
PACKAGE FOR NEURAL NETWORK APPLICATIONS DEVELOPmm

Robert H. Baran
Naval Surface Warfare Center

White Oak (code N51)
Silver Spring, MD 20903-5000

I

ABSTRACT 1 *

Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language program that
enable users to develop neural network solutions to a variety of practical problems. Original Backpp-og
generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed-
length output vectors through an intermediate ("hidden") layer of binary threshold units. Version 1.2 can
handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram,
TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input-
output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mappa439
and modifies the weights of its connections incrementally until the training set is learned. The learning
algorithm is the "back-propagating error correction procedure" first described by F. Rosenblatt in 1961. The
third subprogram, VIEWNET, lets the trained network be examined, tested, and "pruned" (by the deletion of
unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished
product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.

INTRODUCTION

Recent advances in the manufacture of integrated circuits have led to parallel computers with thousmds
of microprocessors in a single system and given rise to growing interest in computational methods that suppod
massive parallelism in a natural way. Neural computing aims at (ultimately) achieving human-like perfommce
in computer systems by developing an analogy to the structure and operation of the central nervous system.
Computations are executed by simple neuron-like processing units which are interconnected by "synaptic" h k s
of variable strength (or weight). The resurgence of interest in these "connectionist" models, since about 1982,
has been said to reflect the total inadequacy of algorithm-driven computing and symbolic artificial jintellige~tce
(AI) approaches in dealing with real world problems, speech processing and machine vision being the most cited
examples.

On the other hand, neural networks have found abundant use in recent years as practical decision aids
which can learn by example to give correct responses to given inputs in situations where, in principle, a set of
logical rules could be used to infer the correct response but where, in practice, such rules are difficult to
elucidate. Successful case studies have been reported in sonar echo classification, concealed explosives
detection, mortgage risk evaluation, medical diagnosis, and many other applications. Much of the popula~ty
surrounding neural network classifiers is a consequence of the relative ease with which they can be trannd to
substitute for optimally designed expert systems. In most of the interesting applications so far, the powerful
new result which enables the neural network to capture the significant factual associations presented in the
training data is a learning algorithm called back-propagation.

Original Backprop (Version 1.2) is an MS-DOS software package for setting up and t r a k g thee.-
layer, feed-forward neural networks to classify input patterns consisting of binary- and real-valued components.
It uses the oldest (and least widely known) form of the back-propagation learning algorithm to achieve a degree
of flexibility and performance which rivals some of the more popular software-only neural net development
products on the market today. Its predecessor (Version 1. I), which was distributed as shareware to members of
the international neural networks research community and a tri-services working group, has been applid with
some success to the automation of medical diagnosis [I], to active sonar target classification [23, and to

pensomel screening. It was also used (to no apparent advantage) in financial forecasting 131. At the present
time, the author is exploring the application of Original Backprop to the interpretation of questionnaire data
pr&uce6?j by a pre-prototype software package for the prevention and remediation of sexual harrassment.

The next section, which explains the historical origins of the learning algorithm, will clarify some
points of hnctionality and terminology which have to be understood before the package can be used effectively.
The third section walks the reader through an example problem (using Version 1.1) in which a network with
random initial weights is set up and then trained to classify the elements of a training set.

BACKGRO

l%e neural network technology of today is based largely on the neuroscience of the 1940s. The
classical neuron integrates the pre-synaptic activity of all the neurons influencing it, sending information in the
f o m of electrical impulses down the one-way path formed by its axon. McCulloch and Pitts, in 1943,
simplifid the neuron to an onloff device, either firing impulses at its peak rate or resting quietly. In 1948,
D.O. Hebb theorized that the synaptic weights are modified by a reinforcement control procedure; and he
argued that synaptic modification constituted the microscopic, physioIogica1 basis of adaptation, learning, and
behavioral organization. How could this theory be tested?

By 1954, digital computers had been brought to bear on the problems of brain modeling. The
computer was indispensable, because the mathematics involved large numbers of variables and their nonlinear
ipateractions. If "intelligent" behavior was going to emerge from networks of McCulloch-Pitts neurhns with
Hebbim synapses, it would have to be discovered by computer simulation. No one carried this idea so far, so
fast as Franak Rosenblatt, whose discoveries were s b r i z e d in a 1961 Cornell Aeronautical Laboratories
technical report, Principles of Neurodynamics: Perceptrons and the Theo~y of Brain Mechanisms [4]. In 1962,
Neur~~ciynamics was published and distributed by Spartan Books (now defunct [5]) . The first 300 pages of
Rosenblatt's report were devoted to three-layer, series-coupled perceptrons composed of binary threshold units
(or McCuBloch-Pitts neurons). The front end of the perceptron consists of sensory (S) units on which a pattern
of binary digrts is impressed. The back end consists of response (R) units which register the classification.
Between these is a layer of association (A) units each of which forms a weighted sum of the pattern components
and then turns ON (or OFF) when the sum exceeds (does not exceed) a threshold. Similarly, the R-units turn
ON or OFF according to the values of the weighted sums that they compute after scanning the A-layer. Zn
Figure I , some newer terminology is superimposed on this 30-year-old design.

Rosenblatt trained simple perceptrons to solve problems in pattern recognition. For example, let the S-
units form a grid-like retina on which horizontal and vertical bars are impressed by turning ON the units in a
particular row or column. Let there be only one R-unit which we want to turn ON in response to vertical bars
only. The weights of the front-end connections (from S to A) and the back-end connections (from A to R) are
initially Just random numbers; and the perceptron's initial performance might be correct about half the time.
The traiing process follows a sequence of cycles. A pattern is presented at the front end and propagated
though the A-layer to the R-unit. If the response is correct, go on to the next pattern. If incorrect, then change
the weights of all A-to-R connections which contribute to the error. The weight change will be negative when
the A-unit helps to turn ON the R-unit in response to a horizontal bar, positive when it inhibits the R-unit's
response to a vertical bar. As this procedure is repeated again and again, the perceptron's incorrect responses
lxxmrne fewer and fewer.

In 1969, MIT computer scientists Marvin Minsky and Seymour Papert published a book, Perceptrons,
which is widely regarded as having had a chilling effect on the subject. In the third (1988) edition, Minsky
recalls that perceptron research had already reached a dead end 261. After Rosenblatt died in a boating accident
on the Chesapeake Bay, in 1971, Minsky and Papert dedicated the second edition of Perceptrons in his memory.
Yet the memory of what Rosenblatt accomplished faded quickly in the years that followed as students
hcreasingly accepted the Minsky-Papert perceptron as a substitute for the original--and found it lacking in
probiem-solvkg ability.

hidden (A)
unit #l

bias

(or retina of S-units)

output (R)
unit #l is OFF

output (R)
unit #2 is ON

wc fixed
threshold

Figure 1. A SIMPLE PERCEPTRON features three layers of neuron-
like units with weighted connections feeding excitation (and inhibition)
in the forward (1.-to-r.) direction only. Here one of the two output units
turns ON to the input pattern.

The revival of perceptron-like models in the 1980s was made possible by a combination of
developments, including the widespread perception that A1 had reached a plateau, and by the availability of
cheaper, faster computers with large amounts of inexpensive RAM (which is needed to store the synaptic
weights of large networks). The connectionist models of the 1980s overcame some weaknesses of the Minsky-
Papert perceptron. Rumelhart, McClelland and the PDP Research Group (1986), in their first widely-had
volume on Parallel Distributed Processing, emphasized the importance of having a "hidden layer" of neuron-
like units sandwitched between the input and output layers of the network [7]. It was as if Minsky and Papert
had done away with the A-units in the perceptron. So these had to be re-invented as "hidden units"! The PDP
Group pointed out that these hidden units give three-layer networks the ability-& principle--to solve vimBBy
any pattern classification problem.

But the "powerful new resultn that drove the progress of artificial neural networks in the late 1980s was
an algorithm called "back-propagationw which permits three-layer networks to learn internal represenhtions of
data sets for which no mathematical model can be written down to specify the correct responses to given Ewputs.
Instead, the neural network learns by example in the course of many passes through a training set.]In 1986, T.
Sejnowski demonstrated NETtalk, the neural network that learned to read aloud in English. The input units in
the three-layer network represented sequences of letters from a text. The output units corresponded to the
"phonemes" of which spoken English is made. The phonemes were transmitted to a speech synthesizer.
NETtalk learned by example to convert letter strings into phonemes. The PDP Group's back-propagation
technique was used to modify the weights in a way that resisted and eventually corrected the errors. The speech
produced by the network was initially just a meaningless babble. As training progressed around the clock on ;a

mainframe computer, the sounds became more and more intelligible. After the network had learned the tra&g
set, it showed the ability to generalize by "reading aloud" the remaining text. This and a legion of other
persuasive demos have testified to the power of back-propagation, which has driven the great m j o ~ t y of n~eanral
network applications to date. The technology has evolved so far, so fast, that its roots have become almost
invisible. According to the prevailing historical view, back-propagation is radically different from the trai&g
procedures used with perceptrons [8, 91. Although the introduction of hidden units gives a feed-fornard

nemork the potential to learn an arbitrary input-to-output mapping, in this view, no technique had existed for
t r a k g the weights of a network with one or more hidden layers.

I t is true that Rosenblatt usually left the weights of the front end (S-to-A) co~ec t ions at their initial
values m d applied conrective modifications only to the back end (A-R) weights. In chapter 13 of
Neurodynremics, however, Rosenblatt addressed the limitations imposed by neglecting to modify the front-
weigh&: "Only one constraint ne& to be dropped in order to obtain the most general system of this class: the
requircmene' &at the S-to-A connections must havejixed values, only the A-to-R connections being time
depem'ent, In [Chapter 131, variable S-to-A weights will be introduced and the applications ofan error-
combion procedure will be analyzed. It would seem that a considerable improvement in performance might be
obtained ifthe S-to-A connections could somehow be optimized by a learning process rather than accepting the
arbitrary or pre-designed network with which the perceptron starts out. It will be seen that this is indeed the
case, provided that certain pitfalls in the design of a reinforcement control procedure are avoided. "

With this rationale, Rosenblatt introduced a "back-propagating error correction procedure" consisting
of a brief list of rules for assigning errors to hidden (A) units based on their interactions with output (R) units
that assume the wrong state in response to the training input. Back-propagation is a "supervised" learning
algorithm which obtains its feedback from the output units, computing errors by comparing their observed states
to prwssignd correct values, propagating errors (and corrections) back towards the front (input) end of the net
i f a satisfactory solution cannot be found quickly by making corrections at the output end. The actual
modification to the weights is formally the same whether an output unit or a hidden unit (or A-unit) is
considlered. Thus if the error assigned to a unit is positive, the weights of all connections from active units are
increased, evenhally turning it on. If the error is negative, the weights of connections from active units are
decreased. The essential feature of the method is a probabilistic procedure for assigning errors to hidden units.

USING ORZGZNkC BACKPROP

Original Backprop includes four subprograms: (1) TSET, a graphical interface for creating the training
sets; (2) BAGUROP, which generates and trains neural networks; (3) VIEWNET, which lets the user analyze
and simplify the networks; and (4) DONETwhich recalls and runs the finished product of the neural net design-
a d - t r a i ~ A g exercise under other software applications.

TSETpresents the user with an 5-by-8 grid of picture elements (or "input units") which can be toggled
ON or OFF with a keystroke. In Figure 2, the grid is used to draw 16 patterns representing the hexadecimal
symbols zero through F. Pattern number 5, for example, is the symbol "4" which has the binary representation
100. This t rakng set, consisting of four pages of four patterns each, will show an appropriately configured
neural/ net how to map the symbol patterns into binary numbers. Onscreen help is provided for moving around
in the pattern set and for naming the individual picture elements when appropriate. In a medical diagnosis
problem [I], for example, the picture elements could be placed in one-to-one correspondence with the (40 or
fewer) symptom and named accordingly so that the meaning of the "input unit" is clearly defined as the cursor
is moved around the grid in the process of data entry. Training sets are saved as ASCII *.set files. In Figure
2, the file name is ha.set; and it is divided into four pages of four patterns each. Version 1.1 limits the size of
the t r a i ~ n g set to 10 pages of binary-valued patterns. Version 1.2 increases the capability to 200 patterns with
up to 128 components each and lets the picture elements be represented with 8-bit precision (and 256 colors).

BACflROP is operated from two menus. The Main Menu presents these Options: (1) get a training
set; g'2) get a neural net; (3) create a new network; (4) testltrain a network; and (5) quit. Option (1) is the
obvious sh~i rag point. Once a *.set file has been retrieved, it is displayed in a binary string format as shown in
Figure 3 for the hex-to-binary conversion problem. The desired mapping is from "input" into "class". The
"out" column in the table is all zeros at this point; but one can return to this screen later on (by Option e, below)
when t r a f i g is underway to see how the output units of the network compare to the desired classifications.
Selectkg @tion (3) produces the screen shown in Figure 4. Observe that the numbers of input and output units
have idefaulre$ to the numbers indicated by the dimensions of the training set. The number of hidden units has

ED I I'CREfITE a Ira i n infr Set
f i l e name: hex-set

pattern 5 -1

inyu.t i m i t 8 :
pattern name: 4

Arrows move cursor; T toggles unit .
Press Insert t o record pattern
and advance t o next pattern.
Press - (minus) t o back up.

F1 = Help

pat t . 1 0000 pat t . 2 0001

pat t . 3 0010 pat t . 4 0011

pat t . 5 0100 pat t . 6 0101 1 ;

11 pat t . 7 0110 pat t . 8 0111 /

11 pat t . 13 1100 pat t . 14 11Bl 11

11 pat t . 15 1118 pat t . 16 1114. 11

2. TSET lets Version 1.1 users create input patterns on a 5-by-8 grid and athch as
many as five classification bits to each pattern. The product is a training set which is saved
as a *.set file.

TRAINING SET
File name: hex.set C 16 patterns 1
Paye Down to view more patterns. Strike a key to continue,

3. BACKPROP displays the first 15 elements of the training set (hexset) as binary
slriwgs.

1#

GET/CREATE/HODIFY A NEURAL NET t a r g e t .,, ;--., error back--prop,
.-- .., ,;

1, t r a i n i n g set
2 . number of h idden un its
3 , learni~yj ra'tes
4. thresholds
5. h i a s $ i n i t
6, probabilities hidden layer: 12 units

Use number keys to
modify the network

or press A to accept
these ua lues .

4. BACKPROP creates three-layer networks with the appropriate numbers of
input and output units (as required by the training set). This screen serves as a control
panel to adjust the number of hidden units and other network parameters.

468

1 0 00110010010100101001010010100100110 0000 0000
2 1 00010001100001000010000100001000111 0001 0000
3 2 00110010010000100010001000100001111 0010 0000
4 3 00110010010000100010000010100100110 0011 0000
5 4 01000010100101001010011110001000010 0100 0000
6 5 01111010000100001111000010100100110 0101 0000
7 6 00ll00l00l0100001110010010100100110 0110 0000
a 7 01111000010000100010000100010000100 0111 0000
9 8 00110010010100100110010010100100ll0 1000 0000

10 9 00110010010100100111000010100100110 1001 0000
11 A 00110010010100101111010010100101001 1010 0000
12 B 0lll00l0010l00l01ll0010010100101110 1011 0000
13 C 00110010010100001000010000100100110 1100 0000
14 D 01110010010100101001010010100101110 1101 0000
15 E 01111010000100001110010000100001111 1110 0000

I I I I

name input

I I

class out

been set to 12. Thresholds have been established in these hidden units and the input layer bias unit has been
turned on.

BACKPROP's Main Menu Option (4) brings up a Training Menu which contains these seven new
options: (a) begin training; (b) freezelunfreeze weights; (c) modify network; (d) save network; (e) review
patterns; (f) continue training; and (g) return to Main Menu. Choosing Option (a) now starts the process of
learning to associate binary numbers with the symbols in hex.set. Figure 5 (top) shows the learning curve which
resulted from 278 cycles through the training set of 16 patterns. Two learning curves are actually display&: A
red curve shows the number of incorrectly classified patterns in the current epoch of 50 cycles and a white curve
(presently in the upper left comer) shows the average number of errors epoch-by-epoch. It turns out that hexset
is a rather difficult assignment. Pressing the ESCape key after cycle number 278, where the error rate has
dropped below two-thirds, Option (c) is used to re-access the network parameter control screen of Figure 4
Modifying the "learning rates" (so that rate 1 = .O1 and rate2 = .001), then continuing the t r a i h g with
Option (f) , the learning process is rapidly completed as shown in the bottom half of Figure 5. Note that
Rosenblatt's stochastic learning algorihm, although it guarantees convergence when a solution exists, does not
give the sort of monotonic learning curve that users of PDP back-propagation are accustomed to seeing. The
trained network is saved as a *.net file after exercising Option (d). Since there are 12 hidden units &r4 the bex-
to-binary conversion network, the weights are saved in a file called hex12.net.

VIEWhET lets the trained network be examined, tested, and "pruned" by the deletion of mrgba l ly
useful hidden units. VIEWNETS menus control the acquisition of *.set and *.net files and give the user two
"views" of how the network deals with the training set. The detailed view is presented on the "Neural Net
Display Screen" (Figure 6) which allocates a small box for each unit and a wide box for each weight. The
cursor moves up and down the hidden layer. In Figure 6 , the cursor illuminates hidden unit #12; and the
weights displayed are all those of the (S-A) connections fanning into this unit from the input layer together with
those fanning out to the four output units. On the right side of the screen, the four output units still register
"0000" (instead of the desired "0101 ") becase the SPACEbar has not been pressed to propagate the input
(pattern #6) forward. A less complicated depiction of the network's performance is obtained by listling the
hidden layer activation vectors as columns under the corresponding pattern numbers as in Figure 7.

A recurring question in neural net research concerns the number of hidden units needed to solve the
problem presented by the training set. If too few hidden units are employed, training progress may be
extremely slow or the solution may actually be unattainable irrespective of any time limit. Use of too many
hidden units results in "brittle" solutions and networks that do not generalize well. Some pioneering work of
Australian Navy investigators J. Sietsma and R. Dow suggests that the most practical and expedient snpproal:%a is
to first set up and train a network with an abundance of hidden units and then "prune" the trained nemork by
selectively deleting those units which contribute little or nothing to overall performance [lo]. ME
tool that makes it practical to implement such a strategy. From the screen shown in Figure 6, the user can pick
a hidden unit (corresponding to a row of the binary array), delete it, and see what effect this has on the
correctness of the net's response to each training pattern. Although it requires some work, moving "manually"
back-and-forth between VZEWNET (to prune one or two units at a time) and BACKPROP (to correct the few new
errors thus incurred) leads to efficient solutions in much less time than it would take using BACKPROP alone.
(For example, a network with seven hidden units can be obtained by pruning hex12 net in stages; but for
BACKPROP to solve the problem posed by hex.set directly--starting with just seven hidden units--seem to take
far more than 250,000 cycles.) A desirable feature which has not been included in Version 1.2 (but defemd to
later upgrades) is an "autoprune" option which would obviate the need for such "manual" labor.

Version 1.2 improves upon its predecessor by supporting larger training sets and networks. It also
includes a new subprogram, DOhET, to exercise trained networks (retrieved =*.net files) and display their
responses to given inputs in a dialog box that pops up under other applications (like spreadsheets and word
processors). In Version 1.2, BACKPROP can be made to find more robust solutions by injecting low-level,
"noise" into the input patterns in the concluding phases of the training process.

LEARNING CURVE
training set (file name) = hex-set

Number of Errors (Mean Errors)

15

I B

5

8
0 ESCape returns to

Training Time (cycles mod 50) (cycles/SB) Training Henu

LEARNING CURVE
training set (file name) = hex.set

Humher of Errors (Mean Errors)

Pattern Number
and Status

correct/incorrect

. f. 1.1.
....

2 12
......

3 13
... 4 1.4
...

5 15
....

6 ii;I ; '<?
.... 8 "' ".
...... fj $
... Ifj 2:+,

of errors 8

15 - CONVERGED

,;

118 -

5 -

Pattern Number
and Status

correct/ inc0rrec.t

of errors 0

B
3 ESCape returns to

Training Menu

1
i

I I I I

El 5. BACKPROP produces learning curves to show the number of misclassified patterns
as a f m c ~ o n of the number of cycles through the training set. The slow progress in the first
278 cydes (top) is accelerated by lowering the learning rates from their default values (as
decribed in the text). All 16 patterns in hexset are learned in 294 cycles (bottom).

B 10 20 30 40 !it
Training Time (c:jcles wad 50) (cycles/50)

NEUROL NET DISPLRY SCREEN (n e t f i l e = hex12

/- I I L

i 2.33803 5 ~ : - ~ 0 4 [1 1]

-3 .834835~-.03111)]
li idder
layer-: ! 120 11-4 . T 9 0 2 9 8 ~ : - . 0 1 1 1 4 0 1 1 / 1Z

.net)
---*---------*--------------------------------

r ~ ~ ~ a p e - ~ o to Menu

NETUORK OPERATION
Rrrows-----Hidden un i t s

PgUdPgDn--Patterns
Del/Ins----Pruning
SPREE------Fwd. Prop.

I.UOLdIIPE-01

-33 -09 I5eZE-82 IQl

T-SET: hex.set
(16 aatterns)

Net F i l e : hexi2.net
I Pattern #6: 5

n # o f errors: 0
CONUERGED

6. VZEWNETrs Neural Net Display Screen illuminates the contents of weight
hexl2.net and shows how the network responds to the elements of the training set.

Training Set: hex.set
Ne t f i l e : hexi2.net

o o o i i
7 8 9 0 1

O f 3 0 1

O t O O O

l i O O 1

0 1 0 1 1

0 0 3 1 1

l f 0 0 0

0 0 3 1 0

O t 0 1 0

Connand (F i t o get h e l ~ I?

I I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e r ro r indicator

7. VIEWNET gives users the ability to "prune" the network by deleti%
marginally useful hidden units.

Original Backprop, Version 1.2, will be ready for release in February, 1993. Requests should be sent
to the author by regular mail.

Shdies leading to the development of ORIGINAL BACKPROP were sponsored by the Office of Naval
Research though the Naval Surface Warfare Center's Independent Research Program. Most of the critical
componene of Version 1.1 were designed and programmed in Borland Turbo-C, during the summer of 199 1, by
Dovid L i p m , who is presently a student at the Ner Israel Rabbinical College (in Baltimore).

REFERENCES

[I] Agyei-Mensah, S.O., and Lin, F.C. (1992). Application of neural networks in medical diagnosis: the
case of sexually transmitted diseases. Submitted for publication.

[23 Harrison, R.W. (1991). A neural network for clarsiDing active sonar returns [Naval Surface Warfare
Center, Dahlgren, VA], Tech. Report No. 9 1-327.

131 CsugMin, J.P. (1992). Measures of serial data compressibility by neural network predictors. Proc.
lrar 7%. Joint Con$ on Neural Nets. [IJCNN Baltimore '921, 755-76 1.

941 Rosenblalt, F. (1961). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
[Cornell Aero. Lab., Buffalo, NY], Tech. Report No. VG-1196-G-81.

[5] Rosenblalt. F. (1962). Principles of Neurodynamics: Perceptrons and the Theoly of Brain Mechanisms
[Spartan Books, Washington, DC].

861 Miwsky, M.L. and Papert S.A. (1988). Perceptrons [Expanded Edn., MIT Press].
171 RumeBlarafl. D.E., McClelland J.L., and the PDP Research Group (1986). Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Vol. I [MIT Press, Cambridge, MA].
Widrow, B. and Lehr, M.A. (1990). Thirty years of adaptive neural networks: Perceptron, Madaline,

m d Backpropagation. Proceedings of the IEEE 78(9), 1415-1442
[9] Deming, P.J. (1992). Neural networks. American Scientist 80, 426-429.
[101 Sietsm, J., and Dow, R.J.F. (1988). Neural net pruning - why and how. Proc. IEEE Int '1. Con$ on

,Veuml Networks, 325-333.

