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FINAL REPORT OF FNAS COMPUTATIONAL MODELING

We have investigated the electronic properties of liquid II-VI

semiconductors, particularly CdTe and ZnTe. Only a very limited amount of

information about these materials exists in the literature. The most extensive

work was done by Glazov and co-workersl, 2 who measured the conductivity,

viscosity, density, and magnetic susceptibility as a function of temperature up

to temperatures well above the melting points. Their measurements show that

these semiconductors retain their low coordination number and remain non-

metallic even above their melting points unlike Si, Ge, and the III-V

semiconductors. Figure 1 reproduces their conductivity 3 and magnetic

susceptibility data. 3
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From the low conductivity found in the liquid state and the only reported

neutron diffraction studies 4 of liquid CdTe, we can infer that CdTe and ZnTe

retain their underlying covalent bond structure into the liquid state. However,



the rapid but continuous decrease in the diamagnetic susceptibility and the

decrease in viscosity above the melting point both indicate that the number of

broken bonds increases rapidly at the melting point and then continues to

increases as the temperature rises. The broken bonds must create unpaired

electrons (dangling bonds) that introduce a paramagnetic component to the

susceptibility.

We have attempted to develop a model that would allow us to reproduce

the conductivity measurements. Our model is based on the premise that the

number of broken bonds increases with temperature above the melting point

and that states associated with these dangling bonds lie in the energy gap of

CdTe and ZnTe. The most notable feature of the measured conductivity curves

is that just above the melting point the conductivity increases gradually with

temperature for about 100 C and then increases much more rapidly up to the

highest temperatures for which measurements were made. It appears that a

metal-nonmetal transition will occur at about 200 C above the melting point.

Such a transition could occur because of increasing overlap between localized

dangling bond states or because of increasing overlap between the dangling

bond states and the conduction band. The goal of our calculations has been to

model such transitions.

We have carried out numerical calculations of the density of states and

conductivity as a function of energy. The calculations have been performed

using a Green's function technique developed previously5, 6. We start with a

tight-binding Hamiltonian which contains a diagonal on-site term and an off-

diagonal nearest neighbor hopping term. We have assumed that the band gap

remains large even in the liquid state and that the additional states introduced

into the gap by the broken bonds lie near the conduction band edge. This has

allowed us to focus on the interaction between the band created from the

dangling bond states, hereafter referred to as the impurity band, and the

conduction band and to ignore valence band interactions. The important

parameters in our calculations are the energy separation between the

conduction band and the impurity band and the concentration of the impurity

band states. We have used a Monte Carlo technique to develop the local

environment of each site. In most of our calculations we have assumed that

the sites associated with the impurity states are distributed randomly. The
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hopping term in the Hamiltonian introduces three additional parameters: the

overlap integrals between the host atoms (no dangling bonds), between the

host atoms and the impurity atoms (those with dangling bonds), and between

the impurity atoms. In most of our calculations we have taken all three of

these parameter to be equal.

Figure 2a shows the density of states as a function of energy for three

different impurity concentrations (labeled B), corresponding to three

different temperatures. The impurity band lies below (to the left of) the host

band and contains 5%, 10%, and 15% of the states. The increasing overlap

between the impurity band and the host band as the impurity concentration

increases is evident. For the calculations shown in this figure, the energy

separation between the host and impurity sites was taken to be 0.9 eV, but the

center of the impurity band can be seen to lie 1.4 eV below the center of the

host band, showing the repulsion between the bands. Figure 2b shows the

conductivity as a function of energy for the same impurity concentrations as

in figure 2a. For energies that lie within the impurity band, it can be seen

that the conductivity is quite low even when the density of states is high. This

is a clear indication that the mobility of the impurity band states is quite low.
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The measured properties of the material will depend critically on the

position of the Fermi level (or chemical potential) within the bands. For

instance, the measured value of the conductivity corresponds closely to the

energy dependent conductivity in the neighborhood of the Fermi level. The

position of the Fermi level in turn depends on the degree of electron

corrections in the material. If we neglect electron correlations, each impurity

state (dangling bond state) would contribute two states and one electron,

causing the Fermi level to lie within the impurity band. If, on the other hand,

we assume electron correlation to be large, then the impurity band would only

containing states corresponding to single occupation of each impurity site and

the states that correspond to double occupation of the impurities would lie at

much higher energy, probably within the conduction band. In this case the

Fermi level would be positioned so that the integrated area under the density

of states curve up to the Fermi level would contain one state per impurity atom.

For intermediate values of electron correlation, the Fermi level would lie in

between these two extremes.

Figure 3a shows our calculated conductivity at the Fermi leve} as a

function of impurity concentration for an intermediate value of correlation.

We show this figure because it is one that reproduces the general shape of the

measured conductivities in CdTe and ZnTe, showing a definite change in slope

0.O8 _ -0,8

°"I /I -'-o
/1

-1.4

0.00 0,05 0,10 O. 15 0.20 0.00 0.05 0.10 O. 1.5
/ •co nc_ntrat ion Concentration

Ii ii • ii m | i •

0_20

Figure 3

The conductivity at the Fermi energy as a function of impurity concentration and
the Fermi energy as a function of impurity concentration
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for an impurity concentration of about 12%. To get the absolute calculated

conductivity from the relative conductivity shown on the graph, it is

necessary to multiply by a scaling factor of 1.1 x 10 4 . Thus the calculated

conductivities are the correct order of magnitude. Figure 3b shows the

position of the Fermi level as as function of impurity concentration and allows

one to understand the behavior of the conductivity.

As the impurity concentration increases and the impurity and host

bands overlap more, the Fermi level moves upward in energy. At a

concentration of about 12%, it enters the host band (with band edge at ~ -1.0

eV) and for higher concentration, the conductivity then increases rapidly.

Figure 4 shows another graph of conductivity versus impurity concentration

for intermediate correlation but somewhat different parameters in the

Hamiltonian.
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The conductivity at the Fermi energy versus Impurity concentration.

We have found that we can only produce curves of this shape for low and

intermediate values of electron correlation. For the case of large correlations,

the Fermi level always lies in the host band and the conductivity increases

monotonically with impurity concentration.
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Because our calculations are meant to describe materials at relatively

high temperatures (>1000 K), we realized that the temperature dependence of

the Fermi level (chemical potential) and thermal smearing at the Fermi level

could be important. To take account of these effects, we first determined the

correct temperature-dependent Fermi level using charge neutrality and a

careful numerical integration of the full Fermi function. We then used this

Fermi level and a careful numerical integration of the energy-dependent

conductivity using again the full Fermi function. Figure 5 shows the

conductivity versus impurity concentration for large electron correction with

and without the temperature effects described above. It can be seen that the

result of these temperature-dependent effects are small for large electron

correlation where the Fermi level always lies within the host band. Note that

the two curves, one with a temperature-dependent Fermi level and the other

without, lie almost on top of each Other.

0.20

0.10

0.05

0.00

0.00

= = • .... • .... •

0,05 O,10 O.15 0.20
Figure 5

The conductivity versus impurity concentration for large electron
correlation with and without the effects of thermal smearing and

the temperature dependent chemical potential.

For small electron correlation, however, these temperature-dependent effects

are large. Figures 6a and 6b show one set of our results for conductivity

versus impurity concentration with zero electron correlation. Here one can

see a marked change between the two curves: in 6a thermal smearing and the
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temperature shift of the

them.

0.10
©
>® 0.08

J

o_

E 0.06
k,_

(D
LI_

0.04
o

--£)

c 0.020
£D

0.00

chemical potential were neglected while 6b includes

iiiiiililllll,i

_, I i i I ....

0.00 0.05 0.10 0.15 0.20

Figure 6a

The conductivity at the Fermi energy as a funcUon of Impurity concentration.

0.050
>.,

-II-'

>
0.040

c)

c 0.030
0

0

O.020

O.010

0.000

I ' I ' I I ' I ' I I I I I I ' ' ° °

1
t

I I I

0.00 0.05 0.10 0.15 0.20
Figure 6b

The conductivity at the chemical potential as a function of concentration.
This curve Includes the effects of thermal smearing..

If we can assume that the impurity concentration range shown, 1% - 20%,

corresponds to the number of broken bonds in CdTe in the range from just

above the melting point to the limit of the experimental measurements (see
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figure 1), then the agreement with experiment is excellent. We are still

investigating the range of parameters that will produce this excellent

agreement.

Although there has been very little theoretical work done on liquid

semiconductors, we have continued to look for other systems that have been

more thoroughly investigated. One area from which we have learned is that of

amorphous semiconductors where there is an extensive literature. 7 The

thermal smearing and temperature shifts of the chemical potential we

referred to above are also important in amorphous semiconductors. The

largest difference between liquid and amorphous semiconductors is that liquid

semiconductors are in a thermodynamic equilibrium state and amorphous

materials are not, so that the important dangling bond states that lie in the

energy gap may be quite different in nature.

From our completed work, we have been able to show that we are able to

model the measured conductivity of liquid CdTe and ZnTe alloys by assuming

that the dominant temperature effect is an increase in the number of the

dangling bonds with increasing temperature. As yet, we do not know how to

calculate the number of these bonds as a function of temperature, so we have

had to use the concentration of dangling bonds as a free parameter. We find

that for the region of 10% to 20% dangling bonds we obtain the correct order

of magnitude for the conductivity for certain ranges of the key parameters.

We have also found that electron correlation has a large effect on the

conductivity and that under certain conditions the temperature dependence of

the Fermi level and thermal smearing can also produce large effects. We have

submitted an abstract of our results for the March meeting of the American

Physical Society and will report on our results at that meeting.
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