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Abstract

The work described in this paper has as its goal

the integration of a number of reasoning

techniques into a unified intelligent information

system that will aid flight crews with malfunc-

tion diagnosis and prognostication. One of these

approaches involves using the extensive archive

of information contained in aircraft accident

reports along with various models of the air-

craft as the basis for case-based reasoning

about malfunctions.

Case-based reasoning draws conclusions on the

basis of similarities between the present situ-

ation and prior experience. We maintain that

the ability of a CBR program to reason about

physical systems is significantly enchanced by

the addition to the CBR program of various

models. This paper describes the diagnostic

concepts implemented in a prototypical case-

based reasoner that operates in the domain of

in-flight fault diagnosis, the various models

used in conjuction with the reasoner's CBR

component, and results from a preliminary
evaluation.

Introduction

Reasoning about physical systems is a difficult

process, and any attempt to automate this proc-

ess must overcome a number of challenges.

Among these are the tasks of generating expla-

nations of normal behavior, fault diagnoses, ex-

planations of the various manifestations of faults,

prediction of future behavior, etc. The reasoning

process becomes even more difficult when

physical systems must remain in operation. Dur-

ing operation, a physical system changes dy-

namically by modifying its set of components,

the components' states and pattern of intercon-

nections, and the system's behavior.

To address these concerns a prototypical case-

based reasoner (CBR), called Epaion, has been

developed by the Intelligent Cockpit Aids Team

at NASA Langley Research Center, in connec-

tion with ongoing work on AI-based systems for

in-flight fault management [Schutte et al.]. The

reasoner operates in the domain of in-flight fault

diagnosis and prognosis of aviation subsystems,

particularly jet engines. Automation of in-flight

fault diagnosis and prognosis can be used as an

aid to the flight crew for early detection of a

problem or failure. This provides the crew with

more time to respond more effectively and re-

duce potential damage due to the failure.

Several aspects of the aircraft domain make

automation of in-flight diagnosis challenging. In

contrast with non-operative diagnosis (i.e., diag-

nosis of systems that can be shut down), symp-

toms in aircraft subsystems may change with

time because of failure propagation. Information

about the operational status of many aircraft

components may be unavailable or incomplete

due to limited instrumentation, and safety and
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comfort considerationsplacefurther constraints
on in-flight testing.

The approachwe are taking employsa novel
methodologyfor dealingwith physicalsystemsin
operation, and involves the use of case-
basedtechniquesin conjunctionwith modelsthat
describethe physicalsystem. Case-BasedRea-
soningsystemssolve new problemsbyfinding
solvedproblemssimilar to the currentproblem
andadaptingtheir solutionsto thecurrentprob-
lem, taking into considerationany differences
betweenthe currentandpreviouslysolvedsitu-
ations.BecauseCBR systemsassociatefeatures
of a problemwith apreviouslyderivedsolution
to that problem,they are classifiedasassocia-
tional reasoningsystems.

We maintainthat the ability of a CBR program
to reasonaboutphysicalsystemscanbe signifi-
cantly enchancedby the addition of various
models to the CBR program. This paper de-
scribesthe diagnosticconceptsimplementedin
Epaion!, the variousmodelsusedin conjuction
with the CBR component,and results from
Epaion's preliminaryevaluation.Although the
examplespresentedpertain to aircraft malfunc-
tions, it is clear that these techniques are
applicableto spacecraftaswell.

Knowledge Sources

Epaion draws its power from several knowledge

sources, including a library of aircraft acci-

dent/incidents; a functional dependency model

with deep domain information about the func-

tional dependencies between the components of

the aircraft; and a model representing causal

information concerning transitions between vari-

ous states of the aircraft.

Case Library

Epaion maintains a library of actual aircraft acci-
dent/incident scenarios called cases. Each case

consists of a set of features that identify the

particular scenario, a list of the relevant context

variables and their particular status, a set of ob-

servable symptoms, the fault, and a causal expla-

nation that connects the observable symptoms to

a justifying cause. The set of identifying features

includes information such as aircraft type, airline,

flight number, date of the accident, and similar

data. The list of context variables includes in-

formation such as the phase of flight, the

weather, etc. The set of symptoms includes

information about abnormal observations

from mechanical sensors such as the value of

the exhaust gas temperature, the value of engine

pressure ratio, or from "human sensors," such as

the sound of an explosion, or the smell of smoke

in the passenger cabin. Cases containing all of

this information are called library cases, whereas

cases where the fault and the causal explanation

are not available are called input cases.

In contrast to most other CBR research efforts,

each case in our methodology consists not only

of a set of previously observed symptoms, but

also represents sequences of events over certain

time intervals. The time intervals may have un-

known and unequal lengths; it is the event order-

ing that is of importance. Such temporal in-

formation is necessary when reasoning about

operating physical systems, since the set of

symptoms observed at a particular time may rep-

resent improvement or deterioration from a pre-

vious reading, or may reveal valuable fault

propagation information. In a jet engine, for

example, the fact that the fan rotational speed

was observed to be abnormal prior to an abnor-

mal observation of the compressor rotational

speed is indicative that the faulty component is

the fan and that the fault propagated to the

compressor, rather than the reverse.

1 Ancient Greek for "expert"
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Causality Model

Epaion's causality model contains information

such as "fan-blade separation causes the rota-

tional speed of the fan to fluctuate" and "the

rotational speed of the fan causes the engine

pressure ratio to fluctuate." Along with the

causal information between two states, e.g.

"inefficient air flow" and "slowing down of the

engine", the model maintains a frequency count

of the number of times that the system witnessed

that inefficient air flow caused the engine to slow
down.

Functional Dependency Model

The functional dependency model is a digraph

model of an aircraft system, with nodes repre-

senting primitive components, and arrows con-

necting nodes representing functional depend-

encies. Component B is said to be functionally

dependent on component A if the proper func-

tioning of B depends on the proper functioning

of A. For example, the control surfaces of an

aircraft are functionally dependent on the hy-

draulic system, since they will cease operating if

the latter fails. The functional dependency

model contains two kind of arrows, representing
immediate and non-immediate links between

components. Two components C 1 and C2 are

connected via an immediate link 0-1ink) when

Cl'S failure propagates immediately to C 2, i.e.,

abnormal function of C 1 at time t 1 results in ab-

normal function of C 2 at time t 2 and t 1 = t2. If t2

>t 1 then C 1 is said to be connected to C 2 via an

non-immediate link (N-link). For example, if the

fan belt in an automotive engine breaks, the fault

propagates immediately to the electrical system,

as indicated by the generator light, but it may

take some time before the propagation to the

cooling system becomes evident from the tem-

perature sensor.

Physical Dependency Model

The physical dependency model is a digraph of

an aircraft system, similar to the functional de-

pendencies diagraph, in which the links in the

graph represent potential paths of fault propaga-

tion due to physical proximity. This sort of

propagation occurs when uncontrolled dis-

charges of energy attendant on component mal-

functions propagate to neighboring systems. The

severing of nearby hydraulic lines by blade frag-

ments from a disintegrating turbine provides a

typical example.

The Abstraction Hierarchy

The Case-Based Reasoning component of

Epaion consists of a self-organizing memory
structured as a frame-based abstraction hierar-

chy, as defined by [Schank 1982]. This memory

forms an upper bounded semi-lattice that

contains domain specific information at different

levels of abstraction. The information contained

in the lattice includes:

a. The names of all components in an aircraft

engine.

b. The components that are sensors. The exhaust

gas temperature, the rotational speed of the fan,
and the fuel flow indicator are some of the me-

chanical sensors in an aircraft's engine. Vision,

sight, and smell are the "human sensors" used in

the diagnostic process.

c. The possible values for each sensor. For a

mechanical sensor the allowable values are:

lower than expected; normal; higher than ex-

pected. If a sensor initially indicates values that

are normal, then at the following time interval

indicates values that are lower than expected,
and at the third time interval still indicates values

which are lower than expected, then the status of

the sensor during these three time intervals is

normal, lower, lower which is a kind (i.e.,

subcategory) of overall lower than expected

status which in turn is a kind of abnormal status.
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d. Thevariousfaults that maybeobservedin an
enginesubsystem.For example,it is represented
thatseagull ingestion is a kind of bird ingestion

fault which is a kind of foreign object ingestion

fault and so on.

e. Information on how faults manifest them-

selves. For example, fan vibration and ab-

normality in the rotational speed of the fan are

manifestations of a problem in the fan.

f. The accident/incidents that the system already

knows. For example the system knows that the

incident of a China Airlines Boeing 747 that

suffered a mishap over the Pacific Ocean_ on

February 19, 1985 [NTSB-AAR-86-03] is an
instance of an accident/incident since it is a kind

of rotor related scenario which is a kind of

engine related scenario which is a kind of acci-

dent�incident scenario.

Reasoning Cycle

Epaion's reasoning cycle consists of the follow-

ing three phases: input a new problem; retrieve

the most similar case; adapt the retrieved case to

fit the current scenario.

Epaion's input constitutes a set of symptoms ex-

perienced by an airplane's crew during a flight.

When the system experiences a new set of

symptoms, i.e., when faced with an input (new)

case, it searches its case library for the

most similar case. This is done by placing the

input case in self-organizing MOP 2 memory un-

der the most appropriate parents, determined as

described in [Riesbeck & Schank 1989]. The

siblings may therefore be assumed to be closely

related. The nearest sibling is retrieved as the

case that is most similar to the input case.

When the system finds and retrieves a similar

case, Epaion assumes that the current fault is the

2 Memory Organization Packet

same as the fault in the retrieved case and adapts

the causal explanation of the retrieved case to fit

the current case. The fault and the causal expla-

nation are both stored in the case library for

future usage. The system is provided with a set

of adaptation rules which, in addition to adapting

the retrieved causal explanation to fit the current

case, find possible gaps in the causal explanation

and fill in the missing causalities by using the

models. This causal explanation connects the

symptoms to a justifying cause, and thus the

system's multiple-model-based causal reasoning

ability produces a causal analysis of the new

case, rather than simply a reference to a previous

solution. The new causal analysis is not

only stored in the case library as part of the input

case, but is used to augment and modify the

knowledge of the causal model. The following

section provides details of this process.

Adaptation and the Models

Epaion's adaptation algorithm is summarized in

the following two steps:

The first step involves the transfer of the fault

from the library case in the input case and con-

sists of two possibilities.

Case 1: If the match between the input case and

the library case exceeds a threshold value then

the fault is transferred intact. For example, if in

the library case the fault was a malfunctioning

fuel controller, then it is assumed to be the same

in the input case.

Case 2: If the match is below the threshold value

then an abstraction of the library case fault is

transferred to the input case. For example, if in

the library case the fault was bird ingestion, then

it is assumed that in the input case the fault is

foreign object ingestion.

The second step involves the adaptation of the

causal explanation of the library case so it can

explain each, or as many as possible, of the
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symptomsof the input scenarioby connecting
themto a justifying cause.This consistsof the
followingpossibilities:

Case 1: If the library caseand the input case
haveidentical symptomsthen the causalexpla-
nationof the library caseis transferredintact to
the inputcase.

Case2: If the inputcasecontainssymptomsthat
do not appearin the library casethenthecausal
explanationof the library caseis transferredin
the input caseandthe following additionalproc-
essingtakes place. Let 02 be an unexplained
inputcasesymptom.

Subcase 1" If the causal model containsthe
relation 01 causes 02, and 01 is a symptom or

manifestation in the input case, then the link 01

causes 02 is added in the causal explanation of the

input case.

Subcase 2: The causal portion of the model

does not contain the relation 01 causes 02, but the

functional dependency model knows that com-

ponent C2 is functionally dependent on compo-

nent C 1, and 01 is a manifestation of abnormal

behavior of component C 1, and similarly 02 is a

manifestation of C 2. This knowledge is depicted

by the graph

C1 C2

where 0 denotes a phenomenon that is a symp-

tom or manifestation l.t of abnormal behavior of a

component. Additionally, if 01 is a symptom in

the input case and time(_l) < time(C2), i.e.,

symptom 01 appeared before or concurrent with

02 then the link 01 causes 02 is added in the causal

explanation of the input case.

At present, Epaion is implemented to diagnose

faults in the engine subsystem of a generic twin

engine transport. The programs currently run on

various platforms using Common Lisp. Figure 1

displays the use of the various models during the

adaptation process.

Unexplained Symptoms

i

i

Remaining Symptoms

i

I

Remaining Symptoms
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Figure 1: Use of models during adaptation

Simulation and the Physical Model

We have indicated that Epaoin uses a physical

dependency digraph as one of its models. This is

a makeshift measure, however, due to the fact

that physical fault propagation, being the result

of catastrophic component failures, is highly

unpredictable. One expedient for dealing with

this unpredicatability is to refer to previous

cases, as Epaion does; another is to utilize spa-

tial simulation models (SSMs) to determine the

effect of uncontrolled energy releases. [Feyock

& Li, 1990, 1992] describe the use of SSMs to
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predict both fluidic and energy leaks 3. These

models, which are easily interfaced with host

systems, require only the identity of the faulty

component, which can be supplied by Epaion.

The SSM then looks in the component database

to determine the location and type of the com-

ponent. If the component is of a type that can

cause a fluid or energy leak, the system uses this

information to set the initial conditions for the

simulation. The simulation is then run, and the

physical propagation paths predicted by the SSM
are extracted from the run data.

In addition to addressing the chaotic nature of

physical propagation, our use of simulation

models in conjunction with more traditional rea-

soning systems is prompted by a belief that

deriving answers to real-world questions by

setting up the initial conditions of simulation

models, running the simulations, and extracting

information from the results of the run, consti-

tutes a powerful but underutilized mode of op-

eration for AI systems.

Results

We conducted an experimental evaluation of

Epaion on actual aircraft accident/incident cases

involving engine faults. Information provided in

the individual accident/incident reports from the

National Transportation Board (NTSB), the

British Air Accidents Investigation Branch

(AAIB), and data collected from test accidents

staged at Boeing Inc. [Shontz et. al. 1992] was

used to derive the appropriate information con-

stituting each case, a process called accident
reconstruction. We reconstructed a total of

eighteen cases, of which sixteen were used as

library cases, and six as input cases.

The evaluation process required that each input

case be presented to Epaion separately, and that

3 We denote as "energy leaks" the catastrophic
disintegration of_omponefits due to the uncontrolled

release of kinetic or potential energy.

the system produce a diagnosis along with a

causal explanation. The diagnosis produced by

Epaion was then compared with the correct

diagnosis for the particular scenario. In addition,
the reasoner was evaluated based on the number

of symptoms for which the reasoner was able to

find a justification. A "correct diagnosis" is the

diagnosis determined by NTSB, AAIB, or by

[Shontz et. al. 1992]. Epaion is said to have

produced a complete explanation if the system

was able to explain each observed symptom by

connecting the symptom to a justifying cause.

The results achieved are very promising for the

future success of the system. Based on the re-

suits we make the following observations.

• Classification

Five of the six cases in this evaluation were

correctly classified. A case involving water in-

gestion [NTSB-AAR-78-3] was classified under

the category of miscellaneous scenarios due to

the lack of previously encountered water inges-

tion scenarios. An, expanded case library will

enhance the systems classification capability and
therefore offer better matches for each additional

input case.

• Diagnosis

Epaion was able to correctly diagnose five of the

six scenarios. A case representing the American

Airlines Flight 566 scenario [NTSB-F-A067]

was properly classified as rotor scenario but

misdiagnosed as fan problem rather than turbine

problem. This is a result of the fact that prob-

lems in the fan and problems in the turbine

manifest themselves similarly, and therefore both

kinds of faults are classified under the category

of rotor scenarios. When the American Airlines

scenario was used as input case the system re-
trieved as the most similar case a Dan Air

incident [AAI-AAR-4/90], which is a fan blade

scenario. With almost negligible difference in the

degree of match between the input case and the
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relevantlibrarycases,the secondbestmatchwas
the accidentof the United Airlines Flight 611
that took placeon July 19, 1970[NTSB-AAR-
72-9].This is a turbinefault scenarioandwould
haveachieveda higherdegreeof similaritywith
the input caseif the time orderof the symptoms
in both caseshad beenrepresentedmore pre-
cisely.All symptomsusedin reconstructingthe
caseof the United Airlines Flight 6II were

based on expert opinion, but none were

explicitly stated in the NTSB report. With the

exception of the behavior of the EGT, the same

holds for the symptoms used to reconstruct the

American Airlines Flight 566 scenario. This

suggests that presenting the system with cases

that are reconstructed based on an accurate set

of symptoms is vital for correct matching and

therefore correct diagnoses.

• Symptom explanation

In five of the cases presented as input Epaion

was able to explain all of the symptoms experi-

enced. When Epaion was presented with the

symptoms of an icing scenario staged at Boeing

[Shontz et. al. 1992] it failed to explain the pres-
ence of broad-band vibration. The failure is at-

tributable to insufficient information in the ab-

straction hierarchy. If the fact that broad-band

vibration is a manifestation of fan abnormality

had been included in the abstraction hierarchy,

the system's functional dependencies model

would have explained the broad-band vibration

symptom as a result of fan blade damage. The
same result would have been achieved if the

system had previously experienced other cases

with broad-band vibration, thus enabling the

causal model to explain the vibration. It is

evident that the more knowledge the system

contains in its abstraction hierarchy, the better its

explanation capability will be. Current efforts are

accordingly focused on expanding this

knowledge to a substantial size.

Conclusion

Automation of inflight diagnosis and prognosis

as an aid to the flight crew has great potential for

improving the general safety of civil transport

operations. The Epaion Case-Based Reasoning

system we have developed for the purpose of

performing fault diagnosis and prognosis of

aircraft in operation uses a hybrid

reasoning process based on a library of previous

cases and several types of models of the aircraft

as the basis for the reasoning process.

This arrangement provides the methodology

with the flexibility and power of ftrst-principle

reasoners, coupled with the speed of associa-

tional systems.

A major concern of this project has been to

create a system capable of achieving a practically

useful level of performance on a case base of

significant size, thereby avoiding the "toy prob-

lem" trap besetting many AI systems. The ex-

tensive use of a classification hierarchy allows

the system to achieve O(log n) search times,
while the information abstraction attendant with

accident reconstruction produces space-efficient

representations. The system is currently hosted

on a desktop personal computer, and is esti-

mated to be capable of storing the full set of

propulsion related aircraft accident for the last

20 years. These considerations, together with the

encouraging level of success achieved by

Epaion, support the expectation that this system

will prove to be an effective contributor to air-

craft safety.
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