
f

N93-25984

The StarView Intelligent Query Mechanism

R. D. Semmel

The Johns Hopkins University Applied Physics Laboratory
Laurel, MD 20723

rds@ aplcen, apl.jhu.edu

D. P. Silberberg
The Space Telescope Science Institute

Baltimore, MD 21218
davids@stsci.edu

Abstract

The StarView interface is being developed
to facilitate the retrieval of scientific and

engineering data produced by the Hubble Space
Telescope. While predefined screens in the
interface can be used to specify many common
requests, ad hoc requests require a dynamic
query formulation capability. Unfortunately,
logical level knowledge is too sparse to support
this capability. In particular, essential
formulation knowledge is lost when the domain
of interest is mapped to a set of database relation
schemas. Thus, a system known as QUICK
has been developed that uses conceptual design
knowledge to facilitate query formulation. By
heuristically determining strongly associated
objects at the conceptual level, QUICK is able
to formulate semantically reasonable queries
in response to high-level requests that specify
only attributes of interest. Moreover, by
exploiting constraint knowledge in the
conceptual design, QUICK assures that queries
are formulated quickly and will execute
efficiently.

1. Introduction

The Space Telescope Data Archive and
Distribution System (ST-DADS) is the
repository for scientific and engineering data
produced by the Hubble Space Telescope and
ground system. Data sets recording the
scientific results of six different astronomical

instruments and more than twenty different sets
of engineering data are archived onto optical
disk at a rate of approximately one terabyte

per year. Thousands of people with diverse
interests, located around the world, are

concerned with different aspects of the archived
data. In particular, interests are shared among
scientific investigators, guaranteed time
observers, general observers, instrument
calibration scientists, archival researchers, and

project engineers.

ST-DADS is a computer cluster composed
of archive, catalog, and host-computer
subsystems. The archive subsystem is devoted
13:)archiving, managing, and retrieving data sets.
The catalog subsystem, or ST-DADS Catalog,
is a descriptive database of the archived data.
The host computers are devoted to managing
user access to the ST-DADS system. StarView
is the user interface software that facilitates

access to ST-DADS. It is designed to operate

on the ST-DADS host computers, allowing
Telnet and dial-in access. It also can operate
in client/server mode in which the client runs
on a workstation and the server runs on the

host computers.

Currently, the StarView user interface is a
set of screens that allows users to browse the

ST-DADS Catalog. Each screen is composed
of a set of data fields appropriate for a specific

search. Search qualifications are entered in
screen fields and serve as selection criteria.

When a request for data is submitted, StarView
constructs the corresponding Structured Query
Language (SQL) query and transmits it to the
ST-DADS Catalog. The query is processed
and the results are returned to the StarView
screens; the returned records describe archived

data sets. The user marks appropriate records

271

PRE6EDING PAGE BLANK NOT FILMED



to indicate to StarView those data sets that are
to be retrieved. StarView bundles the data set

retrieval requests and transmits them to ST-
DADS, which, in turn, returns the requested
data via the Internet or other storage media.

As user interests vary significantly, it is
not possible to predetermine the criteria for
data selection. Furthermore, the ST-DADS
Catalog currently consists of approximately
1500 attributes distributed among more than
40 relations, and grows at the rate of
approximately 100 megabytes per year. As a
result, developing an interface for ad hoc
requests using traditional approaches has not
been possible. Thus, while StarView provides
more than forty screens with the most common
sets of fields, these screens cannot be used to

formulate queries in response to the many
requests that have not been anticipated.
Unfortunately, enabling users to build screens
is not feasible, as typical users do not possess
the expertise or knowledge of the database
design to ensure that semantically meaningful
results would be produced. Moreover,
providing screens for the complete set of
possible requests is not feasible because of the

combinatorial nature associated with the many
possible selection criteria involving multiple
attributes distributed among multiple relations.

To simplify interface construction, a
knowledge-based approach has been used that
enables StarView to present a universal relation
interface to users. This interface presents all

database attributes as residing in a single
relation, thus eliminating the need for explicit
knowledge concerning the structural
complexity of the underlying database design
[Leymann 1989; Maier et al. 1984]. However,
the interface must be "smart" about how various

relations can be associated via relational joins,
and it must ensure that semantically reasonable
queries are generated in response to high-level
requests that specify only attributes of interest.

StarView has been adapted to exploit the
universal relation approach by allowing users
to select attributes from an ad hoc query screen.
Specifically, the complete list of ST-DADS
attributes is displayed and the user selects those
that correspond to his request. StarView then
places the selected attributes on a temporary

screen that is functionally equivalent to a defined
screen. However, the temporary screen does
not specify predefined joins. Instead, StarView
passes the request to an intelligent query system
known as QUICK (for "QUICK is a Universal
Interface with Conceptual Knowledge") that
formulates the query based on conceptual
design knowledge and passes the query back
to StarView for further processing.

In this paper, an overview of QUICK is
presented. In the next section, semantic data
modeling is discussed and the need for
knowledge beyond the relational level is
justified. In particular, an extended Entity-
Relationship model is described that enhances
the basic Entity-Relationship model with
selected knowledge representation constructs,
and a portion of the current design of ST-DADS
using the extended constructs is shown. Then,
in Section 3, the notion of contexts is introduced
as a means for segmenting an EER conceptual
schema into overlapping subgraphs of strongly
associated objects that facilitate inference of

valid relational joins. In Section 4, it is
demonstrated how contexts can be used to

automate query formulation and thus facilitate
the construction of high-level and intelligent
interfaces. Finally, the current status of
development is described and some current
research topics are discussed.

2. Semantic Data Modeling

Designing a database as complex as ST-
DADS requires many person-years of effort.
Unfortunately, the relational model, with its

elegant, but simple, notions of relations and
attributes, is too sparse a representation to use
for direct modeling of complex domains.

Instead, higher level representations typically
are used that enable designers to communicate
effectively with users as well as abstract an
application domain to an appropriate level.
These richer representations enable designers
to model entities or objects in a world directly,
and provide constructs for specifying explicit
relationships or associations among entities
[Hull and King 1987; Peckham and Maryanski
1988]. In contrast, the relational model does

not distinguish between entities and

relationships, requiring instead that each

272



abstraction be cast as a relation. Consequently,
knowledge that was explicit at the conceptual
level becomes implicit at the logical level.
Moreover, knowledge that could be used to
facilitate query formulation is lost as the world
of interest is mapped to a set of relations (see
Figure 1).

Exacerbating the loss of knowledge is the
usual practice of relegating the conceptual
schema to a minor role once the logical design
has been completed. For instance, it is not
uncommon for the conceptual schema to be
used for initial documentation only. Once the

logical schema has been created, changes often
are made directly to it instead of to the conceptual
schema, thus reducing the validity of the higher
level representation. Moreover, users typically
are not given access to the higher level
conceptual schema, having to rely instead upon
the sparse logical schema to formulate queries.
Yet, the conceptual schema contains knowledge
that can be used effectively for query
formulation, and thus can serve as a knowledge
base for an intelligent interface.

2.1. The Entity-Relationship Model

The Entity-Relationship (ER) model is the
prominent semantic data model used for
conceptual design. From a knowledge

representation standpoint, the ER model
resembles a restricted associationist scheme.

Diagrammatically, entity types are represented
by rectangles, and relationship types are
represented by diamonds. As an example,
consider Figure 2, where the entity type
ARCHIVE-DATA-SET-ALL is related to the entity

type OBSERVATION via the relationship type
ADS-FROM-OBS. The ARCHIVE-DATA-SET-

ALL entity type corresponds to one of the core

relations in ST-DADS and contains general
information about the class of data, generation
time, and the name of the archive. Similarly,
OBSERVATION corresponds to a core relation
and contains information about the predicted
and actual observations such as target position,
magnitude, and duration of the exposure.

The two pairs of numbers associated with
ADS-FROM-OBS indicate that there is a many-
to-one relationship from ARCHIrE-DATA-SET-
ALL tO OBSERVATION. Specifically, a pair
(MIN, MAX) indicates the minimum and

maximum number of times a particular entity
can participate in a set of relationship instances.
Thus, the notation facilitates the specification
of both cardinality ratio constraints (i.e., many-
to-many, many-to-one, and one-to-one) and
participation constraints (i.e., total and partial).
Hence, an ARCHIVE-DATA-SET-ALL entity
can be related to at most one OBSERVATZON

entity, but need not be related to any (i.e.,

eslgn

ConceptualSchema

l Logica_ Design

I LogicalSchema

World Knowledge

Knowledge /_

Filter/

Logical Schema Knowlege

Figure 1. Knowledge lost during design.

273



participation is optional). On the other hand,
an OBSERVATION entity must be associated
with at least one ARCHIVE-DATA-SET-ALL

entity (i.e., participation is total), and can be
related to many.

As also shown in Figure 2, entity types
(as well as some relationship types) have
attributes, which are similar to the slots

associated with frames, though attributes tend
to have a restricted set of facets.

Diagrammatically, an attribute is represented
as a labeled oval connected via an edge to the
ER object it characterizes. The set of attributes

that can be used to uniquely identify a real-world
object is known as the identifier, or key, and
is shown underlined. (Note that only a few of
the attributes associated with ARCHrvE-DATA-

SET-ALL and OBSERVATION have been shown.

Furthermore, the attribute names have been
simplified to avoid confusion. As attributes

do not play a central role in the discussion that
follows, they will not be shown in subsequent
diagrams.)

Given the simple ER specification of Figure
2, it is straightforward to create a corresponding
set of relation schemas. First, entity types
and their attributes are mapped to relation
schemas. Then, the key attributes of the relation

schema corresponding to the one-side entity
type (i.e., OBSERVATION) areadded as a foreign
key to the relation schema corresponding to
the many-side entity type (i.e., ARCHIVE-
DATA-SET-ALL). The foreign key thus serves
as the representation of the relationship type
ARCHIVE-DATA-SET-ALL at the logical level.

The resultant relation schemas are as follows

(note that logical level objects will use
underscores instead of hyphens in names):

ARCHIVE DATA SET ALL(Name,

Archive_Class,GenerationDate,

Access_Time,...,Update_Time,

Program ID, Obsnum, Obset_ID)

OBSERVATION(Program ID,Obsnum,

Obset_ID,Actual_Duration,...,

Broad_Category)

As illustrated by the above relations,
formulating even simple queries can be difficult

at the logical level. For example, given a request
for a list of PROGraM- IDS, a formulator must
know to use OBSERVATrON instead of

ARCHIVE._.DATA_SET ALL. While a heuristic
could be used to favor the relation in which

the attribute is an element of the key, the
heuristic fails when more sophisticated
knowledge representation constructs are

employed. For example, a generalization lattice
maps to a set of relation schemas, each of

which has the same key. As a result, a request
to list the key will be ambiguous at the logical
level; however, as described below, this
ambiguity is resolved easily at the conceptual
level.

2.2. An Extended ER Model

The original ST-DADS conceptual schema
used only the basic ER modeling constructs
described above [I_oral Aerosys 1992]. Though
richer than the corresponding logical schema,

rArch,veoa,ase,A,,[(0,1) ADS- (1,')
FROM- Observation

Figure 2. Simple ER objects.

274



the original conceptual schema did not
accurately represent the ST-DADS domain.
For, example the schema did not represent the
fact that ARCHIVE-DATA-SET-ALL is a direct

superclass of six subclasses. Instead, because
generalization was not supported, simple
relationships were used to associate the six
subclasses to ARCHIVE-DATA-SET-ALL.

However, this made it impossible to infer the
hierarchical associations that actually existed.
As a result, identifier attributes that should have
been inherited from ARCHIVE-DATA-SET-ALL

had to be explicitly replicated in the six
subclasses, thus resulting in duplication of
attributes and an inability to infer the primary
ER object with which an attribute was
associated. Furthermore, the hierarchical
associations are disjoint, which means that an
ARCH IVE-DATA-SET-ALL entitycan participate

as an entity in at most one subclass. Because
the conceptual schema lacked this knowledge,
a query formulator might incorrectly infer that
the disjoint subclasses could be related via
natural joins at the relational level.

As a result of the representational
inadequacy of the basic ER model, an extended
ER (EER) model has been adapted and
augmented with constructs that are needed to
model more complex domains [Batini et al.
1992; Elmasri and Navathe 1989; Teory 1986].
Figure 3 illustrates a portion (approximately
half) of the current ST-DADS EER conceptual
schema. Some of the more significant
constructs are described below. In keeping
with the basic ER model, entity types and basic
relationship types are represented as in Figure 2.

In addition to basic entity types, weak entity
types are supported in the QUICK EER model.
(Weak entity types actually were defined in
Chen's original model [Chen 1976]; however,
many automated design tools do not support
them.) Weak entity types lack a complete set
of identifier attributes and, thus, a weak entity
can be identified only with respect to an owner
entity. For example, a DATA-SET-COMMENT
entity, which provides a comment about a data
set in the ST-DADS archive, can be identified
only in the context of a specific ARCHIVE-
DATA-SET-ALL entity. Thus, at the logical
level, the key of the DATA SET COMMENT
relation schema is the-key-of the

ARCHIVE DATA SET ALL relation schema

concatena]ed wi_ thepartial identifier attributes
from the DATA-SET-COMMENT entity type
(i.e., USER-ID and COMMENT-TZME).
Diagrammatically, a weak entity type is
indicated by a double-edge rectangle connected
to its identifying owner via an identifying
relationship type, which is represented by a
double-edge diamond.

Without the weak entity type abstraction,
the identifier attributes of ARCHIVE-DATA-

SET-ALL would have to be duplicated in the
conceptual schema. With the abstraction,
identifier attributes are associated only with
their primary entity types. The remaining
identifier attributes are, in a sense, inherited.
(Note that attribute duplication cannot be
avoided in the logical schema, as common
attributes serve as associational links among
relations.) Moreover, as illustrated in Figure
3, weak entity types can be defined in terms
of other weak entity types. Thus, a set of
DATA-SET-COMMENT-LINE entities makes

sense only in the context of a particular DATA-
SET-COMMENT entity. As before, identifier
attributes are inherited, this time directly from
DATA-SET-COMMENT and indirectly from
ARCH IVE-DATA-SET-ALL.

Note that the weak entity type inheritance
described above is different from the classical

notion of inheritance in A.I. or object-oriented
systems [Booch 1991; Rich and Knight 1991].
That is, a DATA-SET-COMMENT entity is not
an ARCHIVE-DATA-SET-ALL entity; rather, a
set of DATA-SET-COMMENT entities exists to

support an ARCHIVE-DATA-SET-ALL entity,
and thus is identified in the context

of an ARCHIVE-DATA-SET-ALL entity.
Consequently, only the identifier of the owner
entity type is inherited as opposed to the
complete set of attributes of the owner.

To deal with conventional inheritance, the

generalization abstraction is provided, though
the abstraction has been extended to deal with

more complex types of inheritance as well.
Diagrammatically, generalization is indicated
by a labeled circle with an arrow directed toward
the parent class. For example, Figure 3
illustrates that ARCHIVE-DATA-SET-ALL has

six subclasses. The circle is labeled with a D,

275



(t,t)

<
I Archive-Volume _

Archtve-Dma-Set-AII

Ast rometry-Data - De*-

I SMS-Da_

I GSPS-D_a

SHP-D=a

I Engineering-
Subset-Data

PDQ-D=a

FOS-D=a J

WFPC-Data WFPC-Grotc_Dma

FOC-D=a

FGS-Data I

HSP-D=a ]

Figure 3. Portion of ST-DADS EER design.

276



indicating that the association is disjoint;
therefore, an ARCHIVE-DATA-SET-ALL entity
may participate in at most one subclass.

The four subclasses in the left portion of
the diagram are direct subclasses, and thus
inherit the complete set of attributes of
ARCHIVE-DATA-SET-ALL. However, the two

subclasses in the right portion of the diagram
(i.e., SliP-DATA, a standard header packet
containing telemetry values and spacecraft
operation data, and PDQ-DATA, which contains
product data quality data) are different.
Consider, for example, the generalization type
between ARCHIVE-DATA-SET-ALL and SHP-

DATA. The identifiers are identical except that
the DATE attribute exists in ARCHIVE-DATA-

SET-ALL, but not in SIn'-DATA. On cursory
inspection, one might mistakenly classify
ARCHIVE-DATA-SET-ALL as a weak entity type
of SHP-DATA. However, the existence of an

ARCHIVE-DATA-SET-ALL entity does not

depend on an SHP-DATA entity. Rather, SHP-
DATA is semantically a subclass of ARCr_IVE-
DATA-SET-ALL. In fact, the effect of removing
DATE from the generalization type is to allow
an SliP-DATA entity tO be a child of multiple
ARCHIVE-DATA-SET-ALL entities. The
associationof PDQ-DATA to ARCHIVE-DATA-

SET-ALL is similar, except that only the NAME

attribute is significant. Diagrammatically, such
inheritance associations are represented as
generalization types annotated with the
identifier attributes that will not be inherited.

If a circle is not labeled, as is the case with the

PDQ-DATA generalization type, a simple subset
association is indicated.

SHP-DATA has seven subclasses.

However, in this case, each SHP-DATA entity
must be associated with a subclass entity, as
indicated by the double-edge arrow to SHP-
DATA. This mandatory participation constraint
stands in contrast to ARCHIVE-DATA-SET-ALL

entities, which are not required to have
corresponding subclass entities, as indicated
by the single arrow to ARCHIVE-DATA-SET-

ALL. The five subclasses on the right are direct

subclasses, inheriting the identifier from saP-
DATA (and, therefore, from ARCHIVE-DATA-
SET-ALL). Similarly, the two subclasses on
the left (i.e., WFPC-DATA and WFPC-GROUP-

DATA) correspond to an overlapping set of

entities, as indicated by the o label on the
generalization type circle. From a query
formulation standpoint, this indicates that the
relations corresponding to WFPC-DATA and
WFPC-GROUP-DATA can be joined, though
neither can be joined with relations
corresponding to the other five subclasses of
SHe-DATA. From a modeling standpoint, this

representation was a concession resulting from
the limitations of the underlying database
management system. That is, conceptually,
there is one WFPC entity type corresponding
to the wide-field planetary camera; however,
the huge amount of data produced by this camera
requires that the relation corresponding to the
conceptual WFPC entity set be split into two
relations. To preserve mapping integrity from
the conceptual level to the logical level, the
conceptual notion of WFPC was split into two
entity types at the EER level.

The disjoint association shown with
OBSERVATION illustrates another facet of EER

inheritance. Specifically, an OBSERVATION
entity type can be classified as a fixed target or
a moving target (or, strangely enough, as
neither a fixed target nor a moving target as

indicated by the single-edge arrow to
OBSERVATION). The relationship of FIXED-

TARGET tO OBSERVATION is representative of
the conventional inheritance association

described previously. However, the

relationship of MOVING-TARGET-POS ITION-
SPEC tO OBSERVATION is different. In

particular, a set of MOVING-TARGET-
POSITION-SPEC entities corresponds to a

single OBSERVATION, with the additional
identifier attributes corresponding to date and
time. Thus, a MOVING-TARGET-POSITION-

SPEC is similar to a weak entity type, but, in
this case, each MOVING-TARGET-POSITION-

SPZC entity is an OBSERVATION entity.
Furthermore, because of the disjoint

generalization type, no MOVING-TARGET-
POSITION-SPEC entity can exist as a FIXED-
TARGET entity.

The final abstraction to be discussed is the

optimization relationship type, as illustrated by
SHP-Or-OBS in Figure 3. Optimization

relationship types provide a means for
representing efficiency decisions that have been
made at the logical level to enhance

277



performance. Specifically, it sometimes is the
case that joins of selected relations are needed

on a regular basis. For example, in ST-DADS,
OBSERVATION often is joined with
ARCHIVE DATA SET__ALL, which in turn
is joined wq'th SHP_DATA. Often,
ARCHIVE_.DATA_SET_ALL is needed in the join
only to associate OBSERVATION with
Slip DATA. AS this sequence of joins is
expe-nsive, ST-DADS designers decided to
improve performance by establishing a direct
link from OBSERVATION to SHP-DATA. For

requests involving only OBSERVATION and
SHP-DATA, the direct link is used. If ARCHIVE-
DATA-SET-ALL also were involved, then the

longer join sequence would be used. Thus,
SHP-OF-OBS serves as a direct link that informs

a query formulator of the semantic equivalence
of the path from OBSERVATION to SHP-DATA
to the longer path from OBSERVATION through
ARCHIVE-DATA-SET-ALL to SHP-DATA.

Note that if SHP-OF-OBS were represented

as a simple relationship type, then a query
formulator would have to infer that two different

join paths existed that would result in
semantically distinct results. On the other hand,
specifying SHP-OF-OBS as an optimization
relationship type ensures that the system can
infer that the paths are equivalent, and thus
serves to constrain the set of relations that will

be used in the final query.

3. Contexts

From the portion of the ST-DADS EER
conceptual schema shown in Figure 3, 21
relation schemas would be produced in the

logical schema. However, even assuming that
these 21 relation schemas constituted the

complete logical schema would not enable a
user employing only logical schema knowledge
to query the ST-DADS system in a
straightforward manner. For example, because
of weak entity type and generalization type
inheritance, the attribute NAME from ARCHIVE-

DATA-SET-ALL appearsin 17 relationschemas.

Thus, if a request were made to list NAMES
matching a specific pattern, a formulator would
have to select some subset of the 17 relations.

However, at the conceptual level, NAME

occurs only in ARCHIVE-DATA-SET-ALL;

consequently, a query formulator could infer
immediately that only the relation
corresponding to the entity type ARCHIVE-
DATA-SET-ALL is needed.

In addition to attribute duplication, a
formulator must be familiar with the rationale

underlying the logical design to determine what
is and, just as important, what is not a
reasonable natural join. For example, from a

purely syntactic standpoint, it would appear
that any relation corresponding to a subclass
of ARCHIVE-DATA-SET-ALL could be joined

with any other subclass of ARCHIVE-DATA-
SET-ALL because of the inherited, and,

therefore, shared key attributes. However, as
described in the previous section, these
subclasses are disjoint and should not be joined.
Once again, such knowledge is explicit in the

conceptual schema.

While the conceptual schema is knowledge-
rich, it is not necessarily appropriate for direct
use as a database interface. For instance, the

large number of attributes (i.e., several
hundred) associated with many ST-DADS

entity types precludes the use of graphical query
languages that have been developed for yarious
EER models [Czejdo et al. 1990; Zhang and
Mendehon 1983]. Moreover, the differefi_
views of the world held by different users,
even at the conceptual level, makes it difficult
to create a single, agreed-upon conceptual
schema. Thus, it is better to shield the users

from the conceptual schema as well as the logical
schema.

By presenting a universal relation interface,
users can conceive of the database as being

structured as a single table of information. In
turn, high-level requests must be mapped onto
the underlying conceptual schema and

subsequently translated into a query at the
logical level. For this process to work, the
underlying conceptual schema must satisfy two
requirements:

1. It must be rich enough to support
multiple views of the world.

2. It must map to the logical level in a

straightforward way.

278



Given the manyperson-yearsof effort it
takes to create a conceptual schema,it is
reasonableto assumethatRequirement1will
be satisfied. If it is not, then, aswith any
knowledgeacquisitiontask,additionaleffort
must be expendedin refining the schema.
Requirement2 is satisfiedinherently by the
QUICK EER model. Specifically, the
abstractionsin the QUICK EERmodelmap
directly to relations at the logical level in a
straightforward manner. Furthermore,
designersmayemployvariousflagstocontrol
themappings,thusensuringthatanappropriate
logical schemawill be producedfrom the
conceptual schema. For example, the
conceptualschemaof Figure 3 was reverse-
engineeredfrom an existing logical schema.
As thelogicalschemacouldnotbechanged,it
wasimperativethattheconceptualschemamap
directlyto it. By settingappropriateflags(e.g.,
allowing foreignkey null valuesfor selected
relationshiptypes),thedesiredmappingwas
realized without having to contrive the
conceptualschema.

As therearecertainjoin pathsthatareruled
out by the structuresin aconceptualschema
(e.g.,byadisjointgeneralizationtype),it makes
senseto segmenttheschemaintooverlapping
subgraphs of strongly associatedobjects.
Thesesubgraphswill bereferredto ascontexts
[Semmel1992],astheyimplicitly definewhat
relations can be joined in a semantically
reasonablewayand,givena sufficiently rich
conceptual schema,should correspond to
classesof reasonablerequests.

A contextis maximal in thesensethat no
otherobjectin theERgraphcanbeaddedto it
without undermining the strongassociation
criterion. However,determiningwhatobjects
are strongly associatedis not well-defined;
instead,heuristicsmust be employedwhen
determiningstrongassociation,astheexistence
of apathin theEERgraphdoesnotnecessarily
imply that a strongassociationexistsamong
theobjectsin thepath. Fortunately,thereis a
criterion for strongassociationat the logical
level thatcanbeabstractedto theconceptual
levelandusedforautomaticcontextgeneration.
Thecriterionisbasedonatheoremin relational
databasetheorythatsaysif the intersectionof
theattributesof two relationsmultidetermines

(or, by implication, functionally determines)
oneof therelations,thenthetwo relationscan
be joined in a losslessmanner [Korth and
Silberschatz1991].

At theconceptuallevel, the losslessjoin
ruleenablescontextsto bedefinedinductively.
Intuitively, a relationship type and its
participatingentity typesform acontext. This
is justified by thefact thatarelationshiptype
conceptuallycontainsthe identifiers of each
participatingentity type; thus, arelationship
type functionally determines each of its
participating entity types. Similarly, an
overlappinggeneralizationtypeandits parent
andchildrenform a context,aseachrelation
correspondingto anentity canbejoined in a
lossless manner. Finally, a disjoint
generalizationtypewith n childrenform n
contexts,eachconsistingof thegeneralization
type,theparent,andoneof the n children.

Inductively, a contextcanbeextendedto
includearelationshiptypeandits participating
entity types if a many-to-oneor one-to-one
cardinality ratio constraint exists from the
context and no cycle is introduced in the
extendedcontext. This is justified by thefact
thata localizedfunctionaldependencycanbe
inferredfrom theentity typein thecontextto
the other participating entity types of the
relationshiptype. Similarly, a contextcanbe
extendedto include ageneralizationtype and
oneor moreof itschildren.If thegeneralization
type is disjoint, then for each child, a new
contextis formedconsistingof theold context,
the generalizationtype, andthechild. If the
generalizationtype is overlapping, then the
original context is extendedto include the
generalizationtypeandall of its children. As
before,cyclesareavoided,asjoining arelation
with itselfat thelogicallevel is superfluous.

Thefinal way to extendacontextis based
on thenotionof anarticulationpoint. Thatis,
if theremovalof arelationshiptypedisconnects
the EER conceptual schema, then the
relationshiptype and its participatingentity
types are included in the context. The
justificationfor thedisconnectionrule is based
ontheconversionof anEERconceptualschema
to a hypergraphand inferring multivalued
dependencieswhenthe hypergraphbecomes

279



disconnected after removing a hyperedge

corresponding to the relationship type [Ullman
1989].

Note that optimization relationship types
are not considered when contexts are created.

Rather, they are included as part of any context
that has the bypassed association types specified
by the optimization relationship type. Thus,
in Figure 3, any context that included the three
association types connected by dashed lines to
SHP-OF-OBS would include SHP-OF-OBS as

well. It is the role of the query formulator to
use its knowledge of optimization relationship
types to determine which set of joins is
appropriate when the final query is constructed.

In the portion of the ST-DADS EER
conceptual schema shown in Figure 3, there
are 22 contexts. To see this, note that 11
contexts can be derived from the subclasses of
ARCHlY/E-DATA-SET-ALL. Four of these
contexts are derived from the four subclasses

on the left side of the diagram (i.e.,
ASTROMETRY-DATA, SMS-DATA, GSPS-DATA,

and ENGINEERING-SUBSET-DATA). One of

the contexts is derived from PDQ-DATA.

Finally, six of the contexts are derived from
SHP-DATA (i.e., one from the overlapping

WqzPC entity types and five from the remaining
five subclasses of SHY-DATA). Then, for each
of the 11 contexts, two new contexts are formed
as the OBSERVATION generalization type is

extended through to reach MOVING-TARGET-
POSITION-SPEC and FIXED-TARGET. Thus,

22 contexts are produced. Of these 22 contexts,
eight contain 15 EER objects, two contain 17
EER objects, ten contain 18 EER objects, and
two contain 20 EER objects.

There are two more points worth
mentioning with respect to contexts. First, in
the worst case, the time it takes to generate
contexts is an exponential function of the
number of association types (i.e., relationship

types and generalization types) in the EER
conceptual schema. However, real-world
designs tend to exhibit constraints that can be
exploited to make automatic generation tractable
(e.g., acyclic extensions can be initially pruned
and then reintroduced once at the end of the

context generationprocess). Exploiting these
constraints for the complete ST-DADS EER

conceptual schema enables contexts to be
generated in less than one minute on a Lisp-
based prototype of QUICK running on a Sun
SPARCStation 2. As contexts need be

generated only when the conceptual schema is
created or modified, this performance is

acceptable. The second point is that as contexts
are generated heuristically, the contexts
produced may not be consistent with designer
expectations. In this case, the automatically
generated set can be used as a starting point,
and the set of contexts can be handcrafted.

However, to this point in time, there has been
no need for such handcrafting.

4. Automated Query Formulation

Given a set of contexts, query formulation
is straightforward. First, the attributes in the

high-level request are determined. Then, each
context that covers the set of requested attributes
is found. To ensure that needless joins are
not performed, the found contexts are iteratively
pruned of leaves until all leaves cover requested
attributes. As a result of pruning, duplicate
contexts may be introduced. As duplicate
contexts are superfluous, they are eliminated.
Then, the natural join orders of the remaining
contexts are found. Finding these orders is
straightforward, as the edges in the remaining
context subgraphs identify valid natural join
paths. The EER objects in each ordered context
then are mapped to their underlying relation
schemas. As some EER objects are represented
by the same relation schema (e.g., in Figure
2, ADS-_'ROM-OBS and ARCHIVE-DATA-SET-

ALL bothmaptothe ARCHIVE DATA SET ALL

relation schema), duplicate relationschemas
are eliminated. Then, subqueries are formulated
and the union of the subqueries is returned as
the final query.

Note that only when the conceptual schema
contains cycles will more than one context be
involved in the generation of the final query.
This follows from the fact that only one path
can exist between any two nodes in an acyclic
graph, and, therefore, only one subtree will
connect some set of nodes. The fact that there

are multiple contexts does not affect this
property, as context pruning will result in
identical subtrees that, in turn, will be

280



eliminated. As optimization relationship types
do not participate in the generation of contexts,
no cycles exist in the portion of the ST-DADS
conceptual schema shown in Figure 3.

To clarify the query formulation process,
consider the following request:

For all observations made by the

faint object spectrograph between

January I, 1992 and February i,

1992, display the target's

description, right ascension,

declination, proper motion and red

shift, the instrument's detector

and position angle of the aperture,

and the relevant archived dataset

names and comments about the

datasets.

Recall that the StarView interface enables users

to select attributes and qualify them on an ad
hoc query screen. After the request
specification is complete, it is translated into a
form that QUICK can process. The language
used by QUICK is referred to as USQL, as it
resembles SQL, but assumes the existence of
a universal relation. Thus, StarView passes
the following USQL request to QUICK:

Select target-descrip,

ra,

dec,

ra-proper-motion,

redshift,

detector,

pa-aper,

data-set-name,

line-text

Where start-time >=

"Jan I, 1992" And

stop-time <=

"Feb I, 1992" And

instrume = "FOS"

QUICK begins processing by finding the
applicable contexts. In this case, one context
applies, as FOS-DATA is needed to cover
DETECTOR, and FIXED-TARGET isneeded to
cover RA-PROPER-MOTION and REDSHIFT.

AS DATA-SET-COMMENT-LINE is needed to

cover LINE-TEXT, only ARCHIVE-VOLUME,

ADS-ON-AVO, ARCHIVE-FILE, and AFI-OF-

ADS are pruned from the found context. Next,
a natural join order is found for the conceptual
schema objects of the pruned context:

(FIXED-TARGET, OBSERVATION-GT,

OBSERVATION, ADS-FROM-OBS,

ARCHIVE-DATA-SET-ALL,DSC-ABOUT-

ADS,DATA-SET-COMMENT,DCL-FROM-

DSC,DATA-SET-COMMENT-LINE,

ARCHIVE-DATA-SET-ALL-GT,

ARCHIVE-DATA-SET-ALL-SHP-GT, SHP-

DATA, SHP-GT,FOS-DATA)

As will be discussed in more detail in the

next example, QUICK semantically optimizes
queries to ensure that the number of joins in
the final query is minimized. For this example,
QUICK recognizes that no attributes are
requested from DATA-SET -COMMENT, which
is used only to connect DATA-SET-COMMENT-
LIr_ tO ARCHIVE-DATA-SET-ALL. AS DATA-

SET-COMMENT-LINE inherits (via a weak entity
type association) the identifier attributes of
DATA-SET-COMMENT, the entity type DATA-

SET-COMMENT and its identifying relationship
type can be eliminated and replaced by a virtual
link from ARCHIVE-DATA-SET-ALL to DCL-

FROM-DSC. After mapping the remaining
conceptual objects to the logical level, the
following sequence of relation schemas is
produced:

(FIXED__TARGET,OBSERVATION,

ARCHIVE__DATA__SET__ALL,

DATA__SET__COMMENT__LINE,

SHP__DATA, FOS__DATA)

QUICK now exploits its knowledge of
attribute mappings from the conceptual level

to the logical level as well as its knowledge of
natural join associations among relations to

produce the final query. Specific to ST-DADS
is the fact that designers provided distinct
relation schema prefixes to all attributes, thus
giving the impression that distinct conceptual
attributes exist at the logical level. QUICK
compensates for this by preserving attribute

uniqueness at the conceptual level, recording
prefix information, and inserting appropriate
prefixes only when the final query is generated.
However, QUICK also takes advantage of the

fact that the log.ical-level attributes are
syntactically unique to avoid relation

281



qualification. Here, then, is the final query
generated in response to the request:

SELECT

FROM

WHERE

obs_target_descrip,

obs_ra,

obs_dec,

fit_ra__proper__motion,

fit redshift,

fos_detector,

shp__pa_aper,

adsdatasetname,

dcl llne text

fixed_target,

observation,

archive_data_set_all,

data_set_Comment_line,

shp_data,

fos data
m

obs start time >=

"Jan I, 1992" AND

obs_stop_time <=

"Feb i, 1992" AND

shp_instrume =

"FOS" AND

fit_program_id =

obs_program_id AND

fit obset id =

obs obset id AND

fit obsnum =

obs obsnum AND

obs_program_id =

ads__program__id AND
obs obset id =

ads obset id AND

obs obsnum =

ads cbsnum AND

ads_archive_class =

dcl archive class AND

ads data set name

dcl data set name AND

ads_generation_date

dcl_generation_date AND

ads archive class =

shp__archive_class AND

ads data set name =

shp_data_set_name AND

shp_archive_class =

fos archive class AND

shp_data_set_name

fos data set name

The complexity of the above query clearly
demonstrates the need for an automated query
formulation capability. Moreover, it takes only
one to two seconds to generate the query, and
the query is optimal with respect to the number
of joins required. With relations as large as
those in ST-DADS, join optimality is critical.
However, achieving join optimality can be
troublesome when code is generated from a

high-level request and only logical leVel
knowledge is available. Consequently,
QUICK semantically optimizes final contexts

via heuristic pruning to ensure that generated
queries use the minimum number of relations
and, thereby, require the minimum number of
joins.

To gain an appreciation of QUICK's
semantic query optimization capabilities,
consider the following request:

List the data set comments

astrometry data collected

during February 1993.

for

In USQL, the query can be expressed as
follows:

Select

Where

line-text,

target-name,

data-set-name

generation-date >=

"Feb I, 1993" And

generation-date <

"Mar I, 1993"

As in the example above, first all contexts
that cover the requested attributes are found.
In this case, two contexts apply, both of which
include ASTROMETRY-DATA, and one of which
includes MOVING-TARGET-POS I TION-SPEC

and the other of which includes FIXED-

TARGET. However, after pruning and duplicate
elimination only one context remains:

(ASTROMETRY-DATA, ARCHIVE-DATA-

SET-ALL-GT, ARCHIVE-DATA-SET-

ALL, DSC-ABOUT-ADS,DATA-SET-

COMMENT,DCL-FROM-DSC,DATA-SET-

COMMENT)

At this point the conceptual schema objects
are placed in natural join order and mapped to

282



relation schemas:

(AS TROMETRY__DATA, ARCHIVE_

DATA_SET_ALL, DATA_SET_COMMENT,

DATA__S E T COMMENT)

Without semantic query optimization, the
following query is generated:

SELECT

FROM

WHERE

dcl_line_text,

ast_.target__name,

ast data set name

astrometry_data,

archive_data_set_all,

data set comment,

data set comment line

ads_generation_date >=

"Feb i, 1993" AND

ads_generation_date <

"Mar I, 1993" AND

ast data set name =

ads data set name AND

ast archive class =

ads archive class AND

ast_generation_date =

ads_generation_date AND

ads data set name =
-- -- m

dsc data set name AND

ads archive class =

dsc archive class AND

ads_generation__date =

dsc_generation_date AND

dsc data set name =

dcl data set name AND

dsc archive class =

dcl archive class AND

dsc_generation_date =

dcl_generation_date AND

dsc comment time =

dcl comment time AND

dsc user id =

dcl user id

The above query produces a semantically
valid result; however, the query can be
improved. To see how, first note that the
identifier of ARCHIVE-DATA-SET-ALL is

inherited by ASTROMETRY-DATA, by DATA-
SET-COMMENT, and (indirectly) by DATA-SET-
COMMENT-LINE. Furthermore, the existence

of an identifier value in any of the inheriting

entity types implies that the value exists in an
entity in ARCHIVE-DATA-SET-ALL. Similarly,
the existence of an identifier value in DATA-

SET-COMMENT implies that the value exists in
an entityin DATA-SET-COMMENT-LINE. Thus,
DATA-SET-COMMENT and ARCHIVE-DATA-

SET-ALL serve onlytoassociateASTROMETRY-
DATA v_th DATA-SET-COMMENT-LINE. That

is, the conceptual level interpretation indicates
that the join of the relations corresponding to
ASTROMETRY-DATA and DATA-SET-COMMENT-

LINE is equivalent to the join of the original
four relations. Furthermore, as the attribute

GENE_U_TION-DATE was requested in the USQL
WHERE clause, and is an identifier attribute of
ARCHiVE-DATA-SET-ALL that is inherited, it
can be derived from either ASTROMETRY-DATA

or DATA-SET-COMMENT-LINE. Here, then,is

the final query:

SELECT

FROM

WHERE

dcl_line_text,

ast target_name,

ast data set name

astrometry_data,

data set comment line

ast_generation_date >=

"Feb i, 1993" AND

ast_generation_date <

"Mar i, 1993" AND

ast data set name =

dcl data set name AND

ast archive class =

dcl archive class AND

ast_generation_date =

dcl_generation_date

There are several points worth noting about
the above examples. First, the queries
demonstrate the need for an interface that

simplifies request specification. In this regard,
USQL is a step in the right direction, but a
higher level interface like StarView still is
needed. Second, the use of conceptual
knowledge ensures that semantically reasonable
queries will be generated from high-level
requests. Third, the queries are generated
quickly, which facilitates user interaction with
the interface; in fact, even with full optimization,
queries typically are generated in less than two

283



seconds. Finally, the queries generally will
execute as efficiently as handcrafted queries

produced by experts.

5. Summary and Conclusions

The complexity of the ST-DADS logical
schema prohibits most StarView users from

generating semantically valid queries that
correspond to ad hoc requests. However, by
exploiting conceptual design knowledge,
methods have been developed for automating
query formulation and enabling a user to
perceive the database as a universal relation.
These methods have been incorporated in
QUICK and rely on an extended ER model
that enhances the current ST-DADS conceptual
schema, thus ensuring that the conceptual

schema will play a central role throughout the
database life cycle.

By exploiting the notion of contexts,
QUICK ensures that generated queries will be
semantically reasonable. Moreover, the queries
will be generated quickly and execute
efficiently. The capabilities of QUICK also
enable StarView designers to focus on interface
issues instead of conceptual design issues. For
example, user modeling can be addressed in
the framework of a universal relation schema,

thus simplifying the task of interface
construction. Consequently, interface
designers need not develop a deep
understanding of the conceptual schema (which
is described by a 900-page database design
document [Loral Aerosys 1992]).

The first release of StarView is scheduled

for May of 1993. Currently, QUICK is being
integrated into StarView and will exist as a
module in the May release. QUICK generates
SQL queries for all of the screens provided by
StarView as well as for the ad hoc field sets

selected through the universal relation interface.

Current research efforts are focused in three

areas. First, contexts are being extended to
support arbitrary predicates. S. t" predicates
could be used, for example, to r, ila'ict context

access or to disambiguate among multiple
contexts that apply to a request. Second, richer
request structures are being explored. For

example, to generate queries of arbitrary
complexity (e.g., queries requiring the cartesian

product of two relations), tuple variables are
necessary. However, it is not clear how tuple
variables can be presented to a user by the
StarView interface in an intuitive manner.

Furthermore, inferring tuple variables is a
difficult problem for which no solution is

apparent. Finally, some consideration is being
given to alternative conceptual and logical
models, which would facilitate the use of

QUICK with object-oriented databases.

6. References

Batini, C., Ceil, S., and Navathe, S. B. 1992.
Conceptual Database Design: An Entity-
Relationship Approach. Benjamin/

Cummings, Redwood City, CA.

Booch, G. 1991. Object-OrientedDesign with
Applications. Benjamin/Cummings, Redwood

City, CA.

Chen, P. P. 1976. The Entity-Relationship
Model - Toward a Unified View of Data. A CM

Transactions on Database Systems 1, 1,9-36.

Czejdo, B., Elmasri, R., Rusinkiewicz, M.,
and Embley, D. W. 1990. A Graphical Data
Manipulation Language for an Extended Entity-
Relationship Model. Computer23, 3, 26-36.

Elmasil, R., and Navathe, S. B. 1989.

Fundamentals of Database Systems. Addison-
Wesley, Reading, MA.

Hull, R., and King, R. 1987. Semantic
Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys
19, 3, 201-260.

Korth, H. F., and Silberschatz, A. 1991.
Database System Concepts, 2nd ed. McGraw-
Hill, New York.

Leymann, F. 1989. A Survey of the Universal
Relation Model. Data & Knowledge

Engineering 4, 4,305-320.

Loral Aerosys. 1992. ST DADS Database
Design Specification, Build 2, Revision B.

284



Maier, D., Ullman, J. D., and Vardi, M. Y.
1984. On the Foundations of the Universal
Relation Model. ACM Transactions on

Database Systems 9, 2, 283-308.

Peckham, J., and Maryanski, F. 1988.
Semantic Data Models. ACM Computing
Surveys 20, 3, 153-189.

Rich, E., and Knight, K. 1991. Artificial
Intelligence. McGraw Hill, New York.

Semmel, R. D. 1992. "Discovering Context
in a Conceptual Schema," in Proceedings of
the First International Conference on
Information and Knowledge Management
(Baltimore, Nov. 8-11), Yesha, Y., ed.,

International Society of Mini and
Microcomputers - ISMM, pp. 222-230.

Teory, T. J., Yang, D., and Fry, J. P. 1986.
A Logical Design Methodology for Relational
Databases Using the Extended Entity-
Relationship Model. A CM Computing Surveys
18, 2, 197-222.

Ullman, J. D. 1989. Principles of Database
and Knowledge-Base Systems, Vol. 2.
Computer Science Press, Rockville, MD.

Zhang, Z., and Mendelzon, A. O. 1983. A
Graphical Query Language for Entity-
Relationship Databases. In Proceedings of the
3rd International Conference on Entity-
Relationship Approach (Anaheim, CA, Oct.
5-7), pp. 441-448.

285




