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ABSTRACT 

This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with 
unknown process equations. The NN is used to model the resulting unknown control law. The approach here 
is based on using the output error of the system to train the NN controller without the need to construct a 
separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive 
control approach, it is required that connection weights in the NN be estimated while the system is being 
controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to 
determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation 
algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight 
estimation, which is based on a "simultaneous perturbation" gradient approximation that only requires the system 
output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic 
approximation algorithms based on finite-difference gradient approximations. 

1. INTRODUCTION 

One of the major problems faced by system designers is finding a means to control and regulate a 
system when there is uncertainty about the nature of the underlying process. Adaptive control procedures havc 
been developed in a variety of areas for such problems (e.g., robot arm manipulation, materials handling, quality 
control, etc.), but are typically limited by the need to assume that the forms of the system equations are k n s m  
(and usually linear) while the parameters may be unknown. In complex physical, socioeconomic, or biological 
systems, however, the forms of the system equations (typically nonlinear) are often unknown as well as the 
parameters, making it impossible to determine the control law needed in existing adaptive control procedures. 
This provides the motivation for considering the use of a neural network (NN) as a controller. 

The approach here uses the observed system output error (actual output - target output) to train the 
NN-based controller without the need to identify or assume a separate model for the system. As we will show, 
it is not generally possible to train the NN via well-known back-propagation-type algorithms since the required 
gradient depends on a model for the underlying system. Thus, this paper shows how the simultaneous 
perturbation stochastic approximation algorithm can be used as a practical weight estimation technique in such 
a model-free setting. It is shown that this algorithm is much more efficient than more standard finite-difference- 
based algorithms. 

The direct control approach here is based on using a feed-forward NN to approximate the unknom 
control law. The basis for this approach is the now well-known fact that any measurable function can be 
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appro~mahed to within any degree of accuracy by some single (or multiple) hidden-layer feed-forward NN (e.g., 
Funahask [IO] or Wornik, Stinchcombe, and White 1121). Our approach will proceed in one of two ways: one 
method be based on making almost no assumptions about the nature of the underlying process while the 
other method will be based on assuming that some information (but still incomplete) is available on the form 
06 the process equations. In the first (basically no structure information) method, the output of the NN will be 
used to directly approximate the elements of the control vector; in the second (partial structure information), 
we create a control functional that depends on unknown functions describing the system dynamics and then use 
a MM to approximate the unknown functions. The second method is reminiscent of the self-tuning regulator 
approach to adaptive control (e.g., Davis and Vinter [7, pp. 309-3121), except that we are concerned with 
estimating functions in a control law functional as opposed to estimating parameters in a control law with a fully 
known structure. 

A number of others have considered using NNs for the problem of controlling uncertain nonlinear 
(usually deterministic) systems (see, e.g., the April 1990 and April 1992 special issues of the IEEE Control 

, Narendra and Parthasarathy [22,23], Hunt and Sbarbaro [15], or Iiguni, Sakai, and Tokumaru 
[96]). Although these methods are useful under certain (fairly restrictive) conditions, they often lack the ability 
to control systems with minimal prior information. In particular, they require an explicit model (either NN or 
other parametric type) for the underlying process equations; this model is assumed to be equivalent to the "true" 
process equations so that it is possible to calculate the gradient needed in back-propagation-type learning 
algorithms. These techniques (esp. those of Narendra and Parthasarathy) also require off-line identification of 
the process model before implementation of the adaptive control algorithm. In contrast, our direct control 
appmach uses the NN strictly as a model for use in the control law (no additional NN or parametric model is 
used for the process directly); the weights in the NN are estimated adaptively based only on the output error of 
the process (no prior identification is required).' As stated in Hoskins, Hwang, and Vagners [13], one of the 
major advantages of direct control techniques (versus indirect control) is that they are better able to adapt to 
changes in the underlying system since they are not heavily based on a prior model. Our approach addresses 
the shortcoming noted in Narendra and Parthasarathy [22, p. 191 that "At present, methods for directly adjusting 
the control parameters based on the output error (between the plant and [target] outputs) are not available." 

Because it is not possible in our framework to obtain the derivatives necessary to implement standard 
gradient-based search techniques such as back-propagation, we will consider stochastic approximation (SA) 
algorithms based on approximations to the required gradient. Usually such algorithms are based on standard 
finite-difference approximations to the gradient (i.e., as in the multivariate Kiefer-Wolfowitz algorithm-see, e.g., 
Ruppert [26]$. These, however, can be very costly in terms of the amount of data required, especially in high- 
dimensional problems such as estimating a NN weight vector (which easily has dimension of order lo2 or lo3). 
We will, therefore, consider an SA algorithm based on a "simultaneous perturbation" gradient approximation 
(Spall [29, 3O]), which is typically much more efficient than the standard SA algorithms mentioned above in the 
amount of data required. 

The remainder of this paper is organized as follows. Section 2 describes the two related methods for 
using NN's to control nonlinear systems. This section also describes why it is not possible to determine the 
gradient of the loss function, in contrast to the approaches of Narendra and others mentioned above where they 
either assume that the process dynamics is of known structure or introduce an additional NN to model the 

'chew 141 and Goldenthal and Farrell [ l l ]  have also described techniques for NN weight estimation in 
adaptive control when the gradient is not available, but their techniques have only been developed for 
particular deterministic model structures and still require considerable information about the process 
dpan~taics; iua particular they require knowledge of the signs of the terms that appear in the process dynamics. 
Spa11 and Criseion [31] includes a more detailed analysis of these techniques. 



dynamics. Section 3 discusses the SA approach to weight estimation using a simultaneous perturbation ga&ent 
approximation. Section 4 presents a numerical study on a nonlinear system. 

2. OVERVIEW OF NEU NEWORK APPROACH TO CONTROL 

This section describes how the NN will be implemented for the control of uncertain systems. We 
describe two methods: one applies when essentially nothing is known about the dynamics of the system m d  the 
other applies when partial information on the dynamics is available. The section closes with a discussion of why 
the well-known "back-propagation" algorithm (or any other algorithm requiring the gradient of the Boss het ion)  
can not be used for connection weight estimation in this type of general (direct) control problem, which 
motivates the use of stochastic approximation as discussed in Section 3. 

Consider a system output vector at time k + 1 given by 

Xk+l = 4k(fk(xkl~k-l ,.-.x~-~), Ukr wk), S 2 0 @*I)  

where cbk(.) and fk(.) are generally unknown, nonlinear functions governing the dynamics of the system, y is 
the control input applied to affect the system at time k + 1 , and wk is random noise (fk(-) may also depend 
on an arbitrary number of previous controls and/or noise terms, but we omit this generalization for ease of 
notation). The most important special case of (2.1) is the Markov formulation where fk(.) = fII(xk) . Our god 
is to choose the sequence of control vectors (uk) in a manner such that the system output is close to a sequence 
of target vectors (tk), where "close" is relative to the magnitude of the noise and the cost associated -with the 
control. 

More formally, given the measurements up to time point k we attempt to find the cormtroll that 
minimizes the one-step ahead loss function: 

Lk ' [(~k+l - tk+l)TAk(xk+$ - fk+l) + ukTBku& 1 &-I] 3 (2*2) 

where Ak , Bk are positive semi-definite matrices reflecting the relative weight to put on deviations from the 
target and on the cost associated with larger values of uk, and Fk-l is the a -algebra generated by 
(q, %, . . . ,Xkl~O,~,  I uk-, ) . An important special case of (2.2) is the minimum variance regulator, where An, = I 
and Bk = 0 .  

We will consider two methods to the problem of constructing a controller Uk in the face of m c s = r r ~ Q  
about the dynamics of the system, as illustrated in Figs. 2.la,b for the important special case wherefk(.) = fkQ%) 
(for the more general case as shown in (2.1), the diagrams would be modified in an obvious way). Both of the 
methods here correspond to direct control approaches as defined (without a solution) in Naendra and 
Parthasarathy (221 in that NN learning is based directly on the output error, xk - fk; these are in cooeast to the 
indirect control methods of Narendra and Parthasarathy (and others), which are based on the oE-he  
identification of a model of the system based on the error between the system output and model output (not 
system output and target) for a set of prespedied Ouk inputs. In the direct approximation method of Fig. 2.;ka, 
the output of the NN will correspond directly to the elements of the uk vector, i.e. the inputs to the rP$k$ v d l  be 
Xk and tk+, and the output will be Uk. This approach is appropriate, e.g., when both cbk(.) maad fk(.] are 
unknown functions. In contrast to the direct approximation method of Fig. 2.la, the NN in the s e E - " - 8 ~ g  
method of Fig. 2.lb is used to approximate the unknown dynamics fk(.), which is then used in a h o w  
functional nk to obtain uk. Since this method requires that nk (the functional minimizing (2.2)) be h o r n ,  it 
requires that the overall relationship between fk.uk and wk, i.e., 4k(.) in (2.1), be known. A very hportmt type 
of process to which this second method can apply is an &me-nonlinear system as in Chen 141. W e n  prior 
information associated with knowledge of 4,(-) is available, the self-tuning method of Fig. 2.lb is often able to 
yield a superior controller. For both the direct approximation and self-tuning methods, it is requked that it be 
known which arguments appear in fk(-) , i.e., for the general setting of (2.1) it is required that s be bovm. 



Fig. 2.la. Control System with NN as Direct Approximator to Optimal uk when fk(-) = fk(xJ 

Xk+ 1 

Fig. 2.lb. Self-Tuning Control System with NN as Approximator to fk(-) when fk(-) = fk(xJ 

The NN's to be considered here are feed-forward with at least one hidden layer of nodes (neurons) 
between the input and output nodes. The nodes between (but not within) adjacent layers are all connected and 
eachi comection has an associated weight, which is to be estimated from system data. It is this type of NN to 
which we will restrict our attention, although our method would also apply to other types of NN's (e.g., 
reccurent). (Since NNs have been discussed in a number of previously published control papers, we will not 
go into detail here on their development and theory.) 

Based on the error criterion in (2.2), we wish to determine the optimal configuration for the NN. Since 
we assume here that the number of layers and nodes (i.e., network structure) is given, this reduces to a problem 
of d e k e r m ~ g  the optimal values for the connection weights (determining the NN structure is an important 
problem in its own right, and has been considered, e.g., in Huang and Huang [14]). Letting Ok E RP be the 
vector of these weights for use in uk, we are seeking the value of ek,  say O;, that minimizes (2.2) given the 
control as found in Figs 2.la,b. Thus for each k ,  we are seeking 

- aukT aLk = (, ;:--- .-  
*k %k auk I ,  



Since fk(-) (and possibly @,(-) ) are unknown functions, the term dLkjau, (and possibly a u L / a k )  in (2.31, which 
involves the term @ d d ~ , ,  is not generally Thus the standard "back-propagation" algorithm (is., 
steepest descent - see, e.g., Narendra and Parthasarathy [23] or White [%I), or any other a lgo r i t h  inu~olGng 
aLJaB,, is not feasible. 

To illustrate further why dLK/aK is not available in our direct control setting, consider a s k p k  s c d a -  
deterministic version of system (2.1). Then, 

When neither @A*) nor fk(-) is known (as in the direct approximation method of Fig. 2.1a), then neither of the 
derivatives on the right-hand side of (2.4) will be known. When fA-) is unknown and and uk = nA.1 are 
known (as in the self-tuning method of Fig. 2.1b), then audak will be known but *dauk will, in gewerd, stiu 
be unknown since it wiU depend on fk-) .3 Thus we see that in either of the direct control settings in Fig. 2..lqb,aaL$%k 
is not generally available. The same principles apply in the more general multivariate stochastic version of model 
(2.1). 

Because back-propagation-type algorithms are not generally feasible in the direct control setting here, 
we consider a stochastic approximation (SA) algorithm of the form 

8, = 8,, - a, (gradient appmx.), (2-5) 
to estimate (0;) , where 8 , denotes the estimate at the given iteration, (a,) is a scalar gain sequence satisfying 
certain regularity conditions, and the gradient approximation is such that it does not require knowledge offk(.) 
(and 4k(-) , if appropriate). The next section is devoted to describing in more detail the SA approach to this 
problem. 

3. W I G H T  ESTIMATION BY SIMULTANEOUS PERTURBATION 
STOCHASTIC APPROXIMATION 

Recall that we are seeking the NN weight vector at each time point that minimizes (2.21, k.e., we are 
seeking the minimizing ek ,  e;, such that 

where 8, is for use in the control LJ,. Recall also that since back-propagation (or other derivative-based) 
algorithms are not applicable, we will consider an SA-based approach. This subsection describes the 
simultaneous perturbation SA (SPSA) approach to this problem and mentions how this approach contrasts with 
the more standard finite-difference SA (FDSA) approach of Kiefer-Wolfowitz. Spall(301 gives a detailed analysis 
of the SPSA approach to optimization. It is shown that the SPSA algorithm can achieve the same level of 

This contrasts with the "open loop" identification problems in, e.g., Narendra and Parthasarathy i22, 
Sect. 51, where in estimating the connection weights no unknown functions appear in the gradient. This also 
contrasts with implementations of so-called indirect feedback controllers (e.g., Narendra and Partlhasasakhy 
[22, Sect. 61) where a NN is used to model the unknown system dynamics and the identification and adaptive 
control is performed as if the NN model was identical in structure to the true system dynamics. 

One special case where aL&?i3, a n  be computed is in the self-tuning setting of Fig. 2.1b where uk-) is 
known to enter 4k(.) additively (since &$Jau, then does not depend on fk(-) ). Of course, in the more 

general setting of direct approximation control (Fig. 2-14 aLJ8, would still be unavailable. 



aspptot ic  accuracy as FDSA with only 1lp the number of system measurements. This is of particular interest 
in neural network problems since p can easily be on the order of lo2 or lo3. 

In Gne with (2.5), the SPSA algorithm has the form 

Gk = lik-l - akak(6k-I) (3.la) 

where $,(6,,) is the simultaneous perturbation approximation to gk(bk-,) . In particular the th component 

sf @dr(6ki , a = 1,2, ..., p, is given by 

where 
1';' = (xk! - r,,)'a,(xi:i - t,,) + uf)kkuf) , 

e uf)  = uk(xk ...., Xk-s,fk+l,bk-, f ckAk) , i.e., a control based on a NN with weight vector 

8, = 6,, + c k A k  Or ek = bk-, - CkAk, 

x:! is system output based on u:), Ak = (Akr pAa,...,~s)T, with the {A,) independent, 
spmetrically distributed (about 0) random variables Vk,i, identically distributed at each k ,  withq~;) 
uniformly bounded Vk,i, 

{c*) is a sequence of positive numbers satisfying certain regularity conditions. 

The key fact to observe is that at any iteration onlywo measurements are needed (i.e., the numerators 
are the same for all p components). This is in contrast to the standard FDSA approach where 2p 
measurements are needed to construct the approximation to gk(-) (i.e., for the 4" component of the gradient 
appro~xlaaticsn, the quantity A k  is replaced by a vector with a positive constant in the @" place and zeroes 
elsewhere; see, e.g., Ruppert [26]). A variation on the form in (3.lb) is to average several gradient 
appro~mations, with each vector in the average being based on a new (independent) value of Ak and a 
corresponding new pair of measurements; this will often enhance the performance of the algorithm as illustrated 
in Section 4. A further variation on (3.lb) is to smooth across time by a weighted average of the previous and 
current gradient estimates (analogous to the "momentum" approach in back-propagation); such smoothing can 
often improve the performance of the algorithm (see Spall and Cristion [32] for a thorough discussion of 
smoothing in SPSA-based direct adaptive control). 

The complete version of this paper gives a much fuller account of the theory behind SPSA together with 
some 08' the practical issues associated with its implementation in adaptive control. 

4. EMPIRICAL STUDY 

4.1 Preliminaries 

This section presents the results of our study on a stochastic generalization of a model in Narendra and 
Parthrnsarathy 1221 (N & P hereafter in this section). We will compare the SPSA and FDSA weight estimation 
algor ithrns. 

The study here is based on Ak = I and Bk = 0 in the loss function (2.2) (i.e., a minimum variance 
regulator). The performance of the various techniques will be evaluated by comparing the root-mean-square 
(RMS) tracking error as normalized by the dimension of Xk, i.e. RMS at time k is 



[(xk - t k ) T ( ~ k  - tk)ldim(xk)jlP . The (feedforward) NN's considered here have an input layer, two ]bidden layers, 
and an output layer, as in N & P and Chen [4]. The hidden layer nodes are hyperbolic tangent ffmdiows 
(i.e., ( e x  - e-Y)/(@ + e-x)  for input X )  while the output nodes are linear functions (simply x). Each node 
takes as an input (x)  the weighted sum of outputs of all nodes in the previous layer plus a bias weight not 
connected to the rest of the network (hence an N4,20,10,2 network, in the notation of N & P, has 100 -I- 210 -+ 
22 = 332 weights to be estimated). For the weight estimation, we will consider different forms of the SPSA 
algorithm, denoted SPSA-q, where q denotes the number of individual gradient approximations of the form 
(3.lb) that are averaged to form ok(-) (hence an SPSA-q algorithm uses 2 q  measurements to foam ok(+) ). 
For the SPSA algorithms we take the perturbations AH to be Bernoulli *1 distributed, which satisfies the 
relevant regularity conditions of Section 3. 

4.2 Results of Numerical Study 

The model we consider is a generalization of the two-dimensional model with additive control given in 
N & P to include additive (independent) noise, i.e., 

where, as in eqn. (18) of N & P, the data are generated according to 

with xw the i* (i = 1,2) component of xk. Analogous to N & P we take the two-dimensional target sequence 
to be generated by the deterministic difference equation 

Because (4.1) is an additive control model, we will only consider the DA method in this study (see footnote 3). 
To implement DA the analyst is assumed to know that s=O (i.e., that this is a Markov-type model) and that 
dim uk = 2 .  As with N & P we used NN's with two hidden layers, one of 20 nodes and one of 10 nodes ( so 

an N4,20,10,2 network was used for the controller). The indicated RMS errors throughout this study are 
normalized for the two-dimensional setting as discussed in Subsection 4.1; therefore, since W V ( W ~ )  = a'/, we 
know that long-run RMS can at best equal a . 

Fig. 4.1 presents the main results for our study of the model in (4.1). The RMS curves iai the Gpres 
are based on the sample mean of four independent runs with different initial weights i o ,  where the elements 
of 6, were generated randomly from a uniform (-.I, .l) distribution. To effect a fair comparison of the 
algorithms the same four sets of initial weight vectors were used for the three different curves. To further 
smooth the resulting error curves and to show typical performance (not just case-dependent variation), we 
applied the MATLAB low-pass interpolating function INTERP to the error values based on the average of four 
runs. The curves shown in the figures are based on this combination of across-realization averaging and across- 
iteration interpolation. Each of the curves was generated by using SA gains of the form ak = ~ k . ' ~ "  m d  
6, = 6;1k2' with A, C>O (the exponents were chosen to satisfy standard SA conditions and to afford ais the 
effectively slowest rate of decay consistent with these conditions; a slow decay rate tended to accelerate the rate 
of decrease in RMS error). For each curve we attempted to tune A and C to maximize the rate of convergence 
of ik (as would typically be done in practice); the values satisfied .037 2 A 5 .12 and .20 s G 5 .25. The value 
% was set to (1.5, 1.5)~ for all studies, so the initial RMS error is 1.5. 



Fig. 4.1 shows that both the SPSA and FDSA algorithms yield controllers with decreasing RMS tracking 
error over time. The RMS error curves for both algorithms show the characteristic shape of first order 
(stee~aest-descent-type) algorithms in that there is a sharp initial decline followed by slow decline. We see that 
the long-run performance of SPSA-4 is slightly better than that of FDSA, with SPSA-4 and FDSA achieving 
terminal RMS errors of .32 and .33 respectively (vs. the theoretical limit of .25); for the SPSA-1 algorithm the 
terminal error was .47. The critical observation to make here is that the SPSA algorithms achieved their 
performance with a large savings in data: each iteration of SPSA-1 and SPSA-4 used only three measurements 
and nine measurements, respectively, while each iteration of FDSA used 665 measurements (these measurement 
counts include the one operational measurement for each iteration in addition to the measurements generated 
for p ~ ~ p o s e s  of constructing the gradient approximation). Hence Fig. 4.1 illustrates that SPSA-4 yields a slightly 
Bower level of long-run tracking error then the standard FDSA algorithm with a 74-fold savings in system 
measurements. The data savings seen in Fig. 4.1 is typical of that for a number of other studies involving SPSA 
and FDSA that we have conducted on model (4.1) as well as on other nonlinear models; in fact even greater data 
savings are typical with more complex NN's (as might be needed in higher-dimensional systems or in systems 
where uk is not simply additive). 

Total no. of measurements 
SPSA-1 150K - 
SPSA-4 450K 
FDSA 33,250K - 

. . -- --_ - - _ _  S PSA-1 
. . . . . . . . ------.--- 

. .  . . . FDSA I---- 

. - . . . .  
--c-.-,-..,/ 

0 -4 . . . .  . . . . .  .:. . . .  . 
SPSA4 . . . .  -. . 

~b 500 
I 

5,000 50,000 
Iterations (log scale) 

Fig. 4..1 RMS Error for DA Controller with SPSA and FDSA Algorithms in Additive Control Model with 
0 = .25 

Our other numerical study for (4.2) illustrates the relative performance of SPSA and FDSA in a 
deterministic (a=O) system (to complement the stochastic comparison in the study for (4.1)). As with (4.1), we 
used the DA control method. The mean and terminal RMS errors for SPSA-1 were, respectively, .12 and .087 
versus .I4 and .I03 for FDSA. Thus SPSA outperforms FDSA with less than 11220 the number of system 
measurements. 
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