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Introduction

The MIT Space Engineering Research Center (SERC) has developed a controlled structures
technology (CST) testbed based on one design for a space-based optical interferometer. The role
of the testbed is to provide a versatile platform for experimental investigation and discovery of CST
approaches. In particular, it will serve as the focus for experimental verification of CSI
methodologies and control strategies at SERC. The testbed program has an emphasis on
experimental CST--incorporating a broad suite of actuators and sensors, active struts, system
identification, passive damping, active mirror mounts, and precision component characterization.

The SERC testbed represents a one-tenth scaled version of an optical interferometer concept
based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The
testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with
attachment points at three vertices (Figure 1). Each aluminum leg has a 0.2m by 0.2m by 0.25m
triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global
modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL
Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural
deflections at the vertices (site of optical components for maximum baseline) resulting in reduced
stroke requirements for isolation and pointing of optics. Typical total light path length stability
goals are on the order of 4/20, with wavelength of light, &, of roughly 500 nanometers [1]. Itis
expected that active structural control will be necessary to achieve this goal in the presence of
disturbances.

A unique feature of the SERC testbed is the implementation of a multi-axis laser metrology,
incorporating complex bends in multiple beam path lengths. At three mock siderostat locations are
precision three-axis active mirror mounts. The fourth vertex holds a laser head and other optics.
These optical components provide laser interferometric displacement measurements for baseline
metrology (six axes define the position of the mock collecting apertures relative to the fourth
reference point). We are concerned that the testbed represents a scaled model of an actual scientific
observatory as closely as possible. At the same time, we seek to perform CST research which is
generic and applicable in different areas.

The structure is instrumented with accelerometers, load cells, strain gages, experimental
piezoceramic and piezopolymer sensors, and (initially) three piezoceramic active strut members.
The stiffness of the active struts has been selected to approximately match the impedance of
structure as seen by the actuator at the active strut mounting location, leading naturally to control
designs based on passive shunting, wave impedance, or balanced bridge feedback.

A finite element model of the testbed was constructed and a conventional system
identification using an external excitation source will be carried out. The results (frequencies,
mode shapes) will be compared and the subsequent roles of each of these models in the control
design determined. Because of inherent inaccuracies of the finite element model in representing
lightly damped closely spaced modes, the experimentally determined modal model is preferred for
control design. Methods for generating uncertainty information from the system identification for
application in robust control methodologies, and studies of model reduction techniques are
planned.
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Three-axis active mirror mounts have been designed which provide £3.5 microns of stroke
over a frequency range of 500 Hz. Two mounts employ conventional piezoelectric actuators; the
third mount utilizes electrostrictive actuators that exhibit superior bidirectional repeatability, a
result of greater linearity and reduced hysteresis as compared to piezoelectrics. The moving mirror
mass has been sized to reflect the approximate scaled masses of siderostats of the proposed space-
based optical interferometer. The actual moving mass of the the mirrors will be varied to determine
the level at which interaction with the structural flexibility becomes significant.

The remainder of the paper begins with a description of the optics portion of the testbed.
Then the testbed CST program is reviewed with attention focussed in six areas: results from other
research closely-related to the testbed, finite element modelling, system identification, passive
damping, an axial component tester, and control experiments.

Optics

In this section, the optical components of the testbed are described. The focus here is on
the implementation of the on-board metrology system. Functional explanations of space-based
interferometry can be found elsewhere in this volume.

Beam-combining coherence requirements for an actual space-based interferometer will
require on-board sensing and correction mechanisms capable of controlling path lengths to A20.
Multi-aperture non-interferometric imaging instruments with similar baselines and operating
wavelengths can have more demanding requirements. The sensing system for orienting the
instrument relative to an external reference coordinate frame should have resolution and stability on
par with the resolution and stability of the internal metrology system. Our immediate concern is the

reduction in errors due to flexibility (Figure 2).

Internal Flexible

Figure 2: Sources of Path Length Error

The Interferometer CST Testbed under construction at MIT addresses the problem of most
direct relevance to CST: control of the instrument geometry in order to control projected baselines
and internal path lengths. The testbed control goal is to maintain fixed distances between points on



the structure which represent collecting apertures (mock siderostats) and metrology nodes, since
relative motion among these points changes both projected baselines and internal path lengths.

A sample interferometer mission to image a tenth magnitude object at visible wavelengths
with one milliarcsecond resolution using one meter apertures leads to path length stability
requirements of approximately 80 nm rms. The basic testbed configuration is intended to include
enough detail to be representative without being overly complex and costly. Many of the features
may be applicable to other spacecraft requiring precision control. Sensing of the external (rigid
body) orientation of the testbed and the science optics are not currently addressed, although
metrology systems for both of these could be tied directly into the on-board baseline metrology
system with little difficulty. Additionally, each mock siderostat mount includes provisions for
mounting a small flat mirror with its reflecting surface coplanar with the vertex of the metrology
system at that siderostat. Such a mirror might form part of a future science optics chain.

A six-axis laser metrology system forming an optical tetrahedron (Figure 3) will provide
the primary measure of control effectiveness. One vertex is located at each of the three mock
siderostats with the fourth vertex containing the out-of-plane reference point. The outputs of the
near and far legs will yield relative displacements among the vertices with the minimum number of
laser axes. The vertices of the optical and structural tetrahedrons typically do not coincide since the
siderostat locations were chosen to represent non-redundant baselines without necessarily requiring
rigid body tilting of the entire instrument. In the initial configuration, one siderostat plate will be
located near one structural vertex; the others are roughly 1/2 and 1/3 of the distance down two
different legs. The relative angles between the actively-mounted cat's eyes will be less than 96.5
degrees, which is within the cone of operation.
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Figure 3: Illustration of the Structural and Optical Tetrahedral Trusses

The power required to operate six axes, instead of the nine that would be needed to
determine Ax,Ay,Az for the three siderostats, permitted the use of a commercially available laser
measurement system using a single laser head mounted on the testbed. We are using a dual-
frequency stabilized laser head (670 uW total power), detectors, and fringe counting electronics
manufactured by Hewlett-Packard Corporation. A lens and 45-degree polarizer assembly plus a
short length of optical fiber allow the detector electronics packages to be located out of the way of



the measurement optics and associated mounting fixtures. The VME-based fringe counting
electronics provide a seamless link to our real-ime control computer.

Figure 4 details one measurement axis. The measurement resolution is limited by the HP-
supplied electronics to A/64 at A = 633 nm, or approximately 10 nm. Greater resolution can be
obtained with alternate electronics, such as the VME modules developed by Mike Shao's group at
JPL. For operation in air without wavelength tracking over short time scales and in a laboratory
disturbance environment, we feel that 10 nm resolution will be adequate. Our closed loop control
frequency range is 2-200 Hz, so changes in the refractive index of air and other sources of error
with long time constants will not pose any problem. A preliminary error budget suggests that
measurement resolution will be ~ 17 nm.
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Figure 4: One Axis of the Laser Metrology System

Cat’s Eye Retroreflectors

Cat's eye retroreflectors will be used to provide wide fields of view at the vertices of the optical
tetrahedron. These are similar to cat's eyes used by C. Townes (UC Berkeley 10um
interferometer) and D. Hutter (US Naval Observatory Astrometric Interferometer) although in this
application there is no siderostat slew range to contend with. The minimum size of the cat's eye
for a given amount of spherical aberration is a function of the laser beam diameter and the refractive
index of the cat's eye glass. The metrology laser beam diameter of 6 mm at the laser head led to a
cat's eye size and mirror mass which was unnecessarily cumbersome for implementation on a
moving platform. Reducing the beam diameter permits the cat's eye size to be reduced while
maintaining the same spherical aberration performance. Lenses reduce the collimated beam
diameter to 4 mm without reducing the available power. The cat's eye parameters are:

glass index at 633 nm 1.72 (Schott SF 10)
radius of small hemisphere 25 mm

radius of large hemisphere 34.7 mm

max. AOPL across beam cross section A/10

mass Silg

usable field of view: +/- 60 degree cone (see Figure 5)
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Figure 5: Cat's Eye Retroreflector
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Modifying the radii to generate a small amount of facusing will help counteract the increased
divergence of the smaller beam diameter and produce better overlap at the detectors. The curved
surface of the large hemisphere will have a silver reflective coating with a protective overcoat. The
curved surface of the small hemisphere will be coated with a broadband anti-reflective coating
targetted to be the proper thickness for A = 633 nm at half the cone angle. Anti-reflective
performance at other angles will depend on the spectral response of the coating. The hemispheres
will be aligned after coating and joined by optical contacting.

The remainder of the optics for each measurement leg consists of a polarizing beamsplitter
cube with crystal quartz quarter wave plates cemented to opposite faces, plus the associated feed
optics. Each beamsplitter-waveplate assembly is mounted in a semi-custom mount which provides
the adjustment degrees of freedom needed to align the measurement beam with respect to its
retroreflector endpoints. Three of these mounts are rigidly attached to an open pyramidal "bucket"
that is itself rigidly attached to the main fourth vertex optics plate (Figure 6). The remaining three
mounts are rigidly attached to the siderostat optics plates (Figure 7) in the far leg measurement

paths. These rigid mounts are designed to prevent motion of the beamsplitter optics from

appearing as motion of the retroreflectors. The feed optics must maintain the orthogonality of the
laser polarizations through complex bends in order to minimize errors due to polarization mixing.
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Figure 7: Layout of Siderostat Plate



Results from Recent Testbed-Related Research

In conjunction with the development of the testbed, several other areas of research are
being pursued. Three studies have been completed, and are documented elsewhere [1-3]. Some
relevant results are summarized below.

ms Level Disturbance Minimization Usin ntroll hnol

Disturbances present on a typical large space-based observatory are detailed. The spectrum
of disturbances is divided into those which depend on the space (Earth orbital) environment and
those which are internal. Various CST techniques for minimizing the effect of disturbances on
mission requirements are reviewed. These include passive structural tailoring, passive damping,
vibration isolation, and active structural control. The full-scale 35-meter baseline version of the
interferometer testbed is used as a case study for evaluating the flowdown of systems level
information to the structural requirements. The power, attitude control, and interferometer and
metrology subsystems are discussed with respect to their role as disturbance sources. Finally, an
approach for systems level disturbance minimization is outlined.

Experimental Characterization of Damping at Nanostrain Levels

In light of the increasing trend towards nanometer-level requirements on structural stability,
it was considered beneficial to characterize damping at extremely small displacement and strain
levels. There has been discussion in the CSI community recently regarding dynamic behavior of
structures at extremely low vibration levels. In particular, it was not known whether there was a
radical change in properties below a particular vibration or displacement floor. In this study,
damping was measured in aluminum and graphite/epoxy material specimens in air and in vacuum,
and in the bare interferometer testbed truss. It was demonstrated that material damping was
independent of strain from ten microstrain down to one nanostrain. Excellent correlation with
thermoelastic material models was obtained. Damping in the testbed was found to be independent
of strain below one microstrain (Figure 8). The linearity can be exploited by doing system
identification at micron displacement levels instead of nanometer levels. The results were
immediately instrumental in allowing the use of relatively inexpensive accelerometers for system
identification on the testbed, rather than the extremely accurate high cost sensors.
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Figure 8: Experimentally Determined Damping in 44 Hz Testbed Mode
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Figure 9: Experimental Approach for Investigating Path Length Control
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In this approach to structural control, the flexibility of the structure is ignored to the greatest
extent possible. Instead of controlling the structure, a mirror mass was moved to maintain an
optical path length in the presence of disturbances propagating through the structure (Figure 9)
using a control strtegy that ignored the structural dynamics of the flexible base structure. The
approach was successful provided that the actuated mass was small compared to modal masses of

the structure. The effect of damping was investigated and quantified. An order of magnitude




reduction in vibration levels was demonstrated (Figure 10). This concept--implemented only for a
single input single output case--will be extended to the interferometer testbed, where active mirror
mounts will be used to position the cat's eye retroreflectors in three displacement degrees of
freedom. Preliminary analysis of the finite element model suggests that the ratio of the moving
mirror mass to the modal masses of the structure are small enough to allow the design of a high
performance stable controller without further considerations of the structural dynamics. Research
into active isolation will focus on the extension of this approach to cases involving noncollocation,
multiple flexible modes, and multi input multi output systems.
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Figure 10: Results from Path Length Control Experiment

Finite Element Model

The purpose of the finite element model is to provide a basis for analytical studies of
structural modification, and to serve as one basis for control design. The accuracy of the finite
element model is verified by comparison of frequencies and mode shapes with an experimentally
derived modal model. Itis not likely that the model will be used for control design if experimental
models are available. The effort in finite element modelling is outlined in Figure 11.

Two finite element models have been constructed using ADINA: a continuum beam model
and a model which contains separate elements for each strut. The continuum model has sufficient
accuracy to make it useful for examining various approaches to control. Some features of the
models are described below.

Continuum Model
 Equivalent continuum cross-sectional properties for each leg of the truss were
derived. (The six legs have identical cross-sections.)
* Each of the six legs was then modeled with 14 Timoshenko beam elements.
* The first flexible mode is at 38 Hz.
+ The low mode shapes are characterized by 1st and 2nd bending and the torsion of
individual legs.
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Figure 11: Near Term Efforts on Testbed Finite Element Model

Full Struts Model

« There are 228 nodes representing the aluminum joints.
« Each of the 696 struts is modeled with a Timoshenko beam.

« The first flexible mode is at 34.56 Hz.

« The model runs in under 2 minutes on the Cray II.

« The low mode shapes are characterized by 1stan

individual legs.
« There are 35 flexible modes below 200 Hz.
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Figure 12: Frequency Distribution of First 39 Finite Element Modes



Figure 12 shows the frequency vs. mode number for the first 39 modes based on the full
struts model. Because of the inherent symmetry of the structure, there are repeated eigenvalues
(multiplicity 2 or 3) present. Further, there is a separation between clumps of modes from 54-98
Hz and from 142-194 Hz. The repeated roots and clumping of modes will disappear once
concentrated mass of the three siderostats and the fourth vertex are added. Also, the added mass
will drop the frequencies further so that there will be more than 50 modes below 200 Hz.

The eigenvectors from the full struts model have been used to calculate strain energy
distributions for each mode. The elements can be ranked from most to least strain energy by mode
or sum of modes. This information will be used to choose passive damping element locations, and
later as an initial criterion for active member location selection. With an improved model (including
optics) we will be able to calculate a rough optical path performance metric to rank locations on an
‘open loop’ controllability basis (i.e. without simulating performance of the closed loop system).

In separate work, a two-dimensional truss model has been used as a sample problem to
develop necessary tools for control based on state-space models from the ADINA output.
Implications of the close modal spacing and light damping are being studied.

in
The finite element model will be augmented with experimentally determined damping
values. In addition, damping will be added in select elements in conjunction with the viscoelastic
struts experiment. A more careful study optimizing passive damping locations will be carried out
later.

f the Finite Element Model

The finite element model in its current form is a useful tool for parametric studies, mode
shape visualization, calculation of strain energy distributions, and selection of system ID
accelerometer locations. We have improved the accuracy of the model, but it is still not perfect.
With initial ID data we will be able to make a direct comparison between finite element and
experimental data.

At some point a broader discussion of the role of finite element models in CST may be in
order. There are several points which must be addressed. From the academic perspective at
SERC, these include:

» The ‘need’ to develop a highly accurate finite element model because it is standard
practice in industry.

» The value of a finite element model for laying out identification and control
architectures

+ The inadequacy of finite element models as a basis for control in a complex lightly
damped structure

« The relatuve value of finite element models and experimental system identification

* The realistic potential for on-orbit system identification

+ The need for an accurate finite element model if system identification is not
possible

* The role of a hybrid approach which could include subscale and component
identification



System Identification

A system identification is routinely performed on controlled structure testbeds as a prelude
to control experiments. To date, the interferometer testbed is the most complex structure to be
identified in SERC. The experimental model derived from the system [D will serve two purposes.
First, it will allow verification of the finite element model. Second, it will provide a modal model
for control design. .

Because of the complexity of the optics, the testbed will not reach its ‘final’ configuration
for some time (late fall 1990). However, an initial ID will be performed in order to provide
verification of the naked truss finite element model. The structure and model will be sufficiently
complicated later so that tracing sources of error will be difficult. In addition, the initial ID will
allow us to become familiar with the recently-purchased software and hardware systems. The ID
will be done with an external shaker and roughly 32 or more accelerometers. Later, active
members installed in the truss will be used for system ID.

Initial tests show several interesting results. The first flexible mode was measured at 31.34
Hz, compared with a finite element prediction of 34.56 Hz. This 10% error indicates a need to
revise the finite element model, with input from a subcomponent stiffness test on the struts. The
effect of gravity is apparent in the structure. Modes which are nominally the same frequency differ
by typically 0.3 Hz. Also, pendulum and bounce suspension modes have been measured (below 4
Hz). Finally, typical damping ratios of 0.04% to 0.07% have been recorded for the flexible truss
modes, with minimal intrumentation and cabling on the structure.

Frequency Resolution
Due to memory limitations of the identification computer, frequency resolution is currently
at best 0.0125 Hz. This may not be acceptable for lightly damped modes present in the testbed.

Generation of the Modal Model
The Structural Measurement Systems STAR software will provide frequency domain fits

over limited frequency ranges. These will be assembled in Matlab where the full modal model will
be constructed. This model will initially contain roughly 100 states.
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Figure 13: Near Term Efforts on Passive Damping Augmentation

A passive-as-possible approach is preferred in achieving a spacecraft which must meet
stringent shape or pointing requirements. However, in an environment which will include several



potential disturbance sources, some sort of vibration alleviation will also be necessary. The
introduction of an active control system can greatly improve performance at the expense of
complexity, cost, and the possibility of instability. Passive damping augmentation is a far less
glamorous, but nevertheless effective alternative. When an active structural control system is
considered necessary, passive damping can only be beneficial. It does not make sense to
implement aggressive structural control on a plant with only 0.05% inherent damping. Our initial
goal is to conduct enough tests to establish the basis for later comprehensive experimental studies
of passive damping schemes to be carried out in the future. The program has been broken into
four areas representing different approaches to passive damping. These are shown in Figure 13.

Constrained layer viscoelastic struts have been tested in a small cantilevered truss. Poron
and Scotchdamp materials were compared, and Scotchdamp was found to be more effective. The
effectiveness of different Viscoelastic layer thicknesses has been judged based on ringdown
experiments in a first bending mode. A significant component of the strain energy of the structure
is in the damper strut. This allowed high loss factors (25 %), and large drops in frequency.

Twelve of these simple highly effective struts have been manufactured. With information
from the component tester, it will be possible to model the struts with equivalent axial stiffness and
viscous damping. This information will be integrated into the finite element model where a
prediction of the added global damping due to several viscoelastic struts is possible. A repeat of
the ID experiments will yield a measured value for damping.

A resistively-shunted strut [4] was built and tested in a small cantilevered truss. The initial
results were discouraging, with damping values below those expected. Subsequent re-engineering
of the strut yielded no improvement. The use of a commercial Physik Instrumente actuator in the
strut gave no better results. Although the experiment was designed to concentrate a large amount
of strain energy in the piezoceramic material, this was apparently not the case. A careful test of the
strut in the component tester will provide an accurate accounting of strain energy distribution. The
active member actuator stiffnesses were selected with consideration of appropriate stiffness
properties for the shunting application in the large testbed.

Concerns '

The difficult problem we face in adding significant global damping is the large number of
struts (696) in the testbed. The damping members must be selectively placed, perhaps near critical
payloads. At this point, the constrained layer Viscoelastic struts are by far the least expensive and
easiest 10 make. Drawbacks include the frequency-dependent loss factor and material
propertytemperature sensitivity. The shunted piezoceramics are potentially more effective than we
have demonstrated to date, but are expensive. A device based on the Honeywell D-Strut design,
which is capable of broadband viscous damping and is relatively temperature-independent is
desirable, but is at this point prohibitively expensive to incorporate into the testbed.

Component Tester

An axial component tester has been constructed and is operational on an optics bench. This
facility includes a Physik Instrumente piezoceramic strut to drive various test articles which
represent subcomponents of the testbed. Mainly, these are passive or active replacements for the
aluminum struts. Load and displacement are measured, the latter with a Zygo Axiom 2/20
interferometer system. The tester will be used in the 0.1-200 Hz frequency range, with
displacements from 1 nmto 60 um. Initial measurements to be conducted are:

» stiffness of truss longerons and diagonals
» stiffness of active struts

» voltage/deflection plots of active struts

« viscoelastic strut characterization



The facility will be available in the future for characterization of other passive or active
components.

Control Experiments

We do not forsee having the capability to do absolute shape control in the near future, since
that requires rigid body control of the testbed. The initial effort involves separation of the
structural control and optical metrology path length control loops. Capabilities will be established
in each through simple closed-loop experiments. Figure 14 shows the near term goals for control
experiments.
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documentation optical performance
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Figure 14: Near Term Efforts on Control Experiments

Model Basis for Control Design

There are several methods for generating a model which is a suitable basis for control
design. These include finite element models (usually augmented with experimental damping
values), measured models based on modal models from system identification, and measured
models based on direct information from input-output actuator-sensor pairs. The third approach is
preferred if the proper measurements can be made. For all these designs model reduction may be
necessary in the plant and controller.

Real Time Software

The software to do linear, constant coefficient, digital control is functionally complete. The
code is called MarCon for matrix control. The user interface is through Matlab, where a typical
continuous control design is discretized. The discrete matrices and some other constants (number
of inputs, outputs, and states, scaling factors, and the sampling period) are saved in a standard
Matlab .mat file. The real-time computer then reads this data and starts the controller. The
following algorithm is used.

input vector y from A/D
x =F x +F

n+l 1nn» 12y"

u, =F, x,

output vector u to D/A
wait for next sample time



While the controller is running the user can stop and start the controller, record states, inputs, and
outputs, and scale inputs and outputs. The data file of input vectors is stored in on-board memory,
until a set number of samples has been saved. The controller is then stopped and the data
transferred to the hard disk on a Sun Sparcstation, where it can be read back into Matlab. States
and outputs can be reconstructed from the saved input data for full analysis. There is a direct
interface to the six HP laser measurement boards. Four-pole Bessel anti-alias filters with a corner
frequency set by digital input-output from the real-time computer are used. The filter cards also
provide a digitally programmed gain of 1,2,4,8,0r 16 to help amplify low-level sensor signals.
We will have the capability to process 16 inputs, 10 outputs, 32 states at 1kHz. The control
bandwidth is not expected to exceed 150 Hz.

Active Struts

The active strut design is shown in Figure 15. In addition to the load cell and internal strain
gage measurements, two accelerometers are mounted to the strut to provide an inertial collocated
measurement and to permit system identification using the active struts. Three struts are currently
available, and an additional homemade unit will initially be used as a disturbance source generator.

PIEZOCERAMIC ACTUATOR WITH
INTERNAL STRAIN MEASUREMENT
(PHYSIK INSTRUMENTE)

ACCELEROMETER
KISTLER)

Figure 15: Active Strut Configuration



\ctive Mirror M

Active mirror mounts will be used to maintain to A/20 the linear positions of the cat's eye
retroreflectors, which are located at the three mock siderostat locations shown in Figure 3. Output
position control will be achieved by moving the cat's eye and mounting table using three
microactuators: 0.7" piezoelectric stacks for two of the active mirror mounts and 0.4"
electrostrictive stacks for the third, as shown in Figure 16. The actuators will be run in common
mode to actuate piston, or z, motion of the point M of the cat's eye. In differential mode, the cat's
eye and table will be tilted; resulting in x and y displacements through the lever arm and flexure
assembly. The rotations and lateral displacements cannot be controlled independently, but this
constraint will not be a problem for the envisioned set of control experiments in the near to medium
term. Simultaneous displacements of +/- 3.5 pm can be achieved in all three directions. The
mirror mount design includes the flexibility to introduce additional mass to simulate the scaled
mass of the retroreflectors. Additionally, the mounts can later be moedified to incorporate mass
reactuation, where the he effect of moving the mass of the cat's eye is reduced or even cancelled.
The result will be a reduction in the interaction between the mirror control system and the truss
flexibility.
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~
siderostat plate
L |

Figure 16: Active Mirror Mount Functional Drawing

The active mirror mount is a small stroke device intended to control only path length errors
in the flexible truss. These errors will result from disturbance sources that are introduced
intentionally to simulate space disturbances and from disturbances present in the ambient noise
environment of the laboratory. Figure 17 shows the ambient acceleration power spectral density
(PSD) in the worst-case direction measured by a triax of moderate-sensitivity accelerometers
(1V/g) at a proposed active mirror mount location on the truss. In this very preliminary study, the
structural dynamic response, starting at 30 Hz, is also corrupted by electrical noise and various
lower frequency suspension modes. A displacement PSD is calculated by scaling the acceleration
PSD by 1/w?, which leads to an estimate of rms displacement of 22 nm in the frequency band of
20-100 Hz. Assuming that a point corresponding to a siderostat on another leg experiences the
same disturbance and vibrates out of phase with the first point throughout this frequency range, an
ambient path length error of 44 nm rms can be expected. The actual error may be less once
electrical noise is removed and the additional mass of the active mirror mounts is added to the
truss.



Electrostrictive Actuators :

In separate work [5], electrostrictive ceramic PMN:BA, a material of interest to structural
control engineers, was characterized for test parameters of frequency, amplitude, and temperature.
Results indicate that at room temperature the material strain response is quite linear with almost
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Figure 17 Acceleration Power Spectral Density in Worst-case Direction at Proposed Active
Mirror Mount Location
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Figure 18 Displacement Power Spectral Density in Worst-case Direction at Proposed Active
Mirror Mount Location (Derived from Acceleration Measurement)

no phase due to hysteresis, unlike piezoelectrics, and is constant with frequency. However, the
induced strain sensitivity is highly dependent on temperature, and hysteresis increases rapidly
below room temperature. Since electrostrictive actuators will be used in one of the three active

—



mirror mounts, the operating temperature of the actuators will need to be monitored during
calibration and usage.

Summary

The SERC interferometer CST testbed will soon be fully operational. The facility will
address concerns regarding extremely tight constraints imposed on structural motion in future
space observatories. At the same time, the testbed will serve as a platform for exploration of a
broad range of controlled structure technologies and approaches.

Work described in this paper was funded by NASA Grant NAGW-1335.
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Abstract

A cost functional is proposed and investigated which is moti-
vated by minimizing the energy in a structure using only collo-
cated feedback. Defined for an He-norm bounded system, this
cost functional also overbounds the M, cost. Some properties of
this cost functional are given, and preliminary results on the pro-
cedure for minimizing it are presented. The frequency domain cost
functional is shown to have a time domain representation in terms
of a Stackelberg non-zero sum differential game.

Introduction

This paper examines the properties, evaluation algorithm, and
an optimization approach for a cost functional for combined
M3/ MHe control. Combined 3 and Heo control is of interest since
it combines the problems of nominal performance and robust sta-
bility. Related work includes H; optimization with an Ha con-
straint (14}, minimum entropy He control {4,5], and mixed H,
and Mg, control [6,7). The cost functional of interest to us is
defined as follows.

Definition 1 Consider a system H(s) = (Ho(s) Hi(s)] and s
number v € IR, with Ho € RH,;, Hy € RHa, and |Hill, <7
Then the cost L(H,~) 1 defined by

L(H,7) ;=2i* [ rrace{(7 - v HH) " HoBg}dw (1)

The specific form of this cost is motivated by minimising the to-
tal vibrational energy of a structure with only a model of the local
dynamics near an actuator and collocated sensor. Previous work
with this type of model has used H; (8] and Mo, (9] optimizations
of the power flow. Briefly, the fraction of the input power flow
that is reflected into the structure at the actuator location is &
quadratic at each frequency, and can be represented by a transfer
function HH*. The fraction of the power that is dissipated is then
(I - HH*), and the total power dissipated is (/ - HH*)E where
E is the structural energy as a function of frequency. If the power
flow into the structure from external disturbance sources is given
by #(jw), then & power balance yields that the total energy in the
structure is given by L([H H®],1). A more detailed explanation
may be found ia {10].

In {7), a framework for mixed H3/HMe, control problems is con-
sidered. There the cost functional is motivated in an input/output
sense. The system is subject to two inputs, one of bounded spec.
trum, and the other with bounded power. For the case where
the first input signal is white and the second is causal, necessary
and sufficient conditions are given for the existence of a controller
which minimizes the cost. The non-white and non-causal case is
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. 'Pinancial support by the Commonwsalth Pund under its Barkness Fellow-
ships program, aod by AFOSR-89-0276.

Pressnted at the 2¢** [EEE Cooference on Decision and Control, Honoluly,
Hawaii, December 1990

Denis Mustafa!
Laboratory for Information and Decision Systems
Massachusetts [nstitute of Technology
Cambridge MA 02139

described but not solved (see Section 3.3.) This case is, however,
of particular interest as the cost theu equals L(H,7), revealing
close reiationship between the present approach and the approach
taken in {7]. This connection is currently under investigation.
The final section of this paper gives a third interpretation of
this cost in terms of a Stackelberg non-zero sum differential game.

Properties

The following basic properties of L(H, ) will be stated without
proof, and can be easily shown to hold.
Proposition 2 Let H(s) and v satisfy the conditions in Definr
tion 1. Then

(i) L(H,¥) s well defined.
(i) L(H,7) 20, and L(H,7) =0 = Ho =0

(iii) LUHV,y) = L(H,7) for any U,V € RLy with UV =
I, VVe =1

Io the case where H, = Ho, further properties of the cost
L{H,7) can be established by relating it to the entropy [(H,v) of
a system defined, for example, in Reference (5]

Definition 3 For H € RMy, v € R, and |Hl|, < 7, the en-
tropy at infinity 13 defined by

I(H,v):= —g; / In |det (1--,-=H'H)|dw

(2)

Also let C(H) be the usual H; cost associated with the system H,

C(H) = 2% [ trace (H*H} du (3)

Proposition 4 For H = [Ho Ho| , with Ho and v satisfying the
conditions 1n Definition 8, consider the cost L(H,v), the entropy
I(Ho,7), and the M, cost C(Ho). Define { = 11, then

(i) L(H,7) = & (EI(Ho,7))
(i) L(H,7) 2 I(Ho,v) 2 C(Ho).

Proof: The first assertion follows directly from the proof of
Proposition 2.3.2 in Reference (5. The first inequality in (1) fol-
lows from L(H,v) = I(Ho,7) + &(I(Ho,'y)) and the result from
Proposition 2.3.2 in (5] that ﬁ(I(Ho,'y)) > 0. The final inequal-
ity is obtained from the result that I(Ho,v) itself bounds the M,
cost. a

That L(H,v) overbounds an M, cost can also be shown to hold
for the case Hy # Ho.

Proposition 3 L(H,7) 2 C(H).



Proof: Sioee [Hillg < v, (I - Y IH\H}) < 1 and (I -
Y- 'H\H?)"' < 1. The result then follows directly from the defi-
nition of L(H, ) in Equation (1). o

Finally, note that relaxing the H.,-norm bound completely re-
covers the M, cost.

Proposition 6 1[1.1;.1' L(H,y) = C(H,).

Proof:  This follows directly from the definition of L(H,v) in
Equation (1) and the Dominated Convergence Theorem. o

Evaluation of the Cost

Consider a state space representation for a strictly proper sys-
temH = {Ho Hlj y

Al By B

RN

] =C(sl- A)' 1B, B (4)

The aim is to evaluate L(H,v) in terms of the state space data.
Note that a non-zero term D, could be included; H, is made
strictly proper only to simplify the results.
Lemma 7 Let H = [Ho Hy] be given by Equation (i), 7 € R,
ond ||Hy|l <. Then
L(H,7) = trace {CQCT} (5)
where P, Q satisfy (A + v=?B, BT P) stable and
PA+ATP+ 1PB,BTP+C7C =0 (6)
(A+7"B,B,TP)Q+Q(A+7”B,B,TP)T+ ByBI = (m
Proof: Since H1H} < v*] Vw, then 3IM*! ¢ RHe given by
M*'M = Hi(I -y H\H}) ' H, (8)
A state space representation for M*M can be found by noting

that M*M is the transfer function of the feedback system shown
in Figure 1. So

A 7"8\8{ Bo
M'M={ -CTC -AT |0 (9)
0 B |o

With P given by Equation (6), then

M= |A+tT2BBTP , 1:., ]

is the stable factor of M*M above [11]. Substituting Equation (8)
into (1), it is clear from (3) that the cost L(H,v) is then given
by I Mll,, where || M|, = trace {CQCT} uad Q satisfies the Lya-
punov equation (7) [13]. 7 'l

(10)

O—{Cts1 - Ay Mt - AT)-F}_H B |—

Figure 1: Block Diagram for M*M

|} P —— |

Figure 2: Feedback System

Optimization

The goal of this section is to present an approach for solvin_
for the optimum controller that minimizes a cost functional of
the form (1). Linear time-invariant controllers will be assumed
throughout, but this form is not proven to yield minimal cost. The
necessary conditions that an optimal compensator must satisfy ar,_
presented. Conditions for the existence of such a controller are not
discussed here.

The system can be described by the block diagram in Figure 2
P can be realized in state space as

A| B, B, B,
P =

G| 0 0 Dy,
Ci|{Dyp Dn 0

and H is then given by the lower linear fractional transformation
H=F(P.K)= [Po Py +PuK(I - PuK)™ [Py Py} (12)

Admissible compensators K will be those which stabilize P, and
satisfy ||fy]|, < 4. The problem statement is then -

n}in{L(H,‘y) : K admissible} (13)
By a scaling of H, without loss of generality consider the cas
y=1.
The full state feedback problem is examined first, with normal-
ized control weighting, so that C7 = [CT 0] and DT, = o1.

Theorem 8 Consider the problem statement (18), with Acy =
ai-B;F. If F \s a static feedback matniz that solves Equation (183),
F = ~BI(PQ + PQ)XQ + Q)" e
where P, Q, P, and § satisfy Aemy = (Acy + B, BT P) stable anc
PAcL + A7 P+ PBBIP+CTC+FTF=0 (I8

AmeQ + QAT + BoBT =0 (16

(1

PAy+ AL P+CTC+FTF =0 ar

AmeQ + QAL + QPB,BT + B,BTHQ =0 (18
Act | Bo By

Proof: The closed loop system is H = 0 0 |. Fror
F|lo o

Proposition 7, the cost is J = trace {C’QCT + FQFT}, where (
solves the Lyapunov equation (16), and P satisfies the Ricca
equation (15). Appending these two equations to the cost as cos
straints with Lagrange multipliers # and Q respectively yields th
equations for P, Q and F upon differentiating with respect to ¢
Pand F.

Preliminary results indicate that an iterative approach to sol
ing these equations converges rapidly to the optimal feedback la
F. Given aa initial guess for F (say, from the minimum entrof
control problem [5]), P, Q, P, and @ can be computed sequential
as the solution of Riccati and Lyapunov equations. Equation (1
can then be evaluated for F, and the process repeated.

For a system of order n and a fixed order compensator of ¢
der n,, the necessary conditions for the optimum can be foun
again using a Lagrange multiplier approach, in terms of 4 orc
n + n. matrix equations similar to Equations (15)18). Work
currently in progress to simplify and interpret these results for ¢
dynamic compensation problem. Note that there is Bo a pr
reason to expect that no improvement in the cost can be achiev
for ne > n.

ORIGINAL PAQE I¢
OF POOR QUALIT



Time Domain Interpretation

The form of the augmented cost for the linear control problem
leads to an interesting differential games interpretation. It is well
known that the central controller in the Mo problem can be found
as the solution to a zero-sum differential game {14}, where for min-
imizing || Trel|,, the control u and noise w solve the optimization
problems:

u

argmin [; Tz —y'wTwdt (19)

argmin ]o
u has some information y about the state, and w has full informa.
tion.

With the current cost functional, and under the assumption of

linear feedback, the optimization problem is again equivalent to a
differential game, but it is no longer a zero-sum game. Whether
the two problems are equivalent when both are allowed nonlinear
feedback is unknown.
Proposition 9 If an optimal linear compensator ezists for prob-
lem (18), then it is the same as that of a Stackelbery differential
game with u as leader, un as follower and wo a3 unit intensty
white nowse, where u and wy solve the follounng optimuzation prob-
lems:

w ~Tz 4+ Y wTwdt (20)

u = argmin ‘lle.E {zrz} (21)
wy = argmin ‘1_1_1-n- E {—trl + ,Y:wrwl} (22)

u has some information y about the state, and w has full informa-
tion.

Proof: Assuming a linear control law for u, the optimization
problem for w, is easily solved with a single Riccati equation
(which is Equation (15) for the state feedback case.) Append-
ing this as a constraint for the optimization problem (21) results
in an ideatical problem formulation to that of problem (13). O

This game seems to be a more natural problem to pose than
the pure M., differential game, since the control does not benefit
from the use of noise, but instead optimizes an N, type of cost
functional, while the deterministic noise w; solves the same opti-
mization problem as before. In addition, the plaat is subject to a
white noise input wo. This looks similar to the framework of [6,7]
since a single output is minimized in the preseace of two distur.
bance inputs, one of which is associated with the H; oature of the
problem while the other is associated with the H, oature.

Note that for a non-zero sum differential game, the solution
depends on how the optimality is defined. For the Stackelberg
or leader-follower solution [15-17], one player (here the control u)
acts as leader and announces a strategy, and knowing this strategy,
the follower (here the noise w;) solves its optimization problem.
Also note that in general, the optimal control for the Stackelberg
problem is known to be nonlinear (17]. Similar equations to (15)-
(18) have been reported in (16], where the optimal linear state
feedback law for a Stackelberg problem was found. The nonlinear,
team optimal strategy obtained, for example, in [17] does not ap-
ply to this problem since the leader u cannot increase the follower
wy's cost indefinitely, and therefore cannot induce w, to follow a
strategy desirable to u.

The differential games representation of problem (13) allows
the matrices of Equations (15)}(18) to be given aa interpretation.
—P and +P correspond to the optimal cost-to-go for the costs
associated with w, and u respectively, Q is the covariance of the
state, and @ is the sensitivity of the cost for u to changes in the
cost for w,.

References

(1) Bernstein, D. S. and Haddad, W. M., “LQG Control with
an M,y Performance Bound: A Riccati Equation Approach,”

[EEE Trans. Auto. Control, Vol. 34, No 3, March 1989,
pp. 293-308.

{2] Haddad, W. M. and Bernstein, D. S, “On the Gap Between
H; and Entropy Perfomance Measures in H., Control De-
sign,” Proceedings, 28 [EEE Conf. on Decusion and Control,
Dec. 1989, pp. 1506-1508.

(3] Rotg&. M. A, and Kbargonekar, P. P, “Simultaneous M,/ H,,
Optimal Control with State Feedback,” Proceedings, 1990
Am. Control Conference, San Diego, CA, May 1990, pp. 2380-
2384.

(4] Mustafa, D. “Relations Between Maximum-entropy/Me
Control and Combined Moe/LQG Control,” Systems and
Control Letters, Vol. 12, 1989, pp. 193-203.

(s

Mustafa, D. Minimum Entropy H, Control, PhD Thesis,
University of Cambridge, 1989.

6] Doyle, J., Zhou, K., and Bodenheimer, B., “Optimal Con.
trol with Mixed M; and H, Performance Objectives,” Pro-
ceedings, 1989 Am. Control Conference, Pittsburgh, PA,
pp. 2065-2070.

(7] Zbou, K., Doyle, J., Glover and Bodenheimer, B., “Mixed
‘H, and H, Control,” Proceedings, 1990 Am. Control Con-
ference, San Diego, CA, May 1990, pp. 2502-2507.

(8] Miller, D. W, Hall, S. R. and von Flotow, A. H., “Optimal
Control of Power Flow at Structural Junctions,” J. of Sound
and Vibration, Vol. 140, No. 2, 1990.

9

MacMartin, D. G. and Hall, S. R.,, “An H, Power Flow
Approach to Control of Uncertain Structures,” Proceedings,
1990 Am. Control Conference, San Diego, CA, May 1990, pp.
3073-3080, to appear in AJAA J. of Guidance, Control, and
Dynamics.

[10] MacMartin, D. G. and Hall, S. R., “Applications of Statistical
Energy Analysis to Control,” preprint, June, 1990.

[11] Francis, B. A., A Course sn H, Control Theory, Springer-
Verlag, 1987.

(12) Kwakernaak, and Sivan, Linear Optimal Control Systems,
Wiley-[nterscience, 1972,

[13) Doyle, J. C., Glover, K., Khargonekar, P. P, and Frandis, B.
A., “State-Space Solutions to Standard M; and Ha Control
Problems,” [EEE Trans. Auto. Control, Vol. 34, No. 8, Aug.
1989, pp. 831.847

(14] Rbee, [, and Speyer, J. L., “A Game Theoretic Controller
and its Relationship to He and Linear-Exponential-Gaussian
Syuthesis,” Proceedings, 28* IEEE Conf on Decision and
Control, Dec. 1989, pp. 909-915.

(15| Simaan, M., and Crus, J. B., “On the Stackelberg Strategy
in Nonzero-Sum Games,” J. Opt. Theory and Applications,
Vol. 11, No. §, 1973, pp. 533-555.

(16] Medanic, J., “Closed-loop Stackelberg Strategies in Linear-
Quadratic Problems,” [EEE Trans. Auto. Contr., Vol. AC-
23, No. 4, Aug. 1978, pp. 632-637.

(17} Basar, T., and Selbus, H., “Closed-Loop Stackelberg Strate-
gies with Applications in the Optimal Control of Multilevel
Systerns,” [EEE Trans. Auto. Contr., Vol. AC-24, No. 2,
April 1979, pp. 166-179.






Fixed-Order Multi-Model Estimation and

Control

Douglas MacMartin and Steven R. Hall* Dennis S. Bernstein!

Dept. of Aeronautics and Astronautics Harris Corporation
Massachusetts Institute of Technology MS 22/4842
Cambridge, MA 02139 Melbourne, FL 32901
(617) 258-8747 (407) 729-2140

September 17, 1990

*Supported by the Sandia National Laboratory under contract 69-4391 and by the MIT
Space Engineering Research Center under NASA grant NAGW-1335.

tSupported by the MIT Space Engineering Research Center and the Air Force Office of Sci-
entific Research under contract F49620-89-C-0011.

Submitted to the 1991 American Control Conference



Abstract

In certain applications modeling uncertainty can be represented by a finite number
of plant models. This paper considers the problems of determining a feedback con-
troller or estimator that optimizes an H, performance criterion involving a collection
of plant models. The approach is based upon fixed-structure optimization in which
the estimator or controller order are fixed prior to the development of optimality

conditions.

-

1 Introduction

The goal of robust control design is to obtain controllers that maintain desirable per-
formance in the face of modeling uncertainty. In certain cases modeling uncertainty
can be adequately represented by means of a finite number of plant models. This
multi-model problem arises for example, if the plant can undergo sensor or actuator
failure modes. A finite set of models has also been used to design for robustness to
an infinite set of models, as in the case of parametric uncertainty (1), high frequency
uncertainty [2], or parameter variations (e.g. for different flight regimes) [3].

A fundamental issue in multi-model problems is the simultaneous or reliable sta-
bilization problem. Here the goal is to design controllers that stabilize each model in
a finite collection of plant models. Considerable progress has been made in solving
this problem [4-10].

The goal of the present paper is to consider a multi-model optimization problem.
Specifically, we consider a quadratic (H;) performance criterion involving a collection
of plant models controlled by a single feedback compensator. The approach we take
involves fixing the order of the compensator and optimizing over the feedback gains.
This approach is similar to that of [11] where static output feedback controllers were
.considered.

One of our principal objectives in considering the Multi-Model Control Problem

is to examine the issue of compensator order. In [6] it is shown that simultaneous

1



stabilization of a pair of plants of bounded degree may require a compensator of
arbitrarily high order. In the present paper we show how this issue manifests itself
in the structure of the necessary conditions for optimality.

To further elucidate the role of compensator order we also consider two related
problems that are simpler in structure but that involve analogous issues. The ob-
jective of the Multi-Model Approximation Problem is to determine a single model
that simultaneously approximates a finite collection of models. For a collection of r
models each of order n;, ¢ = 1,...,r, the maximal-order solution is given by a model
of order i n,, which is larger than the order of each of the given plant models.

In a ;lla.ted vein we also consider the Multi-Model Estimation Problem wherein
we seek an estimator for each model in a given collection of plant models. As in the
Multi-Model Approximation Problem the maximal-order solution has order greater
than the individual plant models.

The fixed-structure approach applied to the multi-model problems is a direct
extension of the technique utilized in [12-14]. Indeed, by specializing these results to

the case of a single model, the results of [12-14] are immediately recovered.

2 Multi-Model Approximation

Consider the following problem.

Problem 1 (Optimal Multi-Model Approximation Problem) Given a set of

r controllable and observable systems H;, i = 1...r, with state space representations

= Ci(sI — A))™'B; (1)

and a set of r numbers; € R, o; > 0,1=1...7, finda single approzimation model

of fized order nn,, with state space representation

Amn | Bm
Hp = (2)
Cm]| O




that minimizes the weighted H, model-approzimation criterion,
. 2
J(Hpm) = Y o ||Hi — Hall3 (3)
=1

To guarantee finite cost J, assume that each H; is stable, and also restrict the
optimization to the set of stable approximation models H,,. Furthermore, since the
value of J is independent of the internal realization of H,,, assume that the realization
in Equation (2) is controllable and observable. Thus require that (A, Bm,Cm) € R

where
R = {(Am, Bm,Cm) : Am stable, (A, By) controllable, (Apm,Cy,) observable}

Without loss of generality, the weightings a; can be assumed to be normalized so that

Sa=
1=1

With this normalization, the weighting a; can then be associated with the probability
that H; accurately models the dynamics of the system.

The necessary conditions for an optimal solution to this problem are given in
Theorem 4. The approach used to obtain them is presented briefly here for comparison
with the approach required for the multi-model estimation and control problems in
Sections 3 and 4, and for the single model problems in [12-14].

The model approximation error transfer function H; — H,, can be represented in

state space as

(4)

The cost J is then

r

J(Hn) =St {a‘-C.';Q-,- '.-T} (5)

=1

where each Q; satisfies a Lyapunov equation
AiQ:+ QAT+ BiBT =0 (6)

3



Appending these constraints to the cost with Lagrange multipliers P, yields first order
necessary conditions for a solution upon differentiation with respect to Qi, Am, Bm,
and C,,. Each matrix P; and Q. has dimension (n; + nm)x(n: + nm) and can be

partitioned into nixn;, NixNm, Nmxny and Ny, xn,, blocks as

~ Pl'u }361: — -ill -"13
P.-=[- - } Q-:{? v } @
P\'n Pin Qiu Qia:

The necessary conditions are then Equations (6), and

oJ - sp s zpoa
— = PBA;+ATP,+CTC; =0 Vi 8
3. + AP+ C; i (8)
6] r - r -
B 2 a; P, Bm + ; a;P;,B; =0 (9)
aJ r . r .
_— = sz a.‘Q.‘,, - EaiCiQiu =0 (10)
aC’" =1 =1
aJ z - . .
= Z a‘(Pi:: Qi:: + P, Qiu) =0 (11)
aAm =1

The equation obtained from differentiation with respect to A, is of particular im-
portance in simplifying and understanding the structure of the necessary conditions.

In the case of a single model (r = 1), Equation (11) yields

Ing = (=P Pn) (€12Q3) (12)
r GT

A projection operator 7 = GTT = 7? is then used to simplify the equations [12].
For the multi-model approximation case, from Equation (6) each Q.,, satisfies an
identical equation,

AMQ‘:: + Q-l'::Ai + B’"Bs‘: =0 (13)

Hence the Q;,, satisfy Q;” = Qa2, i = 1...7. Similarly, each P,,, satisfies

PinAm + Azr‘lpin + CZ:C"' =0 (14)



and hence P,,, = Pj,, i = 1...r. Furthermore, from Equations (13) and (14), Q; and
Py, are the controllability and observability grammians, respectively, of the system

H,.. With these simplifications Equation (11) can be written as
}522@22 + Zaﬁ'(Pin Qixa) =0 (15)
=1
This immediately gives the following result:

Proposition 2 Given a fized order model that is optimal for Problem 1, of order
nm, >N = Zr': n;, there ezists a model of order N with the same cost. Hence with no
=1

fized order constraint, the optimal system for multi-model approzimation has order

no larger than N.

Proof: Vi, rank {IBMQ.,-”} < n;, hence rank {;21 a.-I:".-nQ,'“} < N. So, from
Equation (15), rank {Pzzén} < N. If n,, > N, either P;; or Q,; or both must not
be full rank, and thus the representation of H,, must have states which are either
uncontrollable or unobservable. (The maximum number of states which are both
observable and controllable is N.) Removing any uncontrollable or unobservable
states yields a system with identical cost and at most N states. 0O

With the controllability and observability assumptions on the representation of

H,., P;; and Q,; must be positive definite, and thus Equation (15) can be written

I = ‘;g—a,- '1-113.-,‘ LQ"nf.?‘zll (16)
= X 7
Define
I = [ I, T, (17)
G = [01 G,] (18)
=Gl (19)
rn=Iy-7 v (20)



Then 7 is again an oblique projection operator, that is 72 = 7. Note that in general,
7 is oblique rather than orthogonal, since it need not be symmetric.

The following lemma from [12] is required for the statement of the main theorem.

Lemma 3 Suppose Q, P € R¥*YN are positive semi-definite. Then QP is nonneg-
ative semisimple (has non-negative eigenvalues). Furthermore, if rank{Qﬁ} =Ny,

then there ezist G,I' € R™*VN and positive semisimple M € R*™*"™ such that
QP =G™MT (21)
IGT = I, (22)

Matrices G, T, and M satisfying the conditions of the Jemma will be referred to as a
projective factorization of QP .
It will be convenient to compile the state space information about all of the models

into a single set of matrices (4, B,C,), where

o - .~

Al 0 - 0 B, |
. | o A . | B
A= : B=|""
(23)
| 0 4r | | B |

éa = [ 0101 0202 a,C,
The subscript a on C, indicates that it depends on «;.

Theorem 4 Suppose (Am, Bm,Cm) solves the optimal multi-model approzimation
problem (1). Then there ezist positive semi-definite matrices Q, Pe RY*N such

that, for some projective factorization of QP, Am, B, and C, are given by

A. = TAGT (24)
B, = I'B (25)
Cm = Ca.GT (26)



and such that the following conditions are satisfied:

rank {Q} = rank {P} = rank {QP} =N (27)
AQ+ QAT+ BBT -7, BBT:T =0 (28)
PA+ATP+CTC - 7TCT¢,r. =0 (29)

Proof: Define Q = GTQZQG and P = I'TP,,T, and note that TQ = Q, and Pr = P.
Pre- and post-multiplying the Lyapunov equations (13) and (14) for Q,; and Py, by
either I, = T'GT or I, = GI'7 yields the following equations:

7 [AQ + QAT + BBT| =0 (30)
[PA+ ATP+CIC,|m=0 (31)

The (1,2) sub-blocks of the Lyapunov equations (6) and (8) yield identical equations.
Equation (30) is equivalent to Equation (28) since Equation (28)=(30)+(30)T —(30)r,
and Equation (30)=7(28). Similarly, Equations (31) and (29) are equivalent. Note
that only two Lyapunov equations are required for the necessary conditions because
the (1,1) sub-blocks of both Equation (6) and Equation (8) are superfluous.
Equations (25) and (26) follow directly from (9) and (10). Equation (24) for A,
is obtained from the (2,2) block of either (‘};“,1 a;(Eq’'n S)Q.-) or (‘é a;P,(Eq’n 6))),
either of which yield that ‘g (a.'f"/i;@,-)n =0. m]
Because the form of the equations is identical to that of the single model case,
the discussion in [12] applies for this problem as well. As in [12], the form is a result
of optimality, and not fixed beforehand. If (Am, Bm,Cm) satisfies the necessary con-
ditions, so does (T AnT !, TBm,CnT!) for an arbitrary nonsingular transformation
matrix T. Further, there exists a similarity transformation which diagonalizes QP

and 7 simultaneously. Representing 7 in terms of QP as in [12] leads to numerical

algorithms for the optimal multi-model approximation problem.



Remark 5 In the “full order” case npm = N, then 7 =G =T = In, giving Am = A,
B,.= B, and C, = C.. Thus H,, = Zr: a;H;. This is ezactly the ezpected result; the

1=1
best possible approzimation is simply the weighted average of all the models.

Remark 6 For a single model (r = 1), the equations clearly collapse to the equations

of [12].

3 Multi-Model Estimation

Consider the following problem.

Problem 7 (Optimal Multi-Model Estimation Problem) Given a set of r sys-

tems H;, i =1...r, with state space representations

0
D;

u

Ci,

(s - A,’)—IB,‘ + (32)

and a set 6fr numbers o; € R, a; > 0, i = 1...7, find a single estimator of fized

order n., with state space representation

A. | B,
e = (33)
C.| 0
that minimizes the weighted H, model-estimation criterion,
J(H.) =Y o | Hi, - HHall; (34)

=1

where H; is partitioned into H; and H;, according to the two outputs.

The estimation problem can be illustrated by the block diagram as shown in
Figure 1.

The following assumptions about the problem will be made:
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Figure 1: Estimation problem for each system.

(i) Each H; is stable, and each (4;,C;,) is detectable.

(iii) For clarity in understanding the form of the equations, the process and mea-
surement noise for each model will be assumed to be uncorrelated, so B; DT = 0.

Without loss of generality, assume B; = [B; 0] and D; = [0 D] .

(iv) Require that the measurement noise have no singular directions common to all
models, so i a;D;DT > 0. This is a generalization of the usual single model
a.ssurnption'c-)} nonsingular measurement noise, DDT > 0.

It is interesting to note that each D; need not have full row rank, hence the
estimation problem for each individual model may be singular without the multi-
model problem being singular.

As in the multi-model approximation case, require (A, B.,C.) € R.

The model estimation error transfer function H, — H.H;, can be represented in

state space as

A; 0 | B; 0
H,-HH,=|BC, A |0 B.D |= (35)
c. -C, [ 0 0
The cost J can again be written in the form of Equation (5),
J(He) = Z tr {a,C."Q-. -,'T} (36)

=1



where each Q; satisfies a Lyapunov equation identical to Equation (6)).

Necessary conditions can again be obtained using a Lagrange multiplier approach.
The Lyapunov equations for B; are identical to Equations (8). The equation obtained
by differentiating with respect to A, is the same as Equation (11), and once again this
will be the key equation for understanding the structure of the necessary conditions.

For this problem, each Q,,, satisfies

Aeéin + Qi:zAf + Bec‘:Qiu + Qizx CTBeT + BGBeT =0 (37)

Each Q;,, now satisfies a distinct equation, and thus Qiyy # Qsna» @ # J- The critical
observation for this problem, however, is that each P,,, still satisfies Equation (14).
Thus it is still true that P, = P, i = 1...r. This is sufficient to obtain the
elements of a projection operator from Equation (11), and to prove the following

result, analogous to Proposition 2.

Proposition 8 Given a fized order model that is optimal for Problem 7, of order
n, > N = Zr: ni, there ezists a model of order N with the same cost. Hence with
1=1

no fized order constraint, the optimal system for multi-model estimation has order no

larger than N.

Proof: As in the Multi-Model Approximation case, rank {Xr: o:,-}-’,-,1 Q.-u} < N.
=1

From Equation (11), rank {1332 )r: a.Q.-,,} < N. If n;n > N, either Py or é a‘-Q,-,,
or both must not be full rank'.-—.lf’n is the observability grammian of th:lsystem
(Ae, B, C.), and thus is not full rank if and only if (A, C.) is unobservable. Also,
g @iQ;,, is not full rank if and only if (A, B.) is not controllable. This result will
;J_e1 proven in Proposition 13. Proposition 8 then follows in the same manner as the

proof of Proposition 2. =

Remark 9 The estimator must obtain all the information possible about the state
from the output y. Since all state information from all the models has a finite di-

mension N, there is an estimator state vector of dimension N that contains the most

10



information possible about the state vectors of the H;. Any additional estimator states

must be redundant.

As noted earlier, P,; is the observability grammian for H, and therefore must be
positive definite. Proposition 13 proves that z': a.-Q-,-,, must also be positive definite.
1=1
Hence for the multi-model estimation problem, Equation (11) can be written as
. . -1
e = ¥ (o P ) Qs (L0 ) (38)

=1 =1

7

) G'T
With G, T, and 7 defined as in Equations (17-19), 7 is again a projection operator,
satisfying 72 = 1.

In addition to the definitions of A and B, given in Equation (23), this problem

requires C,, and C.,, defined analogously to C,, and

(BBT 0 ... 0
h=| ° B (39)
0 B,BT |
V=Y DD (40)

1=1
Theorem 10 Suppose (A., B, C.) solves the optimal multi-model estimation problem
(7). Then there ezist positive semi-definite matrices Q, Q, P € RY*N such that, for

some projective factorization of Qﬁ, A., B., and C, are given by

A. = TAGT - B,C,,G" (41)
B. = rQCLv;! (42)
C. = C.,G" (43)

and such that the following conditions are satisfied:
AQ+ QAT+ Vi - QCLVyCa,Q + 1QCLV; 1o, QrL = 0 (44)

11



AQ + QAT + QCT V' Ca,Q - 7.QCT V1 CayQrL =0 (45)
B(A = QOT U 10ur) + (A= QUL CurYTP + €T, 0oy =1 CT,Cars =0 (46)

Proof: The derivation of these equations is similar to that for the necessary con-
ditions for the multi-model approximation problem. Define Q=0G" (.Z::l a.-Q.-,,) G,
P =TTP,T, and Q = diag{ale-.-u} — Q. Substituting into the Lya._punov equa-
tions defining Q; and P; yields Equations (45) and (46) from both the (1,2) and
(2,2) sub-blocks. The (1,1) sub-block of the Q; Lyapunov equation can be used
to obtain Equation (44), and the (1,1) sub-block of the P, equation is superfluous.
Equations (42) and (43) follow directly from the equations obtained by differentiating
the augmented cost with respect to B, and C.. Equation (41) for A, is obtained in
an analogous fashion to the approximation problem. o

As in the multi-model approximation case, the necessary conditions obtained here
are similar in form to those for the single model case [13]. Again, the necessary
conditions hold for any non-singular state transformation of the estimator. Numerical
algorithms developed for solving the equations in [13] can be applied to this problem

as well.

Remark 11 In the “full order” case ne = N, then 7 = G =T = Iy, giving A. =
A-B.C.,,, B. = QC"Z;V,", and Ce = Cq,. Only the Riccati equation for Q needs to
be solved, and this has the same form as the Kalman filter equation. Because of the
coupling of the multiple models in Q, the full order estimator is not simply a weighted

average of the individual model estimators.

Remark 12 For a single model (r = 1), the equations clearly collapse to the equa-
tions of [12]. Forr =1 and n. = N, the equations collapse to the standard Kalman
filter result.

Finally, the proposition used in the proof of Proposition 8 needs to be proven.

Proposition 13 Q = ¥, a:Qs,, is full rank if and only if (Ae, Be) is controllable.
=1

12



Proof: @ satisfies the Lyapunov equation
(Ae + B.Ca,GT)Q + Q(Ae + B.CayGT)T + B,V;BT = 0 (47)

This follows from summing Equations (37) and representing Q.,, in terms of G
and Q. Q is therefore a controllability grammian, and is full rank if and only if
(A. + B.C,,G7, B.) is controllable. This system is controllable if and only if (A., B.)

is controllable. O

4 Multi-Model Control

A simple form of the necessary conditions for the multi-model control problem is sig-
nificantly harder to obtain than for either of the two previously considered problems.
A form of the equations similar to the single model case has not yet been obtained.
The problem will be set up here, and the critical issues discussed. In particular, the
question of controller order is investigated.

Consider the following problem.

Problem 14 (Optimal Multi-Model Control Problem) Given a set of r sys-

tems H;, 1 = 1...r, with state space representations

4| B, B,
H‘ = Cil Diu (48)
Cy|Diy O

and a set of r numbersa; € R, a; > 0, i =1...r, find a single compensator of fized

order n., with state space representation

e

C.|0

that minimizes the weighted H; model-control criterion,

JH) = el Hall (50)

=1

13



T 2
= Za“ 2

=1

Hl'lx + H‘x,Hc(I - Hi,:Hc)-lH,',l

(51)

H; is partitioned into H;,, H;,, Hi,, and H;,, according to the two inputs and two
outputs. The closed loop transfer function H;,, is obtained from the lower linear
fractional transformation, H;,, = F(H;, H.).

The control problem can be illustrated by the block diagram as shown in Figure 2.

e H.' ————

H.

Figure 2: Control problem for each system.

The following assumptions about the problem will be made.
(i) Each system H; must satisfy (A;, Bi,) stabilizable and (4;, C.,) detectable.
(ii) ‘}; =1
(iii) For a compensator H, to exist which gives finite cost J, the set of systems H;

must be simultaneously stabilizable. Conditions for simultaneous stabilization

have been studied by Ghosh and Byrnes [6].

(iv) As in the estimation problem, assume uncorrelated process and measurement

noise, so B; DT = 0. Without loss of generality, again take B;, = [B;, 0] and

b))

D,, = [0 D,,,] - Further, require that the measurement noise have no singular

.
directions common to all the models, so Y a;Di,, DI > 0.
=1

(v) The dual assumptions to (iv) will also be made. That is, CID,,=0,C =

Ci _ 0
y Diyy =

0 D;,,

H;, the control weighting D;,, DT, may be singular.

and ¥ o;D;,, DT, > 0. Note that for any individual
=1

13
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The optimization will be restricted to the (non-empty) set of simultaneously sta-
bilizing compensators H,, with controllable and observable realizations.

The closed loop transfer function H;,, can be represented in state space as

A; B,C. | B, 0

B.C;, A. |0 B.D,, A I B;
H,, = = [— (52)
C; o |0 o o
0 Dy,C|lo0 0o |
The cost J can again be written in the form of Equation (5),
J(H.) = E tr {a,'C.','Q-.'C.',‘T} (53)
=1

and again, each ; satisfies a Lyapunov equation identical to Equation (6).
Necessary conditions can again be obtained using a Lagrange multiplier approach.
The Lyapunov equations for P; are identical to Equations (8). Once again, the equa-
tion obtained by differentiating with respect to A, is the same as Equation (11).
However, for the control problem, there is a crucial difference. Each Q-.-,, and P,

satisfy, respectively,

ACQ-l'n + Qi::AZ + BCC!':Q!'\: + Oin CTBcT + BCBE:F =0 (54)

2
Pl'::AC + Azpin + Pl'n Biz CC + CcTBzPlu + CECC =0 (55)
Thus for this problem, every Q,,, and every B, is different, that is Qisy # Qiar 1 # 7,
and P, # P;,, i # j. As a result, Equation (11) is difficult to factor, and this also

has serious implications on the order of the compensator.

Proposition 15 There is no a priori bound on the order of a compensator which is

optimal for Problem 14.

Proof: Ghosh and Byrnes [7] give an example of two second order systems, param-
eterized by A, which require an arbitrarily high order compensator for simultaneous
stabilization as A tends to some limit. Since any optimal compensator must be si-

multaneously stabilizing, it also may be of arbitrarily high order. ' O

15



Remark 16 The result in Proposition 15 has been shown before; the purpose of re-

stating it here i3 to illustrate how the result manifests itself in the present contezt.

For all three of the problems investigated in this paper, i a; P;,, @i, has at most
=1

rank N. Equation (11) then yields that i o; P,,,Q;,, has rank less than or equal to
=1

N. For controllable and observable systems H,, H., and H., each term in this last

sum has rank nm, ne, or n.. In the approximation case, this sum can be factored as

r

P33Q22, and in the estimation case, it can be factored as P;; a.-Q.-,,. Sylvester’s
1

inequality [15] can then be used to show that this second sum has rank equal to n,

or n,. From this, the conclusion that n, < N, and n, < N follows. In the multi-

model control problem, the sum }:‘, a,-f’.-,, Q;,, may have maximum rank N while the
=1

individual terms in the sum can have larger rank n.. That is, the optimal compensator

may be both observable and controllable for arbitrarily large order n..

Theorem 17 Suppose (A, B.,C.) solves the optimal multi-model control problem
(14). Then there ezist positive semi-definité matrices Qi B e R{m+ne)x(nitne) gych

that A., B., and C. are the solutions of

Z & (piu ACQ‘:: + pinA"Qiu + Pi:: BcCiz Qiu + f)l'n Bi: CCQi::) =0 (56)

=1
2 b (}3‘” B.D,, Dgz‘x + (pizx Qiu + Pﬂ':: Qin)czx.) =0 (57)
1=1
Y a (D,.Tu D;,,C.Qi,, + B (P, Qs + p,.uQ..u)) =0 (58)
=1

where Q; and P; satisfy Equations (6) and (8) respectively, with the appropriate par-
titioning given by Equation (7).

Proof: Equations (57) and (58) are the necessary conditions obtained directly
from differentiating the augmented cost with respect to B, and C.. Equation (56) for
A, is obtained in the same manner as for the approximation and estimation problems.

ju]
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Remark 18 Eguation (56) can be solved for A, using Kronecker algebra [16];

vec{A.} = (Z aQl ® P‘,,)—l X

=1

Za' (( 2 P‘n) vec {A } + vec{ u:B C‘?Qlu + [PH B‘:CCQizz}) (59)

=1

Note that the inverse in Equation (59) exists. To see this, note that each P,,, and Q;,,
are positive definite, and their Kronecker product is therefore positive definite [16].

The sum of these products is therefore nonsingular.

Remark 19 If D, = u;Dy, ¢t = 1...7 (which may not be an unreasonable assump-
tion,) then Equation (57) can be written as
Bc = (Z aipi::) (Z at( 't Qiu + 22 Q'zx )CT;) VZ-I =0 (60)
=1 1=1

where

V= (Z ai#i) Dy, DY (61)

=1

In general, B, can be solved using Kronecker algebra. Similar comments apply to the

calculation of C..

5 Conclusions

The simultaneous optimal approximation, estimation and control problems for mul-
tiple models has been investigated. In each problem, the order of the system to be
found is fixed, and the necessary conditions that an optimal solution must satisfy are
found. For both the approximation and estimation cases, the optimal model can be
written as an optimal projection of a “full order” model with order N = 5'_: n;. There
is no improvement in the optimal cost that can be obtained by using a'=nlaodel with

order larger than N. In the control case, there is no such a priori bound in terms of

the individual model orders n; that can be placed on the optimal compensator order.
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ABSTRACT

The exact Linear Quadratic Regulator solution for infinite order structures is
the convolution of spatially distributed feedback kernels with spatially
continuous state functions. For structures, several state functions exist that
completely describe the state of the structure at any given point in time. The
continuous control function is then the convolution of one of these state
functions with an appropriate feedback kernel. If another state function is
selected, a new feedback kernel can be derived that will yield identical closed-
loop performance. The appropriate state function should be selected based
upon the ease with which it can be measured.

This paper discusses the estimation of exact displacement and displacement
rate feedback kernels from finite dimensional control solutions based on finite
element structural models. These kernels are then transformed to equivalent
curvature and curvature rate feedback kernels. These curvature kernels are
augmented with single point displacement and rotation feedback to account for
rigid body motions. The curvature and curvature rate state functions can be
measured using a growing class of sensors known as area averaging Sensors.
The output of area averaging sensors equals the convolution of all structural
curvature states with the spatial sensitivity function of the sensor.
Transforming the discrete feedback gains into continuous feedback kernels
and using area averaging sensors enables the implementation of full state

feedback for infinite order structural systems.



INTRODUCTION

Rationale

Structures are infinite order systems. To obtain a mathematically exact
structural model requires the use of a set of partial differential equations
subjected to the appropriate boundary conditions. However, in practice it is
difficult or impossible to find the exact closed-form Linear Quadratic
Regulator! (LQR) solution for most structures. Therefore, structures are often
modelled by discretization of the structure. This is even true for some very
simple structures. The most common method of discretization is finite
elements. When the structure is discretized, the order of the model is reduced.
Instead of being modelled by an infinite order system, the structure is now
modelled with a finite number of degrees-of-freedom. The result is a matrix
ordinary differential equation which will approximate the temporal and
spatial behavior of the structure.

Given the possibility to model a structure as an infinite order system or as a
discrete finite dimensional model, it is prudent to define the terminology used
in this paper. A state function corresponds to a motion variable which is a
continuous function of both space and time. Discrete states or degrees-of-
freedom correspond to point motion variables, which are functions only of
time, at a finite number or locations throughout the structure (Fig. 1). The
feedback of spatially discrete structural states involves feedback gains,
whereas the feedback of a spatially continuous state function involves feedback
kernels.

For control design, Linear Quadratic Regulator (LQR) methods exist that can
be used to formulate optimal structural control solutions for these matrix
ordinary differential descriptions. Given that model truncation is one of the
major contributors to the control spillover problem, it is desirable to include as
many degrees-of-freedom as possible in the control model. This is a costly
approach, both in terms of money and in implementation since the increased

1 2,V v(x) v;
v n
\E T
N | EL pA —
\
x=0 x=L

Figure 1. Graphical representation of state vector
and state function description of a structure




number of degrees-of-freedom requires more state sensors and the controller
needs to multiply state feedback gains with the increased number of state
measurements to obtain the feedback command. However, the derivation and
implementation of a LQR solution, based on a infinite order model, that
convolves a spatially distributed feedback kernel(s) with a spatially continuous
state function(s) would completely avoid the model truncation, spatial aliasing
and cost of implementation problems.

This approach contradicts two common beliefs that stems from the use of
approximate, reduced order structural models. A common belief is that that
the feedback architecture is typically the multiplication of gains with discrete
point measurements (or estimates) of the structural motion. These
measurements typically correspond to degrees-of-freedom in a finite element
model. The second belief is that the type of degrees-of-freedom (displacement,
rotation and their rates) used in the reduced order model are the appropriate
state variables to measure.

It is also important to realize that the feedback kernels can be transformed as
desired to accommodate measurements other than the states variables used in
the model. Such a transformation can allow the use of not only displacement
or rotation but also curvature as measurements for the infinite order
controller. This paper discusses the estimation of exact feedback kernels from
finite dimensional control solutions and the transformation of these kernels to
accommodate the measurement of curvature. Posing the feedback in terms of
curvature allows the use of a growing class of sensors known as area
averaging sensors. These sensors can provide the spatially continuous
measurement of the curvature required by the infinite order controller.

Implementation issues associated with these sensors are also discussed in
order to demonstrate one technique for realizing the use of these feedback
kernels. In this sense, the continuous kernel represents the full state feedback
solution for infinite order structural systems, and the availability of at least
one implementation technique makes this solution more than just a
mathematical exercise.

Background

The description that is obtained of a structural system from a finite element
model is a set of second order, matrix ordinary differential equations of the
form

Mi(t)+Cx(t)+ Kx(t)=f(t) (1)
where M, C and K are the mass, damping and stiffness matrices, respectively.

The vectors x and f contain discrete point degrees-of-freedom and force inputs,
respectively. This system can be placed in first order, state-space form

2(t) = Az(¢)+ Bu(t) (2a)

where



#\ [ o I ]{x}_ { 0 }
{x}‘[-u‘lx _micflsf eyt ()

The Linear Quadratic Regulator minimizes a cost

J = i [ {zTQz + uTRu}dt

0 (3)

for this system by formulating a feedback gain matrix G such that
u(t)=-R BT Pz(t)=-Gz(t) @)

where P is the solution to the steady-state matrix Riccati equation
PA+ATP+Q-PBR'BTP=0 5)

The feedback form in Eq. 4 consists of multiplying the feedback gains contained
in G by the state vector in z, whose entries correspond to the temporal motions
of spatially discrete points throughout the structure. The resultant products
are summed to arrive at the appropriate control actions which are placed in
the vector u. This feedback architecture is simply an artifact of the need to use
a finite dimensional (reduced order) structural model to implement the control
design.

In actuality, structures do not undergo motion only at discrete points
corresponding to the model's nodes but also deform continuously throughout
the region between nodes (See Fig. 1). - The exact motion of the structure is
described by state functions which are continuously distributed along the
length of the structure. Therefore, for infinite order structural systems, the
mathematically exact control inputs are not the sum of products of discrete
gains with discrete motions but the general form of the control is the spatial
convolution of the state function with a feedback kernel.

In order to demonstrate the concept of using infinite order structural models
for control, a simple structural beam can be used as an example. The partial
differential equation description of a uniform beam is

dfu(x,t) %u(x,t)
— + — =f(x,t)
wf AT ©)

This description can be placed into state-space, spatial operator form?2

EI

iz(x,t) = alx)z(x,t)+ b(x)u(x,t)
ot (7

by choosing the state functions as those which determine the potential (strain)
and kinetic energy in the beam (curvature and transverse velocity)
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The parameter E is the modulus of elasticity, I is the area moment of inertia,

A is the cross-sectional area and p is the volumetric mass density.
The cost is defined by

J=l°j° T(< qz,z > + < ru,u >)dxdt
2 oo ' (9)

where the matrices ¢ and r are matrix operators penalizing the state and
control functions, respectively. Note that ¢ and r are not constants but are
spatial operators and that the inner integral indicates that the beam is
assumed to be of infinite extent. An infinite extent beam was chosen to
facilitate the acquisition of a closed-form, exact solution. However, the
operator form for a finite extent beam can also be posed, although the solution
will probably require numerical techniques.

The feedback structure is found from the solution pz to the functional
Riccati equation

0=paz+ a pz+qz- pbr'lb'pz vz (10)

where the symbol "*" signifies the adjoint operator. The feedback is the spatial
convolution of a kernel matrix x with the state function z

ulx,t)=-r b (pzixt)=- [x(x-w)z(wt)dw
—oo (11)

where x corresponds to the location on the structure where control is applied
and w indicates where states are measured. Equation 11 is the general
solution because it represents the control action at any location as a function of
the state functions along the entire extent of the structure. This feedback is
analogous to that in Eq. 4 in the sense that it represents the continuous sum of
gains times the states of the structure.

The implementation of these continuously distributed feedback kernels
requires the use of a continuously distributed sensor. Several researchers
have demonstrated the use of continuously distributed curvature sensors and
actuators. C.K. Lee3:4, S.E. Miller3, S. Collins® and D. Miller” have worked on
the development of area averaging sensors. These authors use spatially
distributed sensors to achieve certain measurement characteristics.
Lee34 and S. Collins® used sensors shaped as particular mode shapes to obtain
a measurement of the generalized coordinate of that mode. S. Collins® and D.
Miller? developed sensors which roll off with frequency without exhibiting
phase lag. It will be shown in this paper that area averaging sensors can be
used to implement the feedback solution to a partial differential equation
description of a finite extent structure.



Approach

An over optimistic goal for this research would have been to attempt to solve
the infinite dimensional structural control problem. This goal is not realistic
because first it would require the exact partial differential equations (PDE) and
boundary conditions (BC's) that describe the dynamics of the structure and
second it would be impossible in most cases to find the LQR solution even if an
exact model existed. de Luis2, for example used an infinite extent beam in
solving the infinite dimensional control problem in order to find a closed-form,
exact control solution. The same infinite dimensional control problem can
also be posed for a finite extent beam8. However, this problem is much more
difficult to solve due to the existence of boundary conditions.

A more realistic approach is to model the structures with the more familiar
finite reduced order models (Egs. 2 through 5) and to hope that by increasing
the fidelity (number of degrees-of-freedom) of the model, the continuous
feedback kernel can be inferred from the distribution of the discrete gains.

The following section discusses the derivation and implementation of
continuously distributed feedback kernels. Several important steps are
involved in this derivation. First, spatially discrete displacement and rotation
gains derived using standard matrix Riccati techniques on finite element
structural models must be converted into spatially continuous feedback
kernels. Second, these kernels must be transformed into feedback of
distributed curvature to facilitate implementation using area averaging
sensors. An alternative approach, also discussed in the next section, is to first
convert discrete displacement and rotation gains into discrete curvature gains
and then to convert these gains into a spatially continuous curvature feedback
kernel. Numerical examples are interspersed with these formulations to
demonstrate these techniques. After the section on feedback kernel
formulation, a discussion of general control issues of interest is presented
along with an additional numerical examples.

Reference Example

Throughout the rest of this paper, these techniques are formulated for the
cantilevered beam of length L shown in Figure 2. A control moment is applied
to a point on the beam 1/10th of the distance from the clamped root to the free
tip. This moment actuator is used to represent an equivalent piezoelectric
actuator at the cantilevered end. de Luis et al2 demonstrate that one valid way
of modelling the influence of a piezoelectric curvature actuator is to derive
equivalent moments at the two ends of the actuator, which are of equal
magnitude but of opposite sign. In this problem, if it is assumed that the
piezoelectric actuator runs from the root, the companion moment at the
clamped end of the beam does not enter the problem and is therefore not
shown. The pertinent parameters of the problem are listed in Table 1. The
performance metric is the transverse displacement of the tip of the beam (v;p).
The entry in the state penalty matrix (Q) corresponding to this displacement is



assumed to be unity. This state penalty in equation form, from Eq. 3, is
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Figure 2. Cantilevered, Bernoulli-Euler beam.

FEEDBACK KERNEL FORMULATION

This formulation process is shown in Figure 3. The upper left box represents
the formulation of discrete displacement and rotation gains using classical
finite element models. The objective is to evaluate the continuous curvature
kernel represented by the bottom, right box. Two paths (1 and 2) can be
followed to obtain the curvature kernel from the displacement and rotation
gains. Following either path involves the same three steps but in different
order. In either case, the first step is to evaluate the discrete displacement and
rotation gains. For brevity, reference to displacement, rotation and curvature
rate gains and kernels are omitted from the discussion although they are an
integral part of any control design. However the evaluation of these rate gains
and kernels are identical to the processes shown for the displacement, rotation

and curvature gains and kernels.

Following path one, the second step involves calculating the continuous
displacement kernel from the discrete displacement and rotation gains (Path
1a in Fig.3). This displacement kernel completely describes the feedback. The
evaluation of a rotation kernel is redundant since it would simply be derived
using the same gains that were used in deriving the displacement kernel. The
third step (1b) involves transforming the displacement kernel into a curvature
kernel which convolves with distributed curvature to generate the control
action. This path is discussed in detail in the rest of this section.

Table 1. Parameters for cantilevered beam example.

Bending stiffness EI 1.0 Nm?
Mass per unit length pA 1.0 kg/m
Length L 1.0 m
Actuator location xa 0.1m
Control effort penalty | R 0.001
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Following path two, the second step involves transforming the discrete
displacement and rotation gains into discrete curvature gains (2a). The third
step then involves using these gains to find the continuous curvature kernel
(2b). This path is used, in the following discussion, as a check of the first path
since both paths should yield approximately the same curvature kernel.

Evaluation of the Discrete Displacement and Rotation Gains

The first step in evaluating the discrete displacement and rotation gains is to
develop a finite element model of the cantilevered beam. The mass and
stiffness finite elements that are used in the following analysis are
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with the corresponding finite element nodal degrees-of-freedom
T _[,. v v '
Vele = [U; Ui Vis1 Uiy 1] (14)

where [ is the element length and is equal to the total length of the beam (L)
divided by the number of elements. The other parameters are listed in Table 1.
It is assumed that the model is undamped. The entry in the state penalty
matrix @ corresponding to this displacement is set equal to one.

Using a ten element model of the beam, the gains obtained from the LQR solver
are shown in Figure 4. The gains in the upper left window are the
displacement gains at discrete locations along the structure. The lower left
window shows the rotation gains. Notice that no discernable spatial
distribution can be seen in these gains. The windows in the upper and lower
right display the displacement rate and rotation rate gains, respectively.
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Figure 4. Discrete gains at nodal positions along the structure for controlling tip
displacement. The individual windows show gains for (a) displacement, (b) displacement
rate, () rotation and (d) rotation rate. |




These displacement and displacement rate gain distributions indicate the
shape that the respective continuous kernels will have, but not the
magnitudes. This is only an approximate indication of the continuous shapes
since the displacement kernel combines the information from both the discrete
displacement and rotation gains. In other words, a single kernel contains all
of the gain information displayed in a single column of Figure 4.

Evaluation of the Spatially Continuous Feedback Kernel

The next objective in the analysis is to find the spatially continuous feedback
kernel from the spatially discrete gains evaluated in the previous section (Path
la in Fig. 3). To this end, the beam finite element displacement and rotation
gains will be used to derive the continuous displacement feedback kernel
which convolves with the displacement state function. Since the reference
example has a point actuator, the feedback convolution in Eq. 11 degenerates to
the integral of a kernel times the state function. It is also convenient to use a
kernel that is defined over the length of the beam, rather than having the
kernel be defined, as in Eq. 11, in terms of the actuator location (xz). Using
this kernel transformation, the feedback is given by

L
ut) = - [ xw)zw,Hdw = - | [xc¢  xpg)w) 9‘«;002 w,t)dw
0 —_—
)
0
L 0 L
= —J xc(w)%(w,t)dw - f KDR(w)%(w,t)dw
Po) 0
L L v
= - kpw(w,O)dw - f kDR (W) 5w, )du
0 (o]
=up(t)+upg(t) (15)

Note that the state functions shown in Eq. 8 include the curvature of the beam.
Eq. 15 shows part of the feedback to be the integral of curvature times a
curvature kernel. Alternatively, this can equivalently be expressed as the
integral of the displacement state functions times a displacement kernel. This
displacement kernel is derived in the next paragraph.

The integration over the entire length of the beam can be divided into the sum

of integrals over segments of the structure corresponding to the finite element
domains as shown in Fig. 5.

10
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Figure 5. Graphical representation of integration of kernel with state function

The first half of Eq. 15 then becomes

L
up(t)=-{xpwh(w,t)dw
(0]

Wi+l Wi 2
=..— [xkp(wlwt)dw- [ xp(wv(w,t)dw-...
wij Wis]
=...Uup; +uD‘.+1+... (16)

The element interpolation function description of the displacement anywhere
within the element located between w; and w4}

2 3 2 3Y .
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can be substituted into each of these element convolutions. Then, the control
action associated with an element is a function of that element's nodal
degrees-of-freedom

LIPS |
2 3 2 3 ’
up; ()=~ J"'D(w){(l—3f—2+2%—)w(t)+(§—2-§—2—+-§3—}ui(t)+
w;
2 3 2 £3)
[35—2-2‘}5—2]:).-”(:)-[5—2—%—]zu,-”(t)}dw where & =w-uw;
(18)

If the form for xp were known, then the integral in Eq. 18 could be evaluated to
find the the gains for the nodal degrees-of-freedom. Conversely, in this case
- these gains are known from the solution to the matrix Riccati equation and

instead it is the form of the kernel xp that is being sought. To estimate this
kernel, a form for the kernel, containing unknown parameters, can be selected
so that the spatial integral in Eq. 18 can be evaluated. Then, these parameters
can be found by equating the elements of this integration to the discrete gains.
A cubic form for the kernel is chosen
xD'.(w)=ai(w-w,~)3+b,~(w—w,-)2 +cilw—wy)+d; forw; Swsw;,, (19)

Given the polynomial order (cubic) assumed for the four degree-of-freedom
finite element, a cubic polynomial for the internal curvature distribution is the
highest order polynomial for which the unknown coefficients can be uniquely
found.

If the form in Eq. 19 is inserted into Eq. 18, and the integral is evaluated, the
result will be the contribution that the continuous kernel across that element
makes to the gains associated with that element's nodal degrees-of-freedom.
In other words, at one of the element’s nodes, Eq. 18 yields partial gains for the
nodal degrees-of-freedom which, if summed with the gain contributions from
the adjacent element, will give the total gains associated with that node's
degrees-of-freedom. Thus, the gain contributions from the elements
neighboring a shared node can be used to find the total displacement and
rotation gains associated with that shared node

l
8 = J(aiﬁ‘? +bE2 +¢;6 +d )[3‘15—;- 25—;}15 +

0
l

3 2 g2 . ¢
(ai+1§ +bi 167+ S +din 1-3I_2-+273— 3
(20a)
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where gy, and g, are that node's displacement and rotation gains,
i

respectively, as shown in Fig. 4.

These two relations give two conditions for finding for the elemental kernel
coefficients aj, b;, ¢c; and di. Two more conditions are required in order to
ensure a unique solution. These two additional conditions are found by
requiring continuity of the kernel magnitude and slope at a shared node.
These are found by using Eq. 19 to evaluate the magnitude and slope at the
right end of the ith kernel and equating that to the magnitude and slope of the
(i+Dth kernel at its left end yielding

ail3 + 2b,‘l2 +Cl'l + dl _di+1 =0 (21)
3a,-l2+2bil+ci—ci+1 =0 (22)
These four conditions can be expressed in matrix form as
a; )
[ 14 3 2 4 3 2 1 b‘
A /A TR G | D O
4 15 20 2 28 15 20 2| ° v

I L A A S o R -

e s . A - = — vl
2 30 20 12 105 60 30 12la,,[ |0
B2 1 1 0o 0 0 -I
P bi+I L 0
32 22 1 0 0 0 -1 0]
Ci+l
C% (23)

where the first two rows are found by evaluating the integrals in Eqs. 20a and
20b. A global matrix can be assembled, using Eq. 23 as the sub-matrices, to
yield a linear equation relating the coefficients of the cubic-fitted kernel
functions to the discrete gains

Tc=¢ (24)



The desired coefficients are then given by

-1
c=T"g (25)

The approximate shape of the spatially continuous displacement feedback
kernel can be calculated by evaluating this piecewise cubic kernel along the
length of the structure. This evaluation is made by using the coefficients in ¢
which are appropriate for the given segment of the structure within which the
kernel is being evaluated.

Using the discrete gains of the ten element finite element model (shown in Fig.
4) to evaluate the coefficients in Eq. 19 of the piecewise cubic displacement and
displacement rate kernels, the functions in Figure 6 are found. These
functions are the piecewise cubic kernels combined into a single curve.

Notice the erratic shape of the displacement kernel. This erratic shape may
correspond to some weighted sum of mode shapes. Given that the tip
displacement (performance metric) can be represented as a sum of
displacement mode shapes, and that the applied moment (control input) can be
represented by the sum of curvature mode shapes, the shapes in Figure 6
could correspond to some combination of the displacement and/or curvature
mode shapes. In other words, these shapes may correspond to some type of
mode shape feedthrough' from the control input to the performance metric.
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' Figure 8. Spatially continuous feedback kernels as a function of location along the beam for !
. controlling tip displacement. The individual windows show the kernels for (a) displacement |
and (b) displacement rate. |
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Equivalent Feedback Using Alternative State Functions

The feedback architecture using the kernel derived in the previous section has
the form in Eq. 16. This involves the spatial integral of the kernel times the
displacement state function. However, the continuously distributed
displacement state function may not be a measurable quantity. Therefore, it
may be convenient to express the same control in terms of another, more
measurable state function.

Extensive work in the area of area averaging sensors4:5.6,7.8 has shown that
continuously distributed measurements of curvature-induced strain can be
made using polyvinylidene flouride (PVDF). Therefore, the displacement
feedback kernel of Eq. 16 must be transformed into equivalent feedback of the
curvature state function.

Integration by parts can be used to transform the feedback form in Eq. 16 into
equivalent feedback of the curvature state function plus point measurements of
rotation and displacement, in order to retain rigid body control. This
transformation is given by

L
up(t)= fxp(wvl(w,t)dw
Q

L LL
=v(0,t)|xpl(widw+ (L.t) {[xp(y)drdw-
0 Oow
LwL 2
[1Txp(vduty =g dw

007y (26)

While the point measurements of displacement and rotation must be made in
order to retain rigid body measurement, the actual location on the structure
where these measurements are made is arbitrary. The displacement or
rotation of a point on the structure can be related to the displacement or

rotation of any other point by integrating the intervening strain appropriately.
For example,

L
du(L,t) ov(0.t) J v(w,t)
= — + dw

ox ox Jw?
0 @27




Substituting this translation of the rotation measurement into Eq. 26 gives the
equivalent feedback as

ov(0,¢)LL

L
up(t)=v(0,t)[xp(w)dw +

[[xp(y)dWdw +
[¢] ow
LLL 2
i j’xD(r)dndyé—;%dw
owy (28)

Notice that in this equation, the first two terms, representing the feedback
gains associated with point displacement and rotation measurements, can be
evaluated directly from the displacement feedback kernel. The outer integral
in the third term corresponds to the integration of the distributed curvature
kernel with the curvature state function. The inner two integrals evaluate the
curvature kernel from the displacement kernel. This curvature kernel is
given by -

LL
xcw) = [[xp(r)dedy

wy (29)

The boundary conditions in the reference example were conveniently chosen to
exclude rigid body motion thereby eliminating the need for any point
displacement or rotation measurements. The motion of the structure is
completely describable by the curvature state function because

ov(0,t)

v(0,t)= =0 30)
Substituting Eq. 30 into Eq. 28 yields
LLL 2
up(t)= [ | [ xp( vdady 2%t gy,
owy au} (31)

as the feedback law in terms of the displacement kernel. To calculate the
shape of the continuous curvature kernel, Eq. 29 is employed. Equation 31 can
also be used to evaluate the curvature rate kernel if the displacement rate

kernel (xpz) is used in place of the displacement kernel (xp).

Figure 7 depicts the resulting curvature and curvature rate kernels for the ten
node finite element model (Figure 4 and 6). Notice that, unlike the
displacement kernel, the curvature kernel is smoother. This is predominantly
due to the smoothing process inherent in the double integration of Eq. 31. Also
notice that the magnitude of the kernels in Fig. 7 are largest where the
cantilevered beam tends to exhibit the largest curvature: the root. In Fig. 6,
the magnitude of the displacement kernel is not the largest where the beam
tends to exhibit maximum displacement; namely the tip.

16
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Although not shown, for this reference example, increasing control authority
by decreasing the control effort penalty (R) does not change the kernel shapes.
Instead, it changes the absolute and relative magnitudes of the kernels. A
change in the shape of the kernel will be achieved by a change in the spatial
nature of the problem such as moving the actuator or selecting a different
performance metric. This observation is supported by an additional example
presented later in the paper. Actual implementation of these sensors is the
topic of a follow-on paper.

The results in Fig. 7 correspond to the objective represented by the lower, right
box in Figure 3. The next step would be to implement these two kernel shapes
using area averaging sensors. The details of this process will be discussed in
the section on implementation issues. Prior to that, the next section discusses
the alternate path in Fig. 3; namely path number 2.
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Equivalent Feedback Gains using Curvature States

An alternative procedure to evaluating the continuous curvature kernel is to
first derive the discrete curvature gains from the discrete displacement and
rotation gains, as shown by path 2a in Fig. 3. This can be done in two ways.
The first involves using the transformation matrix given by de Luis et al2

.

Ui ]
.y (-8 4 6 2] .
- [T 6 2 6 41,
Ul+1 1_2 -l- —1—2 7 :f+1
i+ 1) (32)

This elemental sub-matrix can be assembled into a global state transformation
matrix. The number of degrees-of-freedom are not reduced by this
transformation because now there exist two independent curvatures at each
node. Remember, curvature is not constrained to be continuous in the beam
finite element formulation because applied point moments can induce
discontinuous curvature. Originally, displacement and rotation were the two
nodal DOFs. Now, a node has two curvatures, one associated with the left and
one with the right-hand element.

The 'o' symbols in Figure 8 indicate the net curvature gains at each node as
derived using this transformation. The net curvature gain at a particular
node is found by summing the individual curvature gains at that node. This
procedure is justified at nodes where external moments are not applied
because the two curvature gains correspond to the feedback of curvature
measurements acquired an infinitesimal distance to either side of the node.
Without an externally applied moment, it can be assumed that these curvature
measurements are identical and therefore the net gain is the sum of the two
gains.

The second approach to deriving discrete curvature gains is to integrate the
displacement and rotation gain vectors to get the curvature vector. Unlike Eq.
29, this integration process involves both the displacement and rotation gains.
This integral can be approximately evaluated element by element by summing -
the products of the gains with the element width. Other standard numerical
integration techniques can also be used.

The '"*' symbols in Fig. 8 represent the curvature and curvature rate gains
found using this integration approach.
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Notice the good agreement between the curvature and curvature rate gains
found using the transformation and integration techniques. The agreement
may seem to improve near the tip of the beam but when calculated it was found
that the relative error is more less constant along the beam.

The final step in Figure 3 (2b) involves calculating the curvature and curvature
rate kernels from the discrete curvature and curvature rate gains. Rather
than using the technique in Egs. 15 through 25, it can be observed that each of
the discrete gains at a node roughly represents the area under the continuous
kernel for the region between the midpoints of that node's neighboring
elements Therefore, if the gain is divided by the length of an element, the
result should be approximately equal to the magnitude of the kernel at the
nodal location.

Figure 9, when compared with Fig. 7, shows that this is the case.
Furthermore, Fig. 9 shows the overlay of the gains divided by respective
element lengths for different fidelity models. This reveals that the magnitude
of the kernel is captured quite well at nodal locations for rather coarse models
for this simple reference example. This is an important result since in
practice it would be generally impossible to find the exact feedback kernel from
a continuous model. However, Fig. 9 llustrates that as the order of the model
is increased the kernel shape is asymptotically approaching some shape. It is
this shape that represents the infinite order solution and that must be
implemented.



20 l;‘- i .
g e g ¢ ~,
£ 10 ﬁ 4 "oy
8 * = ‘t
‘“* % 2 .
1) POl % N — e PR
O b mmmm el b, L ¥
-10 -2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
location on beam location on beam
(a) b

|  Figure 9. Discrete gains divided by element length at nodal locations along the beam for |
. controlling tip displacement. Gains for 5, 6, 7, 8, 9, 10 and 11 finite elements are overlaid. The
| individual windows show gains for (a) curvature and (b) curvature rate. |

Implementation Issues

The possibility of implementing infinite order structural controllers is made
possible by the existence of area averaging sensors such as those described in
References 4,5,7 and 8. Once the curvature kernel is obtained, it is a simple
calculation to alter the kernel for equivalent feedback of curvature-induced
surface strain. This simply requires knowledge of the distance of the surface
mounted sensor from the centroidal axis in the structure. Once this kernel is
found, the sensor can be built.

Polyvinylidene flouride (PVDF)? is suggested for this sensor for several
reasons. First, PVDF is a strain sensitive material which can be continuously
distributed along the surface of a structure and whose accumulated charge on
a surface electrode equals the integral over the length of the PVDF of the
electrode width times the surface strain in the structure. Second, PVDF has
an elasticity which is relatively small when compared to the elasticity of
conventional structural materials. This allows the sensor to be rather non-
intrusive into the dynamics of the structure. Third, the shape of the electrode
can be easily altered to equal that of the kernel while leaving the actual PVDF
material uniformly distributed. This achieves the strain sensitivity
appropriate for implementing the kernel while keeping the small dynamic
influence that the PVDF does exert on the structure uniformly distributed. In
addition, removal of electrode from near the edge of the PVDF greatly reduces
the possibility of the sensor shorting its bottom and top surface electrodes. A
fourth and final reason for using PVDF is its high strain sensitivity which
provides an excellent signal to noise ratio for control purposes.

One drawback of implementing the feedback kernel through the shaping of the



electrode is that once the electrode is shaped and the material is mounted on
the structure, the kernel is effectively fixed and cannot be altered. Feedback
gains which reside in a computer can be readily altered if alteration is
required. However, C. K. Lee in Reference 4 has developed a method which
could be used to circumvent this inflexibility in the gains. He uses an area
averaging sensor whose electrode is segmented into numerous squares and
the voltages on these squares are summed as appropriate for a particular gain
distribution. If the gain distribution needs to be altered, the manner in which
these voltages are summed can be changed.

Throughout the discussion of full state feedback for infinite order systems,
there was an implicit assumption that high frequency dynamics in the
structure consisted solely of additional modes which would be properly
modelled given the use of a sufficient number of finite elements. However, this
is seldom, if ever, the case in actual structures. Often, torsion or out-of-plane
bending modes exist irrespective of whether only in-plane bending was
modelled. These dynamics may feed through to the output of the sensor.
Therefore, the spatial wavenumber filtering concepts presented in Reference 8
could be used to roll off, without phase lag, the frequency response of the
spatially continuous sensor.

Figure 10 illustrates the way in which a PVDF area averaging sensor was
implemented in Reference 8. The electrode is shaped as a decreasing
exponential in two directions. Note that the sensor may have to be segmented
if the PVDF sheet is not as long as the kernel. Given that PVDF is a polarized
material, a negative part of the kernel can be implemented by either flipping
that segment of the PVDF or reversing leads (see Reference 8).

For the reference example discussed thus far, two PVDF electrodes could be
shaped: one each as shown in Figs. 7a and 7b. Bonding these two sensors to
either side of the cantilevered beam, one sensor for the curvature kernel and
one for the curvature rate kernel, the two sensor voltages can be summed
appropriately and used to drive the control moment.

The unique feature of this technique is that the processes of multiplying the
gains times the curvature measurements and accumulating these products is
performed by the sensor. This feature significantly reduces the control
implementation effort associated with numerous point sensors.

-
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Figure 10. Nlustration of the implementation of an area averaging sensor using PVDF shaped
in an exponential fashion.




Issues associated with controllers based on classical beam finite
elements

The previous section has shown how PVDF sensors can be used to implement
infinite order controllers. It was also shown in Figure 9, that finite elements
models can be used to predict the shape of the infinite order feedback kernel.
The hope is that by progressively increasing the order (accuracy or fidelity) of
the finite element model, the shape of the feedback kernel will approach some
asymptotic shape. It is this shape that represents the infinite order feedback
kernel and that must be implemented with PVDF.

Classical finite elements are the obvious elements to be used in such a model
refinement process. This study has identified two implementation problems
that are uniquely associated with these classical beam finite elements. The
first is that the stiffness matrix obtained with these classical beam elements
becomes ill-conditioned as the element size decreases. Decreasing the element
size is typically associated with increasing model fidelity. This is illustrated by
looking at the conditioning number of the stiffness matrix of a cantilevered
beam obtained by using the following classical beam finite element:

(12 61 -12 617
v _EI 61 412 -61 22
e\ 12 61 12 -6l
61 212 -6l 41% (33)

The conditioning number for a matrix is the ratio obtained by dividing the
largest eigenvalue by the smallest eigenvalue of the matrix. The higher the
conditioning number of a matrix, the more ill-conditioned the matrix is and
the more likely that matrix will be susceptible to computer round-off errors. It
can be shownl? that the conditioning number is proportional to:

Cond = —;
l (34)

Thus as more elements are used and the element length (/) decreases, the
matrix becomes ill-conditioned and results from the LQR routine will become
less reliable.

A second problem associated with classical finite element models is a problem
of non-uniqueness. From finite difference theory it is known that rotation can
be estimated from discretized displacements as:

i = YL YL o)

2! (35)

In Eq. 35, v, is the nodal rotation and v;'s is the nodal deflection. The
truncation error, which is of order 2, will decrease as the element size (/)



decreases, indicating that the finite element nodal rotations (v;) can be
expressed as linear combinations of the nodal displacements (v;) with
increasing accuracy. The manifestation of this problem lies in the
interpretation of the feedback gains calculated by the LQR algorithm. Given
that the nodal rotations may become linearly dependent on the nodal
displacements (or vice versa), the gains obtained by the LQR algorithm may
yield an optimal solution but the displacement and rotation gains may not be
unique.

These two problems are investigated by comparing the results of two
discretized models used to solve the reference cantilevered beam example. The
first model is the classical finite element beam model, while the second is a
second order accurate finite difference model. In the finite difference mode,
the stiffness term in the governing differential equation (Eq. 6) 1s approximated

by

Ely = EI‘[EI:Z = 6u; )+ 4v; 6V, ¥ U"Z] +0(2?)
/4 (36)

The effects of ill-conditioning and non-uniqueness are investigated by
comparing the results of models in which the fidelity of the model is increased
by increasing the number of nodes. Both these models should exhibit the ill-
conditioning problem since the finite difference model also has a conditioning
number that will increase (deteriorate) as the element size decreases since the
conditioning number is approximately 1/(12) 10, The finite difference model,
however, should not exhibit the non-uniqueness problem associated with the
finite element model. These conclusions are supported by the results of the
investigation.. Although not shown, both the models exhibit ill-conditioning
problems and the Riccati solver failed to yield a solution for a model with 40
nodes (or 80 degrees-of-freedom) for the finite element model and 80 degrees-of-
freedom for the finite difference model. However, the finite element model
may exhibit the non-uniqueness problem as the fidelity of the model is
increased. In Fig. 11 the distribution of curvature gains becomes erratic as the
number of nodes are increased above 10. The finite difference model on the
other hand, as shown in Fig. 12 does not exhibit this behavior. Even with these
erratic gains, the closed loop finite element models are stable with identical
closed loop poles for the first five modes. This observation leads to the
conclusion that this behavior may be due to the non-uniqueness problem
associated with these elements.

Note that the slow convergence to the “infinite” shape of the finite difference
model is due to the method in which the point moment is applied to the
structure. An applied point moment is achieved by applying appropriate
forces to nodes neighboring the node to which the moment must be applied.
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AN ADDITIONAL NUMERICAL EXAMPLE

An additional numerical example involves the control of the relative
transverse displacement between the tip and the middle of the beam. This
state penalty has the form

2 2
q(vtip - Umiddle) = q(vtip - 2VtipUmiddle + Urzniddle) 37)
For this example, the scalar g is unity.

Figure 13 shows the discrete gains. Again, the displacement and rotation
gains are rather erratic. However, the curvature and curvature rate gains are
smooth. Figure 14 shows the continuous feedback kernels. While the
curvature rate kernel has a shape similar to that in the previous example, the
curvature kernel now undergoes a change in sign. All the curves seem to
have an inflection point near the midpoint of the beam (x=0.5).

CONCLUSIONS

A technique has been presented for inferring the exact, spatially continuous
LQR feedback solution to the control of structures from the discrete feedback
gains derived using finite dimensional structural descriptions. These
feedback kernels possess several unique attributes. First, it has been shown
that feedback of the state functions can be transformed to equivalent feedback of
other state functions. This aids in implementation because the feedback can be
derived in terms of the state function that is most easily measured. Area
averaging sensors provide one means for implementing these spatially
continuous feedback kernels. Second, these continuous sensors can eliminate
spatial aliasing. Spatial aliasing is one of the primary causes of spillover in
structural control. Third, all of the feedback computation can be effectively
performed by an area averaging sensor.

The research presented in this paper must be seen as the first step in an
attempt to formulate and implement full state feedback for infinite order
structural systems. Several issues must be resolved before this approach can
be considered a viable alternative to reduced order controllers. For example:
the accuracy with which the area averaging sensors must match the desired
kernel must be investigated. Robustness of this control approach must be
determined and the theory must be demonstrated in the laboratory. The
researchers are presently working on these topics and plan to implement an
infinite order controller on a cantilevered beam using the actuator and
performance metric presented in the reference example.
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on a structure in order to modify its dynamic behavior to
meet its performance requirements. Unfortunately,
active control introduces the possibility of exciting the
structure in an unstable manner making it critical that
either confidence in the prediction of on-orbit behavior
be improved or the types of tests required for
qualification be identified.

Before proceeding with a discussion of the
experimental approach to developing qualification
procedures, it is necessary to present the rationale that
lead to MACE. After all, conducting experiments on-
orbit, even those which are performed on the STS
middeck, is technically risky, expensive, requires
extensive planning, and produces less data than would
be obtained in a comparable ground experiment. The
program must clearly exploit the unique aspects of the
on-orbit environment in order to justify its conduct.

The objective of this paper is to portray the rationale
for conducting this type of flight experiment and to pose
the scientific questions to be addressed through this
research. Additionally, the test article will be described,
along with the ground and on-orbit experiment support
equipment. This paper concludes with a discussion of
planned on-orbit activities.

OBJECTIVES AND RATIONALE

* The goal of MACE is to develop a well verified set of
CST tools that will allow designers to either be able to
predict on-orbit behavior or allow sufficient versatlity in
the design to allow identification and tuning of the
structure on-orbit. A number of different options exist
for deriving this set of tools. The first and least expensive
is to rely on analysis for the design and qualification of
spacecraft which incorporate cST. Unfortunately, this
approach is far less than satisfactory. The scientific
literature is riddled with examples of both closed and
open-loop experiments whose performance varied
greatly from that predicted by state-of-the-art analytical
methods. The reasons behind this are varied. Often the
structural or sensor/actuator characteristic which
contributes to this performance degradation is not the
next detail that would have been included in the
analytical model. Its existence is usually not predicted
but instead is discovered through experimentation. This
experience illustrates that analysis alone is not suffcient.

The question that next arises is what sort of testing
needs to be performed, along with analysis, in order to
develop an effective and efficient spacecraft

qualification procedure. Four different options exist.

Listed in ascending order from lowest to highest cost and
complexity, they are: ground-based open-loop
experiments, ground-based closed-loop experiments, on-
orbit open-loop experiments and on-orbit closed-loop
experiments.

Ground-based open-loop testing is the simplest type
of experimental program that can be carmed out to
verify the validity of analytical models. It :s an
absolutely necessary step, since the quantities that are
most required for closed-loop control design are exactly
those which are hard to predict analytically For
example, structural modal frequencies can be predicted
using numerical methods with a relatively high degree
of accuracy. Conversely, modal damping +a!ues are

_extremely hard to predict analytically on large complex
structures where many energy dissipation mecranisms
are present. Unfortunately, closed-loop controlers for

structures usually require accurate knowledge of the
modal damping because damping determines stability
margins and therefore performance. This problem is
exacerbated in structures that are lightly damped, such
as LSS,

It is easily concluded, therefore, that ground-based
open-loop testing is essential to quantify the accuracy of
analytical models. However, these tests by themselves
are not sufficient to validate the appropriateness of an
analytical model or the performance of a closed-loop
systemn. Skelton® has demonstrated that no measures of
accuracy of the open-loop model are sufficient to
guarantee stability of a closed-loop system at arbitrarily
high gain. This implies that the acquisition of the open-
loop model can never be sufficient to predict closed-loop
performance. Thersfors, ground-based closed-loop
testing is absolutely necessary for the successful
application of CST to realistic structures.

Since CST structures will be used in the space
environment, it is important to investigate whether those
characteristics that are present on-orbit and cannot be
adequately simulated on earth affect the open and
closed-loop tests. In Table 1 various vehicle parametars
are listed along with four significant differences that
occur between on orbit and ground-based tests. The
table indicates that these differences do affect the vehicle
parameters.

The various stractural, kinematic and dynamic parameters that
can dlffer between on-orbit and ground tests

Aero/ Suspension Gravity Thermal/

Table1

Acoustic Radiation
Stiffness no yes yes yes
Damping yes yes yes yes
Mass yes yes no no
Forcing yes yes no no
Kinematics no yes yes no

W

The important issue is whether the differences in
Table 1 cause regular or singular perturbations to the
problem. A regular perturbation is one whose affect on
the vehicle parameter disappears as the perturbation is
allowed to approach zero. This is in contrast with a
singular perturbation whose presence substantially
modifies the vehicle parameter even as the perturbation
approaches zero. If the perturbations are regular, then
they can be modeiled and the results from the ground-
based tests can be more easily used to predict on-orbit
behavior. However, they may still have a very
substantial, although predictable effect on the structural
parameter. For example, small changes in the plant can
often lead to large changes in the modal damping or in
the mode shapes, two quantities that have a direct effect
on closed-loop stability and actuator and sensor
performance. Therefore, if the plant is highly sensitive to
regular perturbations due to influences listed in Table 1,
it is probably necessary to conduct open-loop on-orbit
testing. If the perturbations are singular, it is essential to
conduct open-loop testing on-orbit in order to identify
and adjust for these perturbations.

The only issue that now remains to be addressed is
whether on-orbit closed-loop testing is still required. The
answer to this question depends on whether any singular
perturbations are identified during the on-orbit open-
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loop experiments, or whether any regular perturbations
cause significant unpredictable changes in the plant. If
the answer to sither of these questions is “yes", then on-
orbit closed-loop testing is essential.

A preliminary analysis does not reveal any singular
perturbations arising from one of the four sources shown
in Table 1. Non-convective potential aeroacoustic
equations do not give rise to singularities, nor do
conservative fields such as gravity. So long as
suspension devices are passive or collocated active, they
do not introduce singularities. Since the
thermal/radiation terms only affect otherwise symmetnc
stiffness and damping parameters, they also do not give
rise to singular perturbations.

However, a situation in which a regular
perturbation can have significant effect on the closed-
loop performance of the structure can be easily
imagined. The stiffness added by a suspension system,
even if small, can change the modal structure.
Additionally, for an articulated test article, a suspension
system could introduce an unexpected kinematic
constraint. Gravity can change preload on a joint, and
hence damping. Gravity will also cause otherwise
straight members to curve, causing significant changes
in the modal structure, such as nonplanar coupling of
modes. Therefore, while no singular perturbations have
been identified, there are a number of regular
perturbations which can cause significant changes in the
plant that could result in control performance being
degraded.

Therefore, the conclusion that is reached is that
ground-based open and closed-loop testing is not
sufficient for the verification of CST technology. At a
minimum, on-orbit open-loop testing would need to be
conducted to test for the presence of any singular
perturbations, or any significant regular perturbations.
If these perturbations are found to exist, then on-orbit
closed-loop testing becomes essential as argued by
Skelton. If they are not present, then the closed-loop tests
might still be needed if a suitable ground-based
performance metric or disturbance environment is
unobtainable, or, more likely, if the additional cost of
conducting the closed-loop experiments were
incremental.

Having demonstrated the likely necessity of on-orbit
closed-loop testing, a test article on which to perform the
experiments must now be selected. A survey of proposed
future spacecraft was undertaken and an evaluation was
made on which type of spacecraft exhibit the most
requirements for CST and which were most limited by
earth-bound testing.45 Some of the spacecraft types that
were considered included two point alignment occulting
instruments, multipoint alignment interferometric
devices, shape control of reflective surfaces, flexible
manipulators, and multipayload platforms. This latter
type was selected because the large angle motions of the
payloads stress state-of-the-art suspension devices and
because of its applicability to missions of near term
interest. -

Proposed missions which will use this type of
spacecraft include low and geosynchronous platforms in
the Mission to Planet Earth, the evoiutionary
International Space Station, and the planetary orbigng
platforms of the Exploration Initiative. As these

platforms become larger and more complex, the

propensity for individual on-board controllers to interact

with each other and with the bus attituds control system
will grow. This propensity is exacerbated by increasing
payload mass fraction associated with larger
instruments and robotic devices, decreasing structural
bus stiffness associated with larger platforms, increasing
authority of the controllers associated with tighter
pointing and positioning requirements, and the
increasing need to reject disturbances which originate at
other payloads. This rationale makes clear the need to
develop a well verified set of cST tools. This
development must include:

1. The development of a comprehensive analytical
CST framework for the design and analysis of controlled
multibody platforms. This analysis begins with an
understanding of how flexibility influences the pointing
and tracking performance of multibody platforms, and
must be able to include the influences of suspension and
gravity for use in correlating with ground test results,
and to exclude the influence of suspension and gravity
for use in predicting on-orbit results.

2. The validation of the analytical framework by
comparison with a set of ground based experiments with
a test article which incorporates the essential physical
characteristics of a multibody platform. This test will, of
necessity, include the influence of gravity and
suspension, and will be typical of the preflight ground
testing of an actual platform.

3. The validation of the analytical framework by
comparison with a set of on-orbit zero gravity
experiments which eliminate the influence of gravity
and suspension.

The specific criteria which will determine
experiment success of MACE are the identification of the
regular (and, if they exist, singular) perturbations in the
dynamics which occur as a result of the change from one
to zero gravity, and the production of the data for the
final validation of the analytical framework. The
ultimate result of MACE will be a well verified modelling ~
capability for the controlled structures design and
qualification of future multibody platforms, and a
detailed understanding of the parametric tendencies in
vehicle dynamics, geometry and performance
requirements, which cause the zero gravity closed-loop
behavior to differ from the one gravity resuits. This
capability can be exploited by future spacecraft
designers to either obtain confidence in the on-orbit
performance of their CST spacecraft before they are
deployed, or to design enough versatility into the
spacecraft in order to accommodate any unexpected
deviation between ground and on-orbit behavior.

EXPERIMENTAL APPROACH

The fulfillment of the basic objective of the MODE 2
program requires two steps. First, the research must
validate the analytical framework for the design and
analysis of controlled multibody platforms by
comparison with a set of ground based experimentson a
test article which incorporates the essential physical
characteristics of envisioned multibody platforms.
Second, the research must also validate the analytical
framework by comparison with a set of zero gravity
experiments with a test article similar to that used in the
ground tests. These objectives necessitata two aspects of
the expenmental approach: the capture of the essential
physical characteristics of multibody platforms in the
design of the MACE test article, and the performance of



meaningful tests which validate the analytical
framework through a coherent on-orbit and ground test

program.

Capturing the Essential Physics

To arrive at the essential physical characteristics of
multibody platforms, one must consider the vehicle
architecture of the missions which are envisioned by the
international space community.? In such platforms, the
payloads and articulating appendages each have
pointing or positioning requirements, and corresponding
attitude sensors, pointing gimbals and control systems.
The spacecraft structural bus is flexible and has its own
attitude control system. The simulation of this vehicle
architecture, in its associated operational environment,
necessitates a test article with the following attributes:

o a test article designed with the appropriate multiple
scaling laws to allow it to fit in the middeck, yet
preserve the essential performance requirements ofa
full scale test article,

¢ the incorporation of at least two gimballing payloads
to enable the implementation of multiple interacting
control systems with independent objectives,

« the incorporation of two rigid payloads,
representative of compact but high mass fraction
devices, and a flexible appendage, interchangeable
with one payload, representative of an articulating
appendage such as a robotic servicer,

« a sufficiently flexible structural bus such that flexible
resonances lie within the controller bandwidth,

¢ a sufficiently flexible structural bus which, when
suspended even from state-of-the-art suspension
devices, exhibits a degree of suspension coupling,
gravity stiffening and droop,

« a sufficiently low structural damping so that the test
article is representative of structures incorporating
typical aerospace materials,

e and a sufficiently complex geometry so that the test
article undergoes full 3-D kinematic and coupled
flexible motion further stressing state-of-the-art
suspension systems.

In order to develop the appropriately refined CST
tools, representative test objectives with appropriate
disturbances and performance metrics must be used.
The tests that will be carried out as part of MACE include
pointing and tracking of single and multiple payloads.
For each experiment run, performance will be measured
in the presence of random broadband disturbances,
which originate on the structural bus, and narrowband
disturbances due to the planar and non-planar slewing of
a second payload.

The performance metrics of all the closed-loop tests
will be derived from inertial angular rate data obtained
from bi-axis gyroscope packages mounted on the
payloads. Specifically, the performance metncs for the
various tests are stability (i.e, RMS 2.axs angular
position about pointing line of sight or tracking reference
profile), jitter (i.e, RMS 2-axis angular rate about
pointing line of sight or tracking reference profiie. slew
response time (i.e., time required to complete
maneuver) and percent degradation of stadii:ty and
jitter from single payload performance 't e.
quantification of multiple interacting control
performance).
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Different types of controllers, both linear and
nonlinear, will be implemented on the MACE test article
depending on the performance objective and payload
amplitude. Three families of controllers will be used
during the on-orbit test. One family will be identical to
those used in the ground test. This family will explicitly
identify the differences in one-gravity and zero-gravity
performance. The second family will be those which
analytically corrected beforehand for the absence of
suspension and gravity effects. This family will
explicitly verify the ability to model the known
differences between ground and flight and identify the
importance of unexpected perturbations. The third
family will be based upon on-orbit identification of the
test article. Between these three families, the objectives
of MACE will be met.

Validation of the Analytical Framework

Given a test article which captures the essential
physical characteristics of the generic class of multibody
piatforms, a test program which validates the analytical
CST tools must be formulated. Such a program must
incorporate both ground-based and zero-gravity testing.

Based upon SERC’s previous experience in
laboratory active structural control experiments, it was
concluded that a challenging yet realistic goal for MACE
would be to attempt to improve closed-loop
pointing/tracking performance by 40 dB over its open-
loop value (Fig. 2). Independent of the absolute level of
performance, this level of performance improvement
will demonstrate the effectiveness of the controlled
structures technology.
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Both the ground testing and on-orbit testing will
begin by measuring the open-loop performance. Then
the authority of the controller will be increased, and
closed-loop performance in the presence of scaled
disturbances will be measured. By comparing closed-
loop performance as a function of control authority
between ground and on-orbit testing, regular (and if they
exist, singular) perturbations in the dynamics which
occur as a result of the change from one to zero gravity
will be identified. To extract maximum benefit from the
on-orbit data, it is desirable for these perturbations to
begin to manifest themselves at the level of control
authonty which achieves half of the performance in the
1.g environment (i.e., at 20 dB). In this way, there is a
semes of tests (i.e., 0to 20 dB) where ground and orbital
results should be similar, and a series of tests (ie, 20 to 40
dB) where significant deviation might be expected.




Singular perturbations could cause significant deviations
throughout the 0 to 40 dB range.

This experimental approach is formulated to study
the levels of control authority where the gravity
perturbations become important (i.e., the transition
regime). Testing only at levels below this transition
regime does not justify an on-orbit experiment. Testing
only at levels above this transition regime may not yield
meaningful data. Valuable information can only be
uncovered by testing at leveis which span the transition
regime because these tests gradually reveal the
fundamental ways in which the pertinent gravity
dependent phenomena perturb the control problem.

Thus the MACE test article and associated tests are
representative of an important class of future NASA,
ESA, and NASDA missions, and they are designed to
exhibit gravity dependent characteristics which become
important to closed-loop performance as control
authority is increased. By its design, the program
exhibits mission applicability, technical relevancy and a
fundamental exploitation of the environment urnugue to
the STS system.

POINTING ON A FLEXTBLE STRUCTURAL Bus

A preliminary analysis of the linear pointing
problem is presented to illustrate the research approach.
In this section, performance degradation due to
unmodelled flexibility will be investigated. There are
two fundamental questions that need to be answered for
the problem of pointing while mounted on a flexible
structural bus. They are:

1) How does unmodelled flexibility degrade payload
pointing performance? and

2) How are controllers designed and implemented
on a modelled flexible bus?

The first identifies the problem and the second identifies
the solution. The actual control analysis tasks that will be

used as this research progresses are:

Task 1. Design a controller assuming the structural bus
is rigid.

Evaluate the performance of this controller on
an evaluation model which incorporates
flexibility in the structural bus.

Use a flexible model to design the active
controller using existing pointing and tracking
hardwars.

Allow the flexible model controller to use
additional sensors which measure flexible
motion of the bus.

Allow the flexible model controller to also use
actuators to control this flexible motion.

Task 2.
Task 3.
Task 4.

Task 5.

The first two tasks address the first question. The
control algorithm derived using the rigid design model in
task 1 will be applied, in task 2, to a flexible evaluation
model using two different sensor configuratons referred
to as localized and centralized, which are depicted in Fig.
3

In the localized configuration, the inertial atotude of
the payload is measured directly by an inertial piatform
(IP). In the centralized configuration, the inernal amtude

of the payload is inferred from the inertial attitude of the
structural bus at the [P and a measure of the relative
angle at the gimbal. Now, flexibility lies between the
payload and the inertial measurement. If the structural
bus were rigid the performancs using the centralized and
localized configurations would be equivalent. In the
centralized configuration, however, flexibility in the
structural bus can introduce an additional angle between
the IP and the end of the structural bus where the gimbal
is located. Left unmeasured, this flegbility induced angle
can degrade pointing performance.

g __ P

Cantralized

Figure 3 Localised and cantralised configurstions bor irapinging design
model control iawe on the Sexibie svaluation model

In this paper, only typical section analyses® will be
dealt with to investigats the manner in which structural
bus flexibility degrades payload pointing performance
(tasks 1 and 2). The typical section models employ
lumped masses and inertias to capture the fundamental
physics embedded in the linear pointing problem.
Ultimately, these various control design and analysis
tasks will be performed on models of increasing
complexty.

There are two basic classes of rigid payloads: center
of gravity (CG) mounted payloads and non-CG mounted
payloads. As will be shown, CG mounted payloads
exhibit certain desirable characteristics which make their
control significantly easier.

The simplest model which captures the
fundamentals of CG mounted payload pointing is the
two inertia model shown in Fig. 4. The inertia J
represents a structural bus on which an attituds contro
torque t, is applied. The inertia J, represents the pointed
payload with the torque Trepresenting the gimbal torque
between the payload and the structural bus. The two
angle coordinates 8, and 6, are the inertial rotations of
the structural bus and payload, respectively. This model
is used as the rigid control design model.

In the Linear Quadratic Regulator (LQR)
formulation the inertial angle of the payload can be
penalized to improve payload pointing stability as

J= '}T(xTQ s+ulR u)dt

_In |a 0
,u-{r }andR—[o ﬁ]
(2)

where J is the cost, x is the state vector, @ is the state
penalty matrix, u 13 the control input vector, and R is the

(1)
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control effort penalty matrix. The feedback solution to
the steady-state Riccati equation gives

&
0 0 0 0
{fl}: 6.2 =-0x
Jolo ¥ o0 yamds||®
8 8116, (3)

Figure 4 Rigid design model for CG mounted payload.

Notice that this control only feeds the inertial payload
angle and angular rate to the gimbal torque. No attitude
control or measurement of the structural bus atttude are
required. The control stiffens and damps the payload
motion with respect to a particular orientation in nergal
space by using the structural bus as a reacton inertia.
The closed-loop eigenvalues are

1 v .
=0,0, —-(-12
’ 32"2 Q{;( ! (4)

As might be expected, the pointing mode is in a
Butterworth pattern with damping equal to 70.71% of
critical.

The closed-loop variance of the payload inertial
angle about its nominal line-of-sight can be calculated
assuming a steady-state additive white noise
disturbance. This disturbance is assumed to be present
either at the attitude control location or at the payload
gimbal. Other work has looked at stability bounds
associated with unmodelled flexibility.?

The variance is found by solving the closed-loop
Lyapunov equation relating the driving noise covariance
matrix V to the state covariance matrix X.

T
XA+ AyX=-V (5)

where A, is the closed-loop state dynamics matrix of the
plant. ’Iﬂo variance of the payload inertial angle 13

0??

—
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227, _]

B (6)
Notice that the variance is only a function of the
additive gimbal torque noise (g ). If thereisno gimbal
torque noise, the variance is zero. The atttude control
noise does not disturb the payload because the motion of
the payload is decoupled from the motion of the
structural bus. The cost is proportional to :he zimbal

torque noise and decreases with increasirg nayload
inertia and increasing control authority (v

Having derived the controller using the design
model, it is now possible to investigate how unmodelled
flexibility degrades the pointing performance by
impinging the control law (Eq. 3) upon a flexible
evaluation model (Fig 5).

Figure 8 Flexible evaluation model for CG mounted payicad
Assuming that ?ﬁ can be measured directly (the localized

configuration), the closed-loop eigenvalues are given by
1 v WL ed
$=0,0, Z(-1%d),ti =L 12 ¢
:22.]2 u B Judig

Notice that the rigid body mode is unaffected since the
attitude control torque is not used. The poles associated
with the pointing mode are equivalent to the poles for the
system without flexibility (Eq. 4). The remaining poles
are identical to the flexible mode poles of the open-loop
system.

Control spillover exists because the gimbal torque
disturbs the structure. However, there is no observation
spillover because there is no measurement of any motion
associated with the mismodelled structure. The
measurement of the payload inertial motion is
reconstructed exactly and therefore eliminates spillover.
The closed-loop variance of the payload angle is identical
to that in Eq. 6. Therefore, flexibility does not degrade
the pointing performance when local inertial
measurements are fed back to a CG mounted payload.

In the centralized configuration, the inertial angle of
the payload equals the inertial angle of J|, (8;5) plus the
gimbal angle (8;). However, the inertiaﬁ angle of the
structural bus is assumed to be measured at the attitude
control location on J,,. Therefore, the flexibility induced
rotation 8, -8, is not measured.

The closed-loop variance of the payload's inertial
angle is shown in Fig. 6a (for gimbal noise) and Fig. 6b
(for attitude control noise). The horizontal axis
represents the ratio v/ as the cost of the control (§) is
decreased. The solid line in Fig. 6a is the variance, from
Eq. 6, for the rigid design model subject to gimbal noise.
The dashed line represents the variance associated with
the flexdble evaluation model. Notice that feedback from
inertial measurements at the attitude control location to
the gimbal, across the flexdbility, couples the flexible
motion to the payload angle causing performance
degradation which increases with increasing control
authority (v/3).

In the case of attitude control noise (Fig. 6b), only the
variance associated with the evaluation model is shown
because the varance associated with the rigid design
model (Eq. 6) is zero. This variance is now nonzero
because the centralized configuration fails to account for
the flexibility induced angle between the inertial
platform and the location where the gimbal is attached

ORYGINAL FACE 1T
OF POOR QUALITY
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(6 1°612)- This flexibility-induced angle corrupts the
esnmau of the payload inertial angle. Since the payload
attempts to track this estimate, this error causes a
degradation in pointing perfon'nance.

Multibody platforms can also have non-CG
mounted payloads attached to the structural bus. The
non-CG mount couples rotation (8,) of the structural bus
with rotation Hzof the payload. The rigid control design
model is shown in Fig. 7.

Figure 7 Rigid design model for non-CG mounted payload

Penalizing the inertial angle of the payload gives the
feedback as

{ﬁ}=_° %"”J— 0 "“‘j—( z:
8,
S B

1,2 1,92
= — b —
H ab.lz ﬁb.'m

A Ll 1L
ba2 den

622 =("‘1"”"¢2)J1+M1’ﬂ2(£1+€2)
den (10)

den={(m, +mg)JJq +(J €3 +Jef)mymy (11)
Notice that while both the attitude control and gimbal
actuators are used, only the inertial states of the payload
are measured. The closed-loop poles are given by

520, 0, 715#’7;?(-1:.')

(12)

Again, the Butterworth pattern exists. The control now
requires feedback to the structural bus’ attitude control
torque since angular motion of the structural bus and
payload are coupled in open-loop.

This control can be impinged upon a flexible
evaluation model such as the one shown in Fig. 8.

Fligure 8 Flaxible evaluation model for non-CG mounted payload.

Flexible motion of the structural bus, caused by gimbal
and attitude control torque noise, perturbs the angle of
the payload. This results in both control and observation
spillover.

Impinging the feedback in Eq. 8 on the evaluation
model in Fag. 8, using the localized configuration, gives
the results shown in Figs. 9a and 9b. The overlaid solid
and dashed lines in Fig. 9a show that the level to which
gimbal noise disturbs the payload angle barely changes



between the design and evaluation models. The solid
curve in Fig. 9b shows the variance of the payload angle
associated with the design modsl (Fig. 7) in the presence
of attitude control torque noise. Notice that since
structural bus rotation couples with payload rotation,
attitude control noise now disturbs the payload in the
design model. The dashed line in Fig. 9b shows the
variance associated with the evaluation model.
Excitation of the flexible motion couples with payload
rotation to cause performance degradation, even though
a localized configuration is used. The evaluation model
is more susceptible to performance degradation as a
function of control authority when the noise is
introduced at the attitude control location than when it is
introduced at the gimbal. This is because the unmodelled
flexibility lies betwesn the disturbance and the payload
thereby frequency shaping the disturbance on the
payload in the former case, while the disturbance is
impinged directly upon the payload in the latter.

Figures 9¢ and 9d show the variance caused by the
two different noise sources for the non-CG mounted
systems when a centralized configuration is used. In
both figures, the solid curves represent the variance
associated with the design model. The dashed curves are
the variances of the evaluation model. Notice in Fig. 9¢
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that the variance associated with gimbal noise deviates
from that for the design model at high levels of control
authority. This was not the case for the localized
configuration (Fig. 9a). For the case of attitude control
noise (Fig. 9d), deviation again occurs between the
variance of the design and evaluation modeis. Note,
however, that for either noise source the variance
eventually increases with increasing control authority
and that the level of control authority which minimizes
the variance depends on which noise source exists.

The above analysis has served to illustrate the
degradation in performance that can occur when
controllers designed using rigid models are applied to
flexible spacecraft. The open-loop coupling of the
unmodelled flexibility to the payload angle makes the
non-CG systems more susceptible to performance
degradation than the CG system. Centralized
configurations exhibit more deviation from the expected
rigid body performance than localized configurations
because the feedback paths are closed across the
flexibility thereby coupling the unmodelled flexibility to
payload motion. Howaever, centralized configurations
are programmatically advantageous because the various
payloads share an expensive common resource, the IP.
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EFFECT OF GRAVITY ON THE POINTING AND TRACKING
PRORLEMS

Multibody platforms were chosen as the reference
mission configuration not only because they characterize
many proposed missions but also because they are
arguably the most susceptible to gravity influences. The
essence of the on-orbit phase of the MACE program is to
identify and characterize these influences. To thisend, a
set of sample problems was selected each of which
captures a different type of gravity perturbation. The
objective of this line of research is to analytically predict
the manner and degree to which these influences perturb
the closed-loop control problem.

Gravity will cause changes between dynamics
measured on the ground and on-orbit. These
perturbations can be grouped in two broad categories:
those resulting directly from the presence of the gravity
field, and those which are a result of the mechanical
suspension system required for 1.g tests. These are
illustrated in Fig. 10. The first category includes: modal
coupling which occurs due to the static sag of a
structural member, gravity stiffening (in tension) or
destiffening (in compression) of structures along the
gravity vector, and dynamic buckling which occurs
when the structural members deform transversely to the
gravity vector. The second category of problems
includes: added stiffness and mass of the suspension
system, added damping of the suspension system, and
modal coupling of the suspension dynamics with the test
article. All of these influences result in perturbations of
the system frequencies, damping and mode shapes
which can fundamentally alter the stability and
performance of a controller, and must be taken into
account in design.

GROUND-BASED ENGINEERING MODEL TESTBED

The initial configuration of the MACE test article is
shown in Fig. 11. [t consists of a segmented straight
tubular bus with a two axis pointing/tracking payload at
each end. An active, strain-inducing segment is located
along the bus. The MACE test article will have a closely
coupled set of flexible modes with a fundamental
bending frequency below 2 Hz. This is done through the
choice of material (Lexan) and geometry of the bus.
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A segmented design of tubular members connected
by universal joints was chosen as the bus structure for a
number of reasons. First, it provides an evolutionary test
article since it is straightforward to modify its geometry
to represent more complex structures. [t is also possible
to add and change the locations of passive and active
members. These include piezoelectric members and
members with a high level of passive damping. Discrete
devices such as torque wheels, accelerometers and proof
mass actuators can be attached at the joints.

The overall length of the test article is appraximately
1.5 m. The MACE engineering model (EM) node
provides for attachment of the members through the
MACE joint and provides a standard hole pattern for
attachment of the payloads, inertial platforms and other
instrumentation. Each member is .4 m in length and 25.4
mm in diameter. Four members are used in the MACE
inital configuration.

Two types of payloads are currently envisioned:

*  Pointing/tracking. These payloads are mounted to
the bus through a two axis motorized gimbal
mount. The payloads are rigid, and capable of
120° motion in two axes.

* Flexible appendage. This payload consists of a
flexible, instrumented boom mounted on a two
axis motorized gimbal. The gimbal is capable of
120° motion in two axes, and the fundamental
frequency of the flexible boom is less than the
fundamental frequency of the bus structure (<2
Hz).

The DC torque actuators in the gimbals will be used
to align the payloads or to sweep them through a pre-
determined tracking profile. Rate gyroscopes located on
the rigid pointing/tracking payloads and the flexible
appendage will provide a measure of the inertial angular
rate of the payloads for feedback and performance
measure. The gimbal motors will have integrated
encoders.

In addition to the sensors and actuators located on
the payloads, the following sensors and actuators will
also be used:

¢  Torque Wheels. A set of three torque wheels is
situated at the center node of the structural bus.
The purpose of these torque wheels is to provide
both three axis attitude control and structural
control.
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Figure 10 Sample problers ilhustrating the effect of gravity on structures



Pointing/Tracking Payload (2)
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Figare 11  Initial configuration for multibody platiorm test article
. Active Member. The MACE active member  majority of the computer system. Modifications will

consists of a square Lexan rod with piezoelectric
ceramics mounted on the sides. It will be capable
of bending about two axes. The member will be
instrumented with surface bonded strain gauges.

¢ Rate Gyroscopes. A set of three rate gyroscopes
will be collocated with the torque wheels forming
an inertial attitude control platform.

Additional sensors such as strain gauges,
accelerometers, etc. can be placed along the test article as
required by the various control algorithms.

Given the recognized need to perform closed-loop
ground-based tests, the question arises as to how does
onae best approximate the boundary conditions of space.
Required is a system which will support the payload
weight while having a minimal impact on the test article
dynamics. A zero spring rate pneumatic/electric
suspension device from CSA Engineering Inc. of Palo
Alto, California will be used to support the test article in
1-g. The suspension system will have a 63.5 mm
maximum vertical stroke, a maximum payload of 17.4
kg, and will use displacement and acceleration feedback.

FLicET TESTBED

The MACE flight testbed consists of (1) the
Experiment Support Module (ESM), which contains all
experiment electronics in one standard middeck locker,
and (2) the MACE test article which is stowed in a second
middeck locker (Fig. 12).!10 The primary difference
between the ground-based EM and the flight testbed will
be the manner in which the various active components of
the test article will be connected to each other and to the
ESM. Electrical connections along the bus will be
accomplished by modifying the EM joint to provide
simultaneous electrical and mechanical connections.
This will be accomplished by inserting a multipin
electrical connector inside the joint. Wiring will run
inside the hollow Lexan members. Finally, the test article
will be connected to the ESM through a single umbilical
which will also attach to a test article node. This greatly
simplifies on-orbit assembly time thereby maximizing
testing time.

Experiment Support Module (ESM)

Much of the MODE 2 ESM will be identical to the
MODE 1 ESM, utilizing many similar or 1dentical
components. These will include the ESM support frame,
data storage device, analog circuit card cage, and the

10

include the addition of a real time high speed control
computer, and downlink/uplink capability. All MACE
data acquisition, storage, signal processing and signal
generation will be performed by Payload Systems
SensorNet Experiment Computer.

The purpose of the downlink/uplink is to allow on-
orbit identification, downlink of identified paramaeters
and uplink of new control algorithms in the event that
unexpected behavior occurs. Downlink will be
accomplished through data interleaving on the STS
video channel. Uplink will be accomplished through the
STS Text and Graphics System (TAGS). :

Required Resources

MACE resource requirements are summarized in
Table 2 below.

Table? MACE Resource Requirements Sammary Table
ESM

Weight 54 lbs.
Volume, operational 1 Middeck Locker
Volume, stowed 1 Middeck Locker
Power requirement 113 Watts @ +28 VDC
Telemetry Downlink/uplink
Crew activities  Set-up, operations
Data processing Performed by ESM
MACE Test Article
Weight 54 lbs.
Volume, operational 30" x 8" x 60"
Volume, stowed 1 Middeck Locker
Power requirement 15 Watts

Crew activities Set:-ugi ozmdans
R

Flight Operations

MODE-2 calls for operation by the crew on two
separate days. Procedures require configuration,
activation and operation of MODE-2 by one crew
member during a normal eight hour work period. If the
test sequence proceeds flawlessly, the crew task for all
the MACE tests will involve assembling the test article in
a predetermined configuration, running open-loop
identification tests over a specified frequency range, and
beginning closed-loop operations. The probable testing
scenario would be to excite the structure using a pre-
determined excitation profile with one of the on-board
actuators, then, after steady-state has been achieved, o



Figure 12. The MACE tast article doployed on the STS Middock

initiate the active control using low gain values.
Assuming no instabilities are found, the performance
metric and sensor outputs will be recorded and the
experiment can be repeated with higher gain values,
until all the predetermined gains have been implemented
or an instability is reached. Testing would proceed to
additional configurations or control algorithms as time
permits. This procedure is illustrated in Fig. 13.
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Figure 13 Testing procodure decision flowchart

After the first day, video and video encoded data will
be transmitted to the ground to be analyzed by the Pl
team and new control algorithms, if necessary, will be
uplinked to the crew prior to the second day's operation.
While no real time communications, audio or video, are
required, this infrequent access to the STS video and
TAGS system will be necessary for up/down link
activities.

CONCLUSIONS

There is a clear need to develop an effect:ve and
efficient analytical and test procedure for qualifying CST
spacecraft. The goal is to determine the degree o which
gravity perturbs the closed-loop performance of Large
Space Structures which cannot be fully or accurately
tested on the ground.

The MODE-2 program, using the MACE test article,
is designed to develop this qualification procedurs by
formulating a set of CST design and qualification tools
and validating these tools through extensive ground and
on-orbit testing. By conducting these open and closed-
loop tests using a relatively inexpensive test article, a cost
effective preliminary search can be performed to
identify the presence of gravitational perturbations to the
control problem. The specific criteria which will
determine experiment success are the identification of
the regular (and, if they exist, singular) perturbations in
the dynamics which occur as a result of the change from
one to zero gravity, and the development of validated
analytical and experimental CST tools needed to insure
the operational success of a CST spacecraft.
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