
t ;' : 3 0/,_-> i <'<...P

A STUDY OF MAPPING EXOGENOUS

KNOWLEDGE REPRESENTATIONS INTO CONFIG

Final Report

NASA/ASEE Summer Faculty Fellowship Program - 1992

Johnson Space Center

N93-26,072

Prepared by:

Academic Rank:

University and Department:

Blayne E. Mayfield

Assistant Professor

Oklahoma State University

Computer Science Department

Stillwater, Oklahoma 74078-0599

NASA/JSC

Di_toratc:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

Engineering

Automation and Robotics

Intelligent Systems

Jane T. Malin

August 4, 1992

NGT-44-005-803

13-1

ABSTRACT

Qualitative reasoning is reasoning with a small set of qualitative values that is an
ahsu'action of a hn'ger and whaps infinite set of quantitative values. The use of

qualitative and quantitative reasoning together holds great promise for performance

improvement in applications that suffer from large and/or imprecise knowledge domains.

Included among these applications are the modeling, simulation, analysis, and fault
diagnosis of physical syslcms.

Several research groups continue to discover and experiment with new qualitative

representations and reasoning techniques. However, due to the diversity of these

techniques, it is difficult for the programs produced to exchange system models easily.

The availability of mappings to wansform knowledge from the form used by one of these

programs to that used by another would open the doors for comparative analysis of these

programs in areas such as completeness, c_ess, and performance.

A group at the Johnson Space Center (JSC) is working to develop CONFIG, a

prototype qualitative modeling, simulation, and analysis tool for fault diagnosis

applications in the U.S. space program. The availability of knowledge mappings from the

programs produced by other research groups to CON-FIG may provide savings in

CONFIG's development costs and time, and may improve CONFIG's performance. The

study of such mappings is the purpose of the research described in this paper.

Two other research groups that have worked with the JSC group in the past are the

Northwest University Group and the University of Texas at Austin group. The former

has produced a qualitative reasoning tool named SIMGEN, and the latter has produced

one named QSIM. Another program produced by the Austin group is CC, a preprocessor

that permits users to develop input for eventual use by QSIM, but in a more natural

format. CONFIG and CC are both based on a component-connection ontology, so a

mapping from CC's knowledge representation to CONFIG's knowledge representation

was chosen as the focus of this study.

A mapping from CC to CON'FIG was developed. Due to differences between the two

programs, however, the mapping Iransforms some of the CC knowledge to CONFIG as

documentation rather than as knowledge in a form useful to computation.

The study suggests that it may be worthwhile to pursue the mappings further. By

implementing the mapping as a program, actual comparisons of computational efficiency

and quality of results can be made between the QSIM and CONFIG programs. A

secondary study may reveal that the results of the two programs augment one another,

contradict one another, or differ oniy slightly. If the latter, the qualitative reasoning

techniques may be compared in other areas, such as computational efficiency.

13-2

INTRODUCTION

Qualitative Reasoning

Quantitative reasoning is reasoning with precise, usually numeric, values.

Applications such as expert systems, modeling, and simulation typically have been

developed using quantitative reasoning. Due to the combinatorial and sometimes

imprecise nature of the data in these applications, however, their success has been limited

by the overwhelming amount of computation necessary to obtain the desired results.

Qualitative reasoning can help ease this problem.

Qualitative reasoning can be used to reason over the same domains as quantitative

reasoning, but a domain is represented as a (usually) small set of qualitative values rather

than a large (and possibly infinite) set of quantitative values. This abstraction of a

domain must be chosen carefully so that the set of qualitative values represents the

important qualities of the domain while suppressing or ignoring other qualities. If the

quantitative domain is continuous, the qualitative values chosen usually represent

contiguous intervals of the continuous space. For example, a number line can be

represented quantitatively by the real numbers; however, in some applications the same

number line could be represented by the qualitative values "negative", "zero", and

"positive". Since the number of elements in a qualitative domain is smaller than the

number in the corresponding quantitative domain, combinatorial problems can be solved

with less effort. A good introduction to qualitative reasoning in physical systems can be

found in [6].

Although qualitative reasoning methods are still mostly experimental, their application

to modeling, simulation, and analysis of physical systems holds great promise for use in

fault diagnosis of those systems. Using qualitative reasoning techniques, fault diagnosis

can be performed not only after a physical system has been built, but also during each

phase of its design. The potential savings in time, effort, and money are enormous.

Research groups, such as those headed by Forbus [2,4,7,8] and Kuipers [5,9,11,12], have

developed experimental qualitative reasoning techniques and systems. A Johnson Space

Center group headed by Dr. Jane Malin is developing a prototype qualitative reasoning

program named CONFIG [13,14] for use in model-based fault diagnosis applications

within the U.S. space program.

Goals and Rationale

These groups have taken (sometimes radically) different approaches to qualitative

modeling, simulation, and analysis. Vigorous research is necessary to advance qualitative

reasoning techniques to a level where they can be applied to solve a wide variety of _tl-

world problems. However, sometimes the diverse methods utilized by different groups

present problems: different knowledge representation schemes can make it difficult to

share knowledge between groups, and incompatible reasoning techniques can make it

13-3

difficult to incorporate new techniques into existing programs. The thrust of this project

is to study the former, and perhaps to gain insight into the latter.

The major goal of this project is to develop a mapping from the knowledge

representations used by the Kuipers group (in the CC [9] and QSIM [5] systems) to that

used by the Malin group (in the CONFIG system). A program could be developed from

this mapping to mechanize the u'ansformation of CC and/or QSIM knowledge to a form

compatible with CONFIG. In addition to facilitating the sharing of physical systems

models between research groups, such a program may serve as the basis for comparisons

between reasoning methods used by the programs.

It is important that the mapping produced be correct and complete; i.e., all of the

knowledge in the source representation should be transformed in such a way as to

accurately retain its original meaning, and only that knowledge should be transformed

(nothing should be added). This presents a problem when the target representation

contains no counterpart for particular elements of knowledge embodied in the source

representation. It was decided that these elements and all documentation elements would

be transformed to documentation in the target representation, and all other knowledge

would be transformed to its counterpart in the target representation.

CONFIG

General Description

CONFIG is a system that integrates object-oriented modeling, quantitative and

qualitative mathematics, discrete event simulation, and digraph analysis to support the

modeling, simulation, and analysis of physical systems. The initial application of

CONFIG will be model-based fault diagnosis. CONFIG is based on a component-

connection ontology [1,3]; i.e., a physical system is modeled as a collection of

components and the connections between them. A component-connection model is

extremely modular and, thus, can be modified easily. A (X)NFIG model can be viewed

as a directed graph in which components, called devices, are the graph nodes and

connections, called relations, are the graph edges. During simulation, changes in the

value of device variables are propagated along the edges of the graph (i.e., through the

component-to-component connections).

Knowledge Representation

Each device class is comprised of several elements (or parts), some of which may also

be made up of pans. This arrangement of parts within parts is called a parts hierarchy.

Figure 1 shows the parts hierarchy of a CONHG device. The pans of a device are the

internal variable clusters (VCs), port VCs, mode independent (MI) processes, a mode

transition digraph (MTD), and a Device Control Digraph (DCD). In turn, the MTD is

13-4

made up of modes, and modes are composed of mode dependent (MD) processes and

mode transition (MT) processes. These parts are detailed in [13] and [14].

I

I I I ! I
C C) ()

I

1
! !

Figure I.- Parts hierarchy of a CONFIG device class.

The purpose of a variablecluster(VC) isto aggregatelogicallyrelatedvariablesinto

a common data structure. The variablesin the internaland port VC.s contain state

information about the device. An internalVC is similarto a privatestructurein a C++

class: itcontains variablesthatare accessibleonly by the other partsof the device. A

port VC, by contrast, is designed to be a device interface to other devices.

MI processes arc one of three types of processes defined for use in discrete simulation

(theothersare describedbelow). Semantically,a processhas the generalform

ff precondition then action after time-delay.

If the precondition of a MI process becomes true during simulation, the action specified

is placed on the simulation schedule to be executed after the time delay specified. The

preconditions are checked each time the simulation clock is updated.

Conceptually,a devicemode definesan operatingregionof the device and describes

the behavior of the device when itisinthatmode. By definingmodes foreach operating

region of the device, the behavior of the device can be modeled completely. For

13-5

example, the modes for a switch device might be named "open", "closed", and "stuck"
and describe how a switch behaves in each mode. The modes of an MTD describe a

digraph in which the nodes are mode objects and the edges are MT processes. MT

processes have the same general semantic form as MI processes. The MTD also contains

a variable that indicates the current device mode. Each time the simulation clock is

updated, the preconditions of the MT processes of the current mode are checked. If the

preconditionof one of the MT processesistrue,then the corresponding action,which is

a transition to another mode, takes place. The MTD also contains a collection of MD

processes; these processes operate much like the MI processes, with the exception that

their preconditions are checked only when the mode in which they are defined is the
current mode.

The purpose of a DCD is to describe the submodel (i.e., subcomponent) structure
within a device class.

A relation(i.e.,an inter-deviceconnection) can be thought of as a cable or pipe

between a subsetof the port VCs of two devices. The flow of data through the relation

is generallyone-way, though there are two-way relations(thesecan be viewed as two

one-way relations).A relationmay be defined to connect any two devices,and within

these devices,any subsetof theirportVCs, and within the port VCs, any subsetof the
variables.

Simulation

CONFIG performs discrete event simulation. In discrete event simulation, events are

assumed to occur at points in time rather than continuously over intervals of time. When

the simulation begins, a sequence of events is placed in a schedule, ordered

chronologically by their arrival times (i.e., the times at which the events will occur). The

simulation clock is advanced to the arrival time of the first event, and the event takes

place. As a consequence of event occm_nce, other events may be scheduled. The

simulation clock is advanced to the next event arrival time, and the process continues

until the schedule is empty (or until a specified amount of clock time has passed). The

purpose of using discrete event simulation is to simulate a nun_cal sample of the set

of possible system state sequences, rather than generating all of them. (The method of

generating all sequences is the basis of envisionment, a form of which is used in QSIM).

When CONFIG begins a simulation, each device is set to its specified initial mode.

As the simulation progresses, the process conditions are checked, and if they are use,

their actions are scheduled for execution. Dam values are propagated from device port

to device port through relations.

13-6

QSIM

General Description

QSIM [5] is a qualitative simulation system for model-based reasoning produced by
the Kuipers research group at University of Texas at Austin. Although still considered
an experimental system, QSIM has matured to the point that other research groups use
it as a basis for their work. The modeling approach used in QSIM is radicatly different
from that used in CONFIG. In QSIM, a system model is represented by a single
qualitative differential equation (QDE) 1. Contrast this to CONFIG, in which a system
is modeled as a collection of components and connections. Furthermore, in QSIM it is
possible to have multiple models of the same physical system, and to switch between
models as needed during simulation. For example, the QSIM User's Guide [5] presents
an example of modeling a bouncing ball; the system is modeled as an accelera_g mass
while in flight and as a spring when it rebounds the floor. QSIM's use of multiple
models and model switching is similar in concept to CONFIG's use of device modes and
mode transitions.

Knowledge Representation

A QDE specifies the structure of the system being modeled. A QDE is comprised of
four major parts: a set of qualitative variables, a quantity space for each variable, a set

of constraints among the variables, and a set of transition rules. Details about these may
be found in [5].

A quantity space is a qualitative abstraction of a quantitative range. It consists of an

ordered sequence of landmm'k values within the range; landmarks are borders between

qualitative intervals. A Q$IM user can specify any collection of landmarks as long as the
collection includes the landl_trk 0 (zero).

The value of a qualitative variable is comprised of a qualitative magnitude, which is
a value from the variable's quantity space, and the direction of the maguitude's change,
which can either be decreasing, steady, or increasing.

A constraint specifies important relationships among the variables of the QDE. It
consists of the constraint specification and an optional list of corresponding values. A
constraint specification is a relation name and its variable arguments. A corresponding
value is a list of variable values that further constrain the variables. For example,

(0w+ A B) (0 0) (inf in0)

I A QSIM QDE construct is actually a set of qualitative diffe_afial equations, in the Iraditiomfl sense of
the Umn. However, to maintain consistency with QSIM documentation, the ccmsuect will continue to
be referred to as a QDE for the remainder of this paper.

13-7

is a constraint in which "(M+ A B)" is a constraint specification, and "(0 0)" and

"(inf imO" are corresponding values. This constraint states that the relation M+ (positive

monotonicity) holds between the variables "A" and "B". Further, the corresponding

values state that when "A" is zero, "B" is zero, and when "A" is 4.00, "B" is 4.00.

Transition rules provide a mechanism for switching between models during simulation.

Each transition rule consists of a condition and a QDE identifier;, ff the QDE containing

the transition rule is active and the condition is true, the QDE specified in the rule
becomes the active QDE.

Simulation

A simulation in QSIM differs drastically from one performed in CONFIG since QSIM

uses a form of envisionment to perform simulation. Envisionment' as described in the

section on CONFIG, is a process by which all possible system state sequences are

generated. Beginning with the initial model in its initial state, QSIM generates a tree

containing these state sequences, although QDE constraints and other constraining
mechanisms are used to prune away those state sequences that violate constraints, thus

saving time and computation. This tree is called a behavior tree. The user can request

information about any path in the tree from QSIM. Even with pruning, though, building
a behavior tree can be a computationally expensive process.

QSIM to CONFIG Mapping

The desirability of mapping QSIM knowledge to CONFIG was examined early in this

study. As a result of this examination, it was decided that a QSIM-to-CONFIG mapping

would not be developed. QSIM models all devices of the system in a single QDE. A

QDE cannot reliably be separated into discrete devices. Thus, a QSIM model would be

mapped to CONFIG as a single "mega-dcvice". One of CONFIG's strong points is its

component-connection representation. This representation is extremely modular;,

components and connections can easily be added or deleted. This modularity would be
lost in the mapping.

CC

General Description

CC [9] is a preprocessor for QSIM; it takes CC input language as its input, and

produces QSIM input language as its output. CC, like CONFIG, is based on a

component-connection ontology. The CC input language is styled after that of VHDL

[10], which separates a component's interface definition from its implementation

definition so that multiple component implementations can be defined without the

necessity of replicating the interface information. CC elements can be arranged into part

13-8

and inheritancehierarchies,even though QSIM doesnot support hierarchies; this is

because CC "flattens out" the hierarchies.

Knowledge Representation

There are four major modeling elements in CC: quantity spaces, component

interfaces, component implementations, and component configurations. Details about

these elements can be found in [9].

Quantity spaces can appear either globally or within a component interface or

implementation. The CC quantity space concept is an extension of the QSIM quantity

space concept. Both contain an ordered list of qualitative landmark values, but a CC

quantity space may also specify a parent quantity space and a list of conservation

correspondences. A conservation correspondence is a list of qualitative values from the

quantity space that sum to zero; thus, a conservation correspondence is a form of

constraint on the quantity space values.

A CC component class definition is comprised of two pans: a component interface

and a component implementation. A component interface is a high-level abstraction of

a component that describes a family of component classes. The specific details of

particular component classes are described by component implementations. Multiple

implementations may be defined for a given interface. Each interface/'tmplementation pair

defines a component class. A component class with subcomponents is called a composed

component class, and a component class without subcomponents is called a primitive

component class.

The parts of a component class (i.e., an interface/'nnplementation pair) include a

knowledge domain name, terminals, component 0ocal) variables, mode variables,

subcomponents, and connections between the subcomponents.

The knowledge domain name is one of a list of prcdefined areas such as "hydraulic",

"elecuical", etc. A knowledge domain is a list of variable types commonly used in

components within the domain; for example, the "hydraulic" domain contains variable

types such as "flow" and "pressure". The authors of CC have taken a bond graph

approach [15], so these domain-specific variable types simply are synonyms for a set of

generic type names.

A terminal is an interface that can be connected to a terminal of another device. It

contains a collection of terminal variables. Terminal and component variables are

variables like those found in QSI_ i.e., their values are composed of a qualitative

magnitude and a direction of change. A mode variable is a QSIM variable and a

collection of condition/value pairs. During simulation, the conditions are checked, and

if any is found to be true, its associated value is assigned as the value of the mode
variable.

13-9

The final major CC element, the component configuration, might be called a

"composed component macro". Its purpose is to create similar composed component class

definitions from a single component class that has some subcomponent information

omitted. The component configuration does this by supplying the missing subcompouent

information. For example, assume that there exists a composed component class named

"Black Box" with three subcomponents for which implementations (and perhaps

interfaces) have not been specified. Any number of similar "Black Box-like" component

classes can be created by defining component configurations that specify different

subcomponent class information for the three subcomponents.

CC does not appear to support QSIM model switching. Although multiple QDE's can

be generated, the CC User's Guide does not document any way of generating the QDE

transition relations needed to switch between the models during simulation.

CC-TO-CONFIG

Order of Mapping

The order in which CC elements are mapped to CONFIG elements is bottom-up. That

is, a CC construct is converted only if all of its subparts have already been converted, or

ff it contains no subparts. In this way, a given construct can be lransformed in a single

pass, whereas with a top-down approach multiple passes might be required to complete

the transformation of a given construct. This leads to the following transformation order:.

1) Global quantity spaces with no parent specified;

2) Global quantity spaces whose parent has already been transformed;

3) Primitive component classes;

4) Component configurations are transformed to CC composed component classes; and

5) Composed component classes whose subcompononts have already been transformed.

Note that step 4 is a CC-to-CC transformation, not a CC-to-CONFIG transformation.

The pm't_se of this step is to convert component configurations to a form that is easier
to transform to CONFIG.

Mapping Quantity Spaces

Quantity spaces, regardless of whether they appear globally or within a component

class definition, most closely resemble qualitative data types in the CONFIG process

specification language. The main elements of a quantity space are an ordered set of

landmark values and a set of conservation correspondences on those values. A CONFIG

qualitative dam type consists of an unordered set of qualitative interval names and a

collection of operations on those qualitative names. Transformation of the landmark

values to interval names is straightforward; since landmarks represent the boundaries of

qualitative intervals, interval names will be generated by joining adjacent landmark

names. For example, the set of landmark values

13-10

(L1 L2 L3 ...)

can be transformed to the set of interval names

(LI_L2 L2_L3).

The transformation of conservation correspondences to operations on the newly

generated qualitative type is complicated by the fact that the conservation correspondences

are operations on landmarks rather than on intervals. However, this can be overcome by

generating additional interval names that correspond to the intervals between 0 (which is

a landmark in every quantity space) and the landmarks in the conservation

correspondences. Then the sum of these intervals can be viewed as zero, and these

interval operations can be transformed to CONFIG qualitative data type operations. For

example, the quantity space,

(minf a b 0 c dinO (00) (minf in0 Co c d))

would be transformed to the qualitativetype

(minf_a a_b b_00_c c d d inf00 minf00inf b...00._c0d)

and the transformed conservation correspondences (i.e., those intervals whose sum is the

interval 0_0) would be (in functional form):

(SUMS-TO-ZERO 0_0 0_0)
(SUMS-TO-ZERO minf_00_inO
(SUMS-TO-ZERO b_0 0_c0_d)).

In addition, the original list of landmark values will be copied to CONFIG to

document the original landmark ordering.

Quantity Spaces with Inheritance

Communication with Dr. Kuipers about the inheritance mechanism for quantity spaces

indicates that there are still many unanswered questions about how the mechanism will

operate. Thus, it was decided to take the view that the landmarks and conservation

correspondences of parent quantity spaces are recursively inherited by child quantity

spaces. Thus, the transformation of a quantity space whose parent quantity space has

already been transformed is achieved by taking the union of the parent's interval set and

the child's interval set, and the union of the parent's operation set and the child's

operation set. This view assumes, however, that particular landmarks have the same

qualitative meaning at each level of inheritance.

13-11

Mapping Primitive Components

Primitive components are component classes with no subcomponents. They will be

transformed to a CONFIG device class. This transformation involves many elements,
which are described below.

The implementation and interface of the component class contain descriptive text
strings. These will be included as documentation in the CONFIG device class. Other

items transformed as documentation will be the component class knowledge domain name

and component parameters.

CC terminals and CONFIG port variable clusters serve the same purpose, and each

is comprised of a collection of variables. Thus each terminal will be wansformed to a

CONFIG port variable cluster class, and the CON-FIG device class will contain an

instance of each variable cluster class as a port.

In a similar fashion, the component 0ocal) variables will collectively be transformed

to a CONFIG variable cluster class, and the CONFIG device class will contain an

instance of this variable clusler class as an internal variable cluster. CC terminal and

component variables may also have several options specified, such as "display" and "no-

new-landmarks"; these are operational flags that have no counterpart in CONFIG, and so
will be copied as documentation for the variable.

A CC mode variable is a variable and a collection of condition/value pairs. If one of

the conditions is true, the variable takes on the corresponding value. Mode variables have

no relationship to modes in a CONFIG device. Their variables will collectively be
transformed to a CONHG variable cluster class, and the CONHG device class will

contain an instance of the variable cluster class as an internal variable cluster. Their

condition/value pairs will be uansfom_ to MI processes.

CONFIG does not use constraint propagation. Thus, lransformation of CC constraints

to CONFIG may have limited utility. The relations specified in most CC constraints have

predefined meanings; for example, M+ is a relation that between two variables, one of

which affects the value of the other in a monotonically positive manner. The predefined

_gs will not be translated, but the list of corresponding values in the constraint

could be transformed to CONFIG process language operations on the types of the
constraint arguments.

CC constraints define the value of one variable as a function of another; i.e., whenever

the domain variable value changes, the range variable value changes according to a

function of the domain variable. This relationship could be transformed to CONFIG MI

or MD processes in which the change of domain variable from one qualitative value to

another triggers an action that changes the range variable value accordingly. However,

since only the name of the function rather than the function itself is encoded in the

13-12

constraint,the transformationfrom conswaimto MI or MD processes would have to be

performed by the human modeler. If the modeler chooses not to perform this task, then

the constraints would be transformed to CONFIG device class documentation.

Mapping Composed Components

The conversions described for primitive component classes also hold for composed

component classes. There are two additional elements that must be converted for

composed components: subcomponcnts and connections between subcomponents. By

taking a bottom-up approach, the subcomponents already will have been converted, so

instances of the subcomponent device classes can be included in the composed device

class DCD. Subcomponent connections will be transformed to CONFIG relations, since

both describe device-to-device connections, and will also be included in the DCD.

CONCLUSIONS AND FUTURE WORK

A CC-to-CONFIG knowledge representation mapping has been described. Although

it is complete (i.e., it describes the transformation of all CC knowledge to the CONFIG

representation), several elements are translated as documentation, due to differences in

CC/QSIM and CONFIG. These gaps represent areas of further study for potential

extension of CONFIG's capabilities. The mapping also highlights the need for further

studies concerning mappings from other qualitative reasoning programs to CONFIG, and

also the mapping of CONFIG representations to other programs. For example, even

though a mapping from QSIM to CONFIG is not desirable, a mapping from CONFIG to

QSIM might be. In sumnmry, the current study has revealed more questions to be

investigated.

A good starting point for further study would be the implementation of the mapping

described here. Doing so will open the doors for empirical comparisons of CONFIG to

QSIM. It is important to know ff the results achieved by CONFIG are complimentary,

contradictory, or essentially the same as the results of other programs. If complimentary,

the programs could be used together to get better results. If contradictory, why? If

essentially the same, comparisons could be made to f'md out if one program has a better

computational efficiency than the others.

13-13

lo

o

*

do

*

*

.

Q

o

12.

REFERENCES

Abel,son, H.; Sussman, G.J.: The Structure and Interpretationof Computer

Programs, M1T Press, 1985.

DeCoste, D.: Dynamic Across-Time Measurement Interpretation.

Intelligence,vol.51, 1991, pp. 273-341.

Ara_c/a/

de Kleer, J.; and Brown, J.S.: A Qualitative Physics Based on Confluences.

Qualitative Reasoning About Physical Systems, Daniel G. Bobrow, ed., MIT

Press, 1985, pp. 7-83.

Falkenhainer, B.; and Forbus, K.D.: Compositional Modeling: Finding the Right

Model for the Job. Ara'ficial Intelligence, voL 51, pp. 95-143.

Farquhar, A.; Kuipers, B.; Rickel, J.; Throop, D.; and The Qualitative Reasoning

Group: QSIM: The Program and its Use. Draft. Deparunent of Computer

Sciences, University of Texas at Austin, Austin, Texas, 1992.

Forbus, K.D.: Qualitative Physics: Past, Present, and Future. Exploring Artificial

Intelligence: Survey Talks from the National Conferences on Artificial

Intelligence, HE. Shrobe, ed., Morgan Kaufmann, 1988, pp. 239-296.

Forbus, K.; and Falkenhalner, B.: Self-Explanatory Simulations: Scaling Up to

Large Models. Proceedings of the Tenth National Conference on Artificial

Intelligence, AAAI Press, 1992.

Forbus, K.D.; Nielsen, 1_, and Faltings, B.: Qualitative Spatial Reasoning: The

CLOCK Project. Artificial Intelligence, vol. 51, 1991, pp. 417-471.

Franke, D.W.; and Dvorak, D.L: CC: Component Connection Models for

Qualitative Simulation, A User's Guide. Draft. Department of Computer

Sciences, University of Texas at Austin, Austin, Texas, 1992.

IEEE Standard VHDL Language Reference Manual IEEE Std. 1076-1987.

Kuipers, B.: Component-Connection Models. Draft. University of Texas at Austin,
1992.

Kuipers, B.J.; Chiu, C.; Dalle Molle, D.T.; and Thronp, D.R.: Higher-Order

Derivative Constraints in Qualitative Simulation. Arnficial Intelligence, vol. 51,

1991, pp. 343-379.

13-14

13. Malin, J.T.; and The CONFIG Design Team: CONFIG User's Guide. Draf_

Intelligent Systems Branch, Automation and Robotics Division, Johnson Space

Center, 1990.

14. Malin, J.T.; Basham, B.D.; and Hams, R.A.: Use of Qualitative Models in Discrete

Event Simulation to Analyze Malfunctions in Processing Systems. Artificial

Intelligence in Process Engineering, Academic Press, 1990, pp. 37-79.

15. Rosenberg, R.C.; Karnopp, D.C.: Introduction to Physical System Dynamics.

McGraw-HiU, 1983.

13-15

