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ABSTRACT

Several energy functions for synthesizing neural

networks are tested on 2-D synthetic data and on

Landsat-4 Thematic Mapper data. These new en-

ergy functions, designed specifically for minimizing

misclassification error, in some cases yield significant

improvements in classification accuracy over the stan-

dard least mean squares energy function. In addition

to operating on networks with one output unit per

class, a new energy flmction is tested for binary en-
coded outputs, which result in smaller network sizes.

The Thematic Mapper data (four bands were used) is
classified on a single pixel basis, to provide a starting

benchmark against which further improvements will

be measured. Improvemeuls are underway to make

use of both subpixel and superpixel (i.e. contextual

or neighborhood) information ilt the processing. For

single pixel classification, the best neural network re-

sult is 78.7%, compared with 71.7% for a classical

nearest neighbor classifier. The 78.7% result also im-

proves on several earlier neural network results on
this data.

INTRODUCTION

In the past several years, a general awareness of

the environmental crises ha.s gradually taken place

among the world's nations. We wish to address auto-

mated surveillance technology for environmental is-

sues. Global warming, ozone depletion, large-scale

deforestation, extinction of species are just a few of

the issues that could lead to serious consequences to

all inhabitants on the Earth, in a scale that will re-
spect, no national or political boundaries. To under-

stand and quantify the anthropogenic impact on the

environment, and to predict the eventualities if the
deteriorating trend is not reverted, consistent and

long-term monitoring of the global environment is

needed. Through the Earth Probes and the Earth

Observation System (EOS), NASA's Mission to the
Planet Earth will continue to provide the essential
measurements.

Tile amount of measurements from the Mission

to the Plant Earth, however, will be unprecedented.

For example, the first EOS AM platform alone will

generate more than one terabyte (TB) data a day,

compared with the 5 TB from the entire 12 years of

AVHRR Pathfinder data. To timely process, analyze,
store, and disseminate the satellite measurements and

extracted information to a worldwide user community

presents a formidable challenge, and demands inno-

vative analytical methods and advanced computing

and data communication technologies.

Among the contemporary information sciences,

neural networks have proven to be a versatile tech-

nique for input-to-output mapping, without the con-
straint of fornmlating the exact relationship between

the two. In addition, contextual and neighborhood

knowledge can be easily included. In the past few

years, neural networks have been applied to classifi-

cations of remotely sensed data (e.g., Campbell et al.

1989, Decatur 1989, Benediktsson et al. 1990, Liu et

al. 1991, Bischof et al. 1992, Kiang 1992). In these

studies, spectral data and ground truth are input to
multilayer perceptron networks with one or more hid-

den layers, and networks are extensively trained off-

line by minimizing a least-mean-squares (LMS) en-

ergy function with back-propagation (Werbos 1974,

Rumelhart et al. 1986). It has been shown that the

performance of neural network techniques is superior

to cl_sical techniques for systems operating in real-
time.

It is well documented that minimizing the LMS en-

ergy flmction produces a neural network that approx-

imates the Bayesian a posteriori probabilities (the
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probability of a class given a particular input vector)

of classes of data represented by a training set (see

Richard & Lippman,l 1991, for a review). Given an

infinitely large training set and a network with suf-

ficient functional complexity, the approximatiou er-

ror heconaes negligible, and the misclassification er-

ror converges to the Bayes rate. While this property

makes the LMS energy function attractive, there is

an important qualification. The fnnctional complex-

ity needed for approximating the a posteriori proba-

bilities is greater than that needed for approximating

only class boundaries. Thus, if we are only inter-

ested in the classification of an input, rather than its

a posteriori probability, a neural network that esti-

mates probabilities will be needlessly complex. The

additional complexity is a disadvantage both fi'om

the principle of parsimony (using the smallest num-
ber of weight parameters to increase generalizatio,l

[see, e.g., Barton & Cover 1991]) and from the hard-
ware implementation standpoint. Therefore, we test

energy functions that minimize the misclassification

error directly (Szu & Teller 1991, Teller & Szu 1992a),

rather than indirectly via approximating the a poste-

riori probabilities. We call these Mi,aimum Misclas-

sificatiou Error (MME) energy functions.

We first formulate these energy functions and pro-

vide a two-feature example that illustrates the con-

cept. The Landsat Thematic Mapper data is de-
scribed and results are presented for classifying on

a pixel-by-pixel basis. These results are intended to

provide a benchmark for further improvements that

make use of both subpixel and superpixel (contex-

tual) information. The paper concludes by discussing
these research directions.

ENERGY FUNCTION FOR-
MULATION

The commonly used o'-LMS energy functio,l is

given by

N K

n--1 k=t

(1)

where d,_k is the desired output (normally set to 0

or 1) of tim k-th output unit for the n-th training
vector, (r is a sigmoidal function [we use a(z) =

1/(1 + cxp(-z)], and o,_,. is the output of the k-th

output unit for the 7_-th training vector, before the

sigmoidal nonlinearity is applied. With one output

uuit per class, and de_ = 1 for training vectors fl'om

class e, d_,. = 0 otherwise, minimizing Eo-LMS pro-

duces oulpuls that approximate the Bayesian a pos-

tcriori probabilities. An input vector is then classi-

fied according to the largest, output value. However,

for practical applications (finite training sets and net-

works with limited functional complexity), Eo-LMS
function is not guaranteed to minimize misclassifica-

tion error (Barnard & Casasent 1989).

A more natural energy function for classification

simply counts the number of training vectors that the
network misclassifies. The fornmlation of this count-

ing function varies depending on the output encoding.

For a two-class problem, a single output unit suffices,

with positive outputs indicating one class and nega-
tive outputs indicating the other. A counting func-

tion for this network is given by (Szu & Teller 1991,

Teller & Szu 1992a)

N

EMME : N - E step(d,,o.), (2)

where d,, is the desired sign of the actual output o,

and step(z) = 1 if z >_ 0; step(z) = 0 otherwise. (Eq.

2 thus uses a sharp melnbershil) function; a fuzzy

logic version would be an obvious extension.) When

the desired sign is the same _s that of the actual

output o,_, tim n-th training vector xn is correctly
classified, the step functlon equals 1, and the number

of misclassifications EMME is reduced by one. When

the desired output sign and actual output sign differ,

xn is misclassified, the step function equals 0, and

EMME is not reduced. To minimize an energy func-

tion with gradient descent, the energy function must

be differentiable. Although the step function in Eq.

2 is not differentiable, it can be approximated by a

sigmoidal function that is gradually steepening. As

the lnagnitudes of the network weights increase, the

magnitudes of the network outputs o,_ also increeLse,
and the sigmoid behaves more and more like a step

function required by gq. 2.

For multiple classes, if there is one output unit per

class and an input is classified ba.sed on the largest

output, an appropriate counting function, called the

Classification Figure of Merit (CFM) (ttampshire &

Waibel 1990), is given by

N

E r,. = N - - (a)

where Oma:e is the output from the unit that should

have the maximum value (corresponding to the train-

ing vector's class) and ooo_e,, is the largest wdue of the

other output units. IIere the step function has been

replaced by a sigmoid with the above justification.
For a correct classification, o,,,a_: - Oothe_ > 0 and
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a(o,,_a_ - Ooth_,.) _ 1, and tim number of misclas-
sifications is reduced by 1. For a misclassification,

o,,,_ - Ooth_,. < 0 and a(o ..... - Ooth_,.) -'-* O, and tile
number of misclassifications is not reduced. A proof

showing that minimizing ECFM does give tile desired

result is given in (Ilampshire & Pearhnutter 1991).

With multiple classes, the outputs may also be bi-

nary encoded labels, in which case the outputs are

passed through a threshold rather than a maximum
detector. An advantage of binary encoded outputs

over one output unit per class is that fewer output

units are required. For example, for 16 classes, one

output unit per class requires 16 output units, but bi-

nary encoded outputs require only 4 output units. In

addition, error correcting codes can be used as class

labels. For example, a IIamming code (Lin & Costello

1983) with 7 output units can encode 16 classes and

correct a single error in the output units. Such an

error correcting approach increases classification ac-

curacy and has been shown to improve associative

menaory performance (Liebowitz & Casasent 1986,

Casasent & Teller 1992). A new MME energy func-
tion to minimize misclassification error for binary en-

coded outputs is given by

N K

EMMS : N - E c_[E a(d,,ko,_k) -- K + 0.5]. (4)
n=l k=l

The SUlmnation over k equals tile number of correct

output milts for the n-th training vector. If all are

correct, the summation equals K, and the outer sig-

mold becomes 1, which reduces the number of in-

correct misclassifications by 1. If there are one or

output errors, the summation over k equals at most

I( - 1 (for a single output error) and the outer sig-

mold becomes 0, and the misclassification count is not
reduced. Note that in this case of multiple classes,

EMME must determine from all the output units
whether a classification is correct or not. It is not

sufficient to simply sum the errors from each output

unit individually by summing Eq. 2 over multiple
classes.

2-D EXAMPLE

Before considering tile Thematic IVIapper data, we

consider a simpler two-class example of synthetic data
with two features. This allows the class boundaries

to be easily visualized to provide insight into LMS

and MME energy functions. Since the data set is

much smaller than the Thematic Mapper data, it also

allows more detailed study.

Two classes with equal a priori probabilities are
drawn from concentric circular uniform distributions

with radius V_/2 (class 1) and 1 (class 2). The Bayes

rate (minimum error) is 0.25, with a circular bound-

ary of radius v_/2. The training set consists of 1000

vectors from each class and is shown in Figure 1. (The

class boundaries shown in Figure 1 will be discussed

shortly.) The test set consists of 5000 vectors from

each class. The larger test set is needed to increase
the confidence levels of the results.

The following study considered L1 and L_. norm
versions of the two-class EMME. More details are

provided elsewhere (Teller & Szu 1992b). The
method described in the formulation section is the

L1 version. Multilayer perceptrons with two layers

of weights and varying numbers of hidden units were

tested for _r-LMS, MME L1 and MME L2. The proce-

dure was to randomly initialize the weights to values

between +1, first train each network for 200 itera-

tions (epochs) using a-LMS, and then using that re-
sult as a starting point, train for 800 iterations using

the three energy fimctions. The motivation for the
initial 200 iterations was to move the networks into

a reasonable area of weight space which could then

be tuned further by each energy function. This was

found to produce better results than simply start-

ing with each energy function from random weights.
Other random weight magnitudes were also tried to

ensure that the best results possible from each energy

function were being measured. A conjugate gradient

method (Fletcher 1987) was used (restart cycle of 5)

with a simple inexact line search in implementing the

backpropagation algorithm. For each number of hid-

den units, ten initial sets of randoln weights were con-

structed. In an atteml)t to discount runs that became
stuck in local minima, only the run that gave the min-

imum training set error for each energy function was
included in the results.

Figure 2a plots the performance of each energy
function vs. number of hidden units. The MME

energy functions produce excellent results with only
three hiddeu units, and as more hidden units are

added, they descend to essentially identical train-

ing set errors of 0.246 for MME L2 and 0.248 for

MME L1 with 8 hidden units. Since it was plain

that the MME energy flmctions were reliably finding
minimum error networks, their hidden units were not

increased beyond 8. For a-LMS, the training set error

also slowly decreased with increasing numbers of hid-

den units, but consistently remained higher than the

MME training set results and the Bayes rate. With

16 hidden units, a-LMS still gave 0.259 error, over 1%
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Figure 1: Training set for 2-D case with class boundaries found by (r-LMS and MME L2 networks with four
hidden units.
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Figure 2: (a) Training set and (b) test set results for different energy functions vs. number of hidden units.
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higher titan for tile MME energy functions. For all

infinitely large training set, a-LMS would converge

to the Bayes rate, but this result does not hold for a

finite trainiug set..

These results are also reflected in the MME L2

and a-LMS class boundaries with four hidden units,

plotted in Figure 1. The MME L2 boundary is clearly

almost exactly the desired circle, while the _r-LMS

boundary is consistently inside the optimal boundary.

Of course, the more important question is how the

networks performed on the test set. These results are

plotted in Figure 2b with 95% confidence intervals

(IIighleyman 1962). The test set errors are all higher

than the respective training set results as expected.
The MME test set results are still lower than tile

a-LMS results, and the results are statistically sig-

nificant (although there is a slight overlap between
the MME L2 and ¢-LMS results at 8 hidden units,

even this is still significant with a high but less than

95% confidence level). Even with 16 hidden units,
the o'-LMS result is still significantly (in the statisti-

cal sense) worse than all but 4 of all 8 MME results

with 8 or fewer hidden units. Thus, for this exam-

ple, a-LMS requires roughly five times the number of

hidden units of the MME energy functions (16 vs. 3)

to give equal test set. performance.

LANDSAT EXAMPLE

Description of Data

Landsat-4 Thematic Mapper (TM) data taken ill
July 1982 over an area in the vicinity of Washing-

ton, D.C. were used in this study. The TM is a 7-

band instrument, with spectral coverages 0.45-0.52

(TM1), 0.52-0.60 (TM2), 0.63-0.69 (TM3), 0.76-0.90

(TM4), 1.55-1.75 (TM5), 10.40-12.50 (TM6), and

2.08-2.35 (TM7). The ground Instantaneous Field-

of-View (IFOV) is 30m except for the thermal bands

(TM6), which is 120m. As the infrared and the ther-
mal bands had not yet cooled off after launch, only
tile first four bands are usable.

The ground truth consists of 17 categories, and
were obtained through photointerpretation of color

infrared aerial photographs and subsequent field vis-

its (Williams et al. 1984). Specifically, the categories

are (1) water, (2) miscellaneous crops, (3) stand-

ing corn, (4) corn stul)ble, (5) shrubland, (6) grass-

land or pasture, (7) soybeans, (8) bare soil/cleared

]and, (9) mostly hardwood dense canopy, (10) mostly
],ardwood less dense, (11) mostly conifer, (12) mixed

wood, (13) asphalt, (14) single-family residential

area, (15) multi-family residential area, (16) indus-
trial or commercial area, and (17) bare soil/plowed
fields.

In general, ground truth contains information cat-

egories instead of spectral categories. As the IFOV
is broad enough to cover multiple ground categories,

there are natural overlaps among the spectral signa-

tures for these categories. Since the neural networks

ill this study perform classifications based on spec-

tral data alone, whether the information categories

correspond to distinct spectral categories should be

examined, in order to estimate the iutrinsic discrim-

inability among the categories.

To achieve this objective, the spectral signatures

for all categories arc computed. The signatures con-
sist of mean vectors and covariance matrices, h num-

ber of measures, such as divergence and Mahalanobis

distance, could be used to estimate the separabil-

ity among multi-dinaensional clusters. In this study,

we compute the ratio of between-class variance to
within-class variance along the Fisher optimal dis-

criminant vector (Duda & IIart, 1973). From the ra-

tios, it is concluded that some information categories

are heavily overlapped with others, and that the 17

information categories should be combined into 6 cat-

egories, following the ]and use and land cover cl_si-

fication system of Anderson et al. (1976). These six

categories are: (1) urban or built-up land, (2) agricul-

tural land, (3) rangeland, (4) forest land, (5) water,

and (7) bare soil/cleared land. Notice that there is

no Category 6 (wetland) in this data. In Anderson's

system, Category 7 is barren land, such as salt flats,

beaches, bare rock, etc. Since bare soil/cleared land

(Category 17 in the ground truth data) does not ex-

actly fit the definition, the original description in the
ground truth is used instead.

To give an idea of the terrain types present, Figure
3 shows tile four bands of the 256x 256 image (slightly

cropped for display purposes). Roads are clearly vis-

ible. A housing development is at the upper right.

Fields are visible in the center of the image. The

dark areas are primarily forest.

The area for which ground truth exists (a roughly

150× 150 area in the center of Figure 3) has 21,952

pixels, with pixels placed alternately into training and

test sets, giving 10,976 pixels for each. The number
of pixels in each class is give in Table 1. Since each

pixe/ contains four spectral bands, each feature vec-
tor contains four features, with an additional element

set to one to provide a bias term. Each of the four
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(a) (b)

(c) (d)

Figure 3: Four bands of Thematic Mapper data: a) TM1, b) TM2, c) TM3, d) TM4.
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Class Name No. Pixels

Urban

Agrie

Range
Forest
\Vater

Bare

2754

1670

318,t

13781
28

535

Table 1: Class distribution of l,andsat data.

spectral features was normalized to [lave zero mean
and standard deviation of 0.75.

Procedure and Results

h[ultilayer perceptrons with two layers of weights
and twelve hidden units were tested for Eo-LMs,

Ec',_M and EMaIV.,,. (Networks with fewer hidden

units were also tried but round to perform slightly

worse.) For the network structure of one output unit

per class, six OUtl)ut unil.s were used, while for binary

encoding, three output units were used. (Two of the

possible eight codes were unused.) The procedure

was to raudomly initialize the weights to values be-
tween :t:1, first, train each network for .500 iterations

(epochs) using a-LMS, and then using that result as

a starting point, train for 1000 iterations using the

throe energy ful|ctions, a conjugate gradient method
was used (res{art cycle ot"5) with a sinlph" inexact line
search.

The resulting classification accuracies are given in
Table 2. We first consider the results for one out-

put per class. Although CFM improved the o'-LMS
trainil_g set accuracy by 1%, the test set results are

identical. The small training set. improvement in-

dicates that o'-LMS is i31Ming class boundaries very
close to the mininnlna e,'ror boundaries. Tile excellent

o'-LMS performance call be explained by the large

training set. size and apparelitly relatively small func-

tional complexity needed to represent the a poslcriori

probabilities in this c_se.

For the binary coded outputs, the _r-LMS outputs

esimate the probabilities that the outputs are 1 given

the input. This can be seen to perform worse than
MME, which improves accuracy by 2.2% for the train-

ing set. and 1.2% for the test set., The difference ill the

test set result, is significant with an 88c_, confidence

level. (The 9,5% confidence level is +0.7,5%.) There is

no stalist.ically significant difference between the two
test set results for one oulput per class aml MME

Energy Accuracy (%) Output

Function Train Test Encoding

cr-LMS 78.1 78.7 1/class

CFM 79.1 78.7 1/class
a-LMS 76.4 76.9 l_inary code

MME 78.6 78.1 binary code

Table 2: Classification accuracies for Landsat data.

binary encoding, but these three results do (lifter sig-

nificantly from the tr-I, MS binary encoding result.

Although the saving in weights by binary encoding

is not large in this example, for larger numbers of
classes, tile savings becomes significant. In addition,

the binary encoding performance would be improved

by using error correcting codes.

For comparison, a classical nearest neighbor clas-

sifter (Duda & Ilart, 1973) gave 71.7% test. set accu-
racy. Also, seven previous neural network tests (with

various network architectures and sizes) on this data

set have given test set accuracies between 71.6% and

78.4% (Kiang 1992, Ilwang et al. 1993). Our best
result of 78.7% is statistically better than all but one

of these previous results (78.4%), and was obtained
with a much smaller network - 132 weights for our

network vs. about 640 weights required for the ra-

dial basis function network giving 78.4_. The fact

that this previous result is similar to our best results

suggests that this couhl be the best possible accu-

racy that can be obtained by classifying single pixels.

Further accuracy improvements call be obtained by

making use ofsubpixel information and by classifying
based on a neighborhood of pixels. We discuss this
ill tile next section.

There have been neural network based studies (e.g.

Bischof et al. 1992) in which classification accuracies

are higher than ours. Ilowever, it must be pointed

out that a direct, fair comparison among these stud-

ies may not be possible. As known in renlole sens-

ing applications, classification accuracies are highly

depe,rdent on the ground types involved, the sensors'

resolntions, the seasons when the nmasurenlents were

taken and the environmental conditions. In general,

discrimination among various kinds of vegetation cov-
ers is rather diflicult..
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DISCUSSION OF
WORK

FUTURE

The 78.7% classification accuracy for single pixel

classification should be regarded as a starting point to

benchmarl_ fllrther improvements that involve both

suhpixel and superpixel iltfolunation. In addition to
this work, a nlethod for improving the training set is
also discussed.

Since the Thematic Mapper pixel footprint is 30m,

the spectra from different landuse types can be mixed

in a single pixel. In related work (Shimabukuro &

Smith 1991), mixture components are estimated ilS-

ing conveldional least squares techniques in order to
estimate ages of eucalyl>tus areas. Neural network

apporaches remain to 1)e tested. Since a neural net-

work trained by LMS estimates a poslcriori proba-

bilities, these can be used as mixi,lg proportions to

provide subpixel classification results. For example,
it was ohserved in the LMS classificalion results de-

scribed above that many of the pixels along a road

passing through forest bad large outputs correspond-

ing to both urban (manmade) and forest. Rather

than classifying the pixel as urban (road) or forest

based on only the single largest output, it seems more

appropriate to classify the pixel as a certain frac-

tion urban/road and a certain fraction forest based

on the two largest ,nixing components. Simply clas-

sifying based on the largesi ot'tl)Ut was observed to

create many discrepancies with ground truth. For
example, the groundtruth inarks only discontinuous
stretches of the road as urban and the rest as for-

est. The LMS neural network classifies (based on

largest outpllt) tile etltire stretch of road as urban,

1,ut also has a high second largest output for fo,'est.

"['hus, making use of stlbpixel mixtures should im-

prove restllts. Mixture information provides general
information about a pixel, but does not indicate the

physical region within the pixel occupied by a par-

ticular ground type. Super-resolution theory appears

promising for physically locating gl'OtlltCl types within

pixels based on the classifications of nearby pixels.

Conversely, since land use occurs in patches larger

than tl,e 30m pixel size, it seems clear that infer-

marion fi'om neighboring pixels S]lould also increase
classification accuracy. Several such ideas for mak-

ing use ofcoritext have been tested with convelitional

classifiers (Mohn eta[. 1987 [tests several prior ap-

proaches], Lee & Philpot 1991, Jeon & Laudgrebe

1992) and a neural network approach (Bischof et al.
1992). The neural network approach combines spec-

Ir:i fi'OD1 ille pixel to be classified aml fi'om neigh-

boring pixels into a single feature vector. The neural

network then learns fl'om the training set how much

weight should be placed on information from neigh-

boring pixels in classifying the central pixel. Bischof
et. al. demonstrated a 5% improvement with this

method vs. single pixel classification. We are cur-

rently testing this contextual technique with our new
MME energy functions. A two-pass hybrid spec-

tral/spatial approach is also planned to overcome pro-

jection registration and distortion problems.

Lastly, editing tile training set should also help

improve results. As noted elsewhere (\Villiams et

al. I984), any minor errors registering groundtruth

with the Thematic Mapper data could result, in misla-
beled samples. Therefore, training samples near class

boundaries in the image should be deleted.
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