under these criteria. This list includes both the functions that were empirically proved to be the
best for some problems, and some new functions that may be worth trying.
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1. FORMULATION OF THE PROBLEM.

Neural networks are now one of the most successful learning formalisms (see, e.g., the recent

survey in [Hecht-Nielsen 1991]). After the initial success of linear neural models, in which the
output y is equal to the linear combination of the input signals zi, i.e. y = wlzl + w_z2 + ...,

it was shown in [Minsky Papert 1968] that if we only have linear neurons, then we end up with
only Linear functions and this severely limits the number of problems that we can solve using
the network. The next step, then, is to consider non-linear neurons, in which the output signal

is equal to f(wlzl + w2z_ + ...), where f(y) is a given non-linear function. A natural question

arises: what function f(y) do we choose?

Why is this problem important? It is a very important problem because although
neural networks help us to design good learning procedures, these procedures are far from being
reliable. Sometimes these procedures do not work; sometimes they work but demand too much
time, and too big a s/maple, to learn. Naturally, we might think that this is because the function
f that we used was not the best one. Sometimes the use of different functions can improve the
practical ei_clency of the network (see, e.g., [Wasserman 1989, pp. 15-16]). It" a simple guess can
really improve the learning performance, then it is natural to suppose that deep mathematical
optimization will lead to even better results.

: ".'or which some charac_ens-Why is this problem difficult? We want ",o End a _uncdon ;
tics J of :earning, such as average "earning :ime or average number of errors, is oo_imal tin :hese

cases minimal). The problem is_ha_ even for _he comraonly used [o&isticfunction i:seebelow _.
we do :_o_know how _o compute any of :hese possible characteristics.How can _ve :_md / for

T_ere does no_ seem ;owhich i(/) isoptimal Z we canno_ compute .;'(/',even :'ora single/? h

be a ike,:yanswer.
u

However, we willshow that thisproblem issolvable(and givethe solution)using advanced

math, namely, group theory. (For a general idea of this approach, see [Kreinovich 1990].)

2. WHAT IS KNOWN.

The first non-linear neuron was proposed in [Cowan 1967]. Cowan chose the logistic function.

so(y) -- 1/(1 + exp(-y)), because it leads to a good approximation of the behavior of real

(i.e. biological) neurons. The properties of neural networks with different f were studied by •

Grossberg (see, e.g., [Grossberg !088]) who showed _ha_ the logistic func:ion has _everal nice
properties useful for learning and is therefore a_ adequate choice. His analysis reszric_ed _he
class of possible functions, but there are still many other functions with the same properties.
So we still have to make a choice. Another attack was undertaken by Hecht-Nielsen, who in

[19871 added a demand that any function must be approx_mable by some neural network. This
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.approach leads to non-triviai mathematics, but the from result (see, e.g., [Kreinovich 1991]) is
that any smooth function f will work, so this additionM demand c_oes not help us to choose f.

3. WHAT DO WE PROPOSE

3.1. Motivations of the proposed mathematical deflnlt|ons.

We must choose a family of functions, not a single function. We speak about
choosing f, but the expression for f(y) will change if we change the units in which we measure

all the signals (input, output and intermediate), so in mathematical terms, it is better to speak
about choosing a family of functions f. It is reasonable to suggest that if an f belongs to
this family, then this family must contain kf for positive reM numbers k. This corresponds to
chan_ng units. Also, it must contain f + c, where c is a constant. This is equivalent to adding
a constant bias and therefore does not change the abilities of the resulting network. Since we
are talking about non-linear phenomena, we can also assume that some non-linear "rescaling"

• transformations z _ g(z) are also applicable, i.e., the family must include the composition

g(f(y)) for each of functions f. This family must not be too big, therefore, it must be determined
by finitely many parameters and should ideally be obtained from one function f(y) by applying all

these transformations. Without loss of generality, we can assume that this set of transformations
is closed under composition and under inverse, i.el, if z _ gl(z) and z _ g2(z) are possible

transformations, then z _ gl(g2(z)) and z --, g[l(z) are possible transformations, where by g[.1

we denoted an inverse function g[l(z) = w if and only if gl(w) = z. In mathematical terms this
means that these transformations form a group, and therefore a family is obtained by applying

to some function f(y) all transformations from some finlte-dimeasional trans£ormation _oup G

that includes all linear transformations (and maybe some non-linear ones).

All these transformations correspond to appropriate "rescallngs". Rescaling is something
that is smoothly changing the initial scMe. This means that if we have two different transforma-
tions, there must be a smooth transition between them. In mathematical terms, the existence of
this continuous transition is expressed by saying that the group is connected, and the fact that
both the transformations and the transitions are smooth is expressed by saying that this is a Lie

group (see, e.g., Chevalley, 1946).

What family is the best? Among all such families, we want to choose the best one. In
formalizing what "the best" means ,.ve :'ollow :he genera/idea outlined in [K.reinovich 1990].._ne
,:hteria :o choose may be comou_a_iona/ _impkicity, e_ciency of train.in_, or some_'/n_ ei se. in
mathematics/ optimization probiems, numenc criteria are most frequently used, when _.o every
family we assign some value expressing its performance, and choose a family '.'or which this ":aiue
'is ma:dmM. :,-Iowever. it is not necessary "o restz/c: _u.rse!ves to such numeric cr_te_a only. For

exampie, if we have sever_/_;Yerent families that have _he same rrainin_ _0ilitv A.. -.ve can c/noose
between _hem the one :ha_ has the minimal computational compiemty _'. In :is case. :he ac:'aai
criterion that we use to compare two families is not numeric, but more complicated: a family

FI is better than the family F2 if and only if either A(F1) > A(F2) or A(F1) = A(F=) and

C(F1) < C(F2). A criterion can be even more complicated. What a criterion must do is to allow
us for every pair of families to tell whether the first family is better with respect to this criterion
(we'll denote it by F1 > F2), or the second is better (F1 < F2) or these families have the same

quality in the sense of this criterion (we'll denote i_ by F1 "_ F2). Of course, it is necessary to
demand that these choices be consistent, e.g., if F1 > F2 and F2 > F3 then F1 > F3.

Another natural demand is that _his c,"itenon must Choose a unique optimal family (i.e.,

a family that is better with respect _o this criterion than any other family). The reason for
this demand is very simple. I.f a criterion does not choose any family at all, then it is of no
use. If several different families are "the best" according to this criterion, then we still have a
problem to choose among those "best". Therefore, we" need some additional criterion for that
choice. For example, if several families turn out to have the same training ability, we can choose
among them a family with minimal computational complexity. So what we actually do in this
case is abandon that criterion for which there were several "best" families, and consider a new
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"comoosite" criterion instead: F1 is better than F2 according to this new criterion if either it was
bet'ter according to the old criterion or according to the old criterion they had the same quality
and F1 is better than F2 according to the additional criterion. In other words, if a criterion does
not allow us to choose a unique best family it means that this criterion is not ultimate; we have
to modify it until we come to a final criterion that will have that property.

i.

The next natural condition that the criterion must satisfy is connected with the following.

Suppose that instead of a neuron with the transformation function f(y) we consider a neuron with

a function ](y) : f(v + a), where a is a constant. This new neuron can be easily simulated by the

old ones: namely, the output of this new neuron is f(wlzl +w2z2 +...) = f(wlzl +w2z2 +...+a),

so it is equivalent to an old neuron with an additional constant input a. Likewise, the old neuron
is equivalent to the new neuron with an additional constant input -a. Therefore, the networks
that are formed by these new neurons have precisely the same abilities as those that are built
from the old ones. We cannot claim that the new neurons have the same quality as the old ones,
because adding a can increase computational complexity and thus slightly worsen the overall
quality. But it is natural to demand that adding a does not change the relative quality of the
neurons, i.e., if a family {f(v)} is better that a family of {9(Y)}, then for every a the family

{f(y + a)} must be still better than the family {g(y :b a)}.

3.2. Definitions and the main result. By a trans£ormation We mean a smooth (differentiable)
function from real numbers into real numbers. By an appropriate transformation group G we
mean a finite-dimensional connected Lie group of transformations. By a fa.mily of functions we
mean the set of functions that is obtained from a smooth (everywhere defined) non-constant

function f(y) by applying all the transformations from some appropriate transformation group
G. Let us denote the set of all the families by F.

A pair of relations (<,-,_) is called consistent [Kreinovich 1990, Kreinovich Kumar 1990] if

it satisfies the following conditions: (1) if a < b and b < c then a < c; (2) a -_ a; (3) if a ,,, b then

b ,,_ a; (4) if a ,,_ b and b ,-_ c then a ,--, c, (5) if a < b and b --, c then a < c; (6) if a ,,_ b and b < c

then a < c; (7) if a < b then b < a or a --, b are impossible.

Assume a set A is given. Its elements will be called Mternatives. By an optimality criterion
we mean a consistent pair (<, _.,) of relations on the set A of all alternatives. If a > b, we say
that a is better than b; if a ,_ b, we say that the alternatives a and b are equ/valent with respect
to this criterion. We say that an alternative a is optimal (or best) with respect to a criterion

(<, ,'_) if for every other a/ternadve b either a > b or a ,-- b.

We say that a criterion {s /_nal if there exists an optimal alternative, and this optimal
alternative is unique.

Comment. In the present section we consider optimality criteria on the set F of all families.

By the resuh of adding a to a function f(y) we mean a function/(y) = f(y + a). By the

resu1_ of adding a to a family F we mean the set of the functions that are obtained from f E F
by adding a. This result will be denoted by F + a. We say that an optimality criterion on F
is shift-invaziant if for every two families F and G and for every number a, the following two
conditions are true:

i) if F is better than G in the sense of this criterion (i.e., F > G), then F + a > G + a;

ii) if F is equ/valent to G in the sense of this criterion (i.e., F -,, G), then F + a ,,_ G + a.

Comment. As we have already remarked, the demands that the optimality criterion is final and
shift-invariant are quite reasonable. The only problem with them is that at first glance they may
seem rather weak. However, they are not, as the following Theorem shows:

By a logistic function we mean so(y) = 1/(1 + exp(-y)).
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THEOREM 1. If a family F is optimal in the sense of some optimality criterion that is f_nal

and shif_-invariant, then every function f from F is equal either to a + bso( Ky + I) for some

a, b, K and l, or a linear function a + bz, or to a + bexp(Kz) for some a, b, K.

Comments. 1. Logistic, hyperbolic-tangent, linear and exponential functions are really among

the most popular [Kosko 1992].

2. We assumed that f must be smooth. If we consider f that can be not smooth in some

points, then it is natural to assume that on the intervals on which f is smooth, it must coincide
with one of" these functions. Such piecew_se smooth functions have also been successfully used,
the most popular are threshold functions that are obtained from the smooth ones by restricting

their values to [0, oo) or [0, 1] [Kosko 1992].

(The proofs are given in Section 5).

4. OPTIMIZATION OF NEURAL NETWORKS: RELATED RESULTS

4.1, Scale-inva_rlarlce.|rlstead of shift invariance. In the above text we _.ssum_d t_at th_
optlmality criterionisshiR-invanant. The same arguments can be used to motlvate the aemana

that the optimality criterionis invariantwith respect to scaJ.ingtransformations f(y) _ f(ay)

for some a > 0. Let us analyze the consequences of thisdemand.

Definition. By the resu.ltof rescaZmg a fi.mctionf(y) by a real number a > 0 we mean

a function f(!/)- f(ay). By the result of rescallnga family F by a we mean the set of the

functions, that are obtained from rescalJngf E F by a. This resultwillbe denoted by aF. We

say that an optimality criterionon F isscale-invaxlantiffor every two familiesF and G and for

every number a the followingtwo conditions are true:

i)'ifb" isbetter than G in the sense of thiscriterion(i.e.,F > G), then aF > aG;

ii)'ifF isequivalent to G in the sense of thiscriterion(i.e.,F -,,G), then aF ,,,aG.

THEOREM 2. If a family F is optimal in the sense of some optimality criterion that is f_nal

and scale-invariant, then every function f from F is equal to f(y) = (A + By-_')/(C + Dy -_)

for some A, B, C, D and a > O.

Comments. 1. In particular, for A = 0, B = C = D = 1 and a = 2 we get the Cauchy function

f(y) = 1/(1 + y2), that is used in neural networks (see, e.g., [Hecht-Nielsen 1991]. If B = 0 and

a is an integer, a > 1, we get ratio-polynomial signal functions that have also been successfully
used [Kosko 1992]. For a = 1, B = 0 and A = C = D = 1 this function equals to the expression

z/(1 + z), which was analyzed in [Munro 1986]. So this Theorem gives a list of possible optimal
non- linear neurons that generalizes Cauchy and ratio-polynomial functions.

2. By comparingthe results of Theorems 1 and 2 one can conclude that a scale-invariant
criterion cannot be shift-invariant: indeed, in this case we could apply Theorem 2, so f must
be described by the above expression. But these functions are different from the functions from
Theorem 1, and so due to Theorem 1 this criterion is not shift-invaHant.

But what if w.¢ still, want our criterion to be both shift- and sc_e-invari_n,t? For st_udard_
neurons with non-hneanty ot the type y = f(wlzl + ... + w,_x,) it is impossible; in sectmn 4.3
we'll show that it is possible for a more general type of neurons.

4.2. More general families of neurons. A natural way to define a finite-dimensionai family
of functions is to fix finitely many functions f,(y) and consider their arbitrary linear combinations

Definition. Let's fix an integer m. By a basis we mean a set of m smooth functions

f_(y), i = 1, 2, ..., m. By a m-dimensional family of functions we mean all functions of the

type f(y) = _'_, C,f,(y) for some basis f_(y), where C, are arbitrary constants. The set of all
m-dimensional families will be denoted by F,n.
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Our definitions of the optimality criterion, final criterion and shift-inv'_iant criterion can be

applied to these families.

THEOREM 3. //'an ra-dirnensional family F is optimal in the sense of some optimality criterion
that is _nal and shift-iavariant, then every [unction f from F is equal to a linear combination of
the functions of the type Vp exp(av) sin(;gV + _), where p is a non-negative integer, a,/9 and
are real numbers.

Comment. In particular, for p = 1, a =/9 = 0 we get linear functions; for p -- 19 = 0 we get
exponential functions; for p = c_ = _ = 0 we get a sine function, that has been successfully used

[Braham 1989, Braham Hamblen 1990].

4.3. What if we demand scale-invarlance and shlft-invarianee of the optimality cri-
terion? Neurons with different non-linearlty. In all the above cases we considered neurons

that transform the input signals Zl,...,z, into f(wlzx + ... + w,z,). This means that we added
only one type of non-linearity: V _ f(_/) for some non-linear f. Let us consider neurons with the

most genera/ type of non-linearity _1,...,_4, _ f(bq,..-,Vp), where f is an arbitrary non-linear
function of p variables. As in the above case, linear transformations are easy to implement,
therefore we can consider neurons of the type

where wq are weights.

Definition. Let's fix integers rn and p. By a basis we mean a set of rn smooth functions

fi(Yl,...,_'p), i = 1,2,...,m. By a m-dimensional family of ftmctions of p variables, or re,p-

family for short, we mean a family that is formed by all functions of the type f(vl,...,_4,) =

_i Cifi(vl,..., yp) for some basis fifth,..-, _6,), where Ci are arbitrary constants. The set of all

rn, p-cUmensiona/fam.ilies will be denoted by F,,,a,.

Comment. Since it is easy to implement arbitrary linear transformations, it is reasonable to

demand (like we did above) that the relative quality of the family does not change if we apply a
shift or a rescaling to all its functions. So we arrive at the following definitions:

Definitions. Suppose that a vector ff = (al, ...,a_,) is _ven. By the result of adding _ to

a _unct:on r ,Zh, .... _/p) we mean 3.."unction/(yl .... , _p) = f(_l - a_, .... _p. + a_,). By :he result

of add/_g" _ to a family F we mean the se_ of the functions, that are obt.xlned from f _ Y" by
adding 8. This result will be denoted by F -+-_.

By the result of.-esca.//nq • function f(_11,....._l_) by a vec:or _ = _a_,...) with ,t.: > 0 we

mean a function f(yl,...,g_) = f(a_g_, ...,a_g_). By _he result ofrescaiing ;t famaiy /'- by 8-.re
mean the set of the functions, that are obtained from rescaling f _ F by _'. This result will be
denoted by a'F.

Now we can apply the defimtions of the optimality criterion, fi.nal criterion, shift- and scale-
invariant criterion to m-dimensional families.

THEOREM 4. /f an m, p-dimensional family F is optimal in the sense of some optimality
criterion that is final, shift- and scale-invariant, then every function f from F is equal co a
polynomial of _h,..., _t_.

Comment. So if we consider neurons with a more complicated non-linearity, we get the GMBH
network (see [Hecht-Nielsen 1991, Section 5.6.1]), which historically is the first commercially
successful non-linear neuron.

4.4. A related question: how to modify the weights during the training? This question

is related to the following problem: usually during training weights are changed linearly (like
w --* w + c for some constant a). However, sometimes some weights become so big that the
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output of the corresponding neurons is close to 1. These neurons kre called saturated (see, e.g.,

[Wasserman 1989, pp. 90-91]. Saturation extends the training time, bringing the whole training
process into a paralysis. To overcome paralysis, non-linear weight transformations are used:
w --* g(w) for some non-linear g. The main purpose of this transformation is to get rid of big
values, i.e., to transform the whole set of real numbers (-_, o_) intosome limited interval of

values [-A, A]. But there are many functions with this property. So the natural question arises:
what g is the best to choose?

The same arguments as in Sections 2 and 3 can be used to conclude that what we really
need to choose is a family of functions, not just a function g, and that it is reasonable to assume

that this family is obtained from some function g(w) by applying all the transformations from
some appropriate transformation group.

If a function g is better than afunction _, then it is reasonable to assume that it will still
be better if we first make one more standard training step w ---* w + a and only then apply
the non-linear transformation. These two consequent steps are equivalent to one transformation
w --* g(w+a). So the above demand means that if g(w) is better than _(w), then gl(w) = g(w+a)

must be better than ._l(w) - ._(w + a). In other words, the optimality criterion must be shift-
invariant. Let's turn to formal definitions.

Definitions. Let us fix some real number A > 0. We say that a function is bounded if

its values always belong to [-A, A]. By a family of weight transformations we mean the set of

functions that is obtained from a smooth (everywhere defined) non-constant bounded function
f(w) by applying all the transformations from some appropriate transformation group G. Let
us denote the set of all such families by F_,. Let us consider optizhality, criteria on this set Fw.

THEOREM 5. Ira family Fw is optimal in the sense of some optimality criterion that is anal

and shift-invariant, then every bounded [unction g from F is equal to a + bso(Ky + I) for some
a, b, K and I.

Comment. Such functions really proved to be the best in overcoming paralysis [Wasserman 1989,

pp. 90-91].

S. PROOFS.

Proof of Theorem 1. The idea of :Ks proof is as ioklows: fi.rst '_e prove :hat the appropriate

ranszorma:_on group consists of-racnonally-anear functions (m part i), then we orove tha_

the opt{real family is shift-invaz'ian_ (in part 2), and from that in part 3 we conclude that any
:'unction/ :rom F satisfiessome func:ionalequations, whose soiu_ionsare known.

i. By an appropriate _oup we meant a connected finite-dimensiona/Lie group of :ransfor-
i_v#letiOns of the set of real numbers R onto itself that contains all linear transformations. Norbert

net asked to classify such groups for an n-dimensiona/space witharbitrary n, and this clas-
sification was obtained in [Guillemin Sternberg 1964] and [Singer Sternberg 1965]. In our case

(when n = 1) the only possible groups are the _oup of all linear transformations and the Uoup

of all fractionally-linear transformations z ---, fax + b)/(cz + d). In both cases the group con-

sists only of fractionally linear transformations (the simplified proof for the 1-dlmensionai case

is given in [Kreinovich 1987]; for other applications of this result see [Kreinovich Kumar 1990,

1991], [Krelnovich Corbin !991], [Kreinovich Quintana 1991]).

2. Let us now prove that the optimal family Fopt exists and is shift-invariant in the sense
that Fop(= Fopt + a for all real numbers a. Indeed, we assumed that the optimality criterion

is final, therefore there exists a unique optimal family Fopt. Let's now prove that this optimal
family is shift-invariant (this proof is practically the same as in [Kreinovich 19.90]). The fact that

Fopt is optimal means that for every other F, either FoI,_ > F or Fo),t " F. If F,j,t ", F for some

F # Fopt, then from the definition of the optimality criterion we can easily deduce that F is also
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timal, which contradicts the fact that there is only one optima/fa-_ly. So for every F either
pt > F or Fopt = F.

Take an arbitrary a and letF = Fopt + a. If Fopt > F = Fopt + a, then from the invariance

of the optimality criterion(condition _i)we conclude that Fopt - a > Fopt, and that conclusion

contradicts the choice of Fop( as the optima/family. So Fopt > F = For,_ + a is impossible, and

therefore Fopt = F = Fop( + a, i.e., the optimal family is really shift- invariant.

3. Let us now deduce the actual form of the functions f from the optimal family. If f(v) is

such a function, then the result f(Y + a) of adding a to this function f belongs to F + a, and
so, due to 2., it belongs to F. But all the functions from f can be obtained from each other by

fractionally linear transformations, so f(Y ÷ a) = (A ÷ B f(y))/(C ÷ Dr(y)) for some A,B,C
and D. So we arrive at a functional equation for f. Let us reduce this equation to a one with
a known solution. For that purpose, let us use the fact that fractionally linear transformations
are projective transformations of a line, and for such transformations the cross ratio is preserved
[hczel 1966, Section 2.31, i.e., if g(v) = (A ÷ Sf(y))/(C ÷ Of(y)), then

g(u,)- g(v3)g(u=)- g(v,)
g(v=)- g( 3) g(1/1)- g(v,)

f(Yl) - f(y3) f(Y2) - f(Y4)

f(1/2)- f(Y3) f(1/x)- f(Y4)

for all Yl. In our case this is true for g(Y) = f(v + a), therefore
true:

f(Yl ÷ a) - f(1/z ÷ a) f(v2 ÷ a) - f(Y4 ÷ a) f(yl)

f(1/2÷ a) - f(1/3÷ a) f(1/1÷ a) -- f(Y4 ÷ a) f(1/2)

for all a the following equality is

- f(Y3) f(v=) - f(Y4)

- f(Y3) f(Yl) - f(v4)"

The most general continuous solutions of this functional equation are given by Theorem 2.3.2
from [Aczel 1966]: either f is fractionally linear, or f(y) = (a + btan(ky))/(c + dtan(ky)) for

some a,b,c,d, or f(y) = (a + btaah(k1/))/(c + dtanh(ky)), where tanh(z) = sinh(z)/cosh(z),

sinh(z) -" (exp(z)- exp(--z))/2) and cosh(z) = (exp(z) ÷ exp(-z))/2).

If f(1/) is fractionally linear f(y) = (a ÷ by)/(c ÷ dy) and d # O, then the denominator is

equal to zero for y - -c/d. The only way for the function to be defined for this y is that the

numerator should also be zero, i.e., a + by = a + b(-c/d) = 0. But in this case a = b(c/d),

therefore a ÷ by = b(c/d + Y) = (b/d)(c + dy), and the fraction f(y) is always equal to a constant

b/d. But we assumed that f is not a constant,.So d = 0 and f is linear.

Let us prove that the expressions with tangent are impossible. Indeed, the denominator
must be not identically equal to zero, therefore either c # 0, or d # 0. If d # 0, then for
ky = arctan(-c/d) we have tan(ky) = -c/d, and the denominator is equal to zero. As in the
linear case we can then conclude that in this case f is constant, and that contradicts to our

assumption that it is not. So d = 0 and f(y) = (a/d) + (bid) tan(k1/). Hence either b = 0
and f = const, or b _ 0, and f is not defined, when tan(ky) = oo, i.e., when ky = r/2 and

!1 = r/(2k). So expressions with tangent are really impossible.

Let us now consider the case of hyperbolic tangent. If k = 0, then f is constant, which
is impossible. So k _ 0. If k < 0, then we can take k -- -k and use the fact that tanh is

an odd function, so tanh(ky) = -taa.h(_':1/). Therefore, in the following we can assume that

k > 0. Multiplying both the denominator and the numerator by cosh(z), we conclude that

f(y) = (a cosh(k1/) + b sinh(k1/))/(c cosh(ky) + d slab(k1/)). We then substitute the expressions for
sinh and cosh in terms of exp, and conclude that f(1/) = (A exp(k1/) + B exp(-k1/))/(C exp(k1/) +

D exp(-kv)) for some A, B, C, D. Multiplying both denominator and numerator by exp(-ky),

we arrive at f(y) = (A 4- Bexp(-2ky))/(C ÷ Dexp(-2kv) ). If D = 0, then we get a linear

transformation of the exponential function. If C = 0, then f(y) = (B/D) + (A/D)exp(2ky),
which is also a linear transformation of the exponential function. Let us now consider the case,
when both C and D are different from 0.
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" If C and D have different signs, then for exp(2ky) - -D/C the denominator equals to

zero, and so, just like in the tangent case, we conclude that f is either identically constant,
or not defined in this point y - ln(-D/C)/(2k). If C and D have the same signs, then for
l = -ha(D/C) we have C + Dexp(-2ky) = C(1 + (D/C)exp(-2ky)) = C(1 + exp(-(2ky + l)).

If we substitute exp(- 2ky ) = exp(-( 2ky + l) ) exp( l) = ( C / D ) exp( -( 2ky + l) ) into the numerator,

we get A +(BC/D)exp(-(2ky+i)), and therefore f(y) = (A +(BC/D)exp(-(2ky+l)))/(C(1 +

exp(-(2ky + l))). One can check (by substituting the expression of the logistic function So in
terms of exp) that this expression is equal to (A/C) + (B/D - A/C)So(2ky + l). So we get the

desired expression for K = 2k. Q.E.D.

Proof of Theorem 2. Just like in the proof of Theorem 1, we conclude that f(ay) = (A +

Bf(y))/(O+Df(y)). This functional equation is a/most the same as the one we solved in Theorem
1, with the only exception being that here we have a product instead of a sum. It is well known
that if we turn to logarithms, then the logarithm of a product is equal to the sum of logarithms.
So in order to reduce this case to the one already analyzed, let us introduce the new variable

Y = In y (so that y = exp Y), and a new function F(Y) = f(exp(y)). For this function, the
above functional equation takes the following form: for every E there exist A, B, C, D such that
F(Y + E) = (A + BF(Y))/(C + DF(Y)) (E = haa). In the proof of Theorem 1, we have already

enumerated the solutions of this equation, so F(Y) is either a fractionally-linear function, or a

fractionally-].inear transformation of tan(ky) or tanh(ky). If we know F, then using the equation

F(Y) = f(exp(y)), we can reconstruct f(y) = F(Iny) for y > 0. Similar expressions ca_ be

obtained for y < 0: in this case we need to use Y = In lY[' So in order to complet e the proof, we
must substitute In y into the expressions enumerated above, and choose those that axe defined
everywhere.

Let us first consider the case when F(Y) = (a + bI:)/(c + dY). Substituting in y instead of

Y, we get f(y) = (a + blny)/(c + dhay). This function must be smooth. Let us compute the

derivative .f': f'(y) = ((b/y)(c + dhay) - (d/y)(a + bhay))/(c + dhay) 2. If b/c- a/d = 0, then,
as in Theorem 1, we can conclude that f is identically constant. If b/c - a/d # 0, then for y --, 0
this derivative tends to _, so such functions f are not smooth at 0.

The fact that the expressions with tangent are impossible is proved just like in Theorem
1. So the only remaining case is the case of tanh, in which the function F(Y) can be reduced

to F(Y) = (A + B exp(-2kY))/(C + D exp(-2kY)). Substituting Y = ha y, and using the fact

that exp(-2k ha y)) = (exp(ln y)) -_ = y-2k, we conclude that f(y) = (A + By-a)/(C +Dy-a),

where a = 2k. Q.E.D.

Proof of Theorem 3. As in the proof of Theorem 1, we come to a conclusion that the optimal

family Fop, exists and is skift-inv'ariant. In particular, for every i the result/,(y + a) of skif_ing

fi(y) must belong to the same family, i.e., fi(y+a) = C_x(a)fl(y)+Ci2(a)f2(y)+...+el,.n(a)f,,(y)

for some constants Cii, depending on a. Let us first prove that these functions C,j(a) are
differentiable. Indeed, if we take m different values yk, 1 < k _< rn, we get m linear equations for

from which we can determine C,j using K.ramer's rule. Kramer's rule expresses every unknown as
a fraction of two determinants, and these determinants polynomially depend on the coefficients.
The coefficients either do not depend on a at all (fy(Yk)) or depend smoothly (/i(yk + a)) because
f, are smooth functions. Therefore these polynomials are also smooth functions, and so is their

fraction C_j(a).

We have an explicit expression for f_(y + a) in terms of fj(y) and C_j. So, when a = O,

the derivative of fi(y + a) with respect to a equals to the derivative of the expression. If we

differentiate it, we get the following formula: f_(y) = c_lfl(y) + ci2f_(y) + ... + c_,_f,,(y), where

cii= C_1(0). So the set of functions f,(y) satisfies the system of linear differential equations with
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constant coei_cients. The general solution of such system is well known [Bellman 19701,so we

get the desired expressions. Q.E.D.

Proof of Theorem 4. Just like in Theorem 1, we conclude that an optimal family e:dsts and
isboth shift-and scale-invariant.This means that the resultsof adding _ to fi and rescalingfi

by g also belong to thisoptimal family F.

For shift-invar_ance this means that

In particular, if we take a2 = ... = ap = 0, we conclude that

If we fix some values Y2, ..., Yp and denote gi(91) = .fi(yl, 92,..., 9p), we conclude that gi(91 +al) =

C_l(al)gl(yl) + ... + Ci,_(al)g,,(yl). So the functions g_ satisfy the same equations that we
have already solved in the proof of Theorem 3, and therefore each of gi is equal to the linear

combination of the functions _ exp(ayl) sin(/_91 + ¢) from the formulation of Theorem 3.

Likewise scale-invariance means that

If we take a2 -- ... = a_ = I, we conclude that gi(aiyl) - C,_(ax)g_(9_)-q-...+Cim(ax)g,.n(y_). This
functional equation is almost the same as for shift-invadance, the only difference is that we have
a product instead of a sum. We already had such a situation, when we proved Theorem 2, and so

we know what_ trick to apply: we must introduce a new variable Y = ]n yl (so that yi = ex'p(Y)),

and new functions Gi(Y) = gi(exp(Y)) (so that gi(yi) = Gi(ln yl)). Then for these new functions

this functional equation takes the form Gi(A + Y) = C_i(A)G_(Y) + ... + Ci,-,,(A)G,,_(Y). This is
precisely the system of functional equations that we already know how to solve. So we can con-

clude that Gi(Y) is a linear combination of these functions Y_ exp(c_Y) sin(_Y+¢) from Theorem
3. _Vhen we substitute Y = In y_, we conclude that g_(91) - Gi(Y) - Gi(].n 91) is a linear combi-

nation of the functions (In 9i)_ exp(a In Yl) sin(_ In Yl + ¢). This expression is rather complicated.

The only _implification tha_ xe can apply is _.o change exp(c_lnyi) :o ,'e.x"p.(In yi)) _' = y{. so .ve
conclude that gi is a Linear combination of _.he functions ('

So for the same functions gi we have :wo di/[erent expressions obtained from the demands
of shi£t-inv'al-iance and scale-invar/ance. Vv_en can a :'unction gi satisfy both conciusions, i.e..
belong to both ..'iasses? it" it contains ;erzns with logarit}_ms, i_ cannot be l i_nea; combina-
tion of _he functions from Theorem 3, because there are no logarithms among _hem. The
same if it contains sines of logarithms. So the only case when a Linear combination of the

functions (in Yl)P9_ sin(_in yi + ¢) is at tile same time the linear combination of the functions

yl_ exp(&yi)sin(_y_ + ¢) is when p = pR = 0. In this case the above expression turns into y_.
and from the equality of these ex-pressions we conclude that a = /i But _ is necessarily a
non-negative integer, and therefore e is non-negative integer as well. So g,(9_), which is equal

to a linear combination of such terms, is equal to the linear combination of the terms y{' for
non-negative integers a, i.e., g,(y_) is a polynomial. So the dependency of f_ on Y, is polynomial.

Similarly we can conclude that fi potynomially depends on all other va_dables y=, ..., y_,
and therefore all the functions f, are polynomials of 9i. Every function f from F is a linear
combination of these polynomials, and therefore a polynomial itself. Q.E.D.

Proof of Theorem 5. We can repeat the proof of Theorem 1 and come to a conclusiori that
all these functions are either Linear, or exponential, or a logistic function. Neither linear, nor
exponential functions are bounded, so only a logistic function is left. Q.E.D.
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