
SPLASH 2

Jeffrey M. Arnold
Duncan A. Buell

Walter J. Kleinfelder
Supercomputing Research Center

17100 Science Drive
Bowie, Maryland 20715-4300 -

ABSTRACT

Splash 2 is an attached processor system for Sun SPARC 2 workstations that uses Xilinx 4010 Field bogramable
Gate Arrays (FPGAs) as its processing elements. The purpose of this paper is to describe Splash 2. The predwessor
system, Splash 1, was designed to be used as a systolic processing system. Although it was very successful in that mode,
there were many other applications that were not systolic, but which were successful, nonetheless, on Splash 1, or that
were not implemented successfully due to one or more architectural limitations, most notably 110 bmdwidh and
interprocessor communication. Although other uses to increase computational performance have been found for the
Xilinx FPGAs that are Splash's processing elements, Splash is unique in its goal to be programmable in a general
sense.

INTRODUCTION

Splash 2 is an attached processor system for Sun SPARC 2 workstations that uses Xilinx 4010 Field r"rs@mmabls:
Gate Arrays (FPGAs) as its processing elements. The purpose of this paper is to describe Splash 2.

The predecessor system, Splash 1 [I], was designed to be used as a systolic processing system [2] E33. Although it
was very successful in that mode, there were many other applications that were not systolic, but which were strccessfû ul,
nonetheless, on Splash 1, or that were not implemented successfully due to one or more architectural limimdons, most
notably I D bandwidth and interprocessor communication. Although other uses to increase compubfional
performance have been found for the Xilinx FPGAs that are Splash's processing elements (see, for exmple, 141 or 151)"
Splash is unique in its goal to be programmable in a general sense.

THE HARDWARE

The architecture of Splash 2 is shown in Figures 1 and 2.

The system-level view of Splash 2 is shown in Figure 1. (This shows a 3-board system; a system can coredn 1 to 13
boards.) An interface board plugs into the backplane and an SBus adapter board plugs into a Sun SPARC 2 wsrkskzhhon
to run the Splash 2 system via the interface board.

This paper is taken from a paper published in the of the 4th Annual ACM Symposium on Pmdle.el
Algorithms and Architectures and copyrighted by the Association for Computing Machinery. It is publish& here by
permission of the ACM.

The interface board extends the address and data buses from the Sun into the addressldata buses in the backplane.
The Sun can read from and write to memory and memory-mapped control registers on the Splash 2 boards via these
buses. The Sun provides only 25 address bits (that we take to be 23 since we deal only with data on 32-bit-word
bounmies), which is inadequate to address the 13 (boards) x 17 (memories) x 512K (bytes) of Splash 2 memory, so
the intedace board contains an address bank register that selects the Splash 2 board in the system.

There are three data paths into the Splash 2 system.

(I) On the memory bus, data can be read and written into memories attached to each Xilinx processing chip.

(2) A "linear data path" exists down the SIMD bus into the first Xilinx chip, XI, in the linear array of the first
Splash 2 board in a daisy chain that can include as many as 13 Splash 2 boards. Output from the last Xilinx chip in the
linear may, X16, of the first board passes as input to the XI chip of the second board, and so on. Output from X16 of
the last board in the daisy chain returns on the Rbus to the interface board.

(3) A SIMD path exists by using the SIMD bus for broadcast. The SIMD bus has a data path into Xilinx chip XO
on each board, which can then inject SIMD instructions or data into the crossbar and thus broadcast to the other Xilinx
chips on that board.

There are three modes for sending data into the Splash 2 system.

(1) Splash 2 can communicate with the Sun via DMA transfers to and from the FIFOs of Figure 1. The two input
FlFOs are li< x 36-bits; the two output FIFOs are 1K X 32-bits. For these transfers, the interface board becomes a
master on the Sun SBus and transfers bursts of data to or from the FIFOs. In typical operation the Sun programs and
initializes the Splash 2 boards via memory-mapped transfers and then enables DMA for data transfer tolfrom Splash 2.
In this mode, the 32 bits of data form the low 32 of the 36 bits in the FIFO. The high 4 bits are taken from a tag register.
DMA data transfer can be sustained at about 38 Mbytes per second when the host workstation is CPU-loaded, or as fast
as 54 Wlbytes per second when the host is idle.

(29 The Sun host can also perform direct writes to the input FIFOs of Splash 2. In this mode the high 4 bits of the
36-bit FIFO word are bits 5-2 of the address.

(3) Splash 1 was and Splash 2 will be a useful processor for handling digital signals generated external to the
Sun host. The external input accommodates input of such a signal directly to Splash 2. Further details of this are given
below-

The interface board is responsible for generating all the signals necessary in the backplane for running up to 13
Splash 2 boards.

The Sun data bus is latched and buffered to drive the backplane data bus for memory-mapped reads and writes.
The Sun address lines are latched and buffered to feed the backplane, and the Sun can load an address bank register with
a 7-bit address extension to obtain 30 bits of 32-bit-word addresses.

A clock generator provides the clock signal to the Splash 2 boards, can be programmed by the Sun to various
fiecgueneies, and can be programmed to single-step, N-step, or to stop on an interrupt.

Intemp& can be requested by any Splash 2 board, and the DMA controller can request an interrupt when transfers
are completd. An interrupt register permits the Sun interrupt program to enable or disable interrupts and to read which
i n ~ m p t source generated an interrupt. FIFO full/empty determination is under the control of Xilinx chips XL and XR.

The inclusion of Xilinx chips XL and XR was to provide for control of data transfer, clock (even a c10ck SUPPIIC;~
by the external input), and tag bits independent of the Splash 2 boards. In Splash 1 such control was usually done in the
first array chip, leading to asymmetry and crowded designs. With proper programming of XL and XR, the a p c h r o n ~ e s
of DMA transfer and external input and clock should not be seen by the Splash 2 boards themselves, and the XL and
XR programs should function much like a system I/O library. A size register indicates the number of Splash 2 boasds
in a system, providing a signal to the Splash 2 boards so that one board is enabled to deliver data to the Rbus. A DMA.
controller performs SBus-compatible burst DMA transfers to and from the FIFOs in 16-word bursts.

To accommodate variable modes of data entry into a Splash 2 system, provision for an external signal input exists
in the form of a daughterboard attached to the interface board. In this way, small changes in input signal cogditioninzg
can be made without requiring the entire board to be re-engineered. The daughter board can be configured to provide an
external clock, thus allowing the Splash 2 system to be run synchronously with external data.

The Splash 2 Processing Boards

The Splash 2 board is detailed in Figure 2. Each board contains 17 Xilinx 4010 chips. Sixteen of these, XI-X16,
form the processor array, connected both linearly and via the crossbar by 36-bit-wide data paths. The 17th chip, XO, h a
several uses to be mentioned later. Each of chips XI-XI6 is connected via a 36-bit-wide path (18 address, 16 data, 2
control) to the 256K x 16-bit memories. The memories can be read from or written to directly by the Sun on a 32-bit
data path.

The linear data path brings data from either the previous Splash 2 board or from the SIMD bus into XI, through the
linear array, and out from XI6 to either the next Splash 2 board or to the Rbus, and from there to the intedace board.

Among the many control lines on Splash 2 is a single interrupt line from each Xilinx chip back hroalgh the
interrupt latch and mask to the host. This is useful for applications such as searches in which a Xilinx chip ha t found
the solution can signal that fact back to the host and interrupt the processing. In addition, a global iBND/OR and a
global VALID line (GOR, GORV) extend from each Xilinx chip to the control chip XO, and a system global mDIOR
runs from each Splash 2 board to the interface board.

A final feature of the Splash 2 board is the ability to load or store a configuration state into the Xilinx chips.
Readout of the state was possible in Splash 1 and was invaluable for debugging and program optniizatiom; the new
ability also to load the Xilinx chips with a starting state configuration will greatly enhance the ability to monitor
program behavior.

The 17th Xilinx chip XO serves several functions. Its primary purpose is to control the crossbar. The crossbar ~Belf
is bit-sliced from nine TI SN74ACT88414-bit crossbar chips. Up to eight different configurations can be chosen; XO ES

used to select which configuration is in effect at any given cycle, and the crossbar control determines the drrection an
which data is transferred. Using multiple configurations can, for example, allow the 16 chips to be viewed as a
two-dimensional mesh, or a4-dimensional binary cube, provided that only one data path per Xilinx chip is used in any
given cycle (since only one path exists). In this way, the realization of common communication patterns i s relatively
straightforward. For example, a 4-dimensional binary cube is realized as follows: View the lineah m a y as a
hamiltonian path through the 4-cube. Properly chosen, and with an appropriate coordinate labelling, this path
provides all the connections in the x-dimension, four of eight in the y-dimension, and two and one, resgecadvely, in h e
z- and w-dimensions. Six crossbar configurations, one for each direction for each of they-, z-, and w-dimensions, now
provide the additional connections to realize a 4-cube. Although arbitrary communication is not possible-only three
and not four ports exist per chip-it is possible to communicate one dimension at a time, and many cube algorithms
exhibit this characteristic pattern. In an analogous way one can realize a 4 x 4 mesh, although in one of the two
dimensions only half the needed communication paths are available at a time.

A second function of XO is to provide a broadcast capability into the crossbar. Splash 2 can be used as a SIMD
compuljng engine, as will be discussed below, and the connection from the linear data path through XO into the crossbar
allows for a broadcast of instruction and immediate data to all chips on a board at a time, using the lines into the
crossbar shared by XO and X16.

To allow XO to be sent "subroutine calls" in SIMD mode and to execute stored subroutines, and to allow for the
lookup tables that can be expected to be heavily used, XO possesses its own local memory.

One complication exists in that the memories are 16 and not 32 bits wide. To allow for both the host and the Splash
2 board to view the normal data width as 32 bits, the memories on the Splash 2 board are double-cycled; the host and the
interface boxd pass 32 bit data to/from the Splash 2 board, and the board readsfwrites 32 bits on word boundaries by
using two cycles for every data transfer to/from the interface board. This design decision was based on the I/O pin count
of the Xslinx 4010 chips. Many designs were considered, but it proved impossible to retain the linear array data path
(2 x 36 bits), add a crossbar connection (1 x 36 bits), add a direct connection to memory (18 bits address, 32 data),
and have any of the 160 110 pins left over for control.

SIMD COMPUTING MODE

A Splash 2 board allows a256-bit load/store in parallel to 16 Xilinx processing chips. The combination of crossbar
and the linear may provides a powerful parallel data transfer capability similar to a network. With this view of the
Splash 2 board, its use for SIMD computing is quite natural. To effect this mode of computing it is necessary to support
broadcast of instructions and/or immediate data. This is made possible by lines running down the SIMD bus into Xilinx
chip XO of every board and from there directly to Xilinx chips X1 through X16 over the crossbar. In this mode, chip XO
could be peogmmmed explicitly to serve as an instruction decode module and possibly also to convert from a vertical to
a horizsntd encoding of the instructions.

PROGRAMMING

There anre three levels at which the Splash 2 system must be programmed: the Splash board, the interface, and the
host. At the Splash board level the programmable components consist of the Xilinx processing chips, X1 through X16;
the control chip3 XO; and the crossbar. At the interface level the Xilinx chips XL and XR are user programmable. The
hos~ interface must provide input data streams and control the operation of the Splash system. A library of common
cowuol functions is provided for the interface board chips, XL and XR, and for the Splash board control chip, XO.
Many linear and SIMD applications use only a single crossbar configuration, which can also be provided in a library.
The host interface can be driven from either a C program that makes calls to a package of control routines or through an
interactive graphical debugger. Therefore, the minimal Splash 2 program consists of a single replicated Xilinx
program for X1 through X16 and a selection of library components for the rest of the system.

The programming environment for Splash 2 is based upon the VHSIC Hardware Description Language (VHDL).
VHDL is a hardware specification language with many modem programming language features such as block
suuctlured cconcrol; user defined data types; and overloaded procedures, functions, and operators. VHDL programs can
freely mix behavioral specifications with more traditional structural descriptions. The VHDL programming model
includes the concept of time, so VHDL specifications can be simulated directly.

The Splash 2 programming methodology relies heavily upon simulation and logic synthesis. Users develop
applicabons by writing VHDL behavioral models of their algorithms, which are then simulated and debugged within
the Splash 2 simulator. Once an algorithm is determined to be functionally correct, it is compiled into a set of Xilinx
chip configurations and the timing analyzed and optimized.

The Splash 2 simulator is a hierarchical model of the Splash 2 system comprising a set of VHDL models for each of
the componenrs of the system. When an application program is simulated, it is able to interact with the system exactly
as it would ,with the physical hardware. The system models also verify that the application program meets any

hardware constraints such as memory sequencing and setup and hold times. Because the simulator is based upon
commercial tools, a full source level debugging interface is available to the user.

A mix of logic synthesis and standard compilation techniques are used to compile VHDL programs into XiIinx
configurations. A commercial logic synthesis tool is used to map the VHDL code into a gate list, where a pephole
optimizer is used to perform a variety of Xilinx- and Splash-specific optimizations. The resulting gate list is then
mapped into the CLBs and placed and routed using the Xilinx tool package. The Xilinx tools are used &so to extract eke
detailed timing information from the placed and routed design. This information is used to construct a new VHDL
model for each chip, which is then fed back to the Splash 2 simulator for timing analysis.

ACKNOWLEDGEMENTS

We acknowledge those who have contributed to Splash 2, including at least Neil Coletti, Steve Cuccaro, EIa:ne
Keith, Brad Fross, Maya Gokhale, William Gromen, William Holmes, Daniel Kopetzky, Andrew Kopser, James
Kuehn, Sara Lucas, Ronald Minnich, Michael Mascagni, John McHenry, Fred More, Louis Podrazik, Daniel Pryor,
Craig Reese, Judith Schlesinger, Nabeel Shirazi, David Smitley, Douglas Sweely, Mark Thistle, Chris Tschmer, Paul
Schneck, and Ken Wallgren.

REFERENCES

[I] Maya Gokhale, William Holmes, Andrew Kopser, Sara Lucas, Ronald Minnich, Douglas Sweely, and Daniel
Lopresti, Building and using a highly parallel programmable logic array, IEEE Computer 24 (1991),831-89.

[2] H. T. Kung, Why systolic architectures?, IEEE Computer 15 (1982), 37-46.
[3] H. T. Kung and C. E. Leiserson, Systolic arrays for VLSI, Introduction to VLSI Systems, by C. A. Mead and L. C.

Conway, Addison-Wesley, Reading, Massachusetts, 1980, pp. 271-292.
[4] Will B. Moore and Wayne Luk (eds.), FPGAs, Abingdon EE & CS Books, Abingdon, England, 1991.
[5] M. Shand, P. Bertin, and 3. Vuillemin, Hardware speedups for long integer multiplication, Proceedings, ACM

Symposium on Parallel Algorithms and Architectures (1990), 138-145.

