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Abstract

Real time control problems require robust, high
performance solutions. Distributed computing can
offer high performance through parallelism and
robustness through redundancy. Unfortunately,
implementing distributed systems with these
characteristics places a significant burden on the
applications programmers. Goddard Code 522 has
developed WorkPlace to alleviate this burden.
WorkPlace is a small, portable, embeddable network
interface which automates message routing, failure
detection, and re-configuration in response to failures
in distributed systems. This paper describes the
design and use of WorkPlace, and its application in
the construction of a distributed blackboard system.

1. The Dilemma

WorkPlace was developed as part of the
Intelligent Ground System (IGS) project within
Goddard Space Flight Center's Data Systems
Technology Division with funding from NASA
Code R. The IGS project is exploring the use of
multiple knowledge-based systems in the satellite

control center, particularly in the area of platform
monitoring and fault diagnosis. The current
practice is to introduce isolated expert systems
into operations. Our objective is to achieve a
more comprehensive system that involves many
expert systems that communicate and cooperate
with each other and with conventional

components of the control center.

We faced two technological hurdles in
achieving this objective. First, we needed to
provide a flexible, open mechanism for data
exchange which would support multiple
platforms and heterogeneous applications.
Second, we needed to develop an architecture for
expert systems which would accommodate the

asynchronous nature of a distributed cooperative
environment. This paper describes the solutions

to these problems that we have developed.

2. The Blackboard Solution

Blackboard systems represent the standard
metaphor for distributed problem solving in AI.
That metaphor describes a team of experts who
cooperate to solve some problem. These experts
communicate by writing partial solutions on a
blackboard. The posting of a partial solution by
one expert triggers the activity of an expert with a
related expertise. Together these experts
progressively evolve the partial solutions into a
solution to the top level problem. Thus the
blackboard architecture is based on:

• a universally accessible space for posting
partial solutions (the blackboard),

• partitioning of that space into multiple levels
of abstraction,

• and the opportunistic application of
Knowledge Sources (experts) to that space
to further the current level of understanding.

Traditional implementations of the blackboard
approach use shared memory within a uni-
processor for the information space. When the
posting of a new partial solution triggers multiple
knowledge sources, conflict resolution strategies
serialize the execution of those sources and their
access to the blackboard. This limits

performance.

Several systems have been described in the
literature which provide different approaches to
parallelizing blackboard systems. One family of
approaches is based on the use of a multi-
processor architecture. Hearsay II (Fennell and
Lesser, 1976) provides a central blackboard
which is written to by concurrent experts
executing on a simulated multi-processor. The
experts (or knowledge sources) are further de-
coupled into precondition and action parts which
can execute concurrently within their own copy
of relevant portions of the blackboard (known as
contexts). The central blackboard provides node
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and region locks to mediate reading and writing
by the concurrent knowledge sources. The
CAGE system (Nii, Aiello, and Rice, 1989) also
provides a central blackboard, and can be
executed with inter-knowledge source, intra-
knowledge source, and intra-rule parallelism on a
simulated multi-processor. Similarly, CAGE
provides locks to deal with concurrent reads and
writes to the central blackboard. Extensive

simulation experiments have been performed on
this architecture to measure the relative effects of

these different forms of parallelism on the
performance of a representative problem.
Polygon (Nii, Aiello, and Rice, 1989) departs
from the central blackboard theme by

parallelizing the nodes which would normally
reside on the central blackboard. Direct
communication between nodes obviates the need

for a global data structure. Data coherence is
handled through the use of "smart" slots in the
nodes which decide when a new value is better

than the existing value of the slot using local
heuristics. Polygon also runs on a simulated
multi-processor.

A second family of approaches is built on
concurrent processes in one or more conventional
computers communicating through Inter-process
Communication (IPC) mechanisms. The

transaction processing blackboard described in
(Ensor and Gabbe, 1988) provides a central
blackboard which mediates the interaction

between satellite blackboards which operate
concurrently. The central blackboard uses a
transaction processing metaphor to mediate
reading and writing by satellite blackboards.
This system was implemented on a network of
Symbolics Lisp Machines and provides a nice
model of loosely coupled groups of closely
coupled experts. The COPS system (Leao and
Talakdar, 1988) extends the OPS5 production
system to provide fact exchange between
independent OPS5 processes. Remote writing is
available through addressed IPC messages, but
appears to be used primarily for instantiating new
processes. Normal fact exchange is
accomplished through the use of "ambassador"
rules. Ambassador rules can be thought of as
parasites which are inserted into remote COPS
processes to watch for fact patterns and report
detections back to the originating system. A
subset of the COPS processes are designated as
blackboards. These central repositories exist
primarily as intermediaries between non-rule-

based applications (which can not accept
ambassador rules) and the other OPS5-based

applications.

3. WorkPlace Architecture

Our work falls into the second family of
approaches, attempting to bring the cooperation
available in blackboard systems to an
environment of physically distributed
conventional computers. Unlike COPS and the
Ensor and Gabbe system, WorkPlace places no
constraints on the processing formalism used in
communicating nodes, and supports a range of
interfaces to TCP/IP 1. Cooperation is built on a
flexible event distribution mechanism rather than

shared memory. This mechanism uses a
Publish/Subscribe/Sample metaphor, providing
an exceptionally simple application interface.
Cast in terms of the blackboard metaphor
WorkPlace offers:

• a common catalog of facts with a selectively
replicated fact space,

° and parallel application of knowledge
sources and transformers to that space to
further the current level of understanding.

From the application's point of view there are
four operations necessary to participate in the
WorkPlace environment. First, the application
must provide a handler for facts received over the
network. The implementation of this handler is
entirely up to the application. Second, the
application must regularly call a ProcessEvents0
function to allow the communications software to

keep in contact with the rest of the group.
Information destined for the application will be
caught during this call and passed to the
application's fact handler. Third, the application
must inform the agent of its remote information
needs. These needs can change dynamically
throughout the life of the program. Finally, the
application must explicitly make information
available which might be of interest to other
members of the group.

The remainder of this section explains these
operations in more detail, and presents some of

1 WorkPlace currently supports UNIX and Macintosh
interfaces to TCP/IP. Support for VMS may be added in
the future. Intermediate blackboards are not required to
integrate heterogeneous applications since no assumptions
are made about the nature of those applications.

182



........Host Application

(/[ Remote Clients List I

Producer

........I v

Class "_

Consumer Class "_

]ff Member Class

I[ Grou___p_

.._.___ Comm Class

Figure 1. WorkPlace Application Interface

the ramifications of our implementation. An
overview is shown in figure 1.

3.1 Membership In The WorkPlace

For applications to exchange information they
must know of each other's existence and

location. The list of existing applications and
their locations can be thought of as membership
information. WorkPlace acquires this
membership information dynamically. The only
static information required is the name of the
group and the address of at least one member.

Dynamic membership means that the full roster
and address lists are determined during the
execution of the applications. The simplest
approach is to use a centralized data server as an
information clearing house. This server accepts
connections from remote applications for either
receiving or delivering information. All
information produced by an application is
forwarded to this data server for selective
distribution to client sites. The down side of this

approach is that a given piece of information is
transmitted twice if a client exists for that

information, and once if that information is not

currently needed. The benefit is that a complete
history of the products of the system is available.
This centralized data server also represents a
single point of failure for the environment: if the
server goes down information flow stops.

The approach taken in the WorkPlace
environment is to provide every application with
the ability to accept and request connections from

remote applications for either receiving or
delivering information. The environment then
becomes an association of peer nodes. That
association is born with the appearance of a

founding member, and ceases to exist when the
last member exits. During the life of an
association, any of its members, including the
founding member, may leave the group and may
later return. This fully distributed and dynamic
design provides four benefits over centralized
and static ones:

• Reduced vulnerability to individual node
failures.

• Direct transmission of desired information

from producer to consumer.
• No forwarding of unused information.
• The ability to add, delete, or move processes

on an ad-hock basis without unnecessarily

disrupting the execution of retained
processes.

3.2 Product Exchange in The WorkPlace

From the application's perspective, product
exchange is simply a matter of packaging
information and reporting it, or receiving an
information product and unpackaging it. The
actual routing of information between agents
occurs asynchronously with no involvement by
the application. Allowing the agent to derive this
information dynamically provides the flexibility
necessary to accommodate changes in
computational resources (e.g. processor or link
failures), changes in computational load, and run
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time changes to the applications suite (e.g.
application crashes, upgrades to existing
applications, and addition and removal of
diagnostic processes).

Information is packaged as a value with a
unique identifier. Identifiers are broken down
further into an object specifier and an attribute
specifier, as in "the float value (object specifier )
temperature (attribute specifier ) is 71.3 °F (value
specifier)." Thus the conceptual package for an
information product is a triple of the form
<ObjectName>, <AttributeName>,
<AttributeValue>. Services are provided for
constructing attribute values from integer
numbers, floating point numbers, character
strings, or nested lists of these atomic types. The
units in which a value is cast are assumed to be

known to the receiver a-priori.

Reporting information is referred to as
Publishing in WorkPlace. Each time the

application publishes information, the agent
caches the value reported. If there are registered
clients for that information product, a message is
forwarded to each of those clients specifying the
new value. When the application publishes an
information product whose identifier is different
from any previously published by that
application, the agent makes an announcement to
all active members of the group. If the identifier
has never been published by any other member
of the group, the announcement identifies the
object name, attribute name, and a more
computationally efficient identifier for the product
to be used in subsequent transactions. Otherwise

the announcement simply notes the new source
for that information identifier. If an application

ceases to produce some information product, it
can announce this fact through the UnPublish
method. This removes the application's name

from the producers list of the indicated product
for every active member of the group.

The application requests remote information
products by subscribing to information products.
The embedded agent contacts known producers

of that product and registers subscriptions with
them. The agent also records the request so
sources of that information which appear in the
future can also be contacted. Two variants of the

subscription method exist: SubscribeToAll, and
SubscribeToAny. SubscribeToAll places
subscriptions for the requested products with
every agent known (now or in the future) to be

capable of producing those products. When an
application expects a single source for a piece of
information, it can use the SubscribeToAny
variant. SubscribeToAny places a single
subscription, per product, with a random agent
known to be capable of producing that product.
If the selected product source stops publication of
that product, quits the group, or displays
anomalous behavior, then the agent will
automatically move the subscription to an
alternative source. A measure of fault tolerance

is afforded through this mechanism by
intentionally providing redundant copies of an
information source on separate hardware. The
flow of product updates can be halted by
invoking the UnSubscribeTo method. This is
useful when throughput disparities force the
receiver to sample the data stream. An

application can subscribe to and un-subscribe to a
product or products an arbitrary number of times.
The only overhead of SubscribeTo and
UnSubscribeTo invocations is a short message to
the selected supplier(s) of the product.

The application does not receive the value of a
subscribed product until the value of that product
changes. To obtain the current value of an
information product, the application invokes the
SampleAll or SampleAny agent methods. One,
or more sources may or may not exist for the
requested products. If no sources are known,
then the supplied default value is returned to the
application's product handler. If only one source
is known, then a sample request is forwarded to
that source. That source's agent responds to the
request with the last cached value for the product.
The local agent receives that value and returns it
to the application by way of the application's
product handler. If multiple sources are known
for the requested product, then a sample request
is forwarded to a randomly selected source for
the "Any" case, or to each source in the "All"
case.

3.3 The Network Interface

In reality the WorkPlace agent implements only
the bookkeeping and protocol necessary to track
group membership and information product
sources and subscriptions. The actual network
interface is implemented in the OSCAR (Open
System for Coordinating Automated Resources)
Agent class over which the WorkPlace agent is
layered.
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The OSCAR Agent class provides a common
Application Programmer interface (API) for

network communications over several operating
systems. Within this class a suite of standard
routines for writing messages, reading messages,
and getting connection status is defined.
Subclasses implement the actual routines for
specific protocols and operating systems.
Currently the VMS, UNIX, and Macintosh
operating systems are supported by OSCAR.
New protocol implementations are added as peers
in the suite of supported protocols. The OSCAR
agent class selects among these protocols when a
send request is made based on information it has
on the location and type of the destination agent.
The OSCAR agent also monitors each
communication path for connection requests from
remote agents.

4. Integration of a Distributed System

The IGS project has developed a testbed to
evaluate and demonstrate the functionality of
distributed knowledge-based systems within a
control center setting (see figure 2). This testbed
incorporates a spacecraft simulator, command
scheduler, user interface, and three knowledge-
based diagnostic systems. These testbed
applications are integrated through the WorkPlace
software. Our operational goal is to evolve the

ICommand

Scheduler

Suggested Fixes

Diagnoses & Detections

Status

diagnostic components of the testbed into a
platform diagnostic system for the first EOS

spacecraft, due to be launched in late 1998.

The object-oriented spacecraft simulator accepts
commands and generates telemetry data. A
command scheduler acts as the bottleneck

through which spacecraft commands are
forwarded. Three knowledge-based systems
interpret the telemetry stream in real time to
monitor the state of spacecraft subsystems.
When anomalies are detected, these systems
provide explanation and advice to the user
interface and optionally post suggested fixes with
the command scheduler. The user interface

depicts a graphical hierarchy of the spacecraft and
ground components, where the user can zoom
down into lower levels of detail when a problem
is detected. An intelligent front end to the user
interface filters and synthesizes related fault
warnings to reduce information overload.

Integrating the Spacecraft Simulator

The job of the testbed is to control and monitor
an object-oriented simulation of the EOS A
spacecraft The model is composed of an
electrical power system, thermal bus system,
HIRIS (High-Resolution Imaging Spectrometer)
instrument payload, and platform manager. The
EOS spacecraft model is augmented by a model
of the sun and the space-to-ground
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Figure 2. Intelligent Ground System Testbed
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communications link. The simulation

demonstrates electrical, thermal, and mechanical
aspects of the spacecraft's behavior over time,
with realistic responses to up-loaded commands
and partial equipment failure. The simulator
design is based on the connection manager
architecture proposed by the Software
Engineering Institute for flight simulators, as
reported in (Lee, 1989), and the suggestions for
object-oriented simulation in (Zeigler, 1990).

To operate successfully within the context of
the testbed, the simulator needed to be able to

receive commands and report telemetry. This
was achieved by creating two new object types
within the simulation environment. The first type
received binary and serial information from other
objects within the simulator, and converted and
published that information as information
products. These objects were then directly wired
to the telemetry sources in the model. The
second object type received information products
and converted them to serial and binary signals.
These signals were then connected to the
spacecraft's command handler to allow remote
control of the spacecraft. Lastly, the cyclic
executive for the simulation was altered so that

the embedded agent's ProcessEvents method
could be called between simulation cycles.

Integration with Clips

The knowledge-based components of the
testbed include three rule-based systems: the
Communications Link Expert Assistance

Resource (CLEAR), a power bus monitoring and
diagnostic system (PowerFDIR), and a
monitoring and diagnostic system for the
spacecraft's HIRIS instrument (HirisFDIR).
CLEAR was taken from an operational NASA
communications fault diagnostic system. The
other two systems where developed by the task
expressly for the testbed.

Each of these systems is written in the "C"
Language Integrated Production System
(CLIPS), an expert system shell developed by
Johnson Space Center (Giarrantano, 1991). We
produced a distributed version of CLIPS version
5.1 (IGSClips) by embedding a WorkPlace
agent. The integration required the addition of
slx new functions mirroring the distributed data

agent methods: Publish, SubscribeToAny,
SubscribeToAll, SampleAny, and SampleAll.
One additional right-hand side function,
GenNetSymbol, was added so that applications

could generate network-unique identifiers. A
call to the OSCAR ProcessEvents0 function was
inserted after each rule-execution cycle to service
the network connection. Product updates
arriving during this call are asserted into the fact
base in the form (InPort <Object Name>
<Attribute Name> <Attribute Value>). We have
not yet evaluated the performance costs to CLIPS
of the ProcessEvents call between cycles when
no network information is pending.

IGSClips is similar in concept and operation to
the COPS system (Leao and Talakdar 1988)
described earlier. The main difference lies in the

migration of group and communications
management code out of the production system
and into a separate module (the WorkPlace
agent). Because IGSClips does not rely on
ambassador rules, direct cooperation between the
simulator and the diagnostic agents was possible.

The Impact of Asynchronous Operation

Two basic diagnostic architectures are present
in the testbed: a shallow reactive architecture, and
a deeper model-based architecture. While the
deeper architectures are able to take more
information into account in making their
diagnoses, their integration into the
asynchronous environment was more difficult.

CLEAR was implemented with the help of a
domain expert who, through personal
experience, was able to impart rules which
related surface features (telemetry values) almost
directly to diagnoses. CLEAR was ported to the
testbed with only minor modifications necessary
to publish its diagnoses and to format incoming
telemetry to be accepted by the existing rule base.

The PowerFDIR and HirisFDIR diagnostic
systems could not benefit from the compiled
knowledge of a domain expert. Instead, these
diagnostic systems keep two models of the
spacecraft subsystem they monitor. The first
model maintains the expected state of the
subsystem based on a known initial state, the
command stream that has been sent to the

subsystem, and the known behavior of the
subsystem in response to commands. The
second model maintains the current state of the

subsystem based on telemetry from that
subsystem. Anomaly detection results from a
comparison of these two models.
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Temporal Coherence

Early experiments with the testbed showed that
when the simulator was running on a separate

platform from that which the diagnostic systems
were running on, it was possible to swamp the
model-based diagnostic systems with telemetry.
In some cases the diagnostic systems were
making recommendations for conditions which
no longer existed, and in others the systems
exhausted their ability to buffer incoming
telemetry and crashed. Our solution was to
change the diagnostic systems so that they in
effect sampled the telemetry stream and then
reacted to that sample. This de-coupled the
processing rate of the diagnostic systems from
the production rate of the telemetry source.

Unfortunately, we could not use the WorkPlace
Sample operation to do this. The telemetry data
is logically partitioned into sets which represent a
snapshot of the spacecraft at a particular point in
time. If the diagnostic system sampled two
telemetry points which were not from the same
frame, it would not be able to build a coherent
picture of the current state of the reporting
subsystem. Instead, when a diagnostic system
wants to sample the telemetry stream, it places
subscriptions for the telemetry points it needs.
The diagnostic system then throws away all the
telemetry it receives until the start of a new frame
is detected (e.g. elemento arrives). The system
then caches all the subsequent data points until
the end of the frame is detected, at which point
the subscriptions are revoked. Now if the rule-
based system is fast enough, it operates as it had
previously. If at any time it is not fast enough,
each diagnostic cycle only processes the most
recent set of telemetry available.

This elaborate behavior on the part of the
application simulates the sampling of a frame of
information. If the WorkPlace agent embedded
in the simulation knew that a given subset of data
was part of a larger product, then that agent could
take steps to guarantee the temporal coherence of
the data made available to the group for
sampling. At this point we have not extended the
WorkPlace agent to support this, so the burden
remains on the client application.

Non-monotonicity

Cooperation allows independent systems to
leverage each other's expertise. A power failure
on one power bus affects all the subsystems

which are drawing power from that bus. The
PowerFDIR has the expertise to identify the bus

power failure, but the HirisFDIR does not.
Through cooperation, the HirisFDIR can use
external information generated by the
PowerFDIR to distinguish an external power
failure from an internal power distribution

problem. Unfortunately, there is no guarantee
that the helpful information will arrive before the
subsystem monitor makes its diagnosis. The
only solution we have at this time is for the
subsystem monitor to retract its diagnosis when
better information becomes available.

Summary

We have described our solutions to two

technological hurdles standing in the way of
cooperative knowledge based systems. The first,
WorkPlace, provides an open system for fact
exchange within a heterogeneous environment.
We think that the generality of this tool makes it
suitable for a wide range of applications, and that

its support for "hot spares" makes it unique.
Second, we have described some of the

complications which have arisen from
asynchrony, and how those complications have
constrained the basic architecture of agents within

the distributed cooperative environment. Taken
together, these solutions demonstrate a viable
design for physically distributed cooperative
systems, and provide key tools for use in their
implementation.
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