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Introduction

The MIT Space Engineering Research Center (SERC) has developed a controlled structures
technology (CST) testbed based on one design for a space-based optical interferometer. The role
of the testbed is to provide a versatile platform for experimental investigation and discovery of CST
approaches. In particular, it will serve as the focus for experimental verification of CSI
methodologies and control strategies at SERC. The testbed program has an emphasis on
experimental CST--incorporating a broad suite of actuators and sensors, active struts, system
identification, passive damping, active mirror mounts, and precision component characterization.

The SERC testbed represents a one-tenth scaled version of an optical interferometer concept
based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The
testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with
attachment points at three vertices (Figure 1). Each aluminum leg has a 0.2m by 0.2m by 0.25m
triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global
modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL
Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural
deflections at the vertices (site of optical components for maximum baseline) resulting in reduced
stroke requirements for isolation and pointing of optics. Typical total light path length stability

goals are on the order of U20, with a wavelength of light, _.,of roughly 500 nanometers [1]. It is
expected that active structural control will be necessary to achieve this goal in the presence of
disturbances.

A unique feature of the SERC testbed is the implementation of a multi-axis laser metrology,
incorporating complex bends in multiple beam path lengths. At three mock siderostat locations are
precision three-axis active mirror mounts. The fourth vertex holds a laser head and other optics.
These optical components provide laser interferometTic displacement measurements for baseline
metrology (six axes define the position of the mock collecting apertures relative to the fourth
reference point). We are concerned that the testbed represents a scaled model of an actual scientific
observatory as closely as possible. At the same time, we seek to perform CST research which is
generic and applicable in different areas.

The structure is instrumented with accelerometers, load cells, strain gages, experimental
piezoceramic and piezopolymer sensors, and (initially) three piezoceramic active strut members.
The stiffness of the active struts has been selected to approximately match the impedance of
structure as seen by the actuator at the active strut mounting location, leading naturally to control
designs based on passive shunting, wave impedance, or balanced bridge feedback.

A finite element model of the testbed was constructed and a conventional system
identification using an external excitation source will be carried out. The results (frequencies,
mode shapes) will be compared and the subsequent roles of each of these models in the control
design determined. Because of inherent inaccuracies of the finite element model in representing
lightly damped closely spaced modes, the experimentally determined modal model is preferred for
control design. Methods for generating uncertainty information from the system identification for
application in robust control methodologies, and studies of model reduction techniques are
planned.
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Three-axis acdve mirror mounts have been designed which provide -*3.5 microns of stroke
over a frequency range of 500 Hz. Two mounts employ conventional piezoelectric actuators; the
third mount utilizes electrostrictive actuators that exhibit superior bidirectional repeatability, a

result of greater linearity and reduced hysteresis as compared to piezoelectrics. The moving mirror
mass has been sized to reflect the approximate scaled masses of siderostats of the proposed space-
based optical interferometer. The actual moving mass of the the mirrors will be varied to determine
the level at which interaction with the structural flexibility becomes significant.

The remainder of the paper begins with a description of the optics portion of the testbed.
Then the testbed CST program is reviewed with attention focussed in six areas: results from other

research closely-related to the testbed, finite element modelling, system identification, passive
damping, an axial component tester, and control experiments.

Optics

In this section, the optical components of the testbed are described. The focus here is on
the implementation of the on-board metrology system. Functional explanations of space-based
intefferometry can be found elsewhere in this volume.

Beam-combining coherence requirements for an actual space-based intefferometer will
require on-board sensing and correction mechanisms capable of controlling path lengths to ;q20.
Multi-aperture non-interferometric imaging instr_mems with similar baselines and operating
wavelengths can have more demanding requirements. The sensing system for orienting the
instrument relative to an external reference coordinate frame should have resolution and stability on

par with the resolution and stability of the internal metrology system. Our immediate concern is the
reduction in errors due to flexibility (Figure 2).
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Figure 2: Sources of Path Length Error

The Interferometer CST Testbed under construction at MIT addresses the problem of most
direct relevance to CST: control of the instrument geometry in order to control projected baselines
and internal path lengths. The testbed control goal is to maintain fixed distances between points on



thestructurewhichrepresentcollectingapertures(mocksiderostats)andmetrologynodes, since

relative motion among these points changes both projected baselines and internal path lengths.
A sample interferometer mission to image a tenth magnitude object at visible wavelengths

with one milliarcsecond resolution using one meter apertures leads to path length stability
requirements of approximately 80 nm rms. The basic testbed configuration is intended to include

enough detail to be representative without being overly complex and costly. Many of the features
may be applicable to other spacecraft requiring precision control. Sensing of the external (rigid
body) orientation of the testbed and the science optics are not currently addressed, although
metrology systems for both of these could be tied directly into the on-board baseline metrology
system with little difficulty. Additionally, each mock siderostat mount includes provisions for
mounting a small fiat mirror with its reflecting surface coplanar with the vertex of the metrology
system at that siderostat. Such a mirror might form pan of a future science optics chain.

A six-axis laser metrology system forming an optical tetrahedron (Figure 3) will provide
the primary measure of control effectiveness. One vertex is located at each of the three mock

siderostats with the fourth vertex containing the out-of-plane reference point. The outputs of the
near and far legs will yield relative displacements among the vertices with the minimum number of
laser axes. The vertices of the optical and structural tetrahedrons typically do not coincide since the

siderostat locations were chosen to represent non-redundant baselines without necessarily requiring
rigid body tilting of the entire instrument. In the initial configuration, one siderostat plate will be
located near one structural vertex; the others are roughly 1/2 and 1/3 of the distance down two
different legs. The relative angles between the actively-mounted cat's eyes will be less than 96.5
degrees, which is within the cone of operation.
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Figure 3: Illustration of the Structural and Optical Tetrahedral Trusses

The power required to operate six axes, instead of the nine that would be needed to

determine Ax,ay,az for the three siderostats, permitted the use of a commercially available laser

measurement system using a single laser head mounted on the testbed. We are using a dual-
frequency stabilized laser head (670 laW total power), detectors, and fringe counting electronics

manufactured by Hewlett-Packard Corporation. A lens and 45-degree polarizer assembly plus a
short length of optical fiber allow the detector electronics packages to be located out of the way of



the measurement optics and associated mounting fixtures. The VME-based fringe counting
electronics provide a seamless link to our real-time control computer.

Figure 4 details one measurement axis. The measurement resolution is limited by the HP-
supplied electronics to XJ64 at _ = 633 nm, or approximately 10 nm. Greater resolution can be
obtained with alternate electronics, such as the VME modules developed by Mike Shao's group at
JPL. For operation in air without wavelength tracking over short time scales and in a laboratory
disturbance environment, we feel that 10 nm resolution will be adequate. Our closed loop control
frequency range is 2-200 Hz, so changes in the refractive index of air and other sources of error
with long time constants will not pose any problem. A preliminary error budget suggests that
measurement resolution will be ~ 17 nm.
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Figure 4: One Axis of the Laser Metrology System

Cat's Eye Retroreflectors
Cat's eye retroreflectors will be used to provide wide fields of view at the vertices of the optical
tetrahedron. These are similar to cat's eyes used by C. Townes (UC Berkeley 10_tm
interferometer) and D. Hutter (US Naval Observatory Astrometric Interferometer) although in this

application there is no siderostat slew range to contend with. The minimum size of the cat's eye
for a given amount of spherical aberration is a function of the laser beam diameter and the refractive
index of the cat's eye glass. The metrology laser beam diameter of 6 mm at the laser head led to a
cat's eye size and mirror mass which was unnecessarily cumbersome for implementation on a
moving platform. Reducing the beam diameter permits the cat's eye size to be reduced while
maintaining the same spherical aberration performance. Lenses reduce the collimated beam

diameter to 4 mm without reducing the available power. The cat's eye parameters are:

glass index at 633 nm
radius of small hemisphere
radius of large hemisphere
max. AOPL across beam cross section
mass

usable field of view:

1.72 (Schott SF 10)
25 mm
34.7 mm
_./10
511 g
+/- 60 degree cone (see Figure 5)
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Figure 5: Cat's Eye Retroreflector
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Modifying the radii to generate a small amount of fdcusing will help counteract the increased
divergence of the smaller beam diameter and produce better overlap at the detectors. The curved
surface of the large hemisphere will have a silver reflective coating with a protective overcoat. The
curved surface of the small hemisphere will be coated with a broadband anti-reflective coating
targetted to be the proper thickness for _. = 633 nm at half the cone angle. Anti-reflective
performance at other angles will depend on the spectral response of the coating. The hemispheres
will be aligned after coating and joined by optical contacting.

Other Optics

The remainder of the optics for each measurement leg consists of a polarizing beamsplitter
cube with crystal quartz quarter wave plates cemented to opposite faces, plus the associated feed
optics. Each beamsplitter-waveplate assembly is mounted in a semi-custom mount which provides
the adjustment degrees of freedom needed to align the measurement beam with respect to its
retroreflector endpoints. Three of these mounts are rigidly attached to an open pyramidal "bucket"
that is itself rigidly attached to the main fourth vertex optics plate (Figure 6). The remaining three
mounts are rigidly attached to the siderostat optics plates (Figure 7) in the far leg measurement
paths. These rigid mounts are designed to prevent motion of the beamsplitter optics from
appearing as motion of the retroreflectors. The feed optics must maintain the orthogonality of the
laser polarizations through complex bends in order to minimize errors due to polarization mixing.
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Results from Recent Testbed-Related Research

In conjunction with the development of the testbed, several other areas of research are
being pursued. Three studies have been completed, and are documented elsewhere [1-3]. Some
relevant results are summarized below.

Systems Level Disturbance Minimization Using Controlled Structures Technology

Disturbances present on a typical large space-based observatory are detailed. The spectrum
of disturbances is dix_ided into those which depend on the space (Earth orbital) environment and

those which are internal. Various CST techniques for minimizing the effect of disturbances on
mission requirements are reviewed. These include passive structural tailoring, passive damping,
vibration isolation, and active structural control. The full-scale 35-meter baseline version of the

interferometer testbed is used as a case study for evaluating the flowdown of systems level
information to the structural requirements. The power, attitude control, and interferometer and

metrology subsystems are discussed with respect to their role as disturbance sources. Finally, an
approach for systems level disturbance minimization is outlined.

Experimental Characterization of Damping at Nan0strain Lev¢l_

In light of the increasing trend towards nanometer-level requirements on structural stability,
it was considered beneficial to characterize damping at extremely small displacement and strain
levels. There has been discussion in the CSI community recently regarding dynamic behavior of
structures at extremely low vibration levels. In particular, it was not known whether there was a
radical change in properties below a particular vibration or displacement floor. In this study,
damping was measured in aluminum and graphite/epoxy material specimens in air and in vacuum,
and in the bare interferometer testbed truss. It was demonstrated that material damping was
independent of strain from ten microstrain down to one nanostrain. Excellent correlation with

thermoelastic material models was obtained. Damping in the testbed was found to be independent
of strain below one microstrain (Figure 8). The linearity can be exploited by doing system
identification at micron displacement levels instead of nanometer levels. The results were

immediately instrumental in allowing the use of relatively inexpensive accelerometers for system
identification on the testbed, rather than the extremely accurate high cost sensors.
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Figure 8: Experimentally Determined Damping in 44 Hz Testbed Mode
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Exverimental Demonstration of Nanometer-level Active Control of a Flexible Beam

In this approach to structural control, the flexibility of the structure is ignored to the greatest
extent possible. Instead of controlling the structure, a mirror mass was moved to maintain an
optical path length in the presence of disturbances propagating through the s_ucture (Figure 9)
using a control strtegy that ignored the structural dynamics of the flexible base structure. The
approach was successful provided that the actuated mass was small compared to modal masses of
the structure. The effect of damping was investigated and quantified. An order of magnitude



reductionin vibrationlevelswasdemonstrated(Figure10). Thisconcept--implementedonly for a
singleinput singleoutputcase--willbeextendedto theinterferometertestbed,whereactivemirror
mountswill be usedto position the cat'seye retroreflectorsin threedisplacementdegreesof
freedom. Preliminaryanalysisof thefinite elementmodelsuggeststhat theratio of themoving
mirror massto themodalmassesof the structurearesmallenoughto allow thedesignof a high
performancestablecontrollerwithoutfurtherconsiderationsof thestructuraldynamics.Research
intoactiveisolationwill focuson theextensionof thisapproachto casesinvolvingnoncollocation,
multipleflexiblemodes,andmulti inputmulti outputsystems.
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Figure 10: Results from Path Length Control Experiment

Finite Element Model

The purpose of the finite element model is to provide a basis for analytical studies of
structural modification, and to serve as one basis for control design. The accuracy of the finite
element model is verified by comparison of frequencies and mode shapes with an experimentally
derived modal model. It is not likely that the model will be used for control design if experimental

models are available. The effort in finite element modelling is outlined in Figure 11.
Two finite element models have been constructed using ADINA: a continuum beam model

and a model which contains separate elements for each stoat. The continuum model has sufficient
accuracy to make it useful for examining various approaches to control. Some features of the
models are described below.

Continuum Model

• Equivalent continuum cross-sectional properties for each leg of the truss were
derived. (The six legs have identical cross-sections.)

• Each of the six legs was then modeled with 14 Timoshenko beam elements.
• The f'trst flexible mode is at 38 Hz.

• The low mode shapes are characterized by 1st and 2nd bending and the torsion of
individual legs.
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Figure 11: Near Term Efforts on Testbed Finite Element Model

Full Struts Model

• There are 228 nodes representing the aluminum joints.
• Each of the 696 struts is modeled with a Timoshenko beam.
• The first flexible mode is at 34.56 Hz.

• The model runs in under 2 minutes on the Cray II.
• The low mode shapes are characterized by 1st and 2nd bending and torsion of the

individual legs.
• There are 35 flexible modes below 200 Hz.
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Distribution of Modes

Figure 12 shows the frequency vs. mode number for the first 39 modes based on the full
struts model. Because of the inherent symmetry of the structure, there are repeated eigenvalues
(multiplicity 2 or 3) present. Further, there is a separation between clumps of modes from 54-98

Hz and from 142-194 Hz. The repeated roots and clumping of modes will disappear once
concentrated mass of the three siderostats and the fourth vertex are added. Also, the added mass
will drop the frequencies further so that there will be more than 50 modes below 200 Hz.
Maflab Postp_ roqessing

The eigenvectors from the full struts model have been used to calculate strain energy
distributions for each mode. The elements can be ranked from most to least strain energy by mode
or sum of modes. This information will be used to choose passive damping element locations, and
later as an initial criterion for active member location selection. With an improved model (including
optics) we will be able to calculate a rough optical path performance metric to rank locations on an

'open loop' controllability basis (i.e. without simulating performance of the closed loop system).
In separate work, a two-dimensional truss model has been used as a sample problem to

develop necessary tools for control based on state-space models from the ADINA output.
Implications of the close modal spacing and light damping are being studied.

Addition of Damt_in_

The finite element model will be augmented with experimentally determined damping
values. In addition, damping will be added in select elements in conjunction with the viscoelastic
struts experiment. A more careful study optimizing passive damping locations will be carried out
later.

Role of the Finite Elernen_ Mg_J¢I
The finite element model in its current form is a useful tool for parametric studies, mode

shape visualization, calculation of strain energy distributions, and selection of system ID
accelerometer locations. We have improved the accuracy of the model, but it is still not perfect.
With initial ID data we will be able to make a direct comparison between finite element and
experimental data.

At some point a broader discussion of the role of finite element models in CST may be in
order. There are several points which must be addressed. From the academic perspective at
SERC, these include:

• The 'need' to develop a highly accurate finite element model because it is standard
practice in industry.

• The value of a finite element model for laying out identification and control
architectures

• The inadequacy of finite element models as a basis for control in a complex lightly
damped structure

• The relative value of finite element models and experimental system identification
• The realistic potential for on-orbit system identification
• The need for an accurate finite element model if system identification is not

possible
• The role of a hybrid approach which could include subscale and component

identification



System Identification

A system identification is routinely performed on conu'olled structure testbeds as a prelude
to control experiments. To date, the interferometer testbed is the most complex structure to be
identified in SERC. The experimental model derived from the system ID will serve two purposes.
First, it will allow verification of the finite element model. Second, it will provide a modal model
for control design.

Because of the complexity of the optics, the testbed will not reach its 'final' configuration

for some time (late fall 1990). However, an initial ID will be performed in order to provide
verification of the naked truss finite element model. The structure and model will be sufficiently
complicated later so that tracing sources of error will be difficult. In addition, the initial ID will
allow us to become familiar with the recently-purchased software and hardware systems. The ID
will be done with an external shaker and roughly 32 or more accelerometers. Later, active
members installed in the truss will be used for system ID.

Initial tests show several interesting results. The first flexible mode was measured at 31.34
Hz, compared with a finite element prediction of 34.56 Hz. This 10% error indicates a need to
revise the finite element model, with input from a subcomponent stiffness test on the struts. The
effect of gravity is apparent in the structure. Modes which are nominally the same frequency differ
by typically 0.3 Hz. Also, pendulum and bounce suspension modes have been measured (below 4
Hz). Finally, typical damping ratios of 0.04% to 0.07% have been recorded for the flexible truss
modes, with minimal intrumentation and cabling on the structure.

Frequency Resolution
Due to memory limitations of the identification computer, frequency resolution is currently

at best 0.0125 Hz. This may not be acceptable for lightly damped modes present in the testbed.

Generation of the Modal Model

The Structural Measurement Systems STAR software will provide frequency domain fits
over limited frequency ranges. These will be assembled in Matlab where the full modal model will
be constructed. This model will initially contain roughly 100 states.
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Figure 13: Near Term Efforts on Passive Damping Augmentation

A passive-as-possible approach is preferred in achieving a spacecraft which must meet
stringent shape or pointing requirements. However, in an environment which will include several



potential disturbance sources, some sort of vibration alleviation will also be necessary. The
introduction of an active control system can greatly improve performance at the expense of
complexity, cost, and the possibility of instability. Passive damping augmentation is a far less
glamorous, but nevertheless effective alternative. When an active structural control system is
considered necessary, passive damping can only be beneficial. It does not make sense to
implement aggressive structural control on a plant with only 0.05% inherent damping. Our initial
goal is to conduct enough tests to establish the basis for later comprehensive experimental studies
of passive damping schemes to be carried out in the future. The program has been broken into
four areas representing different approaches to passive damping. These are shown in Figure 13.

Viscoelastic

Constrained layer viscoelastic struts have been tested in a small cantilevered truss. Poron
and Scotchdamp materials were compared, and Scotchdamp was found to be more effective. The
effectiveness of different Viscoelastic layer thicknesses has been judged based on ringdown
experiments in a first bending mode. A significant component of the strain energy of the structure
is in the damper strut. This allowed high loss factors (25 %), and large drops in frequency.

Twelve of these simple highly effective struts have been manufactured. With information
from the component tester, it will be possible to model the struts with equivalent axial stiffness and
viscous damping. This information will be integrated into the finite element model where a
prediction of the added global damping due to several viscoelastic struts is possible. A repeat of
the ID experiments will yield a measured value for damping.

Shunted Piezoelectrics

A resistively-shunted strut [4] was built and tested in a small cantilevered truss. The initial
results were discouraging, with damping values below those expected. Subsequent re-engineering
of the strut yielded no improvement. The use of a commercial Physik Instrumente actuator in the
strut gave no better results. Although the experiment was designed to concentrate a large amount
of strain energy in the piezoceramic material, this was apparently not the case. A careful test of the
strut in the component tester will provide an accurate accounting of strain energy distribution. The
active member actuator stiffnesses were selected with consideration of appropriate stiffness
properties for the shunting application in the large testbed.

Collcerns

The difficult problem we face in adding significant global damping is the large number of
struts (696) in the testbed. The damping members must be selectively placed, perhaps near critical

payloads. At this point, the constrained layer Viscoelastic struts are by far the least expensive and
easiest to make. Drawbacks include the frequency-dependent loss factor and material

propertytemperature sensitivity. The shunted piezoceramics are potentially more effective than we
have demonstrated to date, but are expensive. A device based on the Honeywell D-Strut design,
which is capable of broadband viscous damping and is relatively temperature-independent is
desirable, but is at this point prohibitively expensive to incorporate into the testbed.

Component Tester

An axial component tester has been constructed and is operational on an optics bench. This
facility includes a Physik Instrumente piezoceramic strut to drive various test articles which
represent subcomponents of the testbed. Mainly, these are passive or active replacements for the
aluminum struts. Load and displacement are measured, the latter with a Zygo Axiom 2/20
intefferometer system. The tester will be used in the 0.1-200 Hz frequency range, with

displacements from 1 nm to 60 lain. Initial measurements to be conducted are:

• stiffness of truss longerons and diagonals
• stiffness of active struts

• voltage/deflection plots of active struts
• viscoelastic strut characterization



The facility will be available in the future for characterization of other passive or active

components.

Control Experiments

We do not forsee having the capability to do absolute shape control in the near future, since
that requires rigid body control of the testbed. The initial effort involves separation of the
structural control and optical metrology path length control loops. Capabilities will be established
in each through simple closed-loop experiments. Figure 14 shows the near term goals for control
experiments.
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Figure 14: Near Term Efforts on Control Experiments

Model Basis for Control Design
There are several methods for generating a model which is a suitable basis for control

design. These include finite element models (usually augmented with experimental damping
values), measured models based on modal models from system identification, and measured
models based on direct information from input-output actuator-sensor pairs. The third approach is
preferred if the proper measurements can be made. For all these designs model reduction may be
necessary in the plant and controller.

Real Time Sgfiwar¢

The software to do linear, constant coefficient, digital control is functionally complete. The
code is called MatCon for matrix control. The user interface is through Matlab, where a typical
continuous control design is discretized. The discrete matrices and some other constants (number
of inputs, outputs, and states, scaling factors, and the sampling period) are saved in a standard
Matlab .mat file. The real-time computer then reads this data and starts the controller. The
following algorithm is used.

input vector y from A/D

.17 = ,FIII n +n+l FI2Yn

lZn = F21 Xn

output vector u to D/A

wait for next sample time



While the controller is running the user can stop and start the controller, record states, inputs, and
outputs, and scale inputs and outputs. The data file of input vectors is stored in on-board memory,
until a set number of samples has been saved. The controller is then stopped and the data
transferred to the hard disk on a Sun Sparcstation, where it can be read back into Matlab. States
and outputs can be reconstructed from the saved input data for full analysis. There is a direct
interface to the six HP laser measurement boards. Four-pole Bessel anti-alias filters with a corner
frequency set by digital input-output from the real-time computer are used. The filter cards also
provide a digitally programmed gain of 1,2,4,8,or 16 to help amplify low-level sensor signals.
We will have the capability to process 16 inputs, 10 outputs, 32 states at lkHz. The control
bandwidth is not expected to exceed 150 Hz.

 c,m.c..sm 
The active strut design is shown in Figure 15. In addition to the load cell and internal strain

gage measurements, two accelerometers are mounted to the strut to provide an inertial collocated
measurement and to permit system identification using the active struts. Three struts are currently
available, and an additional homemade unit will initially be used as a disturbance source generator.

Ofd$'ll..ER)

PI_ZOCI_AMIC ACTUATOR 'WITH
/NTF_.RNAL S'rRA_ IVEASURJ_4ENT
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i t
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Figure 15: Aclive Strut Configuration



Active Mirror Mounts

Active mirror mounts will be used to maintain to 3420 the linear positions of the cat's eye

retroreflectors, which are located at the three mock siderostat locations shown in Figure 3. Output
position control will be achieved by moving the cat's eye and mounting table using three
microactuators: 0.7" piezoelectric stacks for two of the active mirror mounts and 0.4"

electrostrictive stacks for the third, as shown in Figure 16. The actuators will be run in common
mode to actuate piston, or z, motion of the point M of the cat's eye. In differential mode, the cat's
eye and table will be tilted; resulting in x and y displacements through the lever arm and flexure
assembly. The rotations and lateral displacements cannot be controlled independently, but this
constraint will not be a problem for the envisioned set of control experiments in the near to medium
term. Simultaneous displacements of +/- 3.5 lam can be achieved in all three directions. The

mirror mount design includes the flexibility to introduce additional mass to simulate the scaled
mass of the retroreflectors. Additionally, the mounts can later be modified to incorporate mass
reactuation, where the he effect of moving the mass of the cat's eye is reduced or even cancelled.
The result will be a reduction in the interaction between the mirror control system and the truss

flexibility.

static ring

support _ "
structure_ J / J l?

I

piezo actuators

science mirror

cat's eye

siderostat plate

/

Figure 16: Active Mirror Mount Functional Drawing

The active mirror mount is a small stroke device intended to control only path length errors
in the flexible truss. These errors will result from disturbance sources that are introduced

intentionally to simulate space disturbances and from disturbances present in the ambient noise
environment of the laboratory. Figure 17 shows the ambient acceleration power spectral density
(PSD) in the worst-case direction measured by a triax of moderate-sensitivity accelerometers

(1V/g) at a proposed active mirror mount location on the truss. In this very preliminary study., the
structural dynamic response, starting at 30 Hz, is also corrupted by electrical noise and various
lower frequency suspension modes. A displacement PSD is calculated by scaling the acceleration

PSD by l/to 4, which leads to an estimate of rms displacement of 22 nm in the frequency band of
20-100 Hz. Assuming that a point corresponding to a siderostat on another leg expenences the
same disturbance and vibrates out of phase with the first point throughout this frequency range, an
ambient path length error of 44 nm rms can be expected. The actual error may be less once
electrical noise is removed and the additional mass of the active mirror mounts is added to the
truss.



ElectrostriCtiv¢ Actuators

In separate work [5], electrostrictive ceramic PMN:BA, a material of interest to structural
control engineers, was characterized for test parameters of frequency, amplitude, and temperature.
Results indicate that at room temperature the material strain response is quite linear with almost
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Figure 17

N

(
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Acceleration Power Spectral Density in Worst-case Direction at Proposed Active
Mirror Mount Location

Figure 18

nz

Displacement Power Spectral Density in Worst-case Direction at Proposed Active
Mirror Mount Location (Derived from Acceleration Measurement)

no phase due to hysteresis, unlike piezoelectrics, and is constant with frequency. However, the
induced strain sensitivity is highly dependent on temperature, and hysteresis increases rapidly
below room temperature. Since electrostrictive actuators will be used in one of the three active



mirror mounts, the operatingtemperatureof the actuatorswill needto be monitoredduring
calibrationandusage.

Summary

The SERC interferometer CST testbed will soon be fully operational. The facility will
address concerns regarding extremely tight constraints imposed on structural motion in future
space observatories. At the same time, the testbed will serve as a platform for exploration of a
broad range of controlled structure technologies and approaches.

Work described in this paper was funded by NASA Grant NAGW-1335.
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Abstract

A cost functional is proposed and investigated which is moti-

vated by minimizing the energy in a structure using only collo-
cated feedback. Defined for an _m-norm bounded system, this

co,t functional aim overbounds the _: cost. Some properties of

this cost functional Lre given, and pre.L/_nLry results on the pro-
cedure for minimizing it Lre presented. The frequency dorr_in cost
functional is show_ to have a time domain representation in terms

of a Stackelberg non-_ro sum d_e:ential game.

Introduction

This paper exanxincs the properties, evaluation algorithm, and

an optimization approach for a cost functional for combined

7_:/7_. control. Combined _: and _ control is of interest since
it combines the problems of nominal performance and robust sta.

bility. Related work includm 74: optimization with an _= con-

stralnt if-A}, z_imum entropy _,o control [4.5], and m_cecl _:

and _ control [6, 7]. The cost functional of intere-t to us is
defined _ follows.

Definition 1 C_er a _tent H(J) = [He(J) H,(_)I a_d a

n_mber-y E IR, _th He E _74_, H_ E 7_,, and IIHLII. < "_.
Thes the coat L( H,_) iz defined by

The Ipecific form of this cost is motivated by minim_ng the to-
tat wibrational energy of a structure with only a model of the local

dyuami_ near an actuator and collocated sensor. Previous work
with this type of model hA. u_ed _s [8] and _. Ig] optimigations
of the power flow. Briefly, the f:s_-tion of the input power flow
that is reflected into the structure at the a_tuator location is a

quadratic at each frequency, and can be represented by a transfer
function HH'. The fraction of the power that is di_ipated is then

(I - H H'), and the total power d_ipsted is ( l - H H')E where
E is the structural energy u a function of frequency, br the power
flow into the structure from external disturbance sources isgiven
by @(jw), then a power balance yields that the total energy in the

structure is given by L([H H@], i). A more detailed explanation
may be found in [10].

In [7], a framework for mixed "N:/74_ control problem$ is con.

_idered. There the cmt functional is motivated in an input/output

_e. The sy_t_n is subject to two inputs, one of bounded spe¢.

trum, and the other with bounded power. For the cue where
the first input signal is white tad the _cond is causal, nece_sm T
and sufl_cSent conAitions are given for the existence of s controller
which minimi=e_ the cmt. The non.white and non.cau_al case i._

"Supported by S_nc_ N_.imud L4b4x'iXor7 uad_r c_tr_t e_-4.19t _nd by

the Mrr Sp_e Ealia,_rin_ _ C.,_t_ _mder NASA _sat NAGW.133_

• tFimmchd suppor_ by the _om_on_th Fund under _t_ Hazk=m Fellow-

skips proof.m, tad by AFOS_.I0.027S.

P_ms,nt._ _ the 29_ IEE_ C__afaN_ _a Deckioa sad Control, Honolulu,
HaRii, D_¢_mb_ 1_

described but not solved (see Section 3.3.) This ca_e is, however,

of pa_ticul_- interest u the cost the_ equals L(H,7), revealing a

dose relationship between the present appro_:h _d the approach

taken in [7]. This connection is currently under investigation.

The final section of this paper gives a third interpretation of
this cost in terms of a Stackelberg non-=ere sum di_erentia_ ga_ae.

Properties

The following buic propertim of L(H,7) will be stated without

proof, and can be easily shown to hold.

Proposition 2 _et H(s) and "_ sa_f_ the conditio,ts in Defini-
tion I. Then

(i) L(H,'_) u well defined.

(ii) L(H._) >_0, _nd/,(H.-_) = 0 ¢ffi, He = 0

(iii) L(UHV,-_) = L(H,_f) for any U,V G R£. _ith U'U =
I, VV'=I.

In the cue where H_ = He, further properties of the cost

L(H, _) can be established by relating it to the entropy I(H, _) of
a systm_ d_ed, for example, in Reference [5].

Definition 3 Fo_" H _ _Z_. _ _ IR, and I[HII._ < 7, the en-

tropy ut mfintq/ ta defined by

7 _
:= alder (2)

Also let CIH) be the usual _$ cost uso_ated with the system H;

1 ? trace (tt'H} d_ (3)c(H) :=

Proposition 4 For H = IHo Ho] , _tA Ho and 7 s_"f1_._ the

condstio_ in Defia_t_on 5, con._der the cost L(H, 7), the entropy
/(He,7), and the _: cost C( Ho). Define ( = ?-:, theft

(i) =

(ii) L(H,7) >_ I(Ho, 7) >_ C(Ho).

Proof: The first u_ertion follows directly from the proof of
Pmpmition 2.3.2 in Reference [5]. The first inequality in (ii) fol.

lows from L(H,'y) = I(Ho,'y) + _(I(Ho,'y)) and the result from

Proposition 2.3.2 in [5] that _l(l(tto,?)) >_ O. The final inequal-

ity isobtained from the result that l(Ho,?) itseff bound_ the H_
cost.

That L(H, _) overbounds an 74_ cost can also be shown to hold
for the cue H_ # HO.

Propo.ltion $ L(H, 7) > C(Ho).



Proof: Since IIH:II. < 7, (I- 7-SHAH:) < t and (I-
7"SHtH_) -* < I. The result then follows directly from the deft.
aition of L(H, 7)in Equation (1). D

Finally, note that relaxing the _m-norm bound completely re-
coversthe _s cost.

Proposition 6 Lira L(H,'¢) = C(Ho).

Proof: This follows directly from the deftnition of L(H,7) in

Equation (I) and the Dominated Convergence Theorem. [3

Evaluation of the Cost

Consider a state space representation for a strictly proper sys-
temH= [Ho Hi] ,

The aim is to evaluate L(H,_) in terms of the state space data.
Note that a non-zero term D, could be included; H, is made

strictly proper only to simplify the results.

Lemon7 Let H = [H0 Hx] be _ven by EquaUo,* (4), 7 6 IR,

ae.d IlHxtl. < 7. The,,

L(M, =trace{cQc

.,#Aere P, Q aatia_ (A + 7"B1BrI P) stable and

PA + ATp + 7-2PB_B_P + CTc = 0

(A + _-SB, B[P)Q + Q(A + _-'B, BITP) r + BoBo7 : 0 (7)

Proof: Since H,H_ < 72I Vw, then 3M _l E R_. given by

M'M : Ho(I - ?-'H,H;)-' Ho

A state space representation for M'M can be found by noting
that M'M isthe transferfunctionof the feedback system shown

in Figure I. So

M'M =

A 7"B,B_[Bo ]
-CTC -A r 0

o o

With P given by Equation (6),then

is the stable factor of M'M above [11]. Substituting Equation (B)

into (I),it iscleatborn (3) that the cost L(H,7) is then giv_m

by IIMIIs, where lIMIts = ttw-e{CQC t} _d Q satisfies the LyL-

p aovequation(7) [Is]. o

,)-,H(_.I_ -

Figure h Block Diagram forM'M

Figure 2: Feedback System

Optimization
The goal of this section is to present an approach for solvin..

for the optimum controllerthat minimizes a cost functionalof

the form (1). Linear time.invariLnt controllers will be Msumed
throughout, but this form is not proven to yield minimal cost. Th_
necessary conditionsthat an optima] compensator must satisfy tr,_
presented. Conditions for the existence of such a controller are not
discussed here.

The system can be describedby the blockdia_am in Figure2

P can be realised in state space u

P = Cx 0 0 Dis (II'

Cs Dm D=, 0

and H isthen given by the lower linearfractionaltransformation,-

H = _'(P,K) = [P,oPu] + P,aK(! - PnK)-' (Pm e,d (t2_

Adadssible compensators K will be those which stabilizeP. and

satisfy I[Hx[[m < 7. The problem statement is then

(5) Km_x{L(H,7): K _missible} (13)

By a scaih_ of H, without lou of generality consider the caa,
7=1.

The 5allstatefeedback problem is ¢xaxninedfans,with normal-

(6) i:_.d control weighting, 0o that C_ = [C r 01 and D[= = {0/] .

Theorem 8 Consider &e problem sta_eme_ (13), _.h Ace :=

A+ BsF. lf F u a ,_tic feed_k n_t,_ th_ ,ol_e, Equ_on (I$).
_/tert:

F = -BT(P¢ + PQ)(Q + ¢)-' (14:

_vhe,.eP. Q, P, a,*d(_ ,ati_ A.._ = (Ac_ + BxBTP) stablean,
(e)

PAcL +ATcp + PBxBTp + CTC + FTF = 0 (15'.

A._Q + QAI, + 8oB_o = 0 (16'

PA,.._ + A_,_P + CTC + FTF = 0 (171

A,,,O + ¢A_ + QPB, B[ + B, BTP Q : 0 (18

(9) Proof: The clo_l loop system is H = C 0 0 . Fror

F 0 0

 rop tion 7, thecost : = tr. {C C" + whe.
mlvm the Lyapunov equation (16), and P satisfies the Ricca

equation (15). Appending these two equatiom to the coat u cos

(I0) stral-ts with Llq;range muItipGm _ and (_ respectiv_y yieldsth

equation_ for P, Q and F upon differentiating with respect to
Ptad F.

Preliminary result, indicate that an iterative approach to sol'
lag these equations conv_ges rapidly to the optimal feedback Is

F. Givm ta initiM gue_ for F (u_y, from the minimum _tro!

control problem [S]), P, Q, P, and O can be computed mquential

u the solution of Riceati and Lyapunov equations. Equation (1
can then be evaluated for F, tad the pmce_ reputed.

For a system of order n tad a ftx_ order compensator of
de_ _, the necessm-y conditions for the optimum cta be foun
_ain using a L_F_e multiplier approach, in term_ of 4 ore
n + n, matrix equations simih: to Equation_ (15)-(18). Work
curr_tly m progre_ to slmpl_ and iatt_'pmtthes_ rmults for t
dynamic compemmtion problem. Note that there k no a p_,

reMon to expect that no improvement in the cmt ran be achie_
for n_ > n.

ORIGINAL PAG£ I._
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Time Domain Interpretation

The form of the augmented coat for the linear controlproblem

leads to an interesting dit[exential gmm_ interpretation. It is well
known that the central controU_ in the _. problem can be found

u the solution to a sero-s_ di_erential game [14], where for min-

imizing I[T_,H.., the control u and noise to solve the optimization

problen_:

X"u = arsnia .rz- -T'_rtodt (19)

i"w = argmin -zrz + 7_wrto dt (20)

u has some information y about the state, and to h*, full inforrnA.
tion.

With the current cost functional, and under the Msumption of

linearfeedback,the optimisationproblem isagain equivalentto t

differentialgame, but itisno longer a zero-sum game. Whether

the two problems are equivalentwhen both are allowed nonlinear

feedback isunknown.

Proposition 9 l/an, optimal linear compensator eziatJ foe prob-

lem (lSJ, then it is the same _ that of a Stackelbe_] d_fferent_l
game unth u 4a [ea_er, to1 na fol|o_ev and _ a_ unit int¢_tty

white no_e, where u and u_ solvethe following aptgmt.zatton prob.

le ,r,a :

u = ar nUm (21)

= (22)

u h_ some in/orm4tion y _bout the st-re, and w h_/-_1 _n/o,'m_-

lion.

Proof: Assuming a linearcontrollaw for u, the optirrdzation

problem for wl is essily solved with a single RJccatiequation

(which is Equation (15) for the st&refeedback c_e.) Append-

ing thisu a constraintfor the optimiz&tion problem (21) results
in an identicalproblem formulationto that of problem (13).

This game seem, to be a more natural problem to pose than

the pure 7"(_differentialamine,sincethe controldoes not benefit
from the use of noise,but inJteaz[optimizes an _ type of cost

functional,while the deterministicnoisetoz solvesthe same opti.

mization problem M before.In addition,the plant iJsubjectto a

white noiseinput w0. This lookJ similarto the framework of I{5,7]

sincea singleoutput isminimized in the presence of two distur-

bance inputs,one of which isMsociated with the "H_ nature of the

problem while the other isassociatedwith the _.= nature.
Note that for a non-zero sum di@erentialgame, the solution

depends on how the optimalityi_ defined. For the $t_ckelberg

or leader-followersolution[15--17],one player(herethe controlu)

actsas leaderand a4mounces s |tratc'_Lv,and knowing thisstrategy,

the follower (here the noise to_) solves its optirruzation problem.
Al_o note th&t in general, the optimal control for the St_kelberg
problem is known to be nonlinear [17]. SimilAr equation_ to (15)-
(18) have been reported in [16], where the optirn_ linear state
feedback taw for a Sta_elberg problem was found. The nonlinear,

team optimal strategy obtained, for example, in [17] does not ap-

ply to this problem since the lesde_ u cannot increue the follow_
to_'scost indefinitely,and thereforecannot induce wt to followa

strate_ desirableto u.

The differentialgames repre_mtstion of problem (13) allows

the matrices of Equations (15)-(18) to be given an interpretation.

-P and +/_ correspond to the optimal cost-to-go for the coet_
associated with _ and u respectively, Q is the cov_Lnance of the
state, and _ is the sensitivity of the cost for u to changes in the

cost for to_.
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Abstract

In certain applications modeling uncertainty can be represented by a finite number

of plant models. This paper considers the problems of determining a feedback con-

troller or estimator that optimizes an 7"i2 performance criterion involving a collection

of plant models. The approach is based upon fixed-structure optimization in which

the estimator or controller order are fixed prior to the development of optimality

conditions.

1 Introduction

The goal of robust control design is to obtain controllers that maintain desirable per-

formance in the face of modeling uncertainty. In certain cases modeling uncertainty

can be adequately represented by means of a finite number of plant models. This

multi-model problem arises for example, if the plant can undergo sensor or actuator

failure modes. A finite set of models has also been used to design for robustness to

an infinite set of models, as in the case of parametric uncertainty [1], high frequency

uncertainty [2], or parameter variations (e.g. for different flight regimes) [3].

A fundamental issue in multi-model problems is the simultaneous or reliable sta-

bilization problem. Here the goal is to design controllers that stabilize each model in

a finite collection of plant models. Considerable progress has been made in solving

this problem [4-10].

The goal of the present paper is to consider a multi-model optimization problem.

Specifically, we consider a quadratic (7"/2) performance criterion involving a collection

of plant models controlled by a single feedback compensator. The approach we take

involves fixing the order of the compensator and optimizing over the feedback gains.

This approach is similar to that of [11] where static output feedback controllers were

considered.

One of our principal objectives in considering the Multi-Model Control Problem

is to examine the issue of compensator order. In [6] it is shown that simultaneous



stabilization of a pair of plants of bounded degree may require a compensator of

arbitrarily high order. In the present paper we show how this issue manifests itself

in the structure of the necessary conditions for optimality.

To further elucidate the role of compensator order we also consider two related

problems that are simpler in structure but that involve analogous issues. The ob-

jective of the Multi-Model Approximation Problem is to determine a single model

that simultaneously approximates a finite collection of models. For a collection of r

models each of order n_, i = 1,... ,r, the maximal-order solution is given by a model

of order _ n_, which is larger than the order of each of the given plant models.
i=l

In a related vein we also consider the Multi-Model Estimation Problem wherein

we seek an estimator for each model in a given collection of plant models. As in the

Multi-Model ApproJdmation Problem the maximal-order solution has order greater

than the individual plant models.

The fixed-structure approach applied to the multi-model problems is a direct

extension of the technique utilized in [12-14]. Indeed, by specializing these results to

the case of a single model, the results of [12-14] are immediately recovered.

2 Multi-Model Approximation

Consider the following problem.

Problem 1 (Optimal Multi-Model Approximation Problem) Given a set of

r controllable and observable systems Hi, i = 1 ... r, with state space representations

H' = [ A' I B' I = C'(sI- A')-IB'c,0 (1)

and a set of r numbers oq 6 IR, a_ > O, i = 1 ... r, find a single approzimation model

of fized order n,n, with state space representation

H,, = (2)
C_, 0

2



that minimizes the weighted _2 model-approzimation criterion,

T

J(H_) = _ a, [[H, - H.,[[] (3)
i=l

To guarantee finite cost J, assume that each Hi is stable, and also restrict the

optimization to the set of stable approximation models H,.. Furthermore, since the

value of J is independent of the internal realization of H_, assume that the realization

in Equation (2) is controllable and observable. Thus require that (A._, B,., C.,) 6 T_

where

7_ = {(A,_,B.,, C.,) : AM stable, (A,_,B_) controllable, (A,,_, C,.) observable}

Without lossof generality,the weightings a_ can be assumed to be normalized so that

i=I

With this normalization, the weighting ai can then be associated with the probability

that Hi accurately models the dynamics of the system.

The necessary conditions for an optimal solution to this problem axe given in

Theorem 4. The approach used to obtain them is presented briefly here for comparison

with the approach required for the multi-model estimation and control problems in

Sections 3 and 4, and for the single model problems in [12-14].

The model approximation error transfer function Hi - H,,_ can be represented in

statespace as

The cost J is then

Hi- H,,_ = 0 A,_ B,,_ =
0

[c,-c,,,I o j

i=l

where each Qi satisfies a Lyapunov equation

+ ¢,,,iT+ .&pr = o

(4)

(s)

(8)



Appending these constraints to the cost with Lagrange multipliers _ yields first order

necessary conditions for a solution upon differentiation with respect to {_, A,_, B,_,

and C,,. Each matrix /5_ and Q, has dimension (n, + nm)×(n, + nm) and can be

partitioned into nixn_, n_×n_, nm×n_ and n_xnm blocks as

{_i -"
¢,,, _),,,] (7)J¢,,, 0,,,

The necessary conditions are then Equations (6), and

OJ - -

0¢, - P'_' + 2TP,+ did, = 0 w (8)

os = + - o
OBm i=1 i=a

r le

os _ c.. Z, _,¢,,, - E _c,0,,, = 0
OC,,, ,=i _=i

OJ
- Z:_,(P,,,_,,, + _,,,_,,,) =0

OA,,, ,=I

(9)

(10)

(ii)

The equation obtained from differentiation with respect to A,_ is of particular im-

portance in simplifying and understanding the structure of the necessary conditions.

In the case of a single model (r = 1), Equation (11) yields

I_. =(-P_'P_,)(¢.O.#) (12)

r G T

A projectionoperator r = G'rl_ = r2 isthen used to simplifythe equations [12].

For the multi-model approximation case,from Equation (6) each Qi22 satisfiesan

identicalequation,

- A T B_BV_ = 0 (13)

Hence the 0,,, satisfy 0,,, = Q2_, i = 1... r. Similarly, each _,, satisfies

z - C_C,_ = 0P,,,A_ + A,,,P_,, + (14)

4



and hence P,,,= 1522,i = i...r. Furthermore, from Equations (13)and (14),0,2 and

1522are the controUabilityand observabilitygraznmians, respectively,of the system

H,,,. With these simplifications Equation (11) can be written as

T

15=0,2+I: = 0 (Is)
i=1

This immediately gives the following result:

Proposition 2 Given a fized order model that is optimal for Problem 1, of order
T

n,_ > N = _, n,, there ezists a model of order N with the same cost. Hence with no
i=1

fized order constraint, the optimal system for multi-model approzimation has order

no larger than N.

Proof: Vi, rank {15,,, 0,,2 } -< n,, hence rank ai15,,_0i,, _< N. So, from

Equation (15), rank {h2022} _< g. If n,,, > N, either h_ or 022 or both must not

be full rank, and thus the representation of H,,_ must have states which are either

uncontrollable or unobservable. (The maximum number of states which are both

observable and controllable is N.) Removing any uncontrollable or unobservable

statesyieldsa system with identicalcost and at most N states. D

With the controllabilityand observabilityassumptions on the representationof

H,,_,1522and 022 must be positivedefinite,and thus Equation (15) can be written

r,

(16)

Define

_" = Grr (19)

= IN- (20)

5



Then 7"is again an obfiqueprojection operator, that is r 2 = r. Note that in general,

r is obliquerather than orthogonaJ,since it need not be symmetric.

The following lemma from [12] is required for the statement of the main theorem.

Lemma 3 Suppose Q, fi E ]pjc_Ivare positivesemi-definite.Then QP is nonneg-

 tivesem impZe(h.non-negativee ge. al es). rthe ore,ifrank{ =
then there ezist G, F E IR'_xN and positive semi.simple M E IRn''x'_ such that

QP = erMr (21)

FG w = I,_ (22)

Matrices G, F, and M satisfying the conditions of the lemma will be referred to as a

projective factorization of QP.

It will be convenient to compile the state space information about all of the models

into a single set of matrices (2, B, C_), where

° "* OA1 0

0 A2

0

A _.

°

Sl

B2

B,I

(23)

A., = FAGr (24)

B.. = rB (25)

C.., = C_,Gr (26)

AI_

The subscript a on C.. indicates that it depends on _.
qt,

Theorem 4 Suppose (A,,,,B_,C,,,) solves the optimal multi-model approzimation

problem (I). Then there ezist positive semi-definite matrices Q, P e IR t_xl¢ such

that, for some projective factorization of QP, A,,,, B,,, and C,,, are given by



and such that the following conditions are satisfied:

A¢ + CA T + BiB T - T.I.gBT_ -- 0

pA + ATi, + OTO r'r "

Proof:

(27)

(28)

(29)

Define _) = G TQ2_G and/5 = FT/522r, and note that re = ¢, and Pr = P.

Pre- and post-multiplyingthe Lyapunov equations (13) and (14) for Q2, and 1522by

either I.._ = FG T or I._ = GF T yields the following equations:

r [A¢ + Q_T + BBT] = 0 (30)

+ ATP+ r = o (Sl)

The (1, 2) sub-blocks of the Lyapunov equations (6) and (8) yield identical equations.

Equation (30)is equivalent to Equation (28) since Equation (28)=(30)+(30)r-(30)r,

and Equation (30)=r(28). Similarly, Equations (31) and (29) are equivalent. Note

that only two Lyapunov equations are required for the necessary conditions because

the (1, 1) sub-blocks of both Equation (6) and Equation (8) are superfluous.

Equations (25) and (26) follow directly from (9) and (10). Equation (24) for A.,

is obtained from the (2,2)block of either (i=_x a,(Eq'n 8)Q,)or (,=_ a_Pi(Eq'n 6))),

either of which yield that _ (a,/),,4iQ,) = o. []
i=1 22

Because the form of the equations is identical to that of the single model case,

the discussion in [12] applies for this problem as well. As in [12], the form is a result

of optimality, and not fixed beforehand. If (A,., B,., G,.) satisfies the necessary con-

ditions, so does (TA,_T -1, TB,., C,.,T -1) for an arbitrary nonsingular transformation

matrix T. Further, there exists a similarity transformation which diagonalizes Q_5

and r simultaneously. Representing r in terms of QP as in [12] leads to numerical

algorithms for the optimal multi-model approximation problem.



Remark 5 In the "full order" case n,,, = N, then r = G = F = Iv, giving Am = A,

13,,, = :B, and C,.,, = C_,. Thus H,_ = _ aiHi. Thin is ezactly the ezpected result; the
i=l

best possible approzimation is simply the weighted average of all the models.

Remark 6 For a single model (r = 1), the equations clearly collapse to the equations

of[tel.

3 Multi-Model Estimation

Consider the following problem.

Problem 7 (Optimal Multi-Model Estimation Problem) Given a set oft sys-

terns Hi, i = 1 ... r, with state space representations

Hi = C,, 0 = (sI- A,)-',Bi + (32)

Ci, Di C. [9i

and a set oft numbers ai E IR, ai > 0, i = 1...r, find a single estimator of fized

order n,, with state space representation

that minimizes the weighted 7-[2 model-estimation criterion,

J(n.)=Z.i I1-,,-H.Hi.ll 
i=1

where Hi is partitioned into Hi_ and Hi, according to the two outputs.

(33)

(34)

The estimation problem can be illustratedby the block diagram as shown in

Figure I.

The followingassumptions about the problem willbe made:



Figure I: Estimation problem for each system.

(i) Each Hi is stable, and each (Ai, Ci3) is detectable.

(ii) _ a, = 1
i=l

(iii) For clarity in understanding the form of the equations, the process and mea-

surement noise for each model will be assumed to be uncorrelated, so/_i/)_ - O.

Without loss of generality, assume ]_i -- [Bi O] and Di = [0 Di] •

(iv) Require that the measurement noise have no singular directions common to all
T

models, so Z] aiDiD T > 0. This isa generalizationof the usual singlemodel
i--1

assumption of nonsingular measurement noise,DD z > O.

It is interestingto note that each Di need not have fullrow rank, hence the

estimation problem for each individual model may be singular without the multi-

model problem being singular.

As in the multi-model approximation case,require(A,, Bt, C,) E 7_.

The model estimation error transferfunction Hit - HeHi, can be represented in

state space as

I-Ii, - H, Hi, =

Cil -_

Bi 0

0 B, Di

0 0

The cost J can again be written in the form of Equation (5),

(35)

"{ }
i--1

9



whereeachQ_ satisfiesa Lyapunov equation identicalto Equation (6)).

Necessary conditions can again be obtained using a Lagrange multiplier approach.

The Lyapunov equations for/5_ are identical to Equations (8). The equation obtained

by differentiatingwith respectto A, isthe same as Equation (Ii),and once again this

willbe the key equation for understanding the structureof the necessary conditions.

For thisproblem, each Qi_2 satisfies

- A T _. _TBT B.B T = 0A.(_,, + Q_,, , + B,C_,O,,, + +_t21. "" {1 •
(37)

Each Q,,, now satisfies a distinct equation, and thus Q,,, # ¢_,, i # j. The critical

observation for this problem, however, is that each/5,,, still satisfies Equation (14).

Thus it is still true that P,,, = P22, i = 1...r. This is sufficient to obtain the

elements of a projection operator from Equation (11), and to prove the following

result, analogous to Proposition 2.

Proposition 8 Given a fized order model that is optimal for Problem 7, of order
r

n,,, > N = _ hi, there ezists a model of order N with the same cost. Hence with
i=1

no fixed order constraint, the optimal system for multi-model estimation has order no

larger than N.

Proof: As in the Multi-Model Approximation case, rank a_P_,,Q_, _< N.

From Equation (11), rank {/522 _ o_Q,,,} < N. If n,. > N, either P22 or _ a,Q,,,
i=1 _=1

or both must not be full rank. /522 is the observability grammian of the system

( A,,B,, C,), and thus is not full rank if and only if (A•,C,) is unobservable. Also,
f

a_Qi,, is not full rank if and only if (A,, B•) is not controllable. This result will
i=l

be proven in Proposition 13. Proposition 8 then follows in the same manner as the

proof of Proposition 2. []

Remark 9 The estimator must obtain all the information possible about the state

from the output y. Since all state information from all the models has a finite di-

mension N, there is an estimator state vector of dimension N that contains the most

I0



information possible about the state vectors of the Hi. Any additional estimator states

must be redundant.

As noted earlier, t522 is the observability grammian for H, and therefore must be
T

positive definite. Proposition 13 proves that _ aiQi2, must also be positive definite.
i=1

Hence for the multi-model estimation problem, Equation (11) can be written as

= . _ 0,o,,, ) (38)
v

r, . or

With G, F, and _" defined as in Equations (17-19), r is again a projection operator,

satisfying r 2 = r.

In addition to the definitions of .21 and /3, given in Equation (23), this problem

requires C..t and dToa, defined analogously to C'.., and

B1B T 0

0 B2B T

"'" 0

(39)

½ = _ oaD, Dr. (40)
i=1

Theorem 10 Suppose ( A,, B,, C,) solves the optimal multi-model estimation problem

(7)• Then there ezist positive semi-definite matrices Q, Q, P E I_ N=N $uch that, for

some projective factorization of Q#, A,, Be, and Ca are given by

A. = rAo r- B,O.,G r (41)

B. = rQ0 r,_-I (42)

C, = d'.,or (4a)

and such that the following condition, are satisfied:

r "r W'O..,Or± =AQ + QA r + _ - OO_rW'Oo, Q + _OC'-, o (44)

11



A_) + _)AT + QC_ y;' _o, Q - _,_T y.-1_,Q__ = 0 (4s)

_(_ _ "Tv-I " (__ "T "T " _.r_._TL_mr± 0 (46)QC'_, 2 C.,) + QC.,Yf_C°,)rP + ca, C., =

Proof: The derivationof these equations issimilarto that for the necessary con-

di io ,m.1  .modol , oblom -- C,
P = rTP2_r,and¢ = diag{_2_),,,}- Q. Substituting intotheLyapunov equa-

tionsdefining (_, and ]5_yieldsEquations (45) and (46) from both the (1,2) and

(2,2) sub-blocks. The (1,1) sub-block of the (_ Lyapunov equation can be used

to obtain Equation (44), and the (I,I) sub-block of the/5, equation issuperfluous.

Equations (42) and (43)followdirectlyfrom the equations obtained by differentiating

the augmented cost with respect to B, and Ce. Equation (41) for Ae isobtained in

an analogous fashion to the approximation problem, t:::]

As in the multi-model approximation case,the necessary conditionsobtained here

are similarin form to those for the singlemodel case [13]. Again, the necessary

conditionshold for any non-singularstatetransformation of the estimator. Numerical

algorithms developed for solvingthe equations in [13]can be applied to thisproblem

a_ we].l.

Remark 11 In the "fall order" case ne = N, then r = G = r = IN, giving A, =

- BeC..,,B,=_,.,o,c_t_r _-x2 , and C, = Cot" Only the Riccati equation for Q needs to

be solved, and this has the same form as the Kalman filter equation. Because of the

coupling of the multiple models in Q, the full order estimator is not simply a weighted

average of the individual model estimators.

Remark 12 For a single model (r = 1), the equations clearly collapse to the equa-

tion_ of [15]. For r = 1 and n, = N, the equations collapse to the standard Kalman

filter result.

Finally,the propositionused in the proof of Proposition 8 needs to be proven.

P

Proposition 13 Q = _ ai(_i,,
i=l

is full rank if and only if(A,, B,) is controllable.

12



Proof: O satisfies the Lyapunov equation

(A, + B,C,.=GT)Q + Q(A, + B,C,.,GT) T + B, V2B T : 0 (47)

This follows from summing Equations (37)and representing (_,_, in terms of G

and (_. Q is therefore a controllability grammian, and is full rank if and only if

(A, + B, Co= G T, ]3,)iscontrollable.This system iscontrollableifand only if(A,, B,)

iscontrollable, rn

4 Multi-Model Control

A simple form of the necessary conditions for the multi-model control problem is sig-

nificantly harder to obtain than for either of the two previously considered problems.

A form of the equations similar to the single model case has not yet been obtained.

The problem will be set up here, and the critical issues discussed. In particular, the

question of controller order is investigated.

Consider the following problem.

Problem 14 (Optimal Multi-Model Control Problem)

terns Hi, i = 1... r, with state space representations

Ai [ Bi, Bi2
Hi= 0 b,,,

Given a set of r sys-

(48)

and a set ofr numbers ai G IR, ai > O, i = 1... r, find a single compensator of fixed

(49)

(so)

order no, with state space representation

that minimizes the weighted 7"12 model-contrvl criterion,

J(/'/,) = _ a_ IIH,..II]
i=1

13



f-

i=1

Hi is partitioned into Hin, Hit2, Hi,_ and Hi_2 according to the two inputs and two

outputs. 7"he closed loop transfer function Hi.. is obtained from the lower linear

fractional transformation, &.. = ;r( Hi, H,).

The control problem can be illustrated by the block diagram as shown in Figure 2.

u y

Figure 2: Control problem for each system.

The following assumptions about the problem will be made.

(i) Each system Hi must satisfy (A,, Bi, ) stabilizable and (Ai, Ci,) detectable.

(ii) E oa = 1
i=l

(iii) For a compensator H, to exist which gives finite cost J, the set of systems Hi

must be simultaneously stabilizable. Conditions for simultaneous stabilization

have been studied by Ghosh and Byrnes [6].

(iv) As in the estimation problem, assume uncorrelated process and measurement

-- --2'1

noise, so Bit Di_ = 0. Without loss of generality, again take/_iL = [Bit 0] and

/_ijt = [0 Di_t ] • Further, require that the measurement noise have no singular
1"

directions common to all the models, so _ aiDi2_ Direr > O.
i=l

(v) The dual assumptions to (iv) will also be made. That is, -r-Cit Di,, = O, OiL =

[][lCit , Dit, = 0 , and _, aiDi,,D_ > 0. Note that for any individual

0 Dit_ i=1

Hi, the control weighting Diz2 Dirt2 may be singular.

14



The optimization will be restricted to the (non-empty) set of simultaneously sta-

bihzing compensators He, with controllable and observable realizations.

The closed loop transfer function Hi,, can be represented in state space as

0 0

0 0

The cost J can again be written in the form of Equation (5),

(52)

i--1

and again, each {_i satisfies a Lyapunov equation identical to Equation (6).

Necessary conditions can again be obtained using a Lagrange multiplier approach.

The Lyapunov equations for P, are identical to Equations (8). Once again, the equa-

tion obtained by differentiating with respect to Ac is the same as Equation (11).

However, for the control problem, there is a crucial difference. Each t_i,2 and Pi,,

satisfy, respectively,

,_ _TBT BoB{= o (s4)

_" P,,_B,,oo T T- o_oo= o (ss)P/,,A_+ A_ P/,,+ + O_ Bi,Pit,+

Thusforthisproblem,every(_,.andeveryP,,,isdifferent,thatis(_,,.¢ Q_, i# j,

and P,,_# P._2, i _ j. As a result,Equation (11) isdi_cult to factor,and thisalso

has seriousimplicationson the order of the compensator.

Proposition 15 There is no a priori bound on the order of a compensator which is

optimal for Problem I_.

Proof: Ghosh and Byrnes [7] give an example of two second order systems, param-

eterized by A, which require an arbitrarily high order compensator for simultaneous

stabilization as A tends to some limit. Since any optimal compensator must be si-

multaneously stabilizing,italsomay be of arbitrarilyhigh order, o
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Remark 16 The result in Proposition 15 has been shown before; the purpose of re-

stating it here i3 to illustrate how the result manifest.q itself in the present contezt.

r

For all three of"the problems investigated in this paper, _ a/15i,_ Q,_, has at most
i=1

T

rank N. Equation (11) then yields that _ o_/_,, Q_,2 has rank less than or equal to
i=1

N. For controllable and observable systems H_, H,, and He, each term in this last

sum has rank n_, n,, or no. In the approximation case, this sum can be factored as
T

P_2Q22, and in the estimation case, it can be factored as P22 _ a/Q_22. Sylvester's
i=1

inequality [15] can then be used to show that this second sum has rank equal to n,_

or n,. From this, the conclusion that n,, <_ N, and n, _< N follows. In the multi-
f

model control problem, the sum _ a_Pi,, Qi,, may have maximum rank N while the

individual terms in the sum can have larger rank he. That is, the optimal compensator

may be both observable and controllable for arbitrarily large order no.

Theorem 17 Suppose (A_, Bc, Cc) solves the optimal multi-model control problem

(I4). Then the_ e-_t positivesem_e_nit_m_t_ces0,, P, e _+.._c.,+.._ such

that A¢, B,, and C_ are the solutions of

Z + + +p,,,B,,c,O,,,)= o
i=l

(56)

'2_ " " T(P,,,BoD,,,Dr +(P,,,O,,,+P,,,Q,,,)c:,)=o
i=l

(57)

T

D T • -+ + =o
i_l

(58)

_ohe_ ¢, _ Pi satiof_ Eq'_ations (6) and (8) respecti_ely_ wish the al_rolo_iate par-

titioning _iren by Equation (7).

Proof: Equations (57') and (58) are the necessary conditions obtained directly

from differentiating the augmented cost with respect to Bc and C,. Equation (56) for

A_ is obtained in the same manner as for the approximation and estimation problems.

o
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Remark 18 Equation (56) can be solved for A_ using Kronecker algebra [I6],"

vecIAc} "r p,.= a,Q,,_ ® x

:£o,((¢,,, +,,o¢{p,,,Boo,,¢,,+< B,,co¢,,})
i=l

(59)

Note that the inverse in Equation (59) exists. To see this, note that each/5_,,, and Q_,2

are positive definite, and their Kronecker product is therefore positive definite [16].

The sum of these products is therefore nonsingular.

Remark 19 If D,2_ = I_,D21, i = 1 ...r (which may not be an unreasonable assump-

tion,) then Equation (57) can be written as

" r V-l=OBo= _,p,,, _,(P,,,0,,, + P,. V,,,)ci,

V2 = a_l_ D_I D2_

where

(60)

(61)

In general, Bc can be solved using Kronecker algebra. Similar comments apply to the

calculation of 0¢.

5 Conclusions

The simultaneous optimal approximation, estimation and control problems for mul-

tiple models has been investigated. In each problem, the order of the system to be

found is fixed, and the necessary conditions that an optimal solution must satisfy are

found. For both the approximation and estimation cases, the optimal model can be
f

written as an optimal projection of a "full order" model with order N = _ n_. There
i----1

is no improvement in the optimal cost that can be obtained by usin 8 a model with

order larger than N. In the control case, there is no such a priori bound in terms of

the individual model orders n_ that can be placed on the optimal compensator order.
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FORMULATION OF _ STATE FEEDBACK FOR _/_

INFINITE ORDER STRUCTURAL SYSTEMS

Dr. David W. Miller and Dr. Marthinus C. van Schoor
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_cr

The exact Linear Quadratic Regulator solution for infinite order structures is

the convolution of spatially distributed feedback kernels with spatially

continuous state functions. For structures, several state functions exist that

completely describe the state of the structure at any given point in time. The
continuous control function is then the convolution of one of these state

functions with an appropriate feedback kernel. If another state function is

selected, a new feedback kernel can be derived that will yield identical closed-

loop performance. The appropriate state function should be selected based

upon the ease with which it can be measured.

This paper discusses the estimation of exact displacement and displacement
rate feedback kernels from finite dimensional control solutions based on finite

element structural models. These kernels are then transformed to equivalent
curvature and curvature rate feedback kernels. These curvature kernels are

augmented with single point displacement and rotation feedback to account for

rigid body motions. The curvature and curvature rate state functions can be

measured using a growing class of sensors known as area averaging sensors.

The output of area averaging sensors equals the convolution of all structural

curvature states with the spatial sensitivity function of the sensor.

Transforming the discrete feedback gains into continuous feedback kernels

and using area averaging sensors enables the implementation of full state

feedback for infinite order structural systems.



INTRODUCTION

Rationale

Structures are infinite order systems. To obtain a mathematically exact

structural model requires the use of a set of partial differential equations

subjected to the appropriate boundary conditions. However, in practice it is

difficult or impossible to find the exact closed-form Linear Quadratic
Regulator 1 (LQR) solution for most structures. Therefore, structures are often

modelled by discretization of the structure. This is even true for some very
simple structures. The most common method of discretization is finite

elements. When the structure is discretized, the order of the model is reduced.

Instead of being modelled by an infinite order system, the structure is now

modelled with a finite number of degrees-of-freedom. The result is a matrix

ordinary differential equation which will approximate the temporal and
spatial behavior of the structure.

Given the possibility to model a structure as an infinite order system or as a

discrete finite dimensional model, it is prudent to define the terminology used

in this paper. A state function corresponds to a motion variable which is a

continuous function of both space and time. Discrete states or degrees-of-

freedom correspond to point motion variables, which are functions only of

time, at a finite number or locations throughout the structure (Fig. 1). The

feedback of spatially discrete structural states involves feedback gains,
whereas the feedback of a spatially continuous state function involves feedback
kernels.

For control design, Linear Quadratic Regulator (LQR) methods exist that can

be used to formulate optimal structural control solutions for these matrix

ordinary differential descriptions. Given that model truncation is one of the

major contributors to the control spillover problem, it is desirable to include as

many degrees-of-freedom as possible in the control model. This is a costly

approach, both in terms of money and in implementation since the increased

z,v v(x) v i v n

x

x=O x=L
",4

Figure 1. Graphical representation of_ate vector

and state function description of a structure



number of degrees-of-freedom requires more state sensors and the controller
needs to multiply state feedback gains with the increased number of state
measurements to obtain the feedback command. However, the derivation and
implementation of a LQR solution, based on a infiniteorder model, that
convolves a spatiallydistributedfeedback kernel(s)with a spatiallycontinuous
state function(s)would completely avoid the model truncation,spatialaliasing
and cost of implementation problems.

This approach contradicts two common beliefs that stems from the use of
approximate, reduced order structural models. A common beliefis that that
the feedback architecture is typicallythe multiplicationof gains with discrete

point measurements (or estimates) of the structural motion. These
measurements typicallycorrespond to degrees-of-freedom in a finiteelement
model. The second beliefis that the type of degrees-of-freedom (displacement,
rotation and their rates)used in the reduced order model are the appropriate
state variables to measure.

It is also important to realizethat the feedback kernels can be transformed as
desired to accommodate measurements other than the states variables used in

the model. Such a transformation can allow the use of not only displacement
or rotation but also curvature as measurements for the infinite order

controller.This paper discusses the estimation of exact feedback kernels from
finitedimensional control solutionsand the transformation of these kernels to

accommodate the measurement of curvature. Posing the feedback in terms of
curvature allows the use of a growing class of sensors known as area
averaging sensors. These sensors can provide the spatially continuous
measurement of the curvature required by the infiniteorder controller.

Implementation issues associated with these sensors are also discussed in
order to demonstrate one technique for realizing the use of these feedback
kernels. In this sense, the continuous kernel represents the fullstate feedback
solution for infiniteorder structural systems, and the availabilityof at least

one implementation technique makes this solution more than just a
mathematical exercise.

Background

The description that is obtained of a structural system from a finiteelement
model is a set of second order, matrix ordinary differentialequations of the
form

M_(t) + Cx(t) + Kx(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices, respectively.
The vectors x and f contain discrete point degrees-of-freedom and force inputs,
respectively. This system can be placed in first order, state-space form

z(t) = Az(t) + Bu(t) (2a)

where

3



The Linear Quadratic Regulator minimizes a cost

J = _ i{zTQz + uT Ru_t
0

forthis system by formulating a feedback gain matrix G such that

u(t)= -R-I BT pz(t)= -Ccz(t)

where P is the solutionto the steady-statematrix Riccatiequation

PA + ATp + Q - PBR-IBTp = 0

(2b)

(3)

(4)

(5)

The feedback form in Eq. 4 consists of multiplying the feedback gains contained
in G by the state vector in z, whose entries correspond to the temporal motions
of spatially discrete points throughout the structure. The resultant products
are summed to arrive at the appropriate control actions which are placed in
the vector u. This feedback architecture is simply an artifact of the need to use
a finite dimensional (reduced order) structural model to implement the control
design.

In actuality, structures do not undergo motion only at discrete points
corresponding to the model's nodes but also deform continuously throughout
the region between nodes (See Fig. 1)..The exact motion of the structure is

described by state functions which are continuously distributed along the
length of the structure. Therefore, for infiniteorder structural systems, the
mathematically exact control inputs are not the sum of products of discrete
gains with discretemotions but the general form of the control is the spatial
convolution of the state functionwith a feedback kernel.

In order to demonstrate the concept of using infiniteorder structural models
for control,a simple structural beam can be used as an example. The partial
differentialequation descriptionof a uniform beam is

o_4v(x,t) v_2v(x,t)

EI Jx 4 + pA Jt 2 = f(x,t) (6)

This description can be placed into state-space, spatial operator form 2

_z(x,t) = a(x)z(x,t) + b(x)u(x,t)
(7)

by choosing the state functions as those which determine the potential (strain)
and kinetic energy in the beam (curvature and transverse velocity)

4



c)3v ]

J

0

(8)

The parameter E is the modulus of elasticity, I is the area moment of inertia,

A is the cross-sectional area and p is the volumetric mass density.

The cost is defined by

j = l_[ _(< qz, z > + < ru,u >)d.r.dt
=o-- (9)

where the matrices q and r are matrix operators penalizing the state and
control functions, respectively. Note that q and r are not constants but are
spatial operators and that the inner integral indicates that the beam is
assumed to be of infinite extent. An infinite extent beam was chosen to

facilitate the acquisition of a closed-form, exact solution. However, the
operator form for a finite extent beam can also be posed, although the solution

will probably require numerical techniques.
The feedback structure is found from the solution pz to the functional

Riccati equation

O= paz + a'pz + qz- pbr-lb "pz Vz (10)

where the symbol "*" signifies the adjoint operator. The feedback is the spatial
convolution of a kernel matrix _ with the state function z

i" Tu(x,t)=-r- b (pz)(x,t)=- _(x-w)z(w,t)dw
-_, (11)

where x corresponds to the location on the structure where control is applied
and w indicates where states are measured. Equation 11 is the general
solutionbecause itrepresents the controlaction at any locationas a function of
the state functions along the entire extent of the structure. This feedback is
analogous to that in Eq. 4 in the sense that itrepresents the continuous sum of
gains times the statesof the structure.

The implementation of these continuously distributed feedback kernels
requires the use of a continuously distributed sensor. Several researchers
have demonstrated the use of continuously distributed curvature sensors and
actuators. C.I_ Lee3,4,S.E. Miller5,S. Collinss and D. Miller7 have worked on

the development of area averaging sensors. These authors use spatially
distributed sensors to achieve certain measurement characteristics. C.K.

Lee3,4 and S. Collins6 used sensors shaped as particularmode shapes to obtain

a measurement of the generalized coordinate of that mode. S. Collins6 and D.

Miller7 developed sensors which rolloff with frequency without exhibiting
phase lag. It willbe shown in this paper that area averaging sensors can be
used to implement the feedback solution to a partial differentialequation
descriptionof a finiteextent structure.



Approach

An over optimisticgoal for this research would have been to attempt to solve
the infinitedimensional structural control problem. This goal is not realistic
because firstitwould require the exact partialdifferentialequations (PDE) and
boundary conditions (BC's) that describe the dynamics of the structure and
second itwould be impossible in most cases to find the LQR solutioneven ifan
exact model existed, de Luis 2, for example used an infiniteextent beam in

solving the infinitedimensional control problem in order to find a closed-form,
exact control solution. The same infinitedimensional control problem can
also be posed for a finiteextent beamS. However, this problem is much more
difficultto solve due to the existenceof boundary conditions.

A more realisticapproach is to model the structures with the more familiar

finitereduced order models (Eqs. 2 through 5) and to hope that by increasing
the fidelity (number of degrees-of-freedom) of the model, the continuous

feedback kernel can be inferred from the distributionof the discretegains.

The following section discusses the derivation and implementation of
continuously distributed feedback kernels. Several important steps are
involved in this derivation. First,spatiallydiscretedisplacement and rotation
gains derived using standard matrix Riccati techniques on finite element
structural models must be converted into spatially continuous feedback
kernels. Second, these kernels must be transformed into feedback of

distributed curvature to facilitateimplementation using area averaging
sensors. An alternativeapproach, also discussed in the next section,is to first
convert discretedisplacement and rotationgains into discretecurvature gains
and then to convert these gains into a spatiallycontinuous curvature feedback
kernel. Numerical examples are interspersed with these formulations to
demonstrate these techniques. After the section on feedback kernel

formulation, a discussion of general control issues of interest is presented
along with an additional numerical examples.

Reference Example

Throughout the rest of this paper, these techniques are formulated for the

cantileveredbeam of length L shown in Figure 2. A controlmoment isapplied

to a point on the beam 1/10th of the distance from the clamped root to the free
tip. This moment actuator is used to represent an equivalent piezoelectric

actuator at the cantileveredend. de Luis etal2 demonstrate that one valid way
of modelling the influence of a piezoelectriccurvature actuator is to derive

equivalent moments at the two ends of the actuator, which are of equal
magnitude but of opposite sign. In this problem, ifit is assumed that the
piezoelectric actuator runs from the root, the companion moment at the
clamped end of the beam does not enter the problem and is therefore not
shown. The pertinent parameters of the problem are listedin Table 1. The

performance metric is the transverse displacement of the tip of the beam (Vtip).

The entry in the state penalty matrix (Q) corresponding to this displacement is

6



assumed to be unity. This state penalty in equation form, from Eq. 3, is

zT Qz = v_p
(12)

Z,U

FEEDBACK KERNEL FORMULATION

This formulation process is shown in Figure 3. The upper left box represents
the formulation of discrete displacement and rotation gains using classical
finite element models. The objective is to evaluate the continuous curvature
kernel represented by the bottom, right box. Two paths (1 and 2) can be
followed to obtain the curvature kernel from the displacement and rotation
gains. Following either path involves the same three steps but in different
order. In either case, the first step is to evaluate the discrete displacement and
rotation gains. For brevity, reference to displacement, rotation and curvature
rate gains and kernels are omitted from the discussion although they are an
integral part of any control design. However the evaluation of these rate gains
and kernels are identical to the processes shown for the displacement, rotation
and curvature gains and kernels.

Following path one, the second step involves calculating the continuous
displacement kernel from the discrete displacement and rotation gains (Path
la in Fig.3). This displacement kernel completely describes the feedback. The
evaluation of a rotation kernel is redundant since it would simply be derived
using the same gains that were used in deriving the displacement kernel. The

third step (lb) involves transforming the displacement kernel into a curvature
kernel which convolves with distributed curvature to generate the control
action. This path is discussed in detail in the rest of this section.

Table 1. Parameters for cantilevered beam example.
Bending stiffness El 1.0 Nm 2

Mass per unit length pA 1.0 kg/m

Length L 1.0 m
Actuator location Xa O. 1 m

Control effort penalty R 0.001
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Following path two, the second step involves transforming the discrete
displacement and rotation gains into discretecurvature gains (2a). The third
step then involves using these gains to find the continuous curvature kernel

(2b). This path is used, in the followingdiscussion,as a check of the firstpath
since both paths should yield approximately the same curvature kernel.

Evaluation of the Discrete Displacement and Rotation Gains

The first step in evaluating the discrete displacement and rotation gains is to
develop a finite element model of the cantilevered beam. The mass and
stiffness finite elements that are used in the following analysis are

mele = 420

156 221 54 -13l"

22l 4l 2 131 --312

54 13l 156 -22l

-13l -312 -221 4l 2

12 61 -12

61 412 -6l

-12 -61 12

6l 212 -6l

6l

2l 2

--6l

412 (13)



with the corresponding finite element nodal degrees-of-freedom

Vele-Vi Vi Vi+l +1 (14)

where l is the element length and is equal to the total length of the beam (L)
divided by the number of elements. The other parameters are listed in Table 1.
It is assumed that the model is undamped. The entry in the state penalty
matrix Q corresponding to this displacement is set equal to one.

Using a ten element model of the beam, the gains obtained from the LQR solver

are shown in Figure 4. The gains in the upper left window are the
displacement gains at discrete locations along the structure. The lower left
window shows the rotation gains. Notice that no discernable spatial
distributioncan be seen in these gains. The windows in the upper and lower
right display the displacement rate and rotationrate gains,respectively.
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These displacement and displacement rate gain distributions indicate the
shape that the respective continuous kernels will have, but not the

magnitudes. This is only an approximate indicationof the continuous shapes
since the displacement kernel combines the information from both the discrete
displacement and rotation gains. In other words, a single kernel contains all
of the gain information displayed in a singlecolumn of Figure 4.

Evaluation of the Spatially Continuous Feedlmck Kernel

kernel be defined, as in Eq. 11, in terms of the actuator location (Xa).

this kernel transformation, the feedback is given by

The next objective in the analysis is to find the spatially continuous feedback
kernel from the spatially discrete gains evaluated in the previous section (Path
la in Fig. 3). To this end, the beam finite element displacement and rotation
gains will be used to derive the continuous displacement feedback kernel
which convolves with the displacement state function. Since the reference

example has a point actuator, the feedback convolution in Eq. 11 degenerates to
the integral of a kernel times the state function. It is also convenient to use a

kernel that is defined over the length of the beam, rather than having the

Using

L

u(t)=-S_w)z(w,t)dw=- [_C rDR](W) w,t)dw
0

0

L L

=- f fa2v  DR(W) (w,t)dw
0 0

L

= - 1 IrD(W)V(w,t)dw - gDR(W) (w,t)dw
0

0

= uD(t) + UDR(t) (15)

Note that the state functions shown in Eq. 8 include the curvature of the beam.
Eq. 15 shows part of the feedback to be the integral of curvature times a
curvature kernel. Alternatively, this can equivalently be expressed as the
integralof the displacement state functionstimes a displacement kernel. This
displacement kernel is derived in the next paragraph.

The integrationover the entire length of the beam can be divided into the sum
of integralsover segments of the structure corresponding to the finiteelement
domains as shown in Fig. 5.
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Figure 5. Graphical representation of integration ofkarnel with state ftmction

The first half of Eq. 15 then becomes

L

u D(t ) = - _ pCD(W)V(W, t )dw
o

Wi+l

=...- _lCD(W)V(w,t)dw-

wi

=...UD i +UDi÷l +...

wi_. 2

I rD(W)V(W, t)dw-''"

Wi.l

(16)

The element interpolation function description of the displacement anywhere
within the element located between wi and Wi+l

¢3 ¢2 +___)iv,i(t)vc¢,t)=(1-aN 7r

for O < _ <_l

(17)
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can be substituted into each of these element convolutions.

action associated with an element is a function of that

degrees-of-freedom

Wi+l

wi

_3 _2 _31lvi+i(t)ldw where

) J

Then, the control
element's nodal

+

=W-W i

(18)

If the form for r/)were known, then the integral in Eq. 18 could be evaluated to

find the the gains for the nodal degrees-of-freedom. Conversely, in this case

these gains are known from the solution to the matrix Riccati equation and

instead it is the form of the kernel rD that is being sought. To estimate this

kernel, a form for the kernel, containing unknown parameters, can be selected

so that the spatial integral in Eq. 18 can be evaluated. Then, these parameters

can be found by equating the elements of this integration to the discrete gains.
A cubic form for the kernel is chosen

lCDi(W)=ai(w-wi)3 +_(w-wi)2 +ci(w-wi)+di f°rwi <w<wi+l (19)

Given the polynomial order (cubic) assumed for the four degree-of-freedom
finite element, a cubic polynomial for the internal curvature distribution is the

highest order polynomial for which the unknown coefficients can be uniquely
found.

If the form in Eq. 19 is inserted into Eq. 18, and the integral is evaluated, the
result will be the contribution that the continuous kernel across that element

makes to the gains associated with that element's nodal degrees-of-freedom.

In other words, at one of the element's nodes, Eq. 18 yields partial gains for the

nodal degrees-of-freedom which, if summed with the gain contributions from

the adjacent element, will give the total gains associated with that node's

degrees-of-freedom. Thus, the gain contributions from the elements

neighboring a shared node can be used to find the total displacement and

rotation gains associated with that shared node

l

gvi = ai_ 3 +bi_ 2 +ci_ +di) 3--_--2-_- d_ +

o

l

f(ai+1 +bi.1 2
0

+ci+l_ +di+ 1 1-3--_-
+

(20a)
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0

l

0

:2 :3h

,$-+- g- d_

(20b)

where gvi and gv'. are that node's displacement and
|

respectively, as shown in Fig. 4.

rotation gains,

These two relations give two conditions for finding for the elemental kernel

coefficients ai, bi, ci and di. Two more conditions are required in order to

ensure a unique solution. These two additional conditions are found by

requiring continuity of the kernel magnitude and slope at a shared node.

These are found by using Eq. 19 to evaluate the magnitude and slope at the

right end of the ith kernel and equating that to the magnitude and slope of the

(i+l)th kernel at itsleftend yielding

ail 3 + 2bil 2 +cil + d i - di+ 1 = 0 (21)

3ail 2 + 2t_l + c_ - ci+I = 0

These four conditions can be expressed in matrix form as

(22)

314 4l 3 7l 2 I 14

14 15 20 2 28

l 5 l 4 l 3 l 2 l 5

42 30 20 12 105

l 3 I 2 l 1 0

3l 2 2l 1 0 0

l 3 3l 2 l

15 20 2

l 4 l 3 l 2

60 30 12

0 0 -1

0 -1 0

ai

ci

ai+l

bt+t

Ci+l

gv I

-- gu'

0

0

d/+1 (23)

where the firsttwo rows are found by evaluating the integrals in Eqs. 20a and

20b. A global matrix can be assembled, using Eq. 23 as the sub-matrices, to

yield a linear equation relating the coefficients of the cubic-fitted kernel

functions to the discrete gains

Tc = g (24)
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The desired coefficients are then given by

c = T-lg (_)

The approximate shape of the spatially continuous displacement feedback
kernel can be calculated by evaluating this piecewise cubic kernel along the
length of the structure. This evaluation is made by using the coefficientsin c
which are appropriate for the given segment of the structure within which the
kernel is being evaluated.

Using the discrete gains of the ten element finite element model (shown in Fig.
4) to evaluate the coefficients in Eq. 19 of the piecewise cubic displacement and
displacement rate kernels, the functions in Figure 6 are found. These
functions are the piecewise cubic kernels combined into a single curve.

Notice the erraticshape of the displacement kernel. This erraticshape may

correspond to some weighted sum of mode shapes. Given that the tip
displacement (performance metric) can be represented as a sum of
displacement mode shapes, and that the applied moment (controlinput) can be
represented by the sum of curvature mode shapes, the shapes in Figure 6
could correspond to some combination of the displacement and/or curvature
mode shapes. In other words, these shapes may correspond to some type of

mode shape 'feedthrough'from the controlinput to the performance metric.
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(a) Co)

Figure 6. Spatially continuous feedback kernels as a function of location along the beam for

controlling tip displacement. The individual windows show the kernels for (a) displacement

and _bl displacement rate.
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Equivalent Feedback Using Alternative State Functions

The feedback architecture using the kernel derived in the previous section has

the form in Eq. 16. This involves the spatial integral of the kernel times the

displacement state function. However, the continuously distributed

displacement state function may not be a measurable quantity. Therefore, it

may be convenient to express the same control in terms of another, more
measurable state function.

Extensive work in the area of area averaging sensors4,5,6,7,8 has shown that

continuously distributed measurements of curvature-induced strain can be

made using polyvinylidene flouride (PVDF). Therefore, the displacement

feedback kernel of Eq. 16 must be transformed into equivalent feedback of the
curvature state function.

Integration by parts can be used to transform the feedback form in Eq. 16 into

equivalent feedback of the curvature state function plus point measurements of

rotation and displacement, in order to retain rigid body control. This

transformation is given by

L

" uD(t ) = f _D(W)V(w,t)dw
0

L

= v(O,t) f _D(w)dw +
0

LwL v_2V(w)

]1S rD ( r)drd)' olw2
o o ), (26)

_( L,t ) LL
f ] _D ( T)d_w-

v_x Ow

dw

While the point measurements of displacement and rotation must be made in

order to retain rigid body measurement, the actual location on the structure

where these measurements are made is arbitrary. The displacement or

rotation of a point on the structure can be related to the displacement or

rotation of any other point by integrating the intervening strain appropriately.

For example,

L

o_v(L,t) _(O.t) + f c)2v(w,t) dw= ---Z- j
o (27)
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Substituting this translation of the rotation measurement into Eq. 26 gives the
equivalent feedback as

L jv(_,t)_pCD(_,)d_lw+uD(t ) = v(O,t ) _ tCD(w )dw +
o ow

LLL c92V(W, t) dw
I11_D ('f)dvdY o_w2
ow_, (28)

Notice that in this equation, the first two terms, representing the feedback

gains associated with point displacement and rotation measurements, can be

evaluated directly from the displacement feedback kernel. The outer integral

in the third term corresponds to the integration of the distributed curvature
kernel with the curvature state function. The inner two integrals evaluate the

curvature kernel from the displacement kernel. This curvature kernel is

given by °

LL

_C(W) = f _ _D( r)dvd7

w ), (29)

The boundary conditions in the reference example were conveniently chosen to
exclude rigid body motion thereby eliminating the need for any point

displacement or rotation measurements. The motion of the structure is

completely describable by the curvature state function because

3v( O,t )
v(O,t) = -- = 0

Jx (30)

Substituting Eq. 30 into Eq. 28 yields

LLL

uD(t) = _ _ _ _D(rJdr.d),

ow)'

O2v(w, t) dw

Ow 2
(31)

To calculate the

Equation 31 can

as the feedback law in terms of the displacement kernel.

shape of the continuous curvature kernel, Eq. 29 is employed.

also be used to evaluate the curvature rate kernel if the displacement rate

kernel (_OR) is used in place of the displacement kernel (_o).

Figure 7 depicts the resulting curvature and curvature rate kernels for the ten

node finite element model (Figure 4 and 6). Notice that, unlike the

displacement kernel, the curvature kernel is smoother. This is predominantly

due to the smoothing process inherent in the double integration of Eq. 31. Also

notice that the magnitude of the kernels in Fig. 7 are largest where the

cantilevered beam tends to exhibit the largest curvature: the root. In Fig. 6,

the magnitude of the displacement kernel is not the largest where the beam

tends to exhibit maximum displacement; namely the tip.
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Figure 7. SpatiaIly continuous feedback kernels as a function of location along the beam for
controlling tip displacement. The individual windows show the kernels for (a) curvature and

(b) curvature rate.

Although not shown, for this reference example, increasing control authority

by decreasing the control effort penalty (R) does not change the kernel shapes.

Instead, it changes the absolute and relative magnitudes of the kernels. A

change in the shape of the kernel will be achieved by a change in the spatial

nature of the problem such as moving the actuator or selecting a different

performance metric. This observation is supported by an additional example

presented later in the paper. Actual implementation of these sensors is the

topic of a follow-on paper.

The results in Fig. 7 correspond to the objective represented by the lower, right

box in Figure 3. The next step would be to implement these two kernel shapes

using area averaging sensors. The details of this process will be discussed in

the section on implementation issues. Prior to that, the next section discusses

the alternate path in Fig. 3; namely path number 2.
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Equivalent Feedback Gains using Curvature States

An alternative procedure to evaluating the continuous curvature kernel is to

first derive the discrete curvature gains from the discrete displacement and

rotation gains, as shown by path 2a in Fig. 3. This can be done in two ways.

The firstinvolves using the transformation matrix given by de Luis et al2

t"i+Ij T  i+I
,Vi+ l. (32)

This elemental sub-matrix can be assembled into a global state transformation

matrix. The number of degrees-of-freedom are not reduced by this

transformation because now there exist two independent curvatures at each

node. Remember, curvature is not constrained to be continuous in the beam

finite element formulation because applied point moments can induce

discontinuous curvature. Originally, displacement and rotation were the two

nodal DOFs. Now, a node has two curvatures, one associated with the leftand

one with the right-hand element.

The 'o' symbols in Figure 8 indicate the net curvature gains at each node as

derived using this transformation. The net curvature gain at a particular

node is found by summing the individual curvature gains at that node. This

procedure is justified at nodes where external moments are not applied

because the two curvature gains correspond to the feedback of curvature

measurements acquired an infinitesimal distance to either side of the node.

Without an externally applied moment, itcan be assumed that these curvature

measurements are identical and therefore the net gain is the sum of the two

gains.

The second approach to deriving discrete curvature gains is to integrate the

displacement and rotation gain vectors to get the curvature vector. Unlike Eq.

29, this integration process involves both the displacement and rotation gains.

This integral can be approximately evaluated element by element by summing

the products of the gains with the element width. Other standard numerical

integration techniques can also be used.

The '*' symbols in Fig. 8 represent the curvature and curvature rate gains

found using this integration approach.
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indicates gains found through integration while the 'o' indicates gains found through
transformation.

Notice the good agreement between the curvature and curvature rate gains
found using the transformation and integration techniques. The agreement
may seem to improve near the tipof the beam but when calculateditwas found
that the relativeerror ismore lessconstant along the beam.

The final step in Figure 3 (2b) involves calculating the curvature and curvature
rate kernels from the discrete curvature and curvature rate gains. Rather
than using the technique in Eqs. 15 through 25, it can be observed that each of
the discrete gains at a node roughly represents the area under the continuous
kernel for the region between the midpoints of that node's neighboring
elements Therefore, if the gain is divided by the length of an element, the
result should be approximately equal to the magnitude of the kernel at the
nodal location.

Figure 9, when compared with Fig. 7, shows that this is the case.
Furthermore, Fig. 9 shows the overlay of the gains divided by respective
element lengths for different fidelity models. This reveals that the magnitude
of the kernel is captured quite well at nodal locations for rather coarse models
for this simple reference example. This is an important result since in
practice it would be generally impossible to find the exact feedback kernel from
a continuous model. However, Fig. 9 illustrates that as the order of the model
is increased the kernel shape is asymptotically approaching some shape. It is
this shape that represents the infinite order solution and that must be
implemented.
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Implementation Issues

The possibility of implementing infinite order structural controllers is made
possible by the existence of area averaging sensors such as those described in
References 4,5,7 and 8. Once the curvature kernel is obtained, it is a simple
calculation to alter the kernel for equivalent feedback of curvature-induced
surface strain. Tb_is simply requires knowledge of the distance of the surface
mounted sensor from the centroidal axis in the structure. Once this kernel is
found, the sensor can be built.

Polyvinylidene flouride (PVDF) 9 is suggested for this sensor for several
reasons. First, PVDF is a strain sensitive material which can be continuously
distributed along the surface of a structure and whose accumulated charge on
a surface electrode equals the integral over the length of the PVDF of the
electrode width times the surface strain in the structure. Second, PVDF has

an elasticity which is relatively small when compared to the elasticity of
conventional structural materials. This allows the sensor to be rather non-

intrusive into the dynamics of the structure. Third, the shape of the electrode
can be easily altered to equal that of the kernel while leaving the actual PVDF
material uniformly distributed. This achieves the strain sensitivity
appropriate for implementing the kernel while keeping the small dynamic
influence that the PVDF does exert on the structure uniformly distributed. In

addition, removal of electrode from near the edge of the PVDF greatly reduces
the possibility of the sensor shorting its bottom and top surface electrodes. A
fourth and final reason for using PVDF is its high strain sensitivity which

provides an excellent signal to noise ratio for control purposes.

One drawback of implementing the feedback kernel through the shaping of the
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electrodeis that once the electrode is shaped and the material is mounted on
the structure,the kernel is effectivelyfixed and cannot be altered. Feedback

gains which reside in a computer can be readily altered if alteration is

required. However, C. K. Lee in Reference 4 has developed a method which
could be used to circumvent this inflexibilityin the gains. He uses an area

averaging sensor whose electrode is segmented into numerous squares and
the voltages on these squares are summed as appropriate fora particulargain
distribution. Ifthe gain distributionneeds to be altered,the manner in which
these voltages are summed can be changed.

Throughout the discussion of full state feedback for infiniteorder systems,

there was an implicit assumption that high frequency dynamics in the
structure consisted solely of additional modes which would be properly
modelled given the use of a sufficientnumber offiniteelements. However, this

is seldom, ifever, the case in actual structures. ORen, torsionor out-of-plane
bending modes exist irrespective of whether only in-plane bending was
modelled. These dynamics may feed through to the output of the sensor.

Therefore, the spatialwavenumber filteringconcepts presented in Reference 8
could be used to roll off,without phase lag, the frequency response of the
spatiallycontinuous sensor.

Figure 10 illustratesthe way in which a PVDF area averaging sensor was
implemented in Reference 8. The electrode is shaped as a decreasing

exponential in two directions. Note that the sensor may have to be segmented
ifthe PVDF sheet is not as long as the kernel. Given that PVDF isa polarized
material, a negative part of the kernel can be implemented by either flipping
that segment of the PVDF or reversing leads (seeReference 8).

For the reference example discussed thus far,two PVDF electrodes could be
shaped: one each as shown in Figs. 7a and 7b. Bonding these two sensors to
either side of the cantilevered beam, one sensor for the curvature kernel and
one for the curvature rate kernel, the two sensor voltages can be summed

appropriately and used to drive the controlmoment.

The unique feature of this technique is that the processes of multiplying the
gains times the curvature measurements and accumulating these products is
performed by the sensor. This feature significantly reduces the control
implementation effortassociated with numerous point sensors.

Sqmmt ! Scpnc_ 2 Scilmcni 3

Co_ m_

(below FVDF)

Imm lead

0.203m _ i_ 0 305 m _ _ 0203 m

Figure I0. KIustration atthe implen_entat'ion of an area averaging sensor using PVDF shaped

in an exponential fashion.
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Issues associated with controllers based on classical beam finite
elements

The previous section has shown how PVDF sensors can be used to implement
infinite order controllers. It was also shown in Figure 9, that finite elements
models can be used to predict the shape of the infinite order feedback kernel.
The hope is that by progressively increasing the order (accuracy or fidelity) of
the finite element model, the shape of the feedback kernel will approach some
asymptotic shape. It is this shape that represents the infinite order feedback
kernel and that must be implemented with PVDF.

Classical finiteelements are the obvious elements to be used in such a model

refinement process. This study has identifiedtwo implementation problems
that are uniquely associated with these classicalbeam finiteelements. The
firstis that the stiffnessmatrix obtained with these classicalbeam elements
becomes ill-conditionedas the element sizedecreases. Decreasing the element

sizeis typicallyassociated with increasing model fidelity.This isillustratedby
looking at the conditioning number of the stiffnessmatrix of a cantilevered
beam obtained by using the followingclassicalbeam finiteelement:

12 6l -12 61

6l 412 -61 212

-12 -6l 12 -61

6l 2l 2 -6l 4l 2 (33)

The conditioning number for a matrix is the ratio obtained by dividing the
largest eigenvalue by the smallest eigenvalue of the matrix. The higher the
conditioning number of a matrix, the more ill-conditionedthe matrix is and
the more likelythat matrix willbe susceptibleto computer round-off errors. It
can be shown I0 that the conditioningnumber isproportional to:

1
Cond _ --

l2 (34)

Thus as more elements are used and the element length (l) decreases, the
matrix becomes ill-conditioned and results from the LQR routine will become
less reliable.

A second problem associated with classicalfiniteelement models is a problem
of non-uniqueness. From finitedifferencetheory itis known that rotation can
be estimated from discretizeddisplacements as:

(35)

In Eq. 35, v, is the nodal rotation and vL's is the nodal deflection. The

truncation error, which is of order l2, will decrease as the element size (l)
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decreases, indicating that the finite element nodal rotations (vI) can be

expressed as linear combinations of the nodal displacements (vi) with

increasing accuracy. The manifestation of this problem lies in the
interpretation of the feedback gains calculated by the LQR algorithm. Given
that the nodal rotations may become linearly dependent on the nodal
displacements (or vice versa), the gains obtained by the LQR algorithm may
yield an optimal solutionbut the displacement and rotation gains may not be
unique.

These two problems are investigated by comparing the results of two
discretizedmodels used to solve the reference cantileveredbeam example. The
firstmodel is the classicalfiniteelement beam model, while the second is a
second order accurate finitedifference model. In the finitedifference mode,

the stiffnessterm in the governing differentialequation (Eq. 6) is approximated
by:.

EIv i = E v_+f$-6vi_l +4vil4 -6Vi-l +Vi-2 +0 l 2
(36)

The effects of ill-conditioning and non-uniqueness are investigated by
comparing the resultsof models in which the fidelityof the model isincreased

by increasing the number of nodes. Both these models should exhibit the ill-
conditioning problem since the finitedifferencemodel also has a conditioning
number that willincrease (deteriorate)as the element size decreases since the

conditioning number is approximately I/(I2) 10. The finitedifference model,
however, should not exhibit the non-uniqueness problem associated with the
finiteelement model. These conclusions are supported by the results of the
investigation. Although not shown, both the models exhibit ill-conditioning
problems and the Riccati solver failedto yield a solution for a model with 40
nodes (or 80 degrees-of-freedom) for the finite element model and 80 degrees-of-
freedom for the finite difference model. However, the finite element model

may exhibit the non-uniqueness problem as the fidelity of the model is
increased. In Fig. 11 the distribution of curvature gains becomes erratic as the
number of nodes are increased above 10. The finite difference model on the

other hand, as shown in Fig. 12 does not exhibit this behavior. Even with these
erratic gains, the closed loop finite element models are stable with identical

closed loop poles for the first five modes. This observation leads to the
conclusion that this behavior may be due to the non-uniqueness problem
associated with these elements.

Note that the slow convergence to the "infinite" shape of the finite difference
model is due to the method in which the point moment is applied to the
structure. An applied point moment is achieved by applying appropriate
forces to nodes neighboring the node to which the moment must be applied.
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AN ADDITIONAL NUMERICAL EXAMPLE

An additional numerical example involves the control of the relative

transverse displacement between the tip and the middle of the beam. This

state penalty has the form

_ 2- - + )
For this example, the scalar q is unity.

Figure 13 shows the discrete gains. Again, the displacement and rotation

gains are rather erratic. However, the curvature and curvature rate gains are

smooth. Figure 14 shows the continuous feedback kernels. While the

curvature rate kernel has a shape similar to that in the previous example, the

curvature kernel now undergoes a change in sign. All the curves seem to

have an inflection point near the midpoint of the beam (x=0.5).

CONCLUSIONS

A technique has been presented for inferring the exact, spatially continuous

LQR feedback solution to the control of structures from the discrete feedback

gains derived using finite dimensional structural descriptions. These

feedback kernels possess several unique attributes. First, it has been shown
that feedback of the state functions can be transformed to equivalent feedback of

other state functions. This aids in implementation because the feedback can be

derived in terms of the state function that is most easily measured. Area

averaging sensors provide one means for implementing these spatially
continuous feedback kernels. Second, these continuous sensors can eliminate

spatial aliasing. Spatial aliasing is one of the primary causes of spillover in

structural control. Third, all of the feedback computation can be effectively

performed by an area averaging sensor.

The research presented in this paper must be seen as the first step in an

attempt to formulate and implement full state feedback for infinite order

structural systems. Several issues must be resolved before this approach can
be considered a viable alternative to reduced order controllers. For example:

the accuracy with which the area averaging sensors must match the desired

kernel must be investigated. Robustness of this control approach must be
determined and the theory must be demonstrated in the laboratory. The

researchers are presently working on these topics and plan to implement an
infinite order controller on a cantilevered beam using the actuator and

performance metric presented in the reference example.
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on a structure in order to modify its dynamic behavior to
meet its performance requirements. Unfortunately,
active control introduces the po_ibiliW of exciting the
s_ructure in an unsr_)]e manner making it critical that
either confidence in the prediction of on-orbit behavior
be improved or the types of tests required for
quc]i_ca_ be idsn_e<L

Before proceeding with a discussion of the
experimental approach to developing qualification
procedures, it is necessary to present the rationale that
lead to MACE. Ai_r all, conducting experiments on-
orbit,even those which are performed on the STS
middeck, is technicallyrisky, expensive, requires
extensiveplanning,and produces lessdata than would
be obtained in a comparable ground experiment. The
program must clearlyexploitthe unique aspectsof the
on-orbitenvironmentinordertojust/fyitsconduct.

The objectiveofthispaperistoportraythe rationale
forconductingthistypeofflightexperiment and topose
the ecienCificquestions to be addressed through this
research.Additionally,the testarticlewillbe described,

alongwith the ground and on-orbitexperiment support
equipment. This paper concludes with a discusslonof
planned on-orbitactivities.

Am) Rxqnowa.z

•The goalofMACE istodevelopa wellverifiedsetof
CST tools that will allow designers to either be able to
predict on-orbit behavior or allow su_cient versatility in
the design to allow identification and tuning of the
structure on-orbit. A number of different options exist
forderivingthis set oftools.The first and leastexpensive
istorelyon analysisforthe designand qualificationof
spacecraftwhich incorporatecs'r.Unfortunately,this
approach is far less than satisfactory. The sc_entnfic
literature is riddled with examples of both closed and
open-loop experiments whoso performance varied
greatly from that predicted by state-of-the-art analytical
methods. The reasons behind this are varied. Often the
structural or sensor/actuator characteristic which

contributes to this performance degradation is not the
next detail that would have been included in the
analytical model. Its existence is usually not predicted
but instead is discovered through experimentation. This
experience il]_t_ that analy_s alone is not sui_cient.

The question that next arius is what sort of testing
needs to be performed, along with analysis, in order to
develop an effective and efficient spacecraft
qualification procedure. Four different options exist.
Listed in ascending order from lowest to highest cost and
complexity, they are- ground.based open-loop
experiments,ground-baNd cloud-loopexperiments,on-
orbitopen-loop experiments and on.orbitclosed-loop
experiments.

Ground-ba_d open-looptestingisthe simplesttype
of experimental program that can be carned out to
verify the validityof analytical mode}s. It :s an
absolutelyneceslmry step, sincethe quantises thatare
most required for closed.loop control design are exactly
those which are hard to predict analytically For
example, structural modal frequenciescan be _rechcted

using numerical methods with a relativelyhJg._degree
of accuracy. Conversely,modal damping _a',uesare
extremely hard topredictanalyticallyon largecom;lex
structures where many energy dissipation mecb, anlsms
are present. Unfortunately,closed.loopcontro.:ersfor

structuresusuallyrequireaccurate knowledge of the
modal damping because damping determines stability

margins and thereforeperformance. This problem is
exacerbatedinstructuresthatare lightlydamped, such
asLSS.

Itiseasilyconcluded,therefore,that ground.based

open-looptestingisessential to quantifythe accuracyof
analyticalmodels. However, thesetestsby themselves
are not sufficienttovalidatethe appropriatenessofan

analyticalmodel or the performance of a closed-loop
system. Skelton_has demonstrated thatno m_tsures of

accuracy of the open.loop model are sufficientto

guaran_ stability ofa clo_ed-loop system at arbitrarily
high gain. This implies that the acquisition of the open-
loopmodel can never be sufficient to predict closed-loop

performance. Therefore, ground-baaed cloesd.loop
testing is absolutely necessary for the successful
application of car to realistic _uct'u_.

Sines CaT structures will be used in the space
environment,it isimportant to investigatewhether those
characteristicsthataxe present on-orbitand cannot be
adequately simulated on earth affectthe open and
closed-looptests.InTable i variousvehicleparameters
are listed along with four significant differences that
occur between on orbitand ground.based tests. The
table indicates that these differences do affect the vehicle
parameters.

T_ 1 The varb)u It_duratL klamtic amd dFaamic pmet_s tJkal

en d_s" blhv4Nm OHrbt! ad _Ol "_1

Aara/ 'SuspensionGravity Thermal/
Acoustic Radiation •

Stiffness no yes yes yes

Damping yes yes yes yes

Mass yes yes no no

Forcing yes yes no no

Kinematicz no yes yes no

The important issue is whether the differences in
Table 1 cauN regular or singula#" perturbations to the
problem. A regular perturbationisone whose affecton
the vehicle parameter disappears as the perturbation is
allowed to approach zero. This is in contrast with a
singular perturbation whose presence substantially
modifies the vehicleparameter even as the perturba_on
approaches zero. If the perturbations are regular, then
they can be modelled and the results from the ground-
based tests can be more easily used to predict on-orbit
behavior. However, they may still have a very
substantial, although predictable effect on the structural
parameter. For example, small changes in the plant can
often lead to largechanges in the modal damping or in
the mode shapes, two quantities that have a direct effect
on closed-loop stability and actuator and sensor
performance. Therefore, if the plant is highly sensitive to
regularperturbationsdue toinfluencesListedinTable 1,
itisprobably necessary to conduct open-loopon-orbit
testing.I_'the perturbationsare singular, it is essentialto
conduct open-looptestingon-orbitin order to identify
and adjustfortheseperturbations.

The only issue that now remains to be addresamd is
whether on-orbitclosed-looptestingisstillrequired.The
answer tothisquestiondepends on whether any singular
perturbationsare identifiedduring the on-orbitopen-
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loopexperiments,or whether any regularperturbations
cause significantunpredictablechanges in the plant.If
the answer toeitherofthesequestionsis"yes",then on-
orbitclosed-looptss_ is essential.

A preliminary analysis does not reveal any singular
perturbations arimng i'mm one of the four sources shown
in Table 1. Non-convective potential aeroacoustic
equations do not _ve rise to singularities,nor do
conservative fields such as gravity. So long as
suspension devices are passive or collocated active, they
do not introduce singularities. Since the
thermal/radiationterms only affectotherwisesymme_nc
stiffnusand damping parameters,they alsodo not _nve
riu tosinsularperturbations.

However, a situation in which a regular
perturbation can have significant effect on the dosed-
loop performance of the structure can be easily
ima_ned. The stiffneesadded by a suspension system,

•van if small, can change the modal structure.
Additionally,foran articulatedtestarticle,a suspen_non
system could introduce an unexpected kinematic
constraint.Gravitycan change preloadon a joint,and
hence damping. Gravity will also cause otherwlse
straightmembers tocurve,causing significantchanges
in the modal structure,such as nonplanar couplingof
modes. Therefore,whileno singularperturbationshave
been idantified,there are a number of regular
perturbationswhich can cause signi_cantchanges inthe
plant that could resultin controlperformance being
degraded.

Therefore,the conclusion that is reached isthat

ground.baaed open and closed-loop testing is not
sufficientfor the verificationof CST technology At a
minimum, on-orbitopen-looptestingwould need tobe
conducted to test for the presence of any singular
perturbations,orany significantregularperturbanons.
Ifthese perturbationsare found toexist,then on-orbit
closed-looptestingbecomes essential as argued by
Skelton.Ifthey arenotpresent,then the closed.looptests
might stillbe needed if a suitable ground-based
performance metric or disturbance environment is
unobtainable,or,more likely,ifthe additionalcost of
conducting the closed-loop experiments were
incremental.

Having demonstrated thelikelynecessaryofon-orbit
closed-looptesting,a testar_cleon which toperformthe
experimentsmust now be selected.A surveyofproposed
futurespacecraftwas undertaken and an evaluataonwas
made on which type of spacecraR exhibit the most
requirements forcat and which were most lirmtsdby
earth-boundtssi_-_._Some ofthe spacecrafttypesthat

were consideredincludedtwo pointalignment occulting
instruments, multipoint alignment interferometnc
devices,shape controlof reflectivesurfaces,flexible
manipulators,and multipayload platforms.This latter
type was selectedbecausethe largeanglemotionsofthe
payloads stressstate-of.the-artsuspension devacesand
because of itsapplicabilityto missions of near term
interest.

Proposed missions which will use thls type of
spacecraftincludelow and geoaynchronous platformsIn
the Mission to Planet Earth, the evo',a_onary

InternationalSpace Station,and the planeta_ orblung
platforms of the Exploration Initiative .-_ these
platforms become larger and more complex, the
propensityforindividualon-board controllersto:_teract

with each otherand withthe bus attitudecontrolsystem
willgrow. This propensityisexacerbatedby increasing
payload mass fraction associated with larger
instruments and roboticdevices,decreasingstructural
bus stiff'hessassociatedwithlargerplatforms,increasing
authority of the controllersassociated with tighter
pointing and positioning requirements, and the
increasingneed torejectdisturbanceswhich originateat
other payloads. This rationale makes clear the need to
develop a well verified set of CaT tools. This
dsveiopment must include:

i. The development of a comprehensive analytical
CST framework for the design and analysis of controlled
multibody platforms. This analysis begins with an
understanding of how flexibility influences the pointing
and tracking performance of multibody platforms, and
must be able to include the influences of suspension and
gravity for use in correlating with ground test results,
and to exclude the influence of suspension and gravity
for use in predicting on-orbit results.

2. The validation of the analytical framework by
comparison with a set of ground based experiments with
a testar'dcle which incorporatesthe essential physical
characteristicsofa multibodypla@orm. This testwill,of
necessity, include the influence of gravity and
suspension,and willbe typicalofthe preflightground
testingofan actualplatform.

3. The validationof the analyticalframework by
comparison with a set of on-orbit zaro gravity
experiments which eliminate the influenceof gravity
and suspension.

The specific criteria which will determine
experimentsuccessofMACE are theidentificationofthe
regular(and,iftheyexist,singular)perturbationsinthe
dynamics which occuras a resultofthe change from one
tozero gravity,and the productionofthe data for the
finalvalidation of the analyticalframework. The
ultimateresultof.MACE willbe a wellverifiedmodelling
capabilityfor the controlled structures design and
qualificationof future multibody platforms, and a
detailedunderstanding ofthe parametrictendenciesin
vehicle dynamics, geometry and performance
requirements,which cause the zerogravityclosed-loop
behavlor to differfrom the one gravityresults. This
capability can be exploited by future spacecraft
designers to eitherobtain confidence in the on-orbit
performance of theirCsT spacecraftbefore they are
deployed, or to design enough versatilityinto the
spacecraftin order to accommodate any unexpected
dsviat/onbetween ground and on-orbitbehavior.

E__AL APrROACU

The fulf_llmentofthe basicobjec_veofthe MODE 2
program requires two stsps. First, the research must
validatethe analyticalframework for the design and

analysis of controlled multibody platforms by
comparison with a setof&rou_ based experiments on a
test article which incorporates the essential physical
characteristics of envisioned multibody platforms.
Second, the research must also validate the analytical
framework by comparison with a set of zero &rarity
experiments with a test article similar to that used in the
ground tests. These object/yes necessitate two aspects of
the experimentalapproach: the captureofthe essential

physicalcharacteristicsof multibody platforms in the
designofthe MACE testar_cle,and the performance of



meaningful tests which validate the analytical
framework through a coherent on-orbitand ground test

program.

Capturing the Ee_nVLal Phymi_

To arrive at the emn_al physicalcharactaristicsof
multibody platforms,one must consider the vehicle
architecture of the missions which are envisioned by the
internationalsp_ce community, e In such plat'forms,the
payloads and articulating appendages each have
pointingorpositioningrequirements,and corresponding

attitudesensors,pointinggimbals and controlsystems.
The spacect_ structural bus is flexible and has _ts own
attitude control system. The simulation of this veh2cle
architecture,in its associated operational envlronment,
nocHsitatn a test ar_cle with the following armbu_s:

• a testar_cle des/gned with the appropria_ multiple
scaling laws to allow it to fit in the middeck, yet
preserve the essential performance r_uirements of a
full scale _ article,

• the incorporationofat leasttwo gimballingpayloads
toenablethe implementation ofmultipleinteracung
controlsys_me with independent objectives,

• the incorporation of two riffid payloads,
representativeof compact but high mass fraction
devices,and a flexibleappendage, interchangeable
with one payload,representativeof an aruculanng
appendage such asa roboticservicer,

• a sui_cienrJyflexibles_racturalbus such thatflexnble
resonanceslie within the controllerbandw_ dth,

• a sufficientlyflexiblestructuralbus which, when
suspended even from state-of-the-ar_suspension
devices, exhibitsa degree of suspension coupling,
gravitystiffeningand droop,

• a sui_ciently low st_ucturM damping so that the test
article is representative of structures incorporatang
typica/uros?a_ materials,

• and a sui_ciently complex geometry so that the test
article undergoes full 3-D kinematic and coupled
flexible motion further stressing state-of-the-art
suspension systems.

In order _o develop the appropriately refined CST
tools, representative test obj_tives with appropriate
disturbances and performance metrics must be used. 7
The teem thatwillbe carried out mspartof.dACE include
pointing and tracking ofsingleand multiplepayloads.
For each experimentrun, performance w111be measured
in the presence of random broadband disturbances,
which originateon the sla-ucturalbus,and narrowband
disturbances due to the planar and non-planar slewing of
a second payload.

The performance metrics ofallthe closed-looptests
willbe derivedfrom inertialangular ra_edata obr.a_ned
from bi-axi$ gyroscope packages mounted on the
payloads. Specifically,the performance merncs forthe

varioustestsare stability (i.e.,RMS 2-axasangular
positionaboutpointinglineofsightortrack:ngreference
profile),jitter(i.e.,RMS 2.axis angular rate about
pointinglineofsightortrackingreferencepro_.ie,.slew
response time (i.e.,time required co complete
maneuver) and percent degradation ofs_abC;:yand
jitter from single payload performance _L e.
quantification of multiple interacc:ng con:rol
performance).

D/fferent types of controllers, both linear and
nonlinear, will be implemented on the MACE mg article
depending on the performance objective and payload
amplitude. Three familiesof controllerswillbe used

duringthe on-orbittest.One familywxllbe identicalto
thoseused inthe ground test.This familywillexplicitly
identifythe differencesin one-gravityand zero-gravity
performance. The second family willbe those which
analyticallycorrectedbeforehand for the absence of

suspension and gravity effects. This family will
explicitly verify the ability to model the known
differences between ground and flight and identify the
importance of unexpected perturbations. The third
faintly will be based upon on-orbi._ iden_/fication of the
test article.Between these threefamines, the objectives
OfMACE willbemet.

Validation of the An_lylde_l Pramework

Given a _st article which captures the essential
physicalcharacteristicsofthe genericclassofmultibody
platforms,a test progra_ which validatesthe analytica_
CST reelsmust be formulated. Such a program must

incorporatebo_h ground-bmmd and zero.gravity_esring.

Based upon SERC's previous experience in
laboratory active s_'ucturalcontrolexperiments, itwu
concludedthata challengingyet realisticgoalforMACE

would be to attempt to improve closed-loop
pointing/trackingperformance by 40 dB over itsopen-
loopvalue (Fig.2). Independent ofthe absolutelevelof

performance, thislevelof performance improvement
w_ll demonstrate the effectivenessof the controlled

structures technology.
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Both the ground testingand on-orbittestingwill
begin by measuring the open-loop performance. Then
the authorityof the controllerwillbe increased,and
closed.loopperformance in the presence of scaled
disturbanceswillbe measured. By comparing closed-

loop performance as a function of controlauthority
between ground and on-orbittesting,regular(and ifthey
ex2st, singular)perturbationsin the dynamics which
occuras a resultofthe change from one to zerogravity
willbe identified.To exzract ma_rnum benefit from the
on-orbitdate,itisdesirableforthese perturbationsto
beg_n _o manifest themselves at the levelof control

authoritywhich achieveshalfofthe performance inthe
l-genvironment (/.e.,at20 dB). [n thisway, thereisa
_enes oftests(i.e.,0 to20 dB) where ground and orbiutl
resultsshouldbe sirrular,and a seriesof_ests(/.e,20 to40
dB) where significantdeviation might be expected.



Singular l_rturbations could cause significant deviations
throughout the 0 to 40 dB range.

This experimental approach is formulated to study
the levels of control authority where the gravity
perturbations become important (i.e., the tranmition
regime). Testing only at levels below this transition
re@ires does not justify an on-orbit experiment. Testing
only at levels above this tv,_naition rtgim_ may not yield
meaningful data. Valuable information can only be
uncovered by totting at levels which span the tranaitWn
regime because these tests gradually reveal the
fundamental ways in which the pertinent gravity
dependent phenomena perturb the controlproblem.

Thtm the MAL-_ rut article and associated tests are
reprasentative of an important clmm of future NASA,
ESA, and NASDA missions, and they are designed to
exhibit gravity dependent charactoristice which become
important to closed-loop performance as control
authority is increased. By its design, the program
exhibits miuion applicability, technical relevancy and a
fundamental exploitation of the environment umque to
the STS ,./stem.

Ponvr_o ONA _ SraUCTtmaL BUS

A preliminary analysis of the linear pointing
problem is presented to illustrate the research approach.
In this section, performance degradation due to
unmodelled flexibility will be investigated. There are
two _ndamental questions that need to be answered for
the problem of pointing while mounted on a flexible
s_'uc_r_ bus. They are:

1) How does unmodeUed flexibility degrade payload
pointiv_ performance? and

2) How are controllers designed and implemented
oILa modelled flexible bun?

The first identifies the problem and the second 2denufies
the solution. The _ual control analysis tasks that will be
used as this research progresses are:

Task I. Design a controllerassuming the s_ucrurtlbus
isrigid.

Task 2. Evaluate the performance ofthiscon_ller on
an evaluation model which incorporates
flexibilitym the_ btm.

Task& Use a flexiblemodel to design the active

controllerumng existingpointingand tracking
hardware.

Task4. Allow the flexiblemodel controllerto use
additional sensors which measure flexnbie
motion of the bus.

Task 5. Allow the flexible model controllertoalsouse
actuatorstocontrolthisflexible mot'ion.

The first two tasks address the first quesuon. The
control algorithm derived u_ng the rigid _mgn model in
task I will be applied, in task 2, to a flexible evaJuarion
model using two different sensor confgurations referred
to as localized and cen.'raliztd, which are deptc_ed ,n Pig.
3.

In the localized configuration, the iner_al ar.u_de of
the payloadismeasured directlyby an iner_alplatform
(]P).Inthecentralizedconfiguration,theiner_a]arntude

of the payload is inferred from the iner_al attitude of the
structural bus at the [P and a measure of the relative
angle at the gimbal. Now, flexibility lies between the
payloadand the inertialmeasurement. Ifthe structural

bus were rigidthe performanceusingthe cenw_lizedand
localizedconfigurationswould be equivalent. In the
centralizedconfiguration,however, flexibilityin the
structuralbus can introducean additionalanglebetween
theIP and theend ofthestructuralbtm where thegimbal
is located. LeR unmeasured, this flexibility induced angle
can degrade pointing performance.

cntmi_

...,,t_ m Imlmomb a--_.t- m m_ld

In this paper, only tTpical ssc_ion analyass s will be
dealt with to inves:_ate the manner in which StTuctm_
bus flexibility degrades payload pointing porformlmce
(tasks I and 2). The typical section models employ
lumped mmums and iner_ias to capture the fundamental
physics embedded in the linear pointing problem.
Ultimately, these various control design and analysis
tasks will be performed on models of increasing
complexity.

There are two buic clasps ofrigidpayloads:center
ofgravity(CG) mounted payloadsand non-CG mounted
payloads. Al w_llbe shown, CG mounted payloads
exhibit certain desirable charmeterigdcewhich make their
controlsignificantly_wer.

The simplest model which captures the
fundamentals ofCG mounted payload pointing is the
two inertiamodel shown in Fig. 4. The inertiaJt

represents a s_ructm-al bus on which an attitude cont-ml
torque _t is applied. _e iner_a J2 repre_nte the.pointed
payload with the torque _reprmsenting the gimtml torque
between the paylcad and the structural bus. The two
angle coordinates e_ and 82 are the inertial rotations of
the structural bus and payload, respectively. This model
isussd as the rigid control design model.

In the Linear Quadratic Regulator (LQR)
formulation the inertial angle of the payload can be
penalized to improve payload pointing stability u

o (I)

{01 02x= O_ 'Q=

O_
00.0°01:: [::1

(2)

where J is the cost, x is the state vector, Q is the state
penalty mau'ix, u is the conu'ol input vector, and R is the



controleffortpenaltymatrix. The feedback solutionto
the steady-_.ateRiccati_quationgive,

00 0II::lo.
(3)

1:1 !; _i::_i': 1: ._E_

J1 J2

mW,_, 4 me_ mo_C_ mmmmd _

Noticethat thiscontrolonly feeds the inertialpayload
angleand angularratetothe gimbaltorque.No atutude
controlormemmrement ofthe s_ructuralbus atutudeare

required. The controlstiffensand damps the payload
motion with re_t coa particularorientationinunerual
space by using the structuralbus as a reactioninerna.
The closed-loopeigenvalue"are

•s=O,O, -1±_)

(4)

As might be expected, the pointing mode is in a
Butterworth pattern with damping equal to 70.71% of
critical.

The closed-loopvariance of the payload inertial
angle about it4nominal line-of.sightcan be calculated
assuming a steady-state additive white noise
disturbance.'l_tisdisturbanceisassumed tobe present
eitherat the attitudecontrollocationor atthe payload
gimbal. Other work has looked at stabilitybounds
associatedwith unmodelled flexibility.9

The variance is found by solvingthe closed-loop
Lyapunov equationrelatingthe drivingnoisecovamance
matrixV tothe s_a_ covanance matrixX.

X_ + ArjX =-V (5)

where Ad isthe closed-loopstatedynamics matrix ofthe
plant..The varianceofthepayloadiner_nalanglets

(6)

Notice that the variance isonly a functnonof the
additivegimbaltorquenoise(@_v_).If'there_sno Tmbal
torque noise,the varianceiszero. The a_=tude control
noisedoes not disturbthe payloadbecause:he rnomon of
the payload is decoup]ed from the mo_on of '.he

structuralbus. The costisproportional_o "he g_mbal
torque noise and decreases with increas,_.gpayload
inertiaand increasingcontrolauthority(v.._.

Having derived the controllerusing the design
model,itisnow possibletoinvestigatehow unmodelled
flexibilitydegrades the pointing performance by
impinging the control law (Eq. 3) upon a flexible
evaluationmodel (FigS).

Jll J12 J2

F_=mS _ w_m_ mm_i_r CGmommdi:_0_

Assuming tha:_ can bemeasured directly(thelocalized
configuration),_e cIceed-loopeigenvaluesare givenby

1 _ ..... tJll+Jl, _c

"=°,°, V
Notice thatthe rigidbody mode isunaffectedsincethe
atUtude controltorqueisnot used. The polesassociated
wath the pointingmode are equivalenttothe polesforthe
system withoutflexibility(Eq. 4). The remaining poles
are identicaltothe flexiblemode polesofthe open-loop
system.

Control spi]lover e_sl_ because the gimbal torque
disturbsthestructure.However, thereisno observation
spilloverbecausethereisno measurement ofany motion
associated with the mismodelled structure. The

measuremen_ of the payload inertial motion is
reconstructedexactlyand thereforeeliminatesspillover.
The closed.loopvarianceofthe payl_d angleisidentical
tothat inEq. 6. Therefore,flexibilitydoes not degrade
the pointing performance when local inertial
measurements arefedback toa CG mounted payload.

hathe centralizedconfiguration,theinertialangleof

the payloadequalstheinerualangleofJr2 (_2) plusthe
gnmbal angle (_G). However, the inertialangle ofthe
structuralbus isassumed tobe measured attheattitude

controllocationon Jll" Therefore,_he flexibilityinduced
rotation_12"_II is not measured.

The closed-loopvamance of the pay]oad'sinertial
angle isshown in Pig.6a (forgimbal noise)and Fig.6b
(for attitude control noise). The horizontal axis

represents the ratio v/_ as the cos_ of the con_ol (_) is
decreased.The solidlineinPig.6a isthe variance,from
Eq. 6,forthe rigiddesignmodel subjecttogimbal noise.
The dashed Line represents the varianceassociated with
theflexnbleevaluationmodel. Noticethacfeedback_om
inertialmeasurements atthe attitudecontrollocationto

the gimbal, acrossthe flexibility,couples the flexible
motion to the payload angle causing performance
degradation which increases with increasingcontrol
authoraty(v/_.

[n thecaseofatt-itudecontrolnoise(Fig.6b),onlythe
varianceassociatedwi:h theevaluationmodel isshown

because the varianceassociatedwith the rigiddesign
_odel IEq. 6) iszero. This variance is now nonzero
becausethe centralizedconfigurationfailstoaccountfor
_F,e,_exib_l_tyinduced angle between the inertial
plat-formand the Iocatnonwhere the gnmbal isattached

ORIGINAL PAL_ IS
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(8ti-012). This flexibili_-induced angle corrupts the
ee_nat_ of the payload iner'dal angle. Since the payload
attempts to track this estimate, this error causes a
degradation in pointing performance.

Multibody platforms can also have non-CG
mountad payload- attached to the structural bus. The
non-CG mount couples rotation (0]) of the structural bus
with rotation _ofthe payload. The rigid control demgn
modml is ebownin Fig. 7.

.y _l

Fpy

m 2

Penalizing the inertial angle of the payload _ves the
feedback as

2 v Ol

0 , g llo,[
17 Ta , j

.=7 2

where

=-_

(8)

,9,

den

= (m| ÷_,_)jz+ mxm_(_ x+_?)
dan (10)

den=(m_ + m2 )J1J2 +(Jle_ +J2_21)mlm2 (11)

Notice tha_ while both the attitud- control and gimbal
actuators are used, only the iner'cial sta_s of the payload
are measured. The ¢loNd-loop poles arts given by

,=o, 0,
(12)

Agmin, the Bunerworth pa_rn exists. The controlnow
requires feedback to the s_'ructural hue' at_itud_ control
torque sinceangular morion of the etTuct_'al bus and
payload are coupled in open-loop.

This control can be impinged upon a flexible
evaluationmodel such u theone shown in Fig. 8.

Jn Jm

F.

Fpy

_I_ x2` 2

Flexiblemo_ion ofthe structuralbus,cammd by gimbal
and attitudecontroltorque noise,l_rturtmthe angle of
the payload. This results in both control and obwrv_on
spillover.

Impinging the feedback in Eq. 8 on the evaluation
model in F_g. 8, using _he localized configuration, gives
_he results shown in Figs. 9a and 9b. The overlaid solid
and dashed lines in Fig. 9a show that the level to which
g_mbal arosedisturbsthe payload angle barelychanges



between the desip and ev-luation models. The solid
curve in Fig. 9b shows the variance of the payload angle
auocia_Jd with the design model (Fig. 7) in the presence
of attitude control torque noise. Notice that since
structural bus rotation couples with payload rotation,
attitude control nCfiN now disturbs the payload in the
desJffn model. The dashed Line in Fig. 9b shows the
variance associated with the evaluation model.
Excitation of the flexible motion couples with payload
rotation to cairns performance degradation, even though
s localized conflguraton Js u_d. The evaltm_on model
is more susceptible to performance degradation as a
function of control authority when the noise is
introduced at the at_Vade conu_d Iocaton than when it is
introduced at the gimbaL This is because the unmodelled
floxibilit T lies between the _s_u'be.ncs and the payload
thereby frequency shaping the disturbance on the
payload/n the former ca_, while the d/smrbance is
impinged directly upon the payload in the later.

Figures 9¢ and 9d show the variance caused by the
two differentnoise sources for the non.CG mounted

systems when a centralized configuration is used. [n
both flffurH, the solid curves represent _he variance
associatedwith the designmodel. The dashed curvesare
the variancesofthe evaluaton mod#l. No_iceinFig.9c
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that the variance aseo_a_d with gimbal noise deviates
from that for the design model at high levels of control
authority. This was not the case for the localized
configuration (Pig. 9a). For the case of attitude control
noise (Fig. 9d), deviation again occurs between the
variance of the design and evaluation models. Note,
however, that for either noise source the variance

eventually increases with increasing control authority
and that the level of control authority which minimizes
the variance depends on which noise source exisras.

The above analyms has served to illustrate the
degradation in performance that can occur when
controllers designed using rigid models are applied to
flexible spacecraft. The open-loop coupling of the
unmodelled flexibility to the payload angle makes the
non-CG systems more susceptible to performance
degradation than the CG system. Centralized
configurations ex_bit more deviation from the oxpec_d
rigid body performance than localized configurations
because the feedback paths are closed across the
flexibilitTtherebycouplingthe unmodelled flexibilityto
payload motion. However, centralized configurations
are programmat_ca_|y advanrahg_ous because the various
payload_s share an expenmvs common resource,the [P.

_T
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OFGRAVTrYONTHZ POINTING ANDTRACKING

PRom.ross

Multibedy plat'forms were chosen as the reference
mismon coc_guration not only because they characterize
many proposed missions but also because they are
arguably the most susceptible to gravity influences. The
essence of the on-orbit phase of the MACE program is to
identify and characterize these influences. To this end, a
set of sample problems was selected each of which
captures a different type of gravity perturbation. The
objective of this line of research is to analytically predict
the manner and degree to which these influences perrarb
the closed-loop control problem.

Gravity will cause changes between dynamics
measured on the ground and on.orbit. These
perturbations can be grouped in two broad categories:
thoseresultingdirectlyfrom the presence ofthe gravlty
field,and tho_ which are a resultof the mechanical

suspension system required for 1.g tests. These are
illustratsdinFig.I0. The firstcategoryincludes:modal
coupling which occurs due to the statlc sag of a
structuralmember, gravity stiffening(in tension)or
destiffening(in compression) of structuresalong the
gravity vector,and dynamic buckling which occurs
when the st'ructuralmembers deform transverselytothe
gravity vector. The second category of problems
includes:added stiffnessand mmm of the suspension
system,added damping of the suspension system,and
modal couplingofthesuspension dynamics w_th thetest

at'title.All oftheseinfluencesresultinper'_urbetnonsof
the system frequencies,damping and mode shapes
which can fundamentally alter the stabilityand
performance of a controller,and must be taken into
accountin design.

GROUND-BASED ENGINEERING MODEl. TESTB£D

The initial configuration of the MACE test article is
shown in Fig. 11. It consists of a segmented straight
tubular bus with a two axis pointing/t'racking payload at
each end. An active, strain-inducing segment is located
along the bus. The MACE test article will have a closely
coupled set of flexible modes with a fundamental
bendingfrequencybelow 2 Hz. This isdone throughthe
choiceofmaterial(Lexan)and geomeU'y ofthebus.

_ t (Smuc Droopma Sut_qu_

A segmented designoft_zbularmembers connected
by universaljointswas chosenu thebuJ structurefora

number ofreasons.First,itprovidesan evolu_onary_t
articlesinceitisstrmght'forwardtomodifyitsgeometry
to repruent more complex s_vucmree. Itis also possible
to add and change the locations of passive and active
members. These include piezoelectric members and
members with a high level of pass/re damping. Discrete
devices such as torque wheels,8ocelerometers and proof
mass act_mmrs can be attached at the jc_nte.

The overall length of the rut 8r_cle is appr¢_imately
1.5 m. The MACE engineering model (EM) node
provides for attachment of the members through the
MACE jointand provides a standm'd hole Imtternfor
attachment ofthe payloads,iner'dalplatforumand other
inst-rumenta_ion.Each member is.4m inlengthand 25.4
mm indiameter. Four members are used in the MACE
initialconfiguration.

Two typ_ ofpayloadsare cun'entJyenvisioned:

• Pointia&/trachin£.These payloads are mounted

the bus through a two axis motorized gimbal
mount. The payloads are rigid,and capable of
120°motionintwo axes.

• Flexible appendage. This payload consists of a
flexible, insn'umentsd boom mounted on a two
axis motorized gimbal. The gimbal is capable of
120° morion in two axes, and the fundamental
frequency of the flexibleboom isless than the
fundamental frequency ofthe bus s_ructure(<2
Hz).

The DC torqueact_mtorsinthegimbals willbe used
to alignthe payloads or to sweep them through a pre-
determined tracknngprofile.Rate gyroscopeslocatedon
the rigid pointing/trackingpayloads and the flexible
appendage willprovidea measure ofthe iner_alangular
rate of the payloads for feedback and performance
measure. The g_mbal motors will have integrated
encoders.

In additiontothe sensorsand actuatorslocatedon

the payloads,the followingsensorsand actuatorswill
alsobe used:

• Torque W'_eels. A setofthreetorque wheels is
situated at the center node of the structural bus.
The purpose of these torque wheels istoprovide
both three axas attitudecontroland structural
control.

C Suq_msiaeDm_lpm| )
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Pointing/Tracking Payload (2)

Active Segment

InertialPlatform

dJ Approx. 1.5 m

F_m.e 11 Ixdtbd _ fro. m_ pladnrm tern _'ttdo

v

_" Active Member. The MACE active member
consistsofa square Lexan rod with piezoelectric
ceramicsmounted on the sides.Itwillbe capable

ofbending about two axes. The member w111be
instrumentedwith surfacebonded straingauges.

• Rate Gyroscopes. A setofthree rategyroscopes
willbe collocatedwith the torquewheels forming
an iner_ala_mde controlplatform.

Additional sensors such as strain gauges,

accelerometers, etc. can be placed along the test a._cle as
required by the various control algorithms.

Given the recognized need to perform closed-loop
ground-basod tests, the question arises as to how does
one beet approximate the boundary conditions of space.
Required is a systsm which will support the payload
weight while having a minimal impact on the teet article
dynamics. A zero spring rate pneumatic/electric
suspension device from CSA Engineering Inc. of Palo
Alto, California will be used to support the test article in
1-g. The suspension system will have a 63.5 mm
maximum vertical stroke, a maximum payload of 17.4
kg, and will use displacement and acceleration feedback.

FuGirr Tzsrmn)

The MACE flight testbed consists of (1) the
Experiment Support Module (ESM), which containsall
experiment electronicsinone standard middeck locker,
and (2)the MACE tss_articlewhich isstowed ina second
middeck locker (Fig.12).z° The primary difference

between the ground-based EM and the flighttestbed will
be the manner inwhich the variousac_ve components of
thetestarticlewillbeconnectedto each otherand tothe

ESM. Electricalconnections along the bus willbe
accomplished by modifying the EM joint to provide
simultaneous electricaland mechanical connections.

This will be accomplished by inserting a multipin
electricalconnector insidethe joint. Wiring w_llrun

insidethehollowLexan members. Finally,thetestar_cle
willbe connectedtothe ESM through a singleumbilical
which w311alsoattachtoa testarticlenode. This greatly

simplifieson-orbitassembly time thereby max_mizzng
testingtime.

Experiment Support Module (ESM_

Much ofthe MODE 2 ESM willbe identacalcothe

MODE I ESM, utilizingmany similar or identical
components. These willincludethe ESM supp_ frame,
data storagedevice,analog circuitcard cage,and the

majority of the computer system. Modificationswill
includethe additionof a real _me high speed control
computer, and downlink/uplink capability.All MACE
data acquisition, storage, signal processing and signal
generation will be performed by Payload Systems
SensorNet Experiment Computer.

The purpose of the downlinkJuplinkistoallowon-
orbitidentification,downiink ofidentifiedparameters
and uplink ofnew controlalgorithmsin the event that
unexpected behavior occurs. Downlink will be
accomplished through data interleavingon the STS
videochannel. Uplink willbe accomplishedthrough the
STS Text and Graphics System (TAGS).

Required Reeourcee

MACE resource requirements are summarized in
Table2 below.

MA(_ Ra_m'm Requh'mne_J Smmma_v Table

Weight
Volume, operational

Volume, stowed

Power requirement
Telemetry

Crew activities

Data processing
,_ACE Test Article

Weight
Volume, operational

Volume, stowed

Power requirement
Crew activities

54R_
I Middeck Lx_ker
1 Middsck L_cker
113 Watts @ +28 VDC

DownlinJrJupLink
Set.up,operafiorm
Performed by ESM

5411_
30" x 8" x 60"
1 Middeck Locker
15 Watts

Set-uproperations

FlightOperations

MODE-2 callsfor operation by the crew on two
separate days. Procedures require configuration,
activationand operation of MODE-2 by one crew
member during a normal eighthour work period.Ifthe
testsequence proceeds flawlessly,the crew task for all
the ,MACE tests willinvolveassembling the _ article in
a predetermined configuration, running open-loop
identificationtestsovera specified frequencyrange,and
beginningclosed-loopoperations.The probable testing
scenariowould be toexcitethe structureusing a pre-
der.erminedexcitationprofilewith one ofthe on-board
actuators,then,aftersteady-statehas been achieved,to

to
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initiate the active control using low gain values.
Assuming no instabilities are found, the performance
met_c and sensor outputs will be recorded and the
experiment can be repeated with higher ga:n values,
u.nt_ _ the predetermined gains have been implemented
or an instability is reached. Testing would proceed to
additional configurations or control algorithms as ume
permit. This procedureisillusu'a_dinFig.13.

z,,4w_,Is Talc S,,ooodumdec_o,, no,_,r,

Afterthe firstday,videoand videoencoded data will
be transmitted tothe ground tobe analyzed by the PI
team and new controlalgorithms,ifnecessary,_nllbe
uplinked tothe crew priortothe secondday'soperatnon.
While no realtime communications, audioor video,are

required,this infrequentaccess to the STS video and
TAGS system will be necessary for up/down link
activities.

The MODE-2 program, usingthe MACE testar_cle,
is designed to develop thisqualificationprocedure by
formulatinga setofCST design and qualificationtools
and validatingthesetoolsthrough extonsiveground and
on-orbittesting.By conducting theseopen and cloud-
looptestausinga relativelyinexpensivetestarticle,a cost
effectivepreliminary search can be performed to
identifythe presenceofgravitationalperturba_onstothe
control problem. The specificcriteriawhich will
determine experiment successare the identificationof
the regular(and,iftheyexist,singular)perturbationsin
the dynamics which occuras a resultofthe change from
one to zerogravity,and the development of validated
analyticaland experimentalCST toolsneeded toinsure
the operationalsuccessofa CST spacecraft.
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CONCLUSIONS

There is a clearneed to develop an effect:reand

ei_cientanalyticaland testprocedureforqunh f)nng CST
spacacraR. The goalistodetermine the degreeuowh,c_
gravityperturbs the closed-loopperformance of L_rge

Space Structures which cannot be fullyor accurately
testedon the ground.
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