
A GENETIC ALGORITHM TOOL (SPLICER) FOR COMPLEX SCHEDULING
PROBLEMS AND THE SPACE STATION FREEDOM RESUPPLY PROBLEM

Lui Wang
Software Technology Branch
NASA Johnson Space Center
Houston, Texas

Manuel Valenzuela-Rendon
ITESM, Campus Montemey
Center for Mificial Inklligence
Monterrey, N.L., MeGco

Abstract

The Space Station Freedom will require the supply of items in a regular
fashion. A schedule for the delivery of these items is not easy to design due to
the large span of time involved and the possibility of cancellations and
changes in shuttle flights. This paper presents the basic concepts of a genetic
algorithm model, and also presents the results of an effort to apply genetic
algorithms to the design of propellant resupply schedules. As part of this ef-
fort, a simple simulator and an encoding by which a genetic algorithm can find
near optimal schedules have been developed. Additionally, this paper pro-
poses ways in which robust schedules, i.e. schedules that can tolerate small
changes, can be found using genetic algorithms.

1. Introduction

A schedule for the delivery of resupplies to the Space Station Freedom is not easy to des ip
due to the large span of time involved and the possibility of cancellations and changes in
shuttle flights. Additionally, there is difficulty in defining ways to determine the qualiby of
schedules, many factors should be optimized. Genetic algorithms seem adequate for the task of
finding appropriate schedules due to their proven ability to deal with complex o b j ~ ~ v e
functions and their robustness as search methods.

An initial effort to study the application of genetic algorithms to finding schedules for the
resupply of propellant to the space station has been undertaken at the Software Technolou
Branch of NASA Johnson Space Center. As a result of this effort, a simulator was devclopd. A
representation of schedules was designed. Also, an evaluation mechanism was proposed.

This paper first briefly describes the basic concepts of a genetic algorithm model, doli8o~ved
by a short description of the design of a genetic algorithm tool (Splicer) which was developed
by the Software Technology Branch. Finally, the paper describes the results of the effort to
apply genetic algorithms to the design of schedules for the resupply of propellant to the Space
Station Freedom.

2. Genetic Algorithms and S.plicer

2.1 Genetic Algorilluns

Genetic algorithms (GA) are highly parallel, mathematical, adaptive search procedures
based loosely on the processes of natural genetics and Darwinian survival of the Attest. These

algo~thms apply genetically-inspired operators to populations of potential solutions in an
iterative fashion, creating new populations while searching for an optimal (or near-optimal)
wlolu~on to the problem at hand. There are several key features of this search and optimization
technique. One, the problem space is searched in parallel based on the "building blocks"
concept. TWO, genetic algorithms are very effective when searching function spaces that are not
smooth or continuous-functions which are very difficult (or impossible) to search using calculus
b a d me&ods. Three, genetic algorithms are blind: that is, they know nothing of the problem
king solved other than payoff or penalty (i.e., objective function) information.

The basic iterative model of the genetic algorithms is: the algorithm starts up with an
random population, and subsequent populations are created from the previous population by
means of evaluation, selection, and reproduction. This process repeats itself until the
population converges on an optimal solution or some other stopping condition is reached.

The initial population consists a set of individuals (i.e., potential solutions) generated
randody or heuristically. In the classical genetic algorithm, each member is represented by a
fi,:ed-iieragh binary string of bits (a chromosome) that encodes parameters of the problem. This
en~codd sting can be decoded to give the integer values for these parameters.

Once the initial population has been created, the evaluation phase begins. The genetic
algo~thms require that members of the population can be differentiated according to goodness
or fitness. The members that are more fit are given a higher probability of participating during
the s l ~ t i o n and reproduction phases. Fitness is measured by decoding a chromosome and using
the decoded parameters as input to the objective function. The value returned by the objective
function (or some transformation of it) is used as the fitness value.

hriing the selection phase, the population members are given a target sampling rate which
is based on fitness and determines how many times a member will mate during this generation-
that is, how many offspring from this individual will be created in the next population. The
target sangling rate (usually not a whole number) must be transformed into an integer number of
matings for each individual. There are many ways of determining the target sampling rate and
the actual number of matings. Suffice it to say that individuals that are more fit are given a
reproductive advantage over less fit members.

During the reproduction phase, two members of the mating pool (i.e., members of the
ppulation with non-zero mating counts) are randomly chosen and genetic operators are applied
to their genetic material to produce two new members for the next population. This process is
repated until the next population is filled. The recombination phase usually involves two
operators: crossover and mutation. During crossover, the two parents exchange substring
idormation (genetic material) at a random position in the chromosomes to produce two new
sk~ngs. Crossover occurs according to a crossover probability, usually between 0.5 and 1.0. The
crossover operation searches for better building blocks within the genetic material which
ccrmbine to create optimal or near-optimal problem parameters and, therefore, problem
so%utions, when the string is decoded. Mutation is a secondary operation in the genetic
algorithm process. It is used to maintain diversity in the population-that is, to keep the
ppufation from prematurely converging on one solution and to create genetic material that may
not be present in the cument population. The mechanics of the mutation operation are simple:
for each position in a string created during crossover, change the value at that position
according to a mutation probability. The mutation probability is usually very low-less than
0.05,

The Splicer tool is a project within the Software Technology Branch. The purpose of the
p~roject is to develop a tool that will enable the widespread use of genetic algorithm
technolow.

The design chosen for the Splicer consists of four components: a genetic a lgo~ thm kernel
and three types of interchangeable libraries or modules: representation libraries, fitness
modules, and user interface libraries.

A genetic algorithm kernel was developed that is independent of representation (i.e.,
problem encoding), fitness function, or user interface type. The GA kernel comprises dl hn&om
necessary for the manipulation of populations. These functions include the c rea~on of
populations and population members, the iterative population model, fitness scaling# parent
selection and sampling, and the generation of population statistics. In addition, ~ e l l l a n a s u s
functions are included in the kernel (e.g., random number generators). Different w e s of
problern-encoding schemes and functions are defined and stored in interchangeable
representation libraries. This allows the GA kernel to be used for any representation =heme,
At present, the Splicer tool provides representation libraries for binary strings and for
permutations. These libraries contain functions for the definition, creation, and decoding of
genetic strings, as well as multiple crossover and mutation operators. Furthermore, the Splicer
tool defines the appropriate interfaces to allow users to create new representation libraries
(e.g., for use with vectors or grammars).

Fitness functions are defined and stored in interchangeable fitness modules. Fitness modules
are the only piece of the Splicer system a user will normally be required to create or alter to
solve a particular problem. Within a fitness module, a user can create a fitness hncCion, set the
initial values for various Splicer control parameters (e.g., population size), create a func~on
which graphically draws the best solutions as they are found, and provide descriptive
information about the problem being solved. The tool comes with several example fitness
modules.

The Splicer tool provides three user interface libraries: a Macintosh user interface, an X
Window System user interface, and a simple, menudriven, character-based user interface. The
first two user interfaces are eventdriven and provide graphic output using windows.

The C programming language was chosen for portability and speed. Splicer has k n test&
on multiple platforms which include Sun 3/80TM, SPARCTMl IBM RS6000TM, and Apple
MacintoshTM. With the new character and ' lTY interfaces, Splicer can now be emkdded in the
user application.

3. The Space Station Freedom scheduling problem

The Space Station Freedom will require the supply of various items in a r ep l a r fashion,
including such things as air, food, experiment payload modules, and propellant. A schdule for
the delivery of these items spanning several years will be needed. Because of the large numlkr
of activities to be scheduled, and the long period of time involved, it is not possible to plan
them all at the same time in a single schedule. Instead, independent schedules for sparate
items will be designed. Then, these will be merged into a single schedule. To facilitate this
integration, each individual schedule must be as flexible and robust as possible, i.e. changes
must be easily made and must not seriously affect the overall performance. Additioinally, the
overall schedule must also be robust so that shuttle flight delays and cancella~sns can be
tolerated without major changes. Genetic Algorithms (Goldberg, 1989, Holland, 19751, due to
their inherit flexibility, seem to be an appropriate tool for solving this problem k c a u s the
complexity of the many restrictions that can be involved in schedules for individual items.

As a first step in studying the applicability of genetic algsrithms, the problem of
scheduling the resupply of propellant was selected. The following description of propllant
resupply to the Space Station Freedom was a result of several talks with the Level JII Space
Station Freedom Resource Utilization Analysis engineers.

3,1 Des&ption of the propellant resupply problem

Reboosting at the space station occurs after every departure of the space shuttle. The
reboost operation takes the space station to its highest orbit. Between reboosts, the space
station slowly looses altitude, so as to meet the shuttle at its lowest orbit.

The thrust required for a reboost operation is supplied by three out of six reboosting
mdules. These modules contain a propellant which is consumed to produce a force on the space
station. The space station has eight parking spaces where reboosting modules can be placed.
These eight spaces are grouped in pairs and each pair is located on a corner of an imaginary
a~Qrag1;le p ~ n d i c u l a r to the Earth. There are a total of eight modules; at any given time, six
modules are ed to be on the space station and two on ground.

For any reboost operation to be carried out, three modules in different comers must be fired;
in this way, a force and a torque, in any desired direction perpendicular to the Earth, can be
appllid to the space station. For a given reboost, and assuming that the modules contain
sufficienat propellant, there will always be two sets of three corners of the rectangle to choose
from, i.e. two triangles (call them A and B) that can produce the same force and torque. Both
triangles will be able to produce the same reboosting effect, and require the same total
propellant, but will consume different levels of propellant from the individual corners
involvd. The level of propellant required for a given reboost operation is not constant; it
depnds on the solar activity at the moment, and thus, can only be estimated ahead of time.

The space station will normally have five reboost cycles per year, one for each flight of the
space shuttle. At its lowest, orbit it will meet the space shuttle and receive resupplies, then it
will be reboosted to its highest orbit. The resupply of propellant will normally consist of
deiiive~ng two full modules to the space station and removing two whose propellant level is
either very low or zero. The removed modules will be returned to Earth and refurbished; this
o1pem"tion will take a lapse of time equal to the time between two shuttle flights, and thus,
returned modules must stay on Earth for at least one shuttle flight. During these resupply
olperations, modules that are not empty can be moved from a parking space to another.
Considering the levels of propellant required for typical reboost operations, Level I1 Space
Station Freedom Resource Utilization Analysis Office estimate that there will be
approximtely a delivery of two modules every year. Besides reboosting, propellant is needed
for atfitude control. The requirement for attitude control is estimated as a fixed quantity
equally d i s~bu ted among the four corners of the rectangle where modules are parked.

The space station must have enough propellant to continue operation in spite of several
contingencies. An operation called collision avoidance maneuver requires fixed (and unequal)
quan~ties of propellant from the four corner of the rectangle. Additionally, normal reboosting
should be possible if a scheduled shuttle flight is canceled, i-e. the space station should be able
to perfom a skip cycle reboost even if the canceled shuttle flight is one in which propellant
was to be supplied. The requirements for a skip cycle are those of a reboost and attitude control.
It must be underlined, that these contingency propellant requirements are not actually con-
sumed, but must be available.

3.2 Propellant resupply schedule form

A schedule for all the operations regarding propellant is needed. The schedule should
aaswer four basic questions:

@ What triangle is to be fired on each reboost operation?

a Om: which shuttle flights should propellant modules be supplied to the space station?

For each propellant resupply operation, which modules should be removed, and where
should the new modules be placed?

0 For each propellant resupply operation, which modules, if any, should be moved? and to
which comers of the rectangle?

3 3 Optimization goals

The complete criteria for defining what is a good schedule has not been fully de temind
yet. The following elements are known to be desired in a good schedule.

0 Robustness:
A good schedule should be capable of tolerating small changes due to modifications or
cancellations in shuttle flights, variations in solar activity, requirements of sehec%ules for
the supply of other items, etc.

Wasted propellant:
Propellant contained in modules returned to Earth is a waste and should be m i ~ ~ z d . A
efficient schedule should ask for the return of modules only when these are empty or
almost empty.

@ Propellant resupply operations:
A good schedule will require the minimal number of propellant resupply flighb.

Module movements on the space station:
As explained before, non empty modules can be moved from one to comer to another durhklg
a resupply operation. A good schedule should make the least number of these movements.

3.4 Simulator outline

A simple simulator, written in C and running on the Macintosh and on UNIX workstations,
was developed for this problem. The simulator allows a user to type in instructions regarding
the use of propellant and its resupply. For each shuttle flight, the user is asked if a resupply
should occur; if so, it is then asked if modules should be moved from one corner to another,
which modules should be returned to Earth and where should the new modules be placd. The
user is also asked which triangle should be fired on each reboost operation. The simulator
displays the placement of each modules and its propellant contents, and takes into account the
propellant requirements for contingencies. The propellant content of the modules is display&
to the user after each operation. In this way, a whole schedule can be tested step by step..

In summary, the user interacts with the simulator by making decisions regarding the
following operations:

0 Reboost:
The user decides which triangle of propellant modules is to be fired on each rehost qc1e.
The simulator displays the contents of the modules. In case of a schedule failure i.e. the
user has drained modules so that a reboost is impossible, the simulator traces back in me
to the last viable situation so that the user can continue simulation from this point.

0 Resupply of propellant:
The simulator allows the user to decide w-hen to perform a resupply, which modules to
return, and where to place the new modules.

0 Movements of modules:
If a resupply is to occur, the simulator asks the user which modules are to be mssvd, and
which are the target corners. The user can enter as many movements as desired.

3.5 Simulator reinterprebtion of commands

An important characteristic of the simulator, which is necessary if it is to be coup]& to a
genetic algorithm, is its capacity to reinterpret commands when they cannot be c a d & out.

When the user requests an operation that is not valid, the simulator is capable of either
ignorring the request or finding the next possible operation of the same type which is possible.
The fo1Pllowing is a list of the reinterpretations the simulator performs:

Try other triangle
When the user attempts to perform a reboost using a triangle whose modules do not
coaitain enough propellant, the simulator tests the other triangle, and if valid, it fires it.

Two consecutive resupply operations
Because of the requirement that modules that return to Earth must stay for at least one
shuttle flight, resupply operations cannot be consecutive. The simulator ignores any
attemp& to perform consecutive resupplies.

Removing empty modules
During a resupply operation, empty modules must be removed. The simulator ignores
a t t e q t s to remove modules that are not empty if other that are empty are not removed
first.

* Removing least full module of corner
During a resupply operation, the least full module of a comer must be removed. W e n
specifying modules to be removed, the user only indicates the desired corner; the
simulator removes the least full module from that comer.

* Pladng modules on comers that are full
Each comer of the rectangle contains two parking spaces for modules. If the users tries to
place a module on a comer that already has two modules, the simulator will place it on
the next corner that has an empty parking space.

These reinterpretations of user commands are important when the simulator is coupled to a
genetic algorithm, because in this way many invalid individuals are expressed as valid
xhedules, and thus, are efficiently employed in the genetic search. In effect, through these
transiicsrmations, the search space is pruned of regions that contain only invalid solutions.

4, Coupling the simulator to Splicer

There are two main issues to resolve when coupling a simulator, like the one developed for
this work, and a genetic algorithm tool such as Splicer. First, a way to encode possible solutions
into binapy strings must be chosen. Second, a method to evaluate this solutions must be defined.
In the following section these matters are explained.

4-1 hcodiing of schedules into binary strings

The possible schedules must be encoded into binary strings, or chromosomes, so that the
genetic algorithm can operate over a population of them. Thus, an encoding is a transfo
from the space of possible schedules, i.e. lists of commands that can be given to the simulator, to
tlhe space of binary strings. In this encoding design the chromosome is composed of four segments
and each segment encodes one of the possible commands to the simulator.

Triangle selection
This s e p e n t consists of as many bits as reboosts being scheduled. Each position indicates
with a 0 that triangle A, or with a 1 that triangle B, is to be fired at the corresponding
reboost.

* Is resupply to be performed?
334s segment consists of as many bits as reboosts being scheduled. Each position indicates
if a resupply is to be performed.

* 98weon of comers for resupply

This segment consists of as many subsegments as necessary to represent the maximum
number of resupplies thought necessary for the space station to operate for the lapse of
time being scheduled. Each subsegments contains eight bits in groups of two. Evekg~ two
bits point to one of the four comers.

Selection of modules to be moved
This segment consists of as many subsegments as necessary to represent the mximum
number of module movements thought necessary. Each subsegment is composed of dour bits.
The first two bits indicate which module is to be moved and the last two indicate the
comer to where it will be moved. Notice that during a resupply, two modules must be
chosen to be removed so that there are only four left to be moved to different comers.

Each chromosome, or individual in genetic algorithm, encodes the operations a u s r would
request from the simulator. Even though it can be handled by the simulator that was
developed, the selection of modules to be moved was not incorporated into the genetic search.
This step remains for future work.

4.2 Evaluation

The problem of finding appropriate schedules for the resupply of propellant can be
considered at two levels. First, and most important, it is necessary to find valid schdules, i.e.
schedules that can perform all the reboosts asked for. Then, minimization of wasted propellant
and maximization of robustness can be considered. In a genetic algorithm, where initial
individuals are generated randomly, it is very unlikely that valid solutions will be contain&
in the initial population. Thus, the first goal of the evaluation procedure should be to dnve
the population to valid solutions. In light of the above, the objective function chosen had the
following form:

fitness = number of successful flights. 10

-total wasted propellant / 1000.

The maximization of robustness has yet to be considered. The following section dexribes
ways under consideration to include robustness in the optimization.

5. Maxhization of robustness and multi-objective opthization

The objective of maximizing robustness in a schedule requires a different approach than
that used to attack all other optimization goals. Robustness is difficult to measure. In the
context of resupply to the space station, a robust schedule is one that can tolerate small changes
due to modification or cancellations in shuttle flights, variations expected in solar activivI re-
quirements of schedules for the supply of other items, etc. What is meant by "tolerate small
changes" is yet to be defined. Additionally, robustness is a characteristic that wiXE surely
conflict with other optimization goals; for example, a schedule that requires for proplllant
resupply more often than necessary will probably be more tolerant to shuttle flight
cancellations, but will waste propellant.

The problem of maximizing robustness can be addressed in two steps. First, develop a
stochastic method to measure robustness of a schedule and incorporate it into the asbjwtive
function. Second, the problem will be treated as one of multi-objective optihzation where
robustness will be maximized independent by of all other objectives. In the following
subsections the proposing method for applying the genetic algorithm is presented.

5.1 Measuring robustness

Genetic algorithms are know to be tolerant to noise in the evaluation of the objective
function (Fitpatrick, Grefenstette, and Van Gucht, 1984). The reason for this is that the genetic

algorithm implicitly processes schemata which are patterns of bits that are represented by
maay members of the population. In this way, the evaluation of a signal individual can be
compted with noise, and the genetic algorithm will continue to find near optimal solutions, as
long as the noise has zero mean. Therefore, for each individual schedule in the population, a
numkr of random small changes will be generated. The robustness will be obtained as the
average performance of the modified schedules; in the expected value, this will be a correct
naeasure of robustness. This value of robustness can be incorporated into the objective function as
part &of a linear combination of all the optimization goals. In this way, for a given relation of
relative importance among the optimization goals, the genetic algorithm will find a near
optimal sslution.

5.2 Mu8k;i-objective optimization with genetic algorithms

Many real optimization problems, like the scheduling of supplies to the space station,
require that several criteria be optimized simultaneously, In these problems, some of the
objwtives are conflicting, and it is difficult to decide the relative importance of each one. In
practice# all the criteria are usually combined into a single objective function by taking a linear
combination of them, in order to avoid the problem of multi-objective optimization. This is not
aliways the best approach, but one often taken because of limitations on the optimization
methods.

The area of multi-objective optimization has not been fully attacked by genetic algorithm
rewarehers. Schaffer (1985) has presented a method for applying genetic algorithms to this
type of problem, and no continuation of this effort has been reported. Goldberg (1989, p. 201)
suggested applying a combination of rank selection (Baker, 1985) and niche and speciation
methods (Deb and Goldberg, 1989). An extension to the previous efforts, (Valenzuela Renddn &
Cantd Aguillen, 1992) that apply niche and speciation methods to the solution of mutlimodal
pmblems to include multi-objective optimization as proposed by Goldberg, is proposed to attack
ahis problem. In this way, the genetic algorithm will find not one but a family of near optimal
xhedules for varying degrees of relative importance of robustness versus all other optimization
goals.

6. Final Comments

The Space Station Freedom will require the resupply of many items over a long period of
time. k h d u l e s for individual items will first be designed, and thus, these schedules will be
integrated into a single schedule. For this integration to take place, individual schedules must
be able to tolerate small changes. Genetic algorithms seem like an appropriate tool to apply to
this problem in view of their proven ability to solve complex objective functions and their
robusbess as search methods.

As a first step, we have developed a simple simulator and an encoding by which a genetic
algok-ith can be applied to finding schedules for the resupply and use of propellant without
considering robustness. As following steps, we will take advantage of the ability of genetic
algo~thms to tolerate noise in the objective function, and measure robustness in a stochastic
manner. Also, we propose to apply multi-objective optimization techniques in genetic
algorithms to find families of near optimal schedules for varying degrees of relative
imp-nce of robustness.

Acknowledgments

This work was performed during a six month stay of Manuel Valenzuela-Renddn at NASA's
kftware Technology Branch as part of RICIS (Research Institute for Computer and Information
Systems) research activity number SR.04 (NASA Cooperative Agreement NCC-9-16) and with
pa~iall support of the ITESM.

References

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of an
International Conference on Genetic Algorithms and Their Applications, pp. 1011-1111,

Etter, D. M., Hicks, M. J., & Cho, K. H. (1982). Adaptive genetic algorithm for d e t e ~ n i n g
optimum filter coefficients in recursive adaptive filter. In IEEE Infernafional Conferel~ce
on Acoustics, Speech and Signal Processing, Vol. 2, pp. 635-638.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. Proceedings of an
International Conference on Genetic Algorithms and Their Applicafions, pp. 162-la*

Deb, K., & Goldberg, D. E. (1989). An investigation of niche and species formation in genecric
function optimization. Proceedings of the Third International Conference on Genetic
Algorithms, pp 42-50.

Fitpatrick, J. M., Grefenstette, J. J., & Van Gucht, D. (1984). Image registration by genetic
search. Proceedings of IEEE Southeast Conference, 460-464.

Goldberg, D. E. (1983). Computer-aided gas pipeline operation using genetic a l g o ~ t h m and
rule learning (Doctoral dissertation, University of Michigan). Dissertation Abstrdgicls
International, 44(10), 3174B. (University Microfilms No. 8402282).

Goldberg, D. E. (1989). Genefic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Goldberg, D. E. & Lingle, R. (1985). Alleles, loci, and the traveling salesman. Proceediszgs of an
International Conference on Genefic Algorithms and Their Applications, pp. 154-159..

Gonzilez Sienz, A. (1991). Algoritmos gene'ticos: Una aplicacio'n a1 disen'o de fiItros di$faies
[Genetic algorithms: An application to digital filter design].Unpublished masterQs
thesis, ITESM, Monterrey.

Guerra-Salcedo, C. M., & Valenzuela-Rendbn, M. (1991). Resolviendo consultas de
apareamiento parcial utilizando algoritmos geneticos [Solving partial match q u e ~ e s by
means of genetic algorithms]. Memorias de la VIII Reunio'n Nacional de Inteligencia
Artificial, 13-28. Sociedad Mexicana de Inteligencia Artificial.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: Universiv
of Michigan Press.

Shaffer, J. D. (1985). Multi-objective optimization with vector evaluated genetic algorithms.
Proceedings of an International Conference on Genetic Afgorithms and Their
Applications, pp. 93-100.

Valenzuela-Rendbn, M., Guerra-Salcedo, C. M., & Icaza, J. I. (1991). A genetic algodthm
approach to partial match retrieval based on hash functions. Proceedings of the dV
Infernafional Symposium on Artificial InfeIIigence, 156-162.

Vrmlenzuela Rendbn, M. & Cantli Aguillen, C. (1992). Solucio'n a sistemas de equaciones no
lineales simulta'neas usando algoritmos gene'ficos. [Solution to nonlinear simultaneous
equations by genetic algorithms]. Manuscript submitted for publication.

Wang L. (11991). Genetic Algorithm Overview, proceedings of The 1991 Science, Engineering &
Technology Seminars

