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ABSTRACT 1 * 

Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language program that 
enable users to develop neural network solutions to a variety of practical problems. Original Backpp-og 
generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed- 
length output vectors through an intermediate ("hidden") layer of binary threshold units. Version 1.2 can 
handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, 
TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input- 
output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mappa439 
and modifies the weights of its connections incrementally until the training set is learned. The learning 
algorithm is the "back-propagating error correction procedure" first described by F. Rosenblatt in 1961. The 
third subprogram, VIEWNET, lets the trained network be examined, tested, and "pruned" (by the deletion of 
unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished 
product of the neural net design-and-training exercise can be consulted under other MS-DOS applications. 

INTRODUCTION 

Recent advances in the manufacture of integrated circuits have led to parallel computers with thousmds 
of microprocessors in a single system and given rise to growing interest in computational methods that suppod 
massive parallelism in a natural way. Neural computing aims at (ultimately) achieving human-like perfommce 
in computer systems by developing an analogy to the structure and operation of the central nervous system. 
Computations are executed by simple neuron-like processing units which are interconnected by "synaptic" h k s  
of variable strength (or weight). The resurgence of interest in these "connectionist" models, since about 1982, 
has been said to reflect the total inadequacy of algorithm-driven computing and symbolic artificial jintellige~tce 
(AI) approaches in dealing with real world problems, speech processing and machine vision being the most cited 
examples. 

On the other hand, neural networks have found abundant use in recent years as practical decision aids 
which can learn by example to give correct responses to given inputs in situations where, in principle, a set of 
logical rules could be used to infer the correct response but where, in practice, such rules are difficult to 
elucidate. Successful case studies have been reported in sonar echo classification, concealed explosives 
detection, mortgage risk evaluation, medical diagnosis, and many other applications. Much of the popula~ty 
surrounding neural network classifiers is a consequence of the relative ease with which they can be trannd to 
substitute for optimally designed expert systems. In most of the interesting applications so far, the powerful 
new result which enables the neural network to capture the significant factual associations presented in the 
training data is a learning algorithm called back-propagation. 

Original Backprop (Version 1.2) is an MS-DOS software package for setting up and t r a k g  thee.- 
layer, feed-forward neural networks to classify input patterns consisting of binary- and real-valued components. 
It uses the oldest (and least widely known) form of the back-propagation learning algorithm to achieve a degree 
of flexibility and performance which rivals some of the more popular software-only neural net development 
products on the market today. Its predecessor (Version 1. I), which was distributed as shareware to members of 
the international neural networks research community and a tri-services working group, has been applid with 
some success to the automation of medical diagnosis [I], to active sonar target classification [23, and to 



pensomel screening. It was also used (to no apparent advantage) in financial forecasting 131. At the present 
time, the author is exploring the application of Original Backprop to the interpretation of questionnaire data 
pr&uce6?j by a pre-prototype software package for the prevention and remediation of sexual harrassment. 

The next section, which explains the historical origins of the learning algorithm, will clarify some 
points of hnctionality and terminology which have to be understood before the package can be used effectively. 
The third section walks the reader through an example problem (using Version 1.1) in which a network with 
random initial weights is set up and then trained to classify the elements of a training set. 

BACKGRO 

l%e neural network technology of today is based largely on the neuroscience of the 1940s. The 
classical neuron integrates the pre-synaptic activity of all the neurons influencing it, sending information in the 
f o m  of electrical impulses down the one-way path formed by its axon. McCulloch and Pitts, in 1943, 
simplifid the neuron to an onloff device, either firing impulses at its peak rate or resting quietly. In 1948, 
D.O. Hebb theorized that the synaptic weights are modified by a reinforcement control procedure; and he 
argued that synaptic modification constituted the microscopic, physioIogica1 basis of adaptation, learning, and 
behavioral organization. How could this theory be tested? 

By 1954, digital computers had been brought to bear on the problems of brain modeling. The 
computer was indispensable, because the mathematics involved large numbers of variables and their nonlinear 
ipateractions. If "intelligent" behavior was going to emerge from networks of McCulloch-Pitts neurhns with 
Hebbim synapses, it would have to be discovered by computer simulation. No one carried this idea so far, so 
fast as Franak Rosenblatt, whose discoveries were s b r i z e d  in a 1961 Cornell Aeronautical Laboratories 
technical report, Principles of Neurodynamics: Perceptrons and the Theo~y of Brain Mechanisms [4]. In 1962, 
Neur~~ciynamics was published and distributed by Spartan Books (now defunct [5]) .  The first 300 pages of 
Rosenblatt's report were devoted to three-layer, series-coupled perceptrons composed of binary threshold units 
(or McCuBloch-Pitts neurons). The front end of the perceptron consists of sensory (S) units on which a pattern 
of binary digrts is impressed. The back end consists of response (R) units which register the classification. 
Between these is a layer of association (A) units each of which forms a weighted sum of the pattern components 
and then turns ON (or OFF) when the sum exceeds (does not exceed) a threshold. Similarly, the R-units turn 
ON or OFF according to the values of the weighted sums that they compute after scanning the A-layer. Zn 
Figure I ,  some newer terminology is superimposed on this 30-year-old design. 

Rosenblatt trained simple perceptrons to solve problems in pattern recognition. For example, let the S- 
units form a grid-like retina on which horizontal and vertical bars are impressed by turning ON the units in a 
particular row or column. Let there be only one R-unit which we want to turn ON in response to vertical bars 
only. The weights of the front-end connections (from S to A) and the back-end connections (from A to R) are 
initially Just random numbers; and the perceptron's initial performance might be correct about half the time. 
The traiing process follows a sequence of cycles. A pattern is presented at the front end and propagated 
though the A-layer to the R-unit. If the response is correct, go on to the next pattern. If incorrect, then change 
the weights of all A-to-R connections which contribute to the error. The weight change will be negative when 
the A-unit helps to turn ON the R-unit in response to a horizontal bar, positive when it inhibits the R-unit's 
response to a vertical bar. As this procedure is repeated again and again, the perceptron's incorrect responses 
lxxmrne fewer and fewer. 

In 1969, MIT computer scientists Marvin Minsky and Seymour Papert published a book, Perceptrons, 
which is widely regarded as having had a chilling effect on the subject. In the third (1988) edition, Minsky 
recalls that perceptron research had already reached a dead end 261. After Rosenblatt died in a boating accident 
on the Chesapeake Bay, in 1971, Minsky and Papert dedicated the second edition of Perceptrons in his memory. 
Yet the memory of what Rosenblatt accomplished faded quickly in the years that followed as students 
hcreasingly accepted the Minsky-Papert perceptron as a substitute for the original--and found it lacking in 
probiem-solvkg ability. 
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Figure 1. A SIMPLE PERCEPTRON features three layers of neuron- 
like units with weighted connections feeding excitation (and inhibition) 
in the forward (1.-to-r.) direction only. Here one of the two output units 
turns ON to the input pattern. 

The revival of perceptron-like models in the 1980s was made possible by a combination of 
developments, including the widespread perception that A1 had reached a plateau, and by the availability of 
cheaper, faster computers with large amounts of inexpensive RAM (which is needed to store the synaptic 
weights of large networks). The connectionist models of the 1980s overcame some weaknesses of the Minsky- 
Papert perceptron. Rumelhart, McClelland and the PDP Research Group (1986), in their first widely-had 
volume on Parallel Distributed Processing, emphasized the importance of having a "hidden layer" of neuron- 
like units sandwitched between the input and output layers of the network [7]. It was as if Minsky and Papert 
had done away with the A-units in the perceptron. So these had to be re-invented as "hidden units"! The PDP 
Group pointed out that these hidden units give three-layer networks the ability-& principle--to solve vimBBy 
any pattern classification problem. 

But the "powerful new resultn that drove the progress of artificial neural networks in the late 1980s was 
an algorithm called "back-propagationw which permits three-layer networks to learn internal represenhtions of 
data sets for which no mathematical model can be written down to specify the correct responses to given Ewputs. 
Instead, the neural network learns by example in the course of many passes through a training set. ]In 1986, T. 
Sejnowski demonstrated NETtalk, the neural network that learned to read aloud in English. The input units in 
the three-layer network represented sequences of letters from a text. The output units corresponded to the 
"phonemes" of which spoken English is made. The phonemes were transmitted to a speech synthesizer. 
NETtalk learned by example to convert letter strings into phonemes. The PDP Group's back-propagation 
technique was used to modify the weights in a way that resisted and eventually corrected the errors. The speech 
produced by the network was initially just a meaningless babble. As training progressed around the clock on ;a 

mainframe computer, the sounds became more and more intelligible. After the network had learned the tra&g 
set, it showed the ability to generalize by "reading aloud" the remaining text. This and a legion of other 
persuasive demos have testified to the power of back-propagation, which has driven the great m j o ~ t y  of n~eanral 
network applications to date. The technology has evolved so far, so fast, that its roots have become almost 
invisible. According to the prevailing historical view, back-propagation is radically different from the trai&g 
procedures used with perceptrons [8, 91. Although the introduction of hidden units gives a feed-fornard 



nemork the potential to learn an arbitrary input-to-output mapping, in this view, no technique had existed for 
t r a k g  the weights of a network with one or more hidden layers. 

I t  is true that Rosenblatt usually left the weights of the front end (S-to-A) co~ec t ions  at their initial 
values m d  applied conrective modifications only to the back end (A-R) weights. In chapter 13 of 
Neurodynremics, however, Rosenblatt addressed the limitations imposed by neglecting to modify the front- 
weigh&: "Only one constraint ne& to be dropped in order to obtain the most general system of this class: the 
requircmene' &at the S-to-A connections must havejixed values, only the A-to-R connections being time 
depem'ent, In [Chapter 131, variable S-to-A weights will be introduced and the applications ofan error- 
combion procedure will be analyzed. It would seem that a considerable improvement in performance might be 
obtained ifthe S-to-A connections could somehow be optimized by a learning process rather than accepting the 
arbitrary or pre-designed network with which the perceptron starts out. It will be seen that this is indeed the 
case, provided that certain pitfalls in the design of a reinforcement control procedure are avoided. " 

With this rationale, Rosenblatt introduced a "back-propagating error correction procedure" consisting 
of a brief list of rules for assigning errors to hidden (A) units based on their interactions with output (R) units 
that assume the wrong state in response to the training input. Back-propagation is a "supervised" learning 
algorithm which obtains its feedback from the output units, computing errors by comparing their observed states 
to prwssignd correct values, propagating errors (and corrections) back towards the front (input) end of the net 
i f  a satisfactory solution cannot be found quickly by making corrections at the output end. The actual 
modification to the weights is formally the same whether an output unit or a hidden unit (or A-unit) is 
considlered. Thus if the error assigned to a unit is positive, the weights of all connections from active units are 
increased, evenhally turning it on. If the error is negative, the weights of connections from active units are 
decreased. The essential feature of the method is a probabilistic procedure for assigning errors to hidden units. 

USING ORZGZNkC BACKPROP 

Original Backprop includes four subprograms: (1) TSET, a graphical interface for creating the training 
sets; (2) BAGUROP, which generates and trains neural networks; (3) VIEWNET, which lets the user analyze 
and simplify the networks; and (4) DONETwhich recalls and runs the finished product of the neural net design- 
a d - t r a i ~ A g  exercise under other software applications. 

TSETpresents the user with an 5-by-8 grid of picture elements (or "input units") which can be toggled 
ON or OFF with a keystroke. In Figure 2, the grid is used to draw 16 patterns representing the hexadecimal 
symbols zero through F. Pattern number 5,  for example, is the symbol "4" which has the binary representation 
100. This t rakng set, consisting of four pages of four patterns each, will show an appropriately configured 
neural/ net how to map the symbol patterns into binary numbers. Onscreen help is provided for moving around 
in the pattern set and for naming the individual picture elements when appropriate. In a medical diagnosis 
problem [I], for example, the picture elements could be placed in one-to-one correspondence with the (40 or 
fewer) symptom and named accordingly so that the meaning of the "input unit" is clearly defined as the cursor 
is moved around the grid in the process of data entry. Training sets are saved as ASCII *.set files. In Figure 
2, the file name is ha.set; and it is divided into four pages of four patterns each. Version 1.1 limits the size of 
the t r a i ~ n g  set to 10 pages of binary-valued patterns. Version 1.2 increases the capability to 200 patterns with 
up to 128 components each and lets the picture elements be represented with 8-bit precision (and 256 colors). 

BACflROP is operated from two menus. The Main Menu presents these Options: (1) get a training 
set; g'2) get a neural net; (3) create a new network; (4) testltrain a network; and (5) quit. Option (1) is the 
obvious sh~i rag  point. Once a *.set file has been retrieved, it is displayed in a binary string format as shown in 
Figure 3 for the hex-to-binary conversion problem. The desired mapping is from "input" into "class". The 
"out" column in the table is all zeros at this point; but one can return to this screen later on (by Option e, below) 
when t r a f i g  is underway to see how the output units of the network compare to the desired classifications. 
Selectkg @tion (3) produces the screen shown in Figure 4. Observe that the numbers of input and output units 
have idefaulre$ to the numbers indicated by the dimensions of the training set. The number of hidden units has 
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2. TSET lets Version 1.1 users create input patterns on a 5-by-8 grid and athch as 
many as five classification bits to each pattern. The product is a training set which is saved 
as a *.set file. 



TRAINING SET 
File name: hex.set C 16 patterns 1 
Paye Down to view more patterns. Strike a key to continue, 

3.  BACKPROP displays the first 15 elements of the training set (hexset) as binary 
slriwgs. 
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.-- .., ,; 
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2 .  number of h idden un its 
3 ,  learni~yj ra'tes 
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6, probabilities hidden layer: 12 units 
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these ua lues . 

4. BACKPROP creates three-layer networks with the appropriate numbers of 
input and output units (as required by the training set). This screen serves as a control 
panel to adjust the number of hidden units and other network parameters. 

468 

1 0  00110010010100101001010010100100110 0000 0000 
2 1 00010001100001000010000100001000111 0001 0000 
3 2 00110010010000100010001000100001111 0010 0000 
4 3 00110010010000100010000010100100110 0011 0000 
5 4 01000010100101001010011110001000010 0100 0000 
6 5 01111010000100001111000010100100110 0101 0000 
7 6 00ll00l00l0100001110010010100100110 0110 0000 
a 7 01111000010000100010000100010000100 0111 0000 
9 8 00110010010100100110010010100100ll0 1000 0000 

10 9 00110010010100100111000010100100110 1001 0000 
11 A 00110010010100101111010010100101001 1010 0000 
12 B 0lll00l0010l00l01ll0010010100101110 1011 0000 
13 C 00110010010100001000010000100100110 1100 0000 
14 D 01110010010100101001010010100101110 1101 0000 
15 E 01111010000100001110010000100001111 1110 0000 

I I I I 

name input 

I I 

class out 



been set to 12. Thresholds have been established in these hidden units and the input layer bias unit has been 
turned on. 

BACKPROP's Main Menu Option (4) brings up a Training Menu which contains these seven new 
options: (a) begin training; (b) freezelunfreeze weights; (c) modify network; (d) save network; (e) review 
patterns; ( f )  continue training; and (g) return to Main Menu. Choosing Option (a) now starts the process of 
learning to associate binary numbers with the symbols in hex.set. Figure 5 (top) shows the learning curve which 
resulted from 278 cycles through the training set of 16 patterns. Two learning curves are actually display&: A 
red curve shows the number of incorrectly classified patterns in the current epoch of 50 cycles and a white curve 
(presently in the upper left comer) shows the average number of errors epoch-by-epoch. It turns out that hexset 
is a rather difficult assignment. Pressing the ESCape key after cycle number 278, where the error rate has 
dropped below two-thirds, Option (c) is used to re-access the network parameter control screen of Figure 4 
Modifying the "learning rates" (so that rate 1 = .O1 and rate2 = .001), then continuing the t r a i h g  with 
Option ( f ) ,  the learning process is rapidly completed as shown in the bottom half of Figure 5. Note that 
Rosenblatt's stochastic learning algorihm, although it guarantees convergence when a solution exists, does not 
give the sort of monotonic learning curve that users of PDP back-propagation are accustomed to seeing. The 
trained network is saved as a *.net file after exercising Option (d). Since there are 12 hidden units &r4 the bex- 
to-binary conversion network, the weights are saved in a file called hex12.net. 

VIEWhET lets the trained network be examined, tested, and "pruned" by the deletion of mrgba l ly  
useful hidden units. VIEWNETS menus control the acquisition of *.set and *.net files and give the user two 
"views" of how the network deals with the training set. The detailed view is presented on the "Neural Net 
Display Screen" (Figure 6) which allocates a small box for each unit and a wide box for each weight. The 
cursor moves up and down the hidden layer. In Figure 6 ,  the cursor illuminates hidden unit #12; and the 
weights displayed are all those of the (S-A) connections fanning into this unit from the input layer together with 
those fanning out to the four output units. On the right side of the screen, the four output units still register 
"0000" (instead of the desired "0101 ") becase the SPACEbar has not been pressed to propagate the input 
(pattern #6) forward. A less complicated depiction of the network's performance is obtained by listling the 
hidden layer activation vectors as columns under the corresponding pattern numbers as in Figure 7. 

A recurring question in neural net research concerns the number of hidden units needed to solve the 
problem presented by the training set. If too few hidden units are employed, training progress may be 
extremely slow or the solution may actually be unattainable irrespective of any time limit. Use of too many 
hidden units results in "brittle" solutions and networks that do not generalize well. Some pioneering work of 
Australian Navy investigators J. Sietsma and R. Dow suggests that the most practical and expedient snpproal:%a is 
to first set up and train a network with an abundance of hidden units and then "prune" the trained nemork by 
selectively deleting those units which contribute little or nothing to overall performance [lo]. ME 
tool that makes it practical to implement such a strategy. From the screen shown in Figure 6, the user can pick 
a hidden unit (corresponding to a row of the binary array), delete it, and see what effect this has on the 
correctness of the net's response to each training pattern. Although it requires some work, moving "manually" 
back-and-forth between VZEWNET (to prune one or two units at a time) and BACKPROP (to correct the few new 
errors thus incurred) leads to efficient solutions in much less time than it would take using BACKPROP alone. 
(For example, a network with seven hidden units can be obtained by pruning hex12 net in stages; but for 
BACKPROP to solve the problem posed by hex.set directly--starting with just seven hidden units--seem to take 
far more than 250,000 cycles.) A desirable feature which has not been included in Version 1.2 (but defemd to 
later upgrades) is an "autoprune" option which would obviate the need for such "manual" labor. 

Version 1.2 improves upon its predecessor by supporting larger training sets and networks. It also 
includes a new subprogram, DOhET, to exercise trained networks (retrieved =*.net files) and display their 
responses to given inputs in a dialog box that pops up under other applications (like spreadsheets and word 
processors). In Version 1.2, BACKPROP can be made to find more robust solutions by injecting low-level, 
"noise" into the input patterns in the concluding phases of the training process. 
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El 5. BACKPROP produces learning curves to show the number of misclassified patterns 
as a f m c ~ o n  of the number of cycles through the training set. The slow progress in the first 
278 cydes (top) is accelerated by lowering the learning rates from their default values (as 
decribed in the text). All 16 patterns in hexset are learned in 294 cycles (bottom). 
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6.  VZEWNETrs Neural Net Display Screen illuminates the contents of weight 
hexl2.net and shows how the network responds to the elements of the training set. 
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7. VIEWNET gives users the ability to "prune" the network by deleti% 
marginally useful hidden units. 



Original Backprop, Version 1.2, will be ready for release in February, 1993. Requests should be sent 
to the author by regular mail. 

Shdies leading to the development of ORIGINAL BACKPROP were sponsored by the Office of Naval 
Research though the Naval Surface Warfare Center's Independent Research Program. Most of the critical 
componene of Version 1.1 were designed and programmed in Borland Turbo-C, during the summer of 199 1, by 
Dovid L i p m ,  who is presently a student at the Ner Israel Rabbinical College (in Baltimore). 
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