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Abstract 

The Space Station Freedom will require the supply of items in a regular 
fashion. A schedule for the delivery of these items is not easy to design due to 
the large span of time involved and the possibility of cancellations and 
changes in shuttle flights. This paper presents the basic concepts of a genetic 
algorithm model, and also presents the results of an effort to apply genetic 
algorithms to the design of propellant resupply schedules. As part of this ef- 
fort, a simple simulator and an encoding by which a genetic algorithm can find 
near optimal schedules have been developed. Additionally, this paper pro- 
poses ways in which robust schedules, i.e. schedules that can tolerate small 
changes, can be found using genetic algorithms. 

1. Introduction 

A schedule for the delivery of resupplies to the Space Station Freedom is not easy to des ip  
due to the large span of time involved and the possibility of cancellations and changes in 
shuttle flights. Additionally, there is difficulty in defining ways to determine the qualiby of 
schedules, many factors should be optimized. Genetic algorithms seem adequate for the task of 
finding appropriate schedules due to their proven ability to deal with complex o b j ~ ~ v e  
functions and their robustness as search methods. 

An initial effort to study the application of genetic algorithms to finding schedules for the 
resupply of propellant to the space station has been undertaken at the Software Technolou 
Branch of NASA Johnson Space Center. As a result of this effort, a simulator was devclopd. A 
representation of schedules was designed. Also, an evaluation mechanism was proposed. 

This paper first briefly describes the basic concepts of a genetic algorithm model, doli8o~ved 
by a short description of the design of a genetic algorithm tool (Splicer) which was developed 
by the Software Technology Branch. Finally, the paper describes the results of the effort to 
apply genetic algorithms to the design of schedules for the resupply of propellant to the Space 
Station Freedom. 

2. Genetic Algorithms and S.plicer 

2.1 Genetic Algorilluns 

Genetic algorithms (GA) are highly parallel, mathematical, adaptive search procedures 
based loosely on the processes of natural genetics and Darwinian survival of the Attest. These 



algo~thms apply genetically-inspired operators to populations of potential solutions in an 
iterative fashion, creating new populations while searching for an optimal (or near-optimal) 
wlolu~on to the problem at hand. There are several key features of this search and optimization 
technique. One, the problem space is searched in parallel based on the "building blocks" 
concept. TWO, genetic algorithms are very effective when searching function spaces that are not 
smooth or continuous-functions which are very difficult (or impossible) to search using calculus 
b a d  me&ods. Three, genetic algorithms are blind: that is, they know nothing of the problem 
king solved other than payoff or penalty (i.e., objective function) information. 

The basic iterative model of the genetic algorithms is: the algorithm starts up with an 
random population, and subsequent populations are created from the previous population by 
means of evaluation, selection, and reproduction. This process repeats itself until the 
population converges on an optimal solution or some other stopping condition is reached. 

The initial population consists a set of individuals (i.e., potential solutions) generated 
randody or heuristically. In the classical genetic algorithm, each member is represented by a 
fi,:ed-iieragh binary string of bits (a chromosome) that encodes parameters of the problem. This 
en~codd sting can be decoded to give the integer values for these parameters. 

Once the initial population has been created, the evaluation phase begins. The genetic 
algo~thms require that members of the population can be differentiated according to goodness 
or fitness. The members that are more fit are given a higher probability of participating during 
the s l ~ t i o n  and reproduction phases. Fitness is measured by decoding a chromosome and using 
the decoded parameters as input to the objective function. The value returned by the objective 
function (or some transformation of it) is used as the fitness value. 

hriing the selection phase, the population members are given a target sampling rate which 
is based on fitness and determines how many times a member will mate during this generation- 
that is, how many offspring from this individual will be created in the next population. The 
target sangling rate (usually not a whole number) must be transformed into an integer number of 
matings for each individual. There are many ways of determining the target sampling rate and 
the actual number of matings. Suffice it to say that individuals that are more fit are given a 
reproductive advantage over less fit members. 

During the reproduction phase, two members of the mating pool (i.e., members of the 
ppulation with non-zero mating counts) are randomly chosen and genetic operators are applied 
to their genetic material to produce two new members for the next population. This process is 
repated until the next population is filled. The recombination phase usually involves two 
operators: crossover and mutation. During crossover, the two parents exchange substring 
idormation (genetic material) at a random position in the chromosomes to produce two new 
sk~ngs. Crossover occurs according to a crossover probability, usually between 0.5 and 1.0. The 
crossover operation searches for better building blocks within the genetic material which 
ccrmbine to create optimal or near-optimal problem parameters and, therefore, problem 
so%utions, when the string is decoded. Mutation is a secondary operation in the genetic 
algorithm process. It is used to maintain diversity in the population-that is, to keep the 
ppufation from prematurely converging on one solution and to create genetic material that may 
not be present in the cument population. The mechanics of the mutation operation are simple: 
for each position in a string created during crossover, change the value at that position 
according to a mutation probability. The mutation probability is usually very low-less than 
0.05, 

The Splicer tool is a project within the Software Technology Branch. The purpose of the 
p~roject is to develop a tool that will enable the widespread use of genetic algorithm 
technolow. 



The design chosen for the Splicer consists of four components: a genetic a lgo~ thm kernel 
and three types of interchangeable libraries or modules: representation libraries, fitness 
modules, and user interface libraries. 

A genetic algorithm kernel was developed that is independent of representation (i.e., 
problem encoding), fitness function, or user interface type. The GA kernel comprises dl hn&om 
necessary for the manipulation of populations. These functions include the c rea~on  of 
populations and population members, the iterative population model, fitness scaling# parent 
selection and sampling, and the generation of population statistics. In addition, ~ e l l l a n a s u s  
functions are included in the kernel (e.g., random number generators). Different w e s  of 
problern-encoding schemes and functions are defined and stored in interchangeable 
representation libraries. This allows the GA kernel to be used for any representation =heme, 
At present, the Splicer tool provides representation libraries for binary strings and for 
permutations. These libraries contain functions for the definition, creation, and decoding of 
genetic strings, as well as multiple crossover and mutation operators. Furthermore, the Splicer 
tool defines the appropriate interfaces to allow users to create new representation libraries 
(e.g., for use with vectors or grammars). 

Fitness functions are defined and stored in interchangeable fitness modules. Fitness modules 
are the only piece of the Splicer system a user will normally be required to create or alter to 
solve a particular problem. Within a fitness module, a user can create a fitness hncCion, set the 
initial values for various Splicer control parameters (e.g., population size), create a func~on 
which graphically draws the best solutions as they are found, and provide descriptive 
information about the problem being solved. The tool comes with several example fitness 
modules. 

The Splicer tool provides three user interface libraries: a Macintosh user interface, an X 
Window System user interface, and a simple, menudriven, character-based user interface. The 
first two user interfaces are eventdriven and provide graphic output using windows. 

The C programming language was chosen for portability and speed. Splicer has k n  test& 
on multiple platforms which include Sun 3/80TM, SPARCTMl IBM RS6000TM, and Apple 
MacintoshTM. With the new character and ' lTY interfaces, Splicer can now be emkdded in the 
user application. 

3. The Space Station Freedom scheduling problem 

The Space Station Freedom will require the supply of various items in a r ep l a r  fashion, 
including such things as air, food, experiment payload modules, and propellant. A schdule for 
the delivery of these items spanning several years will be needed. Because of the large numlkr 
of activities to be scheduled, and the long period of time involved, it is not possible to plan 
them all at the same time in a single schedule. Instead, independent schedules for sparate 
items will be designed. Then, these will be merged into a single schedule. To facilitate this 
integration, each individual schedule must be as flexible and robust as possible, i.e. changes 
must be easily made and must not seriously affect the overall performance. Additioinally, the 
overall schedule must also be robust so that shuttle flight delays and cancella~sns can be 
tolerated without major changes. Genetic Algorithms (Goldberg, 1989, Holland, 19751, due to 
their inherit flexibility, seem to be an appropriate tool for solving this problem k c a u s  the 
complexity of the many restrictions that can be involved in schedules for individual items. 

As a first step in studying the applicability of genetic algsrithms, the problem of 
scheduling the resupply of propellant was selected. The following description of propllant 
resupply to the Space Station Freedom was a result of several talks with the Level JII Space 
Station Freedom Resource Utilization Analysis engineers. 



3,1 Des&ption of the propellant resupply problem 

Reboosting at the space station occurs after every departure of the space shuttle. The 
reboost operation takes the space station to its highest orbit. Between reboosts, the space 
station slowly looses altitude, so as to meet the shuttle at its lowest orbit. 

The thrust required for a reboost operation is supplied by three out of six reboosting 
mdules. These modules contain a propellant which is consumed to produce a force on the space 
station. The space station has eight parking spaces where reboosting modules can be placed. 
These eight spaces are grouped in pairs and each pair is located on a corner of an imaginary 
a~Qrag1;le p ~ n d i c u l a r  to the Earth. There are a total of eight modules; at any given time, six 
modules are ed to be on the space station and two on ground. 

For any reboost operation to be carried out, three modules in different comers must be fired; 
in this way, a force and a torque, in any desired direction perpendicular to the Earth, can be 
appllid to the space station. For a given reboost, and assuming that the modules contain 
sufficienat propellant, there will always be two sets of three corners of the rectangle to choose 
from, i.e. two triangles (call them A and B) that can produce the same force and torque. Both 
triangles will be able to produce the same reboosting effect, and require the same total 
propellant, but will consume different levels of propellant from the individual corners 
involvd. The level of propellant required for a given reboost operation is not constant; it 
depnds on the solar activity at the moment, and thus, can only be estimated ahead of time. 

The space station will normally have five reboost cycles per year, one for each flight of the 
space shuttle. At its lowest, orbit it will meet the space shuttle and receive resupplies, then it 
will be reboosted to its highest orbit. The resupply of propellant will normally consist of 
deiiive~ng two full modules to the space station and removing two whose propellant level is 
either very low or zero. The removed modules will be returned to Earth and refurbished; this 
o1pem"tion will take a lapse of time equal to the time between two shuttle flights, and thus, 
returned modules must stay on Earth for at least one shuttle flight. During these resupply 
olperations, modules that are not empty can be moved from a parking space to another. 
Considering the levels of propellant required for typical reboost operations, Level I1 Space 
Station Freedom Resource Utilization Analysis Office estimate that there will be 
approximtely a delivery of two modules every year. Besides reboosting, propellant is needed 
for atfitude control. The requirement for attitude control is estimated as a fixed quantity 
equally d i s~bu ted  among the four corners of the rectangle where modules are parked. 

The space station must have enough propellant to continue operation in spite of several 
contingencies. An operation called collision avoidance maneuver requires fixed (and unequal) 
quan~ties of propellant from the four corner of the rectangle. Additionally, normal reboosting 
should be possible if a scheduled shuttle flight is canceled, i-e. the space station should be able 
to perfom a skip cycle reboost even if the canceled shuttle flight is one in which propellant 
was to be supplied. The requirements for a skip cycle are those of a reboost and attitude control. 
It must be underlined, that these contingency propellant requirements are not actually con- 
sumed, but must be available. 

3.2 Propellant resupply schedule form 

A schedule for all the operations regarding propellant is needed. The schedule should 
aaswer four basic questions: 

@ What triangle is to be fired on each reboost operation? 

a Om: which shuttle flights should propellant modules be supplied to the space station? 

For each propellant resupply operation, which modules should be removed, and where 
should the new modules be placed? 



0 For each propellant resupply operation, which modules, if any, should be moved? and to 
which comers of the rectangle? 

3 3  Optimization goals 

The complete criteria for defining what is a good schedule has not been fully de temind 
yet. The following elements are known to be desired in a good schedule. 

0 Robustness: 
A good schedule should be capable of tolerating small changes due to modifications or 
cancellations in shuttle flights, variations in solar activity, requirements of sehec%ules for 
the supply of other items, etc. 

Wasted propellant: 
Propellant contained in modules returned to Earth is a waste and should be m i ~ ~ z d .  A 
efficient schedule should ask for the return of modules only when these are empty or 
almost empty. 

@ Propellant resupply operations: 
A good schedule will require the minimal number of propellant resupply flighb. 

Module movements on the space station: 
As explained before, non empty modules can be moved from one to comer to another durhklg 
a resupply operation. A good schedule should make the least number of these movements. 

3.4 Simulator outline 

A simple simulator, written in C and running on the Macintosh and on UNIX workstations, 
was developed for this problem. The simulator allows a user to type in instructions regarding 
the use of propellant and its resupply. For each shuttle flight, the user is asked if a resupply 
should occur; if so, it is then asked if modules should be moved from one corner to another, 
which modules should be returned to Earth and where should the new modules be placd. The 
user is also asked which triangle should be fired on each reboost operation. The simulator 
displays the placement of each modules and its propellant contents, and takes into account the 
propellant requirements for contingencies. The propellant content of the modules is display& 
to the user after each operation. In this way, a whole schedule can be tested step by step.. 

In summary, the user interacts with the simulator by making decisions regarding the 
following operations: 

0 Reboost: 
The user decides which triangle of propellant modules is to be fired on each rehost qc1e. 
The simulator displays the contents of the modules. In case of a schedule failure i.e. the 
user has drained modules so that a reboost is impossible, the simulator traces back in  me 
to the last viable situation so that the user can continue simulation from this point. 

0 Resupply of propellant: 
The simulator allows the user to decide w-hen to perform a resupply, which modules to 
return, and where to place the new modules. 

0 Movements of modules: 
If a resupply is to occur, the simulator asks the user which modules are to be mssvd, and 
which are the target corners. The user can enter as many movements as desired. 

3.5 Simulator reinterprebtion of commands 

An important characteristic of the simulator, which is necessary if it is to be coup]& to a 
genetic algorithm, is its capacity to reinterpret commands when they cannot be c a d &  out. 



When the user requests an operation that is not valid, the simulator is capable of either 
ignorring the request or finding the next possible operation of the same type which is possible. 
The fo1Pllowing is a list of the reinterpretations the simulator performs: 

Try other triangle 
When the user attempts to perform a reboost using a triangle whose modules do not 
coaitain enough propellant, the simulator tests the other triangle, and if valid, it fires it. 

Two consecutive resupply operations 
Because of the requirement that modules that return to Earth must stay for at least one 
shuttle flight, resupply operations cannot be consecutive. The simulator ignores any 
attemp& to perform consecutive resupplies. 

Removing empty modules 
During a resupply operation, empty modules must be removed. The simulator ignores 
a t t e q t s  to remove modules that are not empty if other that are empty are not removed 
first. 

* Removing least full module of corner 
During a resupply operation, the least full module of a comer must be removed. W e n  
specifying modules to be removed, the user only indicates the desired corner; the 
simulator removes the least full module from that comer. 

* Pladng modules on comers that are full 
Each comer of the rectangle contains two parking spaces for modules. If the users tries to 
place a module on a comer that already has two modules, the simulator will place it on 
the next corner that has an empty parking space. 

These reinterpretations of user commands are important when the simulator is coupled to a 
genetic algorithm, because in this way many invalid individuals are expressed as valid 
xhedules, and thus, are efficiently employed in the genetic search. In effect, through these 
transiicsrmations, the search space is pruned of regions that contain only invalid solutions. 

4, Coupling the simulator to Splicer 

There are two main issues to resolve when coupling a simulator, like the one developed for 
this work, and a genetic algorithm tool such as Splicer. First, a way to encode possible solutions 
into binapy strings must be chosen. Second, a method to evaluate this solutions must be defined. 
In the following section these matters are explained. 

4-1 hcodiing of schedules into binary strings 

The possible schedules must be encoded into binary strings, or chromosomes, so that the 
genetic algorithm can operate over a population of them. Thus, an encoding is a transfo 
from the space of possible schedules, i.e. lists of commands that can be given to the simulator, to 
tlhe space of binary strings. In this encoding design the chromosome is composed of four segments 
and each segment encodes one of the possible commands to the simulator. 

Triangle selection 
This s e p e n t  consists of as many bits as reboosts being scheduled. Each position indicates 
with a 0 that triangle A, or with a 1 that triangle B, is to be fired at the corresponding 
reboost. 

* Is resupply to be performed? 
334s segment consists of as many bits as reboosts being scheduled. Each position indicates 
if a resupply is to be performed. 

* 98weon of comers for resupply 



This segment consists of as many subsegments as necessary to represent the maximum 
number of resupplies thought necessary for the space station to operate for the lapse of 
time being scheduled. Each subsegments contains eight bits in groups of two. Evekg~ two 
bits point to one of the four comers. 

Selection of modules to be moved 
This segment consists of as many subsegments as necessary to represent the mximum 
number of module movements thought necessary. Each subsegment is composed of dour bits. 
The first two bits indicate which module is to be moved and the last two indicate the 
comer to where it will be moved. Notice that during a resupply, two modules must be 
chosen to be removed so that there are only four left to be moved to different comers. 

Each chromosome, or individual in genetic algorithm, encodes the operations a u s r  would 
request from the simulator. Even though it can be handled by the simulator that was 
developed, the selection of modules to be moved was not incorporated into the genetic search. 
This step remains for future work. 

4.2 Evaluation 

The problem of finding appropriate schedules for the resupply of propellant can be 
considered at two levels. First, and most important, it is necessary to find valid schdules, i.e. 
schedules that can perform all the reboosts asked for. Then, minimization of wasted propellant 
and maximization of robustness can be considered. In a genetic algorithm, where initial 
individuals are generated randomly, it is very unlikely that valid solutions will be contain& 
in the initial population. Thus, the first goal of the evaluation procedure should be to dnve 
the population to valid solutions. In light of the above, the objective function chosen had the 
following form: 

fitness = number of successful flights. 10 

-total wasted propellant / 1000. 

The maximization of robustness has yet to be considered. The following section dexribes 
ways under consideration to include robustness in the optimization. 

5. Maxhization of robustness and multi-objective opthization 

The objective of maximizing robustness in a schedule requires a different approach than 
that used to attack all other optimization goals. Robustness is difficult to measure. In the 
context of resupply to the space station, a robust schedule is one that can tolerate small changes 
due to modification or cancellations in shuttle flights, variations expected in solar activivI re- 
quirements of schedules for the supply of other items, etc. What is meant by "tolerate small 
changes" is yet to be defined. Additionally, robustness is a characteristic that wiXE surely 
conflict with other optimization goals; for example, a schedule that requires for proplllant 
resupply more often than necessary will probably be more tolerant to shuttle flight 
cancellations, but will waste propellant. 

The problem of maximizing robustness can be addressed in two steps. First, develop a 
stochastic method to measure robustness of a schedule and incorporate it into the asbjwtive 
function. Second, the problem will be treated as one of multi-objective optihzation where 
robustness will be maximized independent by of all other objectives. In the following 
subsections the proposing method for applying the genetic algorithm is presented. 

5.1 Measuring robustness 

Genetic algorithms are know to be tolerant to noise in the evaluation of the objective 
function (Fitpatrick, Grefenstette, and Van Gucht, 1984). The reason for this is that the genetic 



algorithm implicitly processes schemata which are patterns of bits that are represented by 
maay members of the population. In this way, the evaluation of a signal individual can be 
compted with noise, and the genetic algorithm will continue to find near optimal solutions, as 
long as the noise has zero mean. Therefore, for each individual schedule in the population, a 
numkr  of random small changes will be generated. The robustness will be obtained as the 
average performance of the modified schedules; in the expected value, this will be a correct 
naeasure of robustness. This value of robustness can be incorporated into the objective function as 
part &of a linear combination of all the optimization goals. In this way, for a given relation of 
relative importance among the optimization goals, the genetic algorithm will find a near 
optimal sslution. 

5.2 Mu8k;i-objective optimization with genetic algorithms 

Many real optimization problems, like the scheduling of supplies to the space station, 
require that several criteria be optimized simultaneously, In these problems, some of the 
objwtives are conflicting, and it is difficult to decide the relative importance of each one. In 
practice# all the criteria are usually combined into a single objective function by taking a linear 
combination of them, in order to avoid the problem of multi-objective optimization. This is not 
aliways the best approach, but one often taken because of limitations on the optimization 
methods. 

The area of multi-objective optimization has not been fully attacked by genetic algorithm 
rewarehers. Schaffer (1985) has presented a method for applying genetic algorithms to this 
type of problem, and no continuation of this effort has been reported. Goldberg (1989, p. 201) 
suggested applying a combination of rank selection (Baker, 1985) and niche and speciation 
methods (Deb and Goldberg, 1989). An extension to the previous efforts, (Valenzuela Renddn & 
Cantd Aguillen, 1992) that apply niche and speciation methods to the solution of mutlimodal 
pmblems to include multi-objective optimization as proposed by Goldberg, is proposed to attack 
ahis problem. In this way, the genetic algorithm will find not one but a family of near optimal 
xhedules for varying degrees of relative importance of robustness versus all other optimization 
goals. 

6. Final Comments 

The Space Station Freedom will require the resupply of many items over a long period of 
time. k h d u l e s  for individual items will first be designed, and thus, these schedules will be 
integrated into a single schedule. For this integration to take place, individual schedules must 
be able to tolerate small changes. Genetic algorithms seem like an appropriate tool to apply to 
this problem in view of their proven ability to solve complex objective functions and their 
robusbess as search methods. 

As a first step, we have developed a simple simulator and an encoding by which a genetic 
algok-ith can be applied to finding schedules for the resupply and use of propellant without 
considering robustness. As following steps, we will take advantage of the ability of genetic 
algo~thms to tolerate noise in the objective function, and measure robustness in a stochastic 
manner. Also, we propose to apply multi-objective optimization techniques in genetic 
algorithms to find families of near optimal schedules for varying degrees of relative 
imp-nce of robustness. 
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