
N93-25972

The probabilistic neural network architecture for high speed

classification of remotely sensed imagery

Sa.mir R. Chettri

Hughes-STX at NASA/Goddard Space Flight (::enter

Greenbelt, MD 20771

Robert F. Cromp

Code 930.1

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Abstract

In this paper we discuss a neural network architecture (the Probabilistic Neural Net or

the PNN) that, to the best of our knowledge, has not previously been applied to remotely
sensed data. The PNN is a supervised non-parametric classification algorithnl as opposed to

the Gaussian maximum likelihood classifier (GMLC).
The PNN works by fitting a Gaussian kernel to each training point. The width of the

Gaussian is controlled by a tuning parameter called the window width. If very small widths are

used, the method is equivalent to the nearest neighbour method. For large windows, the PNN
behaves like the GMLC.

The basic implementation of the PNN requires no training time at all. In this respect it

is far better than the commonly used Backpropagation neural network which can be shown to

take O(N 6) time for training where N is the dimensionality of the input vector. In addition the

PNN can be implemented in a feedforward mode in hardware. The disadvantage of the PNN is

that it requires all the training data to be stored. Some solutions to this problem are discussed

in the paper.
Finally, we discuss the accuracy of the PNN with respect to the GMLC and the Backprop-

agation neural network (BPNN). The PNN is shown to be better than GMLC and not as good

as the BPNN with regards to classification accuracy.

1 Introduction

Iligh performance computers and sophisticated sensors are responsible for the explosive generation

of data for scientific, industrial and commercial uses. NASA faces the same data glut with its current

and future missions (including the Earth Observing System and Tropical Rainfall Measuring Mission

platforms). At NASA's Goddard Space Flight Center, the Intelligent Data. Management group

(IDM), within the Information Science and Technology Office (ISTO), has been investigating and

developing data and information management systems that can handle the archiving and querying

of data produced by Earth and space missions with fast response times. This work has resulted in

an Intelligent Information Fusion System (IIFS) for handling and a.rchiving terabyte sized spatial

119

PREGF_.DING PPlGE BLANK NOT FILM'ED



databases; and Scheauler/Planner Under Deadlines (SPUDS) to guarantee that response times are

maintained [CCS92]. Our currenl data source of applications is remotely sensed images, llowever,
IIFS and SPUDS are not inherently limited to this data source, having been conceived as general

purpose tools.

IDM's research into neural networks has been ongoing since 1989 [CttC89] starting with re-

search into the applicability of the backpropagation paradigm to remotely sensed images. This work

has continued, resulting in comparisons of backpropagation with conventional Gaussian Maximum

likelihood classification [CCB92]. Wit.hhl IIFS/SPUDS, the neural networks act as high speed, low

level image classifiers with higher level domain knowledge being provided by decision trees and

expert systems. The combhiation of IIFS and SPUDS provides a scientist willl the means to access

a database based on image content at varying levels of resolution.

For IDM's purposes, the data glut problem can be divided into two parts. The firsl parl

deals with efficient characterization of the data and subsequent a,'chival processes. The second

part deals with efficient querying of the data based on pla.tform, content, and spatial and temporal

constraints. This paper will deal with the characterization of satellite images and tile attendant

problems. In particular we discuss the pros and cons of the Probabilistic Neural Network (PNN)

with respect to high speed data classification.

In the following text, the PNN is first described. Nexl, we discuss the advanlages of the

PNN with respect to backpropagation neural networks (BPNN) and Caussian Maximum Likelihood

Cla.ssifiers (GMLC). As a way of addressing tlmshortcomings of the PNN, we introduce Kohonen's

Learning Vector Quantiza.tion (LVQ) which helps increase the feedforward speed of the PNN. We

then apply' the PNN to an image of the Black]fills in South Dakola and discuss the quality of

the output. We conclude with a summary of the main results of the paper and reveal our future

research plans.

2 The Probabilistic Neural Network (PNN) architecture

The roots of the PNN lie ill the histogram evaluation techniques that date back to 1661 ([TTT,_],

[TK76]). Whereas the histogram uses rectangular boxes and quantizes the data axes, the kernel

method chooses not to quantize the data axes, instead placing a kernel at each data point in

multidimensional space. For an illustralion of this process see [Si186]. In the following discussion,

the density estimates are obtained f,'om a set of 77.observed data vectors X1,...,Xn. The actual

density is denoted by f(x) and the estimate of the density by' f(x).

The multivariate estimate of density [Si186] with kernel K and window width cr is written as

p<x,_: <,
720"d i=1

The kernel function satisfies

St¢ K(xJdx = 1. (2)
d

Usually the kernel is a unimodal, everywhere positive function. The use of non positive kernels is

still an open research question.

120



Tile Gaussiankernel(alsodiscussedin the nextsection)canbewritten as

K(x) = (27r) -d/2 exp(- _xTx), (3)

The kernel function and the smoothing parameter are tile two choices to be made in the case

of density estimates using the kernel method. Research has shown that the choice of kernel does

not greatly vary the density estimate [Si186]. All things being equal, it is then desirable to choose
kernels based on their computational properties. We will address this issue in section 2.4.

2.1 Discriminant functions

Given K classes, let f(X I Sk) be the probability density function (pdf) associated with the

measurement vector X, given that X is fi'om class k. Let P(Sk) be the a priori probability of class

Sk. We can use the maximum a posteriori (MAP) decision rule to identify the class to which X

belongs. It can be stated as follows ([And72]):

Decide X • Sk iff f(X [ &.)P(,5'k) > f(X I 5'j)P(Sj), j = O, 1, ... M - 1 ,

where the products f(X [ Sk)P(Sk) correspond to discriminant functions, and there are M classes
for which discriminant functions are defined. As stated, the MAP rule consists of evaluating the

discriminant functions and selecting the maximum as the winner.

Estimating the density function is a key problem in MAP estimation. If the underlying

density of each class were known, the problem would be an easy one. In fact, the Gaussian

Maximum Likelihood Classifier (GMLC) simplifies the problem of density estimation by assuming

that f(X I Sk) is a multi-variate normal pdf whose parameters (the mean vector and the variance

covariance matrix) can be determined by samples conditioned on class Sk.

The probabilistic neural net (PNN) was designed by Specht [Spe90] using Parzen's [Par62]

kernel function:

f(X ] 5'k) - 1 1 _--_exp -(X--Wa'i)r(X--Wki)_
(27r) d/2(yd Pk i=1 20"2

(4)

Note that Parzen's kernel is the same as the Gau. smn kernel of equation (3). In equation (4)

Wki is the ith training pattern from the 0 _< U h _< M - 1 category, P_ is the total number of

training patterns in class k, el is the dimension of t_he training pattern W_:i, and cr is a "smoothing

According to Specht, a small value of (7 caused the density to have modes at the sites of the training

samples. Increasing a causes smoothing of the surface around the modes. In the limiting case, the

pdf is Gaussian regardless of the true nature of the underlying distribution. This may seem to be

a problem; however, according to Specht, " it is not difficult to find a good value of or, and ... the

misclassification rate does not change dramatically with small changes in a."

2.2 PNN implementation details

The PNN can be implemented using a feed-forward network. An overview of the PNN is shown in

Figure 1. There are four layers. The input layer fans out the input d dimensional vector which has

121



to be placed in one of M classes. Each node in the input layer is connected to every node in the

pattern layer and input vector components are transformed by means of a weight lt_,j connecting
the ith input node to the jth pattern node. The pattern layer is subdivided into sets of nodes. Each

set of nodes does the processing for a particular class. Since there are M classes, there are M sets

of pattern nodes. The output of each pattern node set is sent to a node ill the summation layer,

thus there are M nodes in the summation layer. Finally, the outputs of the summation layer nodes

are sent to the decision layer which obtains the maximum output Ok, k = 0, .... M- 1, and assigns
the input vector X to class k.

(X-Wk')T(x-wk') is exponentiated. This product can be written asIn equation (4) - 2_,2

xTw - 1 if both input and weight vectors are converted to unit vectors, as shown in Figure

2 (a). After the dot product is completed, 1 is subtracted from the total and this is multipied by

a -_ after which the exponentiation is performed. At the end of this step one of the terms in the

sum of equation (4) has been evaluated.

If the input and weight vectors are not converted to unit vectors, then the architecture of

the PNN as shown in Figure 2 (a) can be changed to reflect this. It should be mentioned here that

using unit vectors changes the kernel evaluation from a dot product and two vector subtractions

to a single (tot product and a scalar subtraction. The disadvantage to the dot product method is

that magnitude information, that may be useflfl during the classification process, is lost. On the

other hand if our vectors all contain integers, the kernel evaluation process may be done efficiently

using integer computations and the dot product method dispensed with entirely.

A summation]ayer node contains an adder that Sums up the outputs of all the pattern nodes

in a particular set and then multiplies the output bv., (27r)d/_aap_.1 as shown ]n Figure 2 (b)_ Thus

the summation layer represents the summing process of equation (4).

The decision layer obtains the maximum of the summation layer outputs, and the class to

which a given input vector X belongs is finally output.

The PNN is trained by first converting the training exemplars to unit vectors. Next each

connection between the input node and a pattern node is assigned a weight which is nothing but

an element from the unit training vector. Thus the number of pattern layer nodes corresponds to

the number of training vectors and each weight between input and pattern layer nodes corresponds

to an element of a training vector. Once training has been done, the network is ready for use in

feed-forward mode. The only input parameter from the user in feed-forward mode is a. A good

heuristic method for selection cr is described in [KF72]. In this method the smoothing parameter is

given by a - (d-ltr [C])I/2N-a/el. Here, C is the covariance matrix estimated fi'om the data, d is

the dimensions of the data, tr is the trace of a matrix, N is the number of samples and 0 < a < 0.5.
Computing C would make the PNN training time identical to the Gaussian maximum likelihood

estimator, thereby elinfinating its main advantage. In [MAC+92], Radial Basis Functions (of which

PNN's are a part) are used to reduce the number of hidden nodes by obtaining the covariance C

matrix of samples and also to obtain the widths of the kernel functions. While the RBF approach

of [MAC+92] is usefid, we have found that cr can take on a reasonably large range of values without

seriously affecting accuracy, hence our adherence to the PNN paradigm. A discussion of the results

pertaining to our choice of cr is given in section 3.2.

122



X X X X
0 I 2 d-I

d- 1,0

A Po_teriori

Probability for
class 0

A Posteriori A Posteriori

Probability for Probability for
clo_s 1 class M- 1

1 1
Decision Layer

Input Layer

Pattern Layer

Summation Layer

Figure 1: Feed forward inlplementation of Specht's discriminant analysis method

xW
i

o-2 -_

x W
ij d-I

/
:)

d-lj
Outputs from pattern layer

d/2 d -1

[(2_) o pk]

(a) (b)

Figure 2: Details of pattern and summation layers

123



2.3 PNN advantages and disadvantages

Ill this subsectionwediscussthe advantagesanddisadvantagesof usingPNNs. In particular we
focuson training time,retrainingtime,robustnessto weightmodification,computational load and
memory requirements.

Advantages

. Training time for the PNN is proportional to the total number of data vectors. In back-

propagation the training time is roughly O(d _) [CCB92] where d is the dhnensionality of the

input vector. Also, the weights in the resulting backpropagation network do not bear any

relationship to the training data and therefore are difficult to interpret. Depending on the

flavor of the BPNN chosen, there are several parameters whose values have to be selected

through heuristic means. These can affect the accuracy and generalization capability of the
net.

For example, a BPNN of the type described in [tIKP91] requires that we randomly initiMize

the weights. The learning rate and the momentum are two additional parameters to be

chosen. Different choices of these free parameters lead to different neural networks with

different classification abilities. With the PNN there is only one free parameter cr to be

chosen and with the negligible training time, many different nets can quickly be constructed
with different values of cr and the best one chosen.

. Retraining the PNN is easy since the hidden layer can be pruned or enlarged on demand.

When a new data vector is received, it can be inserted as a node in the appropriate position

in the pattern layer, and the weight connections are made fi'om this node to the input layer.

This is an O(d) process aim an attractive feature when compared to BPNN, since the BPNS

must be retrained (though not from scratch [SR87]) when new data arrive or when data from

the original training set is removed.

. The PNN is robust to weight removal. Infact, the weight removal and adjustlnent is the basis

for the pruned PNN (PPNN). Our studies (which are also backed up by other recent work

[Bur91]) indicate that the number of nodes in the pattern layer can be reduced by considerable

amounts and yet give very accurate results. For further discussion on this see section 3.2. In

contrast, due to the compact nature of the BPNN, weight deletion/node removal may severely

impact classification accura_'.

Disadvantages

. Since the entire training set is kept (and not an encoded version of it, as in the BPNN), the

size of the hidden layer is very large as compared to the BPNN. This would be a shortcoming

in computing environments where memory is scarce.

. Processing speed is slower than BPNN since each input vector has to be evaluated over the

entire training set. In a previous publication [CCB92], we have shown that the classification

speed for a single input vector for the BPNN is O(d_), where d is the length of the input

vector. For the PNN, the speed is O(MP_d2), where M is the total number of classes and Pk

is the number of exenq)lars in class Sk. On the surface, this would make the PNN and the

BPNN have the same execution time. However, according to Kalayeh and Landgrebe [KL83].

124



for accurateclassificationPk is proportional to d. Hence, in practice the network would have

a speed that is O(d3).

From our discussion, it is evident that the PNN would be very well suited for exploring

dynamic environments. Such enviromnents are commonplace in many scientific investigations of

data. One of the goals of IDM's IIFS/SPUDS is the high speed classification of data into discipline

specific indices for potential users of the system. In its computationally inefficient form, the PNN

is incompatible with these goals. In the next section we address this major disadvantage of the
PNN.

2.4 Speeding up feed-forward implementations of the PNN

The major disadvantage of the PNN is that all the training data are retained ill the form of weights.

This data can grow extremely large, making feed-forward evaluation of input vectors impossible in

real time. One interesting way to prune the hidden layer is described in [Bur91]. In this paper, the

author suggests that the data in the hidden layer be pruned using the Learning Vector Quantization

algorithm of Kohonen [I(oh89]. Unlike [Bur91], where the pruned PNN was applied to simulated

biva.riate uniform and Gaussian distributions, we apply it to higher dimensional data from real

distributions. The LVQ method can be implemented as a feed-forward neural network working

in both supervised and unsupervised mode [Simg0]. In the following paragraphs, we give a brief

description of the algorithm in its supervised form. For more details the reader is referred to

[HKP91].

In LVQ we are given a set of input vectors Xik where X_ represents the ith vector from class

Sk, i = 1,...Pk and P_ is the number of training patterns in class Sk. We select :llk vectors per

class to represent the Pk vectors where -'_lk << Pk. We choose the minimum Mk < Pt. such that

an acceptable level of accuracy is obtained when the Pk vectors are replaced by the Mk vectors in

feedforward mode. This boils down to a trade off between computational efficiency and accuracy

and will depend on the user's application. In this network, the initial weight vectors w_ are

randomly chosen and a training vector is applied to the neural net input. For each weight vector a

set of distances w_ - X_ is calculated and the smallest one (denoted by w);) is chosen from this

set. Next we move this weight closer to the input vector by the following update rules:

Aw_, = { +c_(/)[X/k - w/_2] if class is correct-a(t)[X_: w/k.] if class is incorrect (.5)

In equation (5) o,(t) is the learning rate at time (or iteration level) t. The value of ta.(t) decreases

as the number of iterations in the learning process increases. A common choice is (_(l) = t -1.

The number of iterations is denote(1 by tm_, and its range is 500 _< tm_ _< [0000. Our practical

experience indicates that choosing t,,,,.,: in the range above is sufficient for convergence. I11 fact,

using tm_ > 500 did not lead to great increases in accuracy.

Now the key point in tile LVQ pruning of the PNN is that 3Ik << Pk, i.e., the number of

prototype vectors Mk is much less than the number of vectors Pk in the hidden layer, yet gives

an adequate representation of all the Pk vectors in that class. Hence, the time for feedforward

classification of input vectors can be decreased, and the memory requirements reduced. We have

performed experiments in pruning the PNN so as to improve the feedforward speed. These results

125



Table1: Distributionof data,Blackhills,SouthDakota

Training Entire image Classname
No. of pixels No. of pixels USGS - Level I

0 453

1 478

2 464

3 ,182

4 0

5 0

6 368

7 0

8 0

6676

:12432

16727

194868

Urban

Agricultural

Rangeland
Forested Land

0

0

144t

O

0

Water bodies

Wetland

Barren

Tundra

Perennial snow and ice

are presented in section 3.2, Table 3 and indicate that pruning tile PNN is a viable computational
scheme.

3 Application of the PNN to remote-sensing

In this section we describe the data on which we tested our PNN, discnss the selection process thal

we employed for the training and testing data, elaborale upon the training and testing methodology

used, and finally, present results for the basic PNN and the I,VQ pruned version of the PNN.

3.1 Description of data set

The data set that was used for training and testing the PNN is called the Blackhills data set,

generated by the Landsat 2 multisl)ectral scanner (MSS) (see Figure 3). This data set was previously
used to compare backpropagation neural networks with Gaussian maximum likelihood classification

in [CCB92]. The spectral bands are 0.5 - 0.6pro (green), 0.6 - 0.7pro (red), 0.,q - 1.1pro (near

infrared). These bands correspond to channels 4 through 7 of the Landsat sensors. There are

262,144 pixels corresponding to a 512 x 512 image size, and each pixel represents approximately

79m × 79m on the ground. The image region covers a range of latitudes from 44015 ' to 44030 '

and longitudes from 103030 , to 103°45'; the images were obtained in September 1973. The ground

reference data set was also provided in the form of United States Geological Survey level II land

use/land cover data [AHRW76]. Since we were only interested in level I classification, the different

classes were conglomerated into the various higher level classes in the hierarchy; the distribution
of pixels is shown in column three of Table 1. For example, from Table 1 we know that there are a

totM of 6676 pixels in the urban class, 453 of which were used for training the PNN.

126



3.2 Training and testing the PNN

Thegroundreferencedatasetwasviewedona displaydeviceto getanideaof thespatialdistribu-
tion of thegroundreferencedatapixels.Accordingto [Ric86],aminimumsamplesizeof 60pixelsis
necessaryforaccurateclassification.Also, according to [Cam87], a large number of smaller training

sites should be used rather than a few large ones. Following these recommendations, we formed

training sets from the Blackhills data set. The distribution of training samples is summarized in
column two of Table 1.

The PNN classifier is derived from the training group and the error estimate obtained from

the test group. This method is known as the "holdout" or It method of estimating errors. We

do not use the leaving-one-out method of training and testing as described in [WK89] since this

method is extremely time consuming and only leads to marginally better accuracy [KC68] in testing

for large data sets (which is the case for us).

Results for testing tile trained PNN on the image are shown in the contingency table (Table

4). Each entry C'ij ill tile matrix represents the number of times a pixeI in class i was pnt into class
j. Cii is the number of correct classifications in class i. In Table 4 the left-hand side set of values

represents the classification results of the Unpruned PNN (UPNN) while the pruned PNN (PPNN)

results are on the right. Tile percent correctly classified (PCC) for the UPNN is 0.697, while it is

0.737 for the PPNN. While a 4_ difference might seem small, for a 512 x 512 image this amounts

to approximately 10,000 additional pixels being correctly classified. The future generation of Earlh

orbiting platforms will transmit terabytes to petabytes of data, so small percentage changes in

accuracy of classification will lead to large absolute changes in cla.ssificatioll accuracy.

A closer look at Table ,l) indicates that for forest and urban land cover classes (categories

0 and 3), the PPNN performs better whereas in the other cases, it is not as good. This can be

explained on the basis that categories 0 and 3 have less spread in their data vectors (i.e., they are

clustered very tightly), hence representing them by a smaller set of vectors leads to no degradatiotl

in classification ability. However the samples of tile other classes (1, 2, 6) have a larger in-class

variability and hence their multidimensional spatial clusters are not compact leading to poorer

representation by a smaller set of vectors.

To study the change in the classification ability of the UPNN with or, we varied cr in incre-

ments of 2 from 2 through 12, with the entire training set being used. The results are presented in

Table 2. The results indicate that there is some variability in the classification with cr and that as

rr grows larger, the UPNN PCC tends toward the Gaussian Maximum Likelihood Estimate with

PCC = 0.053 as discussed in [CCB92].

Another test that we performed was to see the variability of tile neural net accuracy as we

changed the number of hidden nodes in the PPNN. In this test, cr = 4 since that was the case for

which we got maximum PCC in the unpruned PNN. These results are shown in Table 3. We found

that as the number of nodes increased there was a general increase in the accuracy of tile PPNN.

The four node case is an anomaly, since some classes were classified well while other classes were

classified extremely poorly (to tile extent of having less than 25 pixels put in the rangeland class.

i.e., about 0.1% of the total number of pixels).

127



Gro't._

i Urkan_ 0

1 A4/ric.

i 2 Rathe

3 Forest

m 6 m_ren

Figure 3: Ground reference dala for the Blackhills image

Table 2: Variation of PC(.! with cr

_-267f-/-O-.d.9_1 °-6S5 I °.6i::i/0.670 I 0.66, I

Table 3: Variation of PCC with mmaber of nodes/class

des/class ,t I0 20 40 S0

PC¢I o.7Q [ 6.72o I o.72a t °-7_'_7 I 0.742

128



(2roth:_

0 Urhgn

1 _47ric.

m2 Range

3 Forest

B6 B rren

Figure 4: PNN classified Btackhills dataset

Table 4: Contingency table for PNN; Raw PNN on left with a = ,1 (PC!(:! = 0.697); PNN LVQ

combination on right with a = 4 (PCC = 0.737)

0 1 2 3 6 Total pixels 0 1 2 3 6

0 0.410 0.165 0.228 0.153 0.044

1 0.162 0.418 0.378 0.035 0.007

2 0.110 0.286 0.532 0.071 0.002

3 0.009 0.064 0.139 0.785 0.003

6 0.196 0.118 0.128 0.177 0.381

6623

41954

16263

194386

1073

0.509 0.090 0.1,17 0.172 0.083

0.215 0.09 0.1.17 0.172 0.0_3

0.114 0.245 0.381 0.129 0.132

0.010 0.070 0.041 0.861 0.01_

0.257 0.065 0.056 0.5:3.1 0.088

129



4 Concluding remarks and future work

Ill this research, we have described the Probabilistic Neural Network (PNN) and have applied it to

remotely sensed imagery. The accuracy obtained by the PNN is better than the Gaussian :Maxinmm

Likelihood Classifier (GMLC) and nol as good as the Backpropagation Neural Network (BPNN).

On tile other hand, the training time in the PNN is very small when compared to the other two

methods. In addition the network is robust to weight changes and has very small retraining time,

making it highly suitable for highly variable and dynamic environments. A modified version of the

PNN (LVQ PNN or PPNN) was discussed and compared with the raw PNN. Fox" the chosen data

set, the PPNN performed better than the raw PNN.

Future work includes additional research on the PNN and using the PNN in applications,

as described next.

4.1 Planned extensions to the PNN

As has already been discussed, it is sensible to automate the pruning of tile PNN. In this process

the numl)er of nodes in each class would be allowed to grow or decrease independently of each other

such that the PCC per class would be optimized.

In addition, the PNN algorithms described throughout the paper are all readily adaptable

for a parallel architecture implementation, most likelyon a machine such as the MasPar MP-1, a

16,384 processing element SIMD machine.

4.2 Incorporation of the PNN into a metastrategy

The Intelligent Data Management group has developed a number of automatic characterization

algorithms drawn from backpropagation networks, PNN, Adaptive Resonance Theory (ART) net-

works [CG87], decision trees, Fourier analysis and wavelet theory. Each of these methods has its

own unique strengths and weaknesses, and there are cases where one may falter while another

excels. We plan to attempt to develop a metastrategy that draws on its knowledge of each of these

techniques to produce a hybrid characterization algorithnl that performs at least as well as any

single one of these components [Fin90].

5 Acknowledgements

A number of people within and without the IDM group have contributed to this work. The authors

would like to thank William J. Campbell, George Fekete, Robb Lovell and Nicholas Short, Jr. for

their help during this research.

References

[AIIRW76] J. R. Anderson, E. E. tIardy, J. T. Roach, and R. E. Witmer. A land use and land cover

classification system foruse with remote sensor data. Geological Survey Professional

Paper 964, United States Government Printing Office, Washington, D.C., 1976.

130



[And72]

[Bur91]

[Cam87]

[CCB92]

[CCS92]

[CG87]

[CHC89]

[Fin90]

[HKP911

[KC68]

[KF72]

[KL83]

[Koh89]

[MAC+92]

[Par62]

H. C. Andrews. Introduction to Mathematical 7kchnique._ in Pattern Recognition.

Wiley-Interscience, New 5%rk, 1972.

P. Burrascano. Learning vector quantization for the probabilistic neural network. [EEE

Trans. on Neural Networks, 2(4):458-461, 1991.

J. B. Campbell. Introduction to Remote Sensing. Guilford Press, New 5%rk, 1987.

S. R. Chettri, R. F. Cromp, and M. Birrningham. Design of neural networks for classifi-

cation of remotely sensed imagery. In 1992 Goddard Conference on Space Applieation._

of Artificial Intelligence, pages 137-149. National Aeronautics and Space Administra-

tion, 1992.

R. F. Cromp, W. J. C,ampt)ell, and Jr. Short, N. M. An intelligent informalion fusion

system for handling the archiving and querying of terabyte sized spatial databases. In

International Spac_ }'ear Co_@rcnce o_ Earth a_td Space Science b_fo,'matio,l .._yst, ms.

American Institute of Physics, 1992.

G. Carpenter and S. Grossberg. A massively parallel architecture for a self organizing

ART architecture in a nonstationary world. Computer Vision, Graphics attd Image

Processing, 37:54-115, 1987.

W. J. Campbell, S. E. Hill, and R. F. Cromp. Automatic labeling and characterization

of objects using artificial neural networks. Telematics and Informatics, 6(3-.1):259 271,

1989.

N. V. Findler. Contributio_._" to a Computer-Based Theory of Strategies. Springer

Verlag, Berlin, 1990.

J. Hertz, A. Krogh, and R. Pallner. Int_vduction to the Theory of Neural Computation.

Addison-Wesley, Redwood City, California, 1991.

L. Kanal and B. ChalMrasekaran. On dimensionality and sample size in statisli('al

pattern recognition. In Proc. Nat. Electron. Conf., pages 2-7, 1968.

W. L. G. Koontz and K. Fukunaga. Asymptotic analysis of a nonparame_ric estimate

of a multivariate density function. IEEE PAMI, 21:967 97-1, 1972.

H. M. Kalayeh and D. A. Landgrebe. Predicting the required number of training

samples. IEEE Trans. on Part. Anal. and Maeh. Intelligence, 5:664 667, 19_3.

T. Kohonen. Self-Organization and Associative :l[e mory. Springer Verlag, Berlin, 1989.

M. T. Musavi, W. Ahmed, K. II. Chan, K. B. Faris, and D. M. llummels. On th-

training of radial basis function classifiers. Neural Networks, 5:595 603, 1992.

E. Parzen. On estimation of a probability density function and mode. ,Innal._ ,,f

Mathematical Statistics, 33:308-319, 1962.

131



[Ric86]

[S lS6]

[Sire90]

[Spe90]

[SRST]

[TK70]

[TT781

[WK89]

J. A. Richards. Rcmote 5'closing Digital Image Analysis, an Introduction. Springer

Verlag, Berlin, 1986.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and

Hall, London, 1986.

P. K. Simpson. Artificial Ncural Systems: Foundations, Paradigms, Applications, and

Implementations. Pergammon Press, New York, 1990.

D. Specht. Probabilistic neural networks. Neural Networks, 3:109-118, 1990.

T. a. Sejnowski and C. t2. Rosenberg. ParMlel networks that learn to pronounce English

text. Complex Systems, 1:367-372, 1987.

M. E. Tarter and R. A. Kronmal. An introduction to the implementation and theory

of nonparametric density estimation. The American Statistician, 30:105 112, 1976.

R. A. Tapia and J. R. Thompson. Nonparametric Probability De_sity Estimation. Johns

Hopkins University Press, Baltimore, 1978.

S. M. Weiss and I. I(aponleas. An empMcal comparison of pattern recognition, neural

nets, and machine learning classification methods. Ill Eleventh Int. Joint Conference on

Artificial Intelligence, pages 781-787. American Association of Artificial Intelligence,

1989.

132


