
_n

6% t* N 0 3 2 ~ L i . : 5 4 L
4 - -"< -r (2 3

Tree Classification Software 1 -

Wray Buntine, RLACS
NASA Arnes Research Center

Mail Stop 269-2
Moffet Field, CA 94035

ABSTRACT

This paper introduces the IN3 Tree Package to prospective users. IND does supervised learning using classificadon
trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expea SysheBnni;. INTI
was developed as part of a NASA project to semi-automate the development of data analysis and modelling
algorithms using artificial intelligence techniques. IND integrates features from Breiman et ai.'s CART miid
Quinlan's C4 with newer Bayesian and minirnum encoding methods for growing classification trees and gmphs. IND
also provides an experimental control suite on top. The newer features give improved probability e s ~ m t e s often
required in diagnostic and screening tasks. The package comes with a manual, Unix "man" entries, and a guide to
tree methods and research. IND is implemented in C under Unix, and has been beta-tested at university and
comercia1 research laboratories in the United States.

DIAGNOSIS AND CLASSIFICATION

A common inference task is where we learn to make a discrete prediction about some case given other details about
the case. For instance, in financial credit assessment we wish to decide whether to accept or reject a customer's
application for a loan given particular personal information. In monitoring a subsystem of the space shuttie,
measurements such as flow rates and temperature are continuously recorded and we need to screen those
measurements to decide if the system is in normal or abnormal operation. If the system is in abnormd opera~on we
might further wish to uy and predict the type of abnormality present. This prediction task is the basic task of many
expert systems, health monitoring systems, diagnostic systems, etc. Furthermore, more complex problems can
often be broken down into a sequence of simple prediction problems. For instance, speech un&rstanding, convehng
the spoken word into written text, is a sequence of prediction tasks about each phoneme.

In medical diagnosis, or diagnosis of equipment subsystems, we need more than just a prediction, we need a careful
probabilistic assessment. A simplistic medical example will bring this point home. Suppose your doctor suspects
you have a cyst in your abdomen. The options (1 or 2) and outcomes (A or B) give the following set of
possibilities: (1A) operates, discovers a cyst, removes it, and you're grateful; (1B) operates, no cyst found, but
you're left with the medical bill and a day recovery in hospital; (2A), doesn't operate but the cyst exists and causes
medical complications due to lack of treatment; (2B), doesn't operate, no cyst exists. Each case has h p o m t
implications to you both financially and in quality of life. With a careful probabilistic assessment of the existence
of a cyst, you can weigh up the options and decide which option (1 or 2) is the most beneficial to you. For
instance, if the medical bill is insignificant compared to the potential medical complications, then you would decide
to have the operation even if there was a small chance of having the cyst. If the potential medical complications
were insignificant, you would only decide to operate if there was a very high probability of having the cyst. T h i s
process of decision analysis requires as input probabilities about the new case in question.

In health monitoring and diagnosis, these probability assessments are needed when the system is being used to screen
cases, i.e. the computer systems scans the on-line monitoring data and at certain time points alerts a humram expert
that a potentially anomalous situation has arisen. Probability assessments such as the "probability of equipment
failure" can be used to determine which of the many ca$es scanned should be forwarded to the humm expen for the
more costly process of manual inspection.

I will refer to this prediction problem as classification, where the aim is to classifi each new case. One common
technique for developing a system to do prediction or probability assessment about new cases is to exmiwe a
database of cases, for instance collected historically. Assume that hindsight tells us which is the conect
classification for each case in the data base, so for each we know which prediction was optimal. From the data base

we use sQtisdcd techniques to "discover" or "learn" how to do the predictions for new unseen cases. This learning
technique is represented in Figure 1. The process requires three main forms of input: an expert who is able to advise
on the problem, help configure the system, etc., a data base of correctly classified cases to use in the learning
process, md a m d e l family from which the learning algorithm is to select a "good" model for doing prediction or
probabilistic assessment.

feedback

model developed
skeletal mock1 from the data base
681- system to bbdld on

Figure 1. Learning prediction models from data.

This mo&l leming or discovery process is a useful technique in almost every industry, finance, manufacturing, etc.,
wherever on-line databases are stored and important predictions have to be made on a regular basis about new cases
before they enter the data base. Not surprisingly, there are many different fields of science that address this problern
as one of their central concerns. In artificial intelligence it is referred to as the classification or induction problem.
Technidqkles include tree and rule learning algorithms of the form I will present in this paper. In statistics it is referred
to as h e discaimination problem, and common techniques are the linear models used in the finance and banking
i n d u s q for aedit assessment. In pattern recognition it is referred to as supervised learning. In neural networks it is
the clasdficaeion and generalization problem and is routinely investigated using a number of network architectures.
These diverse fields are all studying the same problem, "learning to predict", and present a confusing array of
meadsiogies and paradigms for addressing that problem. They differ in the following aspects:

Model fmily: Which class of models are being used to do prediction? In Figure 1 this corresponds to the
"'skeletal model". I present classification tree and classification graph model families in this papr .

Saatistical philosophy: How is learning to occur? That is, what statistical principles if any are used to develop
the central box in Figure l ?

Computational and optimization methods: What are the basic computational methods used in terms of
efficiency, optimality, search method, etc.?

Meaodological support: What methodology does the analyst use to go about applying the technique to a real
problem? For statisticians this is the "consultancy phase" rarely covered in university courses. In artificial
intelligence this is the process of "knowledge engineering".

I will refer to the general task of learning how to predict (or estimate probabilities) from data as the classification
task. The newt section discusses the design of tools for this task. After this, the model family considered in this
paper is addressed, and the IND program presented.

DESIGN OF CLASSIFICATION TOOLS

This research is part of a broader effort to semi-automate the development of classification algorims. The: god of
this research is to develop generic tools for learning from data and from partial models of the domain, md to develop
the capability to rapidly develop and tailor these learning tools for particular domains given, for iwsemce,
specification of the kinds of models that are of interest. When encountering a new application, we somelhes find
that off-the-shelf-tools, such as IND, need some modification in order to better suit the task. A g d development
methodology lets that be done with minimum fuss.

Rather than following a particular field, our group takes a multidisciplinary approach and combine a range of
methods required to address the classification task. Our group uses artificial intelligence search techniques for &sm$%=
search problems, and standard numerical techniques for continuous problems. We use some of the flexible
knowledge representation schemes from artificial intelligence as skeletal models or model families (see Figwe I), md
use Bayesian statistical and decision methods for the statistical philosophy underlying our learning dgorii~ms. This
methodology allows rapid development of approximately optimal algorithms and so avoids the many pigdls of ad
hoc development according to "hunches" and the time-consuming refinement cycle that this entaills. This heore~caji
framework of "statistical philosophy" plus "optimization methods" is important because empbicd, ad hoc
development of algorithms in neural networks and early machine learning has been time consunning and is often
plagued by unexplained problems. Empirical validation of our algorithms is also important to check wproxhatisns
made in interpreting the Bayesian theory. We do this empirical validation by applying the a l g o r i h s to a barksgi of
recognized learning problems taken from the literature, or manufactured problems. A summary of our groups
development methodology is given in Figure 2. This has lead to the development of a number of sophisticated
algorithms, one of which was the Autoclass system, show-cased at Technology 2001 by Stutz, Cheeseman, anad
Taylor at San Jose, December 199 1.

Background

(Bayesian statistics

decision theory) umerical methods)

characteristics:

Figure 2. Semi-automatic development of learning algorithms

The justification for Bayesian decision theory, used in the first box in Figure 2, comes from fun-ena principle?;
of how uncertain reasoning should be done [l]. The theory applies widely in inference and plausible seasowin~g and
its use is continually expanding in artificial intelligence and neural networks. But there is not a single "Bayesim
learning algorithm," as some people mistakenly believe when they learn about the simple Bayesian classifiers
developed in pattern recognition. Rather, Bayesian decision theory presents computational guidelines on how
learning should be done for many different learning problems, and shows how to tailor methods to pxticulx
applications. This means our algorithms can be fine-tuned to the requirements of an individual application. IND hm
some basic features that allow such tuning.

CLASSIFICATION TREES AND GRAPHS

The D4.3 package described later does prediction using decision trees or decision graphs and does probability
evduahon using class probability trees or graphs. These are a general form of classification rule that mix discrete
md conhnuous data and are often suited when there is believed to be some form of non-linear structure in the data. A
decision epee is shown in Figure 3b. This has the classes hypo (hypothyroid) and not (not hypothyroid) at the
leaves. This uee is for a two-class classification problem because there are two different classes that leaf nodes
recomerad. This tree is processed as follows. Look at the new case you wish to evaluate. Is its value of TSH
greater than 228? If so take the left branch of the m e and you have reached a leaf. The tree says to predict hypo, i.e.
hmhyro id . If however the value of TSH was less than 200, then take the right branch. Now you have a subtree
and you repeat the process. In this case is Pregnant true or not? This tree is referred to as a "decision tree" because
decisions about class membership are represented at the leaf nodes. Notice that the real valued attributes TSH has
k e n hcoqaa ted into the tree by making a binary test of the form "attribute < cut-point". Also, the tree need not
be binm; if a 4-valued attribute is tested at one of the nodes, then the tree might have 4 branches coming from the
node, one for each value.

(a>

Jacket Color = Red OR Head Shape = Body Shape
(C) Copyright Jonathan Oliver 1992

Figure 3. (a) This is a decision graph for the boolean problem given in the figure. Start at the root at trace
hrough the graph to arrive a decision. (b) This is a decision tree for the "hypothyroid" application. (c)
This is a class probability tree. Leaf nodes give estimates of class probability.

In typicd pprblems involving noise, class probabilities are usually given at the leaf nodes instead of class decisions,
foming a class probabilio tree (where each leaf node has a vector of class probabilities). A corresponding class
probability tree is given in Figure 3c. The leaf nodes give predicted probabilities for the two classes. Notice that
his wee is a representation for a conditional probability distribution of class given information higher in the tree.
'This is the smdstical interpretation of the tree that Bayesian methods use in developing a learning algorithm.

Methods for learning decision trees and class probability trees have been under development in some form or moher
for some two decades. The standard technique for building classification trees from data is the so-called recursive
partitioning algorithm that forms the basis of systems such as Quinlan's ID3 and C4 [2,3], well know]in the
machine learning literature, and Breiman, Friedman, Olshen and Stone's CART [4], well known in the applied
statistics literature. These methods are largely reimplemented in IND.

A more complex structure is shown in Figure 3a. This is a decision graph, and it is also for a two-class problem.
Graphs and trees can also be applied to problems with three or more classes. The graph is processed in exactly h e
same way as a decision tree, however notice that the graph allows more general connections. This graph represenLs
the boolean function '3acket-color = red or head-shape = body-shape". This function would take a complex lsee to
represent. With graphs we can represent concepts more efficiently. Methods for learning decision graphs and class
probability graphs have only recently appeared, and they supersede trees in that they are a more general
representation. IND version 3.0 will include these methods, coded up by Jon Oliver [7].

AN OVERVIEW OF THE IND PACKAGE

IND is a suite of C programs and C shell scripts for building tree classifiers and graph classifiers of the kind just
described. Currently, several different methods are integrated (CART style; the regression aspect of CART is not
implemented, early C4 style, MMLJMDL, and Bayesian averaging). Careful checking has been done so hat Tm
reimplements CART and the early C4 fairly faithfully.. The new BayesianlMMLNDL features can give'
performance improvement over these in many cases when used appropriately.

IND can be operated in a variety of modes that allow the novice to build trees without too much fuss, and also allow
the expert to fine tune the algorithms to particular applications. If you're interested in applying IND to applicadons,
advice is given in the manual on which options to use and how to take into account features of your applica~an md
data when configuring your use of IND. If you're interested in running comparative uials or just expe~mesrrdng with
tree software, IND provides extensive experimental control (random partitioning, cross validation) and siigniiic,mce
testing. The code for IND is provided (and sometimes even moderately documented) so you can develop your own
extensions.

The IND Manual: "An Introduction to IND and Recursive Partitioning" is the best place to start if you axe banfmilix
with IND or recursive partitioning. The manual contains an introduction to IND that walks through a few typical
sessions, a tutorial on recursive partitioning, a description of IND options, and a fairly complete gIossq and
bibliography. The is an enormous literature on decision trees and their applications so the manual also contains a
brief guide to the literature.

IND has a variety of features including: interactive control of tree building, variable search such as muld-ply look-
ahead, missing values and subsetting, handling of utilities and cost functions, prediction of error rates and utilities, a
range of priors for the Bayesian methods, printing options, a classifier, etc., a user manual, and a s m of the at
guide to tree learning research. IND has the look and feel of a typical Unix system and comes with '"an'' e n ~ e s .
The system has been developed exclusively in a SUN workstation environment under various releases of SunOS
UNIX. It compiles under Kernighan and Ritchie C, cc and gcc, although in future will be convened to .ANSI
standard C. Various users have ported the system to HP, IBM and other Unix platforms and their changes have been
incorporated in the latest release.

In November 1991 the IND Tree Package version 1.0 was prepared and released as a beta test to the research md
development community. About 40 universities and R&D laboratories in the US currently have the beta test code.
The code release includes 200 pages of documentation and 15000 lines of C code and C shell scripts. The code has
had three minor revisions since version 1.0. Version 2.0 is being prepared for release though COSMIC, md should
be submitted October 1992. Version 2.0 includes extensions to the user interface and .tqkes all the bugs repofled on
the beta-test but does not contain the decision graph routines. Version 3.0 is concurrently under development, This
includes algorithms for learning decision graphs, and sophisticated any-time search algorithms for returning better
quality trees and graphs. Version 3.0 is being released as beta test about November 1992.

Main use of the code to date has been in bench-marking, comparative studies, and comparative research on related
algorithms, although groups in several different commercial and scientific areas currently have the code.
Comparative studies done by several international research groups have found the code to be a good iPnplemenution,

somewhat slower than the original CART code, but more tlexible, and easier to use. The new Bayesian extensions
have also been found to give significant improvement over earlier tree algorithms, particularly in providing
probability estimates, an important task for diagnosis and monitoring.

MODULES IN THE IND PACKAGE

Tihe first mk in using IND is to format your data into an appropriate text file and run it through the data conversion
routine in IIdh3. The routine encsmpl will produce an IND data description file for you, see Figure 4, and encode
the &&I inlo I W ' s internal format. This data description file can then be modified to add defaults, utilities,
c o w s @ ~ n ~ , etc., to configure IND for this data. An extract of a text file matching the description file in Figure 4 is
given in Figure 5.

class : compensated-hypothyr hypothyroid,secondary_hypothyroid.
age: cant 0..100. this is the attribute to predict
sex: M,F.
an-thyroxine query-on-thyroxine on-antithyroid-medic sick pregnant thyroid-surgery Il3lfreatment : f,t.
TSH-measured: f,t.
TSH: these attributes are identical types
T74-measured: asfor TSH-
TT4: missing values occur in this attribute
T4:
FPB : cont 0..400 (?). do subsetting on this attribute
refenrai-source: SVI,STMW,WEST,SVHC, SVHD,other (subset=full).

prior : "-d8 -Anonsym, 1 " . intructions to I N ' on default priors and constraints
context : TBG onlyif TBG-measured .

Figure 4. The data description file input to IND.

negative 36 F f f f f f f f t 0.22 t 191 0.98 194 other
negative 73 F f f f t f f f f ? t 119 0.92 129 SVI
compensated-hypothyroid 34 F f f f f t f f t 19 146 ? 125 other

Figure 5. Sample input data tile matching description in Figure 4.

Once has the data encoded, IND can be operated at a number of different levels, depending on the requirements of
the user. The simplest level is to use commands that have general prepared styles for tree generation. The command
mktree shown in the top of Figure 6 uses prepared styles to drive the basic tree generation, pruning and
classificadrron routines. A sample run from m k t r e e is given in Figure 7 at the end of the paper. This used the
verbose option to automatically explain each component of IND and how it was configured. More experienced users
of IND may like to make better use of the range of features. To do this, the low level routines can be called directly.
All mutines are controlled using the data description format of Figure 4 together with standard Unix style command
opdons. Users may also wish to perform cross-validation to estimate error rates, or run experiments using a number
of different uee styles to help in configuring IND for their problem. This can be done using the ttest utility
shorn at Bfie top of Figure 6. This utility collates statistics required for you to analyze each run.

Some sf the prepared styles available for the novice user of IND are as follows:
Icaayes, mml : The simple.bayes style is useful when you know that most of the attributes supplied are

relevant and that moderate accuracy is achievable. The mml style assumes poorer attribute quality. Both
styles use Bayesian smoothing. These can also be modified with a look-ahead style.

cart : A number of variations of basic CART are reimplemented in IND, although multivariate splits and
sunrrogate splits are not implemented. Basic cart style using subsetting, twoing, cross validation cost
complexity pruning and a simple stopping rule.

c4 : An early version of C4 is implemented with subsetting, pessimistic pruning and the gain ratio splitting
mb.

Figure 6. Overview of the modules in IND.

CLASS PROBABILITY TREE THEORY

In this section I briefly review the Bayesian theory of learning classiiication trees. This theoretical section should be
skipped if your interests lie in applications of the algorithm. The section introduces the theory behind the unique
Bayesian aspects of the IND package. More details of this theory are given in [5,6]. An excellent inKoducdow tca
tree methods can be found in [2]. Theory behind the graph components of IND available in beta-test version 3.0 can
be found in [7]. The methods discussed here are developed according to the algorithm design strategy present& in the
earlier design section.

The basic tenet of Bayesian decision theory is that if we do not know something with reasonable cemirilty, then we
should look at some reasonable and mutually exclusive alternatives and weigh them up, to help us make a
"representative" decision. A reasonable alternative is one we currently have high subjective belief in. K will expEw
how this applies to trees, based on material in [6]. The formulation is sufficiently general so that it could just as
well be applied to other classification models such as probabilistic rules, Bayesian networks, or one of m y other
knowledge representations from artificial intelligence, neural networks or statistics that have a probabilistic
interpretation.

Class probability trees have a vector of class probabilities at their leaves, as shown in Figure 3c. They represent a
conditional probability distribution of class value conditioned on other details about the case. A pareiculx class
probability tree can be represented by its discrete component T, the tree structure given by the shape of the tree and
the tests at the leaves, and its continuous component S, the leaf class probabilities. This gives tbe condi~ond
probability distribution Pr(classlcase,T,S), which is the likelihoodfunction for a classified case (class,case) using the
class probability tree specified by T and S.

Suppose we are given a training sample Sample consisting of classified cases cases and their classes classes, togehee
with a new case, new-case, whose class, new-class, we wish to predict. If the goal is to minimize emoss in
prediction (other utility functions can be handled similarly), decision theory says we should choose the class new-
class to maximize the posterior class probability Pr(new-classl new-case, Sample). Using the tree model, this
expression can be expanded using the laws of probability theory to obtain the posterior average of the class
probabilities predicted for new-class from all possible class probability trees:

~r(new-ciassl new-care. sumpie) = XT Js ~r(new-ciassl new-case. T,S? P ~ (T S I sumpie) G

= CT Pr(new-ciussl new-case, T, Sample) Pr(T I Sample) 611
where the summations are over the space of all possible tree structures T, and

Pr(T I Sample) proportional-to JS Pr(clo-~ses I cases, T. S) Pr(S I Zl Pr(7) ILT

Pr(new-classl new-case, T, Sample) proportional-to Pr(new-chssl new-case, T, S) Pr(S I T, Sample) dS

Formula (1) simply says to average the class predictions made for each tree. That is, since we aren't certain which
wee is "me", we hedge our bets over reasonable trees. The posterior probability of the tree structure T, Pr(T I
Sample), is the weight used in the averaging process. The probabilities appearing in the formula above are
cdculaced in log-space, to prevent undertlow, and are sometimes referred to as "code-lengths" (because a negative log.
probability is a code length by information theory).

The dgofi&m design strategy is based on designing a heuristic procedure to find a single tree or set of trees that can
be used to approximate Formula (1). This is described by the following 4 steps.
Step 1. Develop priors over the structural and continuous components of the model, Pr(S IT) and Pr(T). The fonn

of the prior should be flexible enough so that it can be changed from application to application. In the IND
pachge, these priors can be tailored to your application, and advice is given in the manual. Alternatively,
"bland" priors can be used if you don't wish to assume a particular prior.

Step 2. Given a training sample Sample, determine a suitably efficient way of computing or approximating the
postefior of the structural component of the model. Then devise a heuristic search procedure for searching the
space of structures to find structures with high posterior. In trees, a simple one-ply look-ahead procedure can be
tried, which corresponds to the standard tree growing algorithm [21. In IND, two-ply and three-ply versions of
Imk-ahead are also available. These start with the trivial, empty free. They then consider extending the tree by
a single ply, by replacing an ungrown node with a test and leaves at its outcomes. A heuristic measure to
evdsraee the quality of a new growth can be determined from the posterior probabilities. Several different tests
are tried and evaluated, and the best one is chosen for subsequent development.

Step 3. Given a training sample Sample and a structure T, determine a formula or approximation for the posterior
expected values of the parameters S, Pr(new-clussl new-case, T, Sample), as required for Formula-(1).

Step 4. Devise a procedure for approximating the summation of Formula (I) by a small set of high posterior
smcrwes. There are three techniques for doing this:
Smoo&ing: The sum can be computed in closed form if it is restricted to the set of tree structures obtained by

pmning a large tree structure in all possible ways. A linear time algorithm is given in [6]. This is called
smoothing because it is equivalent to smoothing out the class probabilities at the leaf of a tree by avenging
hem the branch leading to the leaf. This is implemented in the "-b" option to IND's tprune.

Averaging: The sum can be approximated by searching for and storing many dominant terms, i.e. many high
posterior trees structures. We can build multiple free structures, and combine them together efficiently in an

-OR representation called option trees. Growing option trees and then applying a similar summation
process to smoothing is called tree averaging. This is implemented as a style in IND's mktree.

Multiple Models: The sum can be approximated by using importance sampling or Monte Carlo estimation.
That is, a few tree structures are generated in approximate proportion with their posterior (this is done using
the tree growing heuristic), and their class probability vectors uniformly averaged.

PERFORMANCE SUMMARY

Vmous experimental results from the use of IND version 1.0 are reported in [6]. Experimental results for the graph
component of IND, available in beta-test version 3.0, can be got from results in [71 for earlier code from Jon Oliver.
IND has been run on databases available from University of California at Irvine (FTP to ics . uci . edu and look
in b e dkectory machine- learning-databases) . The results show that the new features of IND give more
accurate class probability estimates for new examples, and often better predictions, though sometimes at the cost of
iraaeaed computation, depending on the problem. The MML graph component of IND has previously been run by
Oliver md colleagues on DNA structure data and produced results of interest to molecular biologists, see [7] and
references therein for details. IND has recently been hooked up to the System Diagnostic Builder from GHG
Conpc~radon, which is used for building diagnosis systems at NASA's Johnson Space Center [8]

Achowledgements

IND was based on an early suite of software developed at Basser Department of Computer Science at Sydney
University by a lineage of students of Jason Catlett: David Harper, Murray Dean, David Muller and Chris Carter, and
possibly some others. More recently Rich Caruana of CMU and Jon Oliver of Monash University worked on rare
package during summer internship at NASA-Ames Research Center. Also the users of the beta-release provided
considerable feedback.

References

[I] Berger, J. 0. (1985). Statisticul Decision Theory and Bayesian Analysis. Springer-Verlag, New
Y ork.

[2] Quinlan, J. (1986). Induction of decision trees. Muchine Learning, 1(1):81--106.
[3] Quinlan, J. (1988). Simplifying decision trees. In Gaines, B. and Boose, J., editors, K n o ~ ~ l e ~ ' g e

Acquisition for Knowledge-Based Systems, 239--252. Academic Press, London.
[4] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees.

Wadsworth, Belmont.
[5] Buntine, W. (1991). Classifiers: A Theoretical and Empirical Study. Internutionul Joint Conference

on Art~ficial Intelligence, August, 1991, Sydney.
[6] B untine, W. (1992). Learning classification trees. Statistics uiuf Computing, 2:63-73.
[i'l Oliver, J. (1992). Infemng decision graphs using the minimum message length principle. Ausrrulrisn

Artificial Intelligence Conference, November, 1992, Australia.
[8] Nieten, J. L. and Burke, R. (92). System Diagnostic Builder. Report from GHG Corporation at 4SC.

build the tree in "bayes" style

command entered to Unix

igen -uU7 -tAnonsym, 1 verbose mode reports tree options

PRIOR OPTIONS:
automatic, reproducible sampling

Leaf and node weights (neg log probability in nits): -0 -0.
Warn~ng: tree prior unnormalized. command automatically run by IND

GROWING OPTIONS:
don't split a node that is pure or greater than depth 6;
don't splia a node with < 1 counts;
don't make a cut test with < 3 counts;

all these options are
SPLI'VISING RULE OPTIONS:
spilttrng using Bayesian rule;
!or nodes with more than 1200 counts, su
propoflionally assign missing values in co

I
convert counts to probabilities by Bayesian smo hing; +
!class - s l y hypo.attr hypo.free hypo.enc results of classi~ication on test data

Percentage accuracy for tree 1 = 99.381 8
Mean square error for tree 1 = 0.01 17346
Expected accuracy for tree 1 = 99.1 06
Typical std. dev. of expected accuracy for
Neg. Log Posterior for examples = 140 (nits)
Leaf count for tree 1 = 14, expected = 12.61 1134

Figure 7. Building a tree using IND in verbose mode.

TSH c 6.05: 1.432e-05 0.0006207 2.909e-05 0.9993 negative
TSW >= 6.05:
B TSH-measured = f : 0.0001371 4.283e-06 0.0002784 0.9996 negative
I TSH-measured = t:
I I FTIc 64.5:
I I I T4-measured =f:
I I I I on-thyroxine = f:
I I I 1 I thyroid-surgery = f: 0.2523 9.126e-05 0.6358 0.1 11 8 compensated-hypothyroid
I 1 I I I thyroid-surgery = t: 0.04943 0.0004665 0.1 141 0.836 negative
i I I I on-thyroxine = t: 0.01 588 0.0003925 0.03357 0.9502 negative
I I I T4-measured = t:
I I I I thyroid-surgery =f : 0.9637 1.2260-05 0.0007972 0.03548 primary-hypothyroid
1 I I I thyroid-surgery = 1: 0.08208 0.0001835 0.01 192 0.9058 negative
I I FTI >= 64.5:
I I I on-thyroxine =f:
I I I 1 T r4 < 150.5:
I I I I I thyroid-surgery = f: 0.1531 8.899e-05 0.7433 0.1 035 compensated-hypothyroid
I I I I I thyroid-surgery = t: 0.00339 0.0001059 0.006886 0.9896 negative
I I I I TT4 >= 150.5: 0.04807 0.0001 326 0.03691 0.91 49 negative
I I 1 on-thyroxine = t: 0.0004708 1.471 0-05 0.0009563 0.9986 negative

Figure 8. A print of the resultant tree showing class probabilities and decisions.

