
r

A Hybrid Multlgrld Technique

for Computing

Steady-State Solutions to Supersonic Flows.

Final Report

NASA/ASEE Summer Faculty Fellowship Program - 1992

Johnson Space Center

N93-26078

Prepared by:

Academic Rank:

University & Rank:

Directorate:

Brench:

3SC Colleague:

Date Submitted:

Contact Number:

Richard Szmders

Associate Professor

University of Houston

Department of Mathematics

Houston, Texas 77204-3476

Engineering

Aerosciences (EG3)
Chlen Li

September 21, 1992

NGT-44-001-800

19-1



§1. Introduction. Recently, Li and Sanders [2] have introduced a class of finite differ-

ence schemes to approximate generally discontinuous so]utlons to hyperbolic systems of

conservation laws. These equations have the form

0

_q + V-g(q) -t- s(q) -- 0

q(o) =qo,

together with relevant boundary conditions. When mode]ling hypersonic spacecraft reen-

try, the differential equations above are frequently given by the compressible Euler equa-

tions coupled with a nonequilibrium chemistry model. For these applications, steady state

solutions are often sought. Many tens (to hundreds) of supercomputer hours can be de-

voted to a single three space dimensional simulation. The primary difficulty is the inability

to rapidly and reliably capture the steady state. In these notes, we demonstrate that a

particular variant from the schemes presented in [2] can be combined with a particular

multigrid approach to capture steady state solutions to the compressible Euler equations

in one space dimension. We show that the rate of convergence to steady state coming from

this multigrld implementation is vastly superior to the traditional approach of artificial

time relaxation. Moreover, we demonstrate virtual grid independence. That is, the rate of

convergence does not depend on the degree of spatial grid refinement.

Before continuing, we review the particular variant of the numerical discretization of

Ozg(q) we wish to combine with multigrid. We assume that the problem to be solved is

hyperbolic. That is, the Jacobian matrix of g(q), denoted here by 0qg(q), has real eigen-

values A_(q), i - I,... ,m and a complete set of eigenvectors ri(q). The approximation of

0.g(q) in grid cell j is given by

I I r
A=I (1_(Oij+1/2; qj+l/2, C1_'+1/2) -- _(O4-1/2; qj-l/2, q._-l/,))

where h s is a two point numerical flux function consistent to g. That is, hs(p; q, q) = g(q).

The particular numerical flux function we take below is of Roe type [1]

1

hs(p; a, b ) = _ (g(a) + g(b) - R(p)lA(p)lL(p)(b - a)),

where R(p) is the matrix of right elgenvectors to Oqg(p), L(p) the inverse to R(p) and
/

IA(p)[ = d/_(IA_(p)l V 6). We letq/+11_ = ½(qj+1 + qj) and compute qj+112 and q_+I12

according to the following recipe.

(i) At each cell interface j + 1/2, compute

D,,o = r.(q +x/2)(qj+l- qj)
D 2'+ = L(qj+l/2)(qj+_ - 2qj+l + qj)

D2'-= - 2qi+
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and componentwise(i "- 1,..., m)

(_+_l_)i = {
min( lD_'-1, 3 lDl'° l)sign( D_ '- )

"i_(lD_'+l,SlD:'°l)sign(D_ '+)

to obtain interface values

if _i(q_+_/2) > 0
otherwise

1

q_+2/2 = q j+1/2 - -_R(qj+ll2)ej+l/2.

(ii) Limit the interface values by

l
qj+l/_ = cj

+ R(qj) (minmod(L(R/)(q_l/2 - qj),pL(q_)(qj_/2 - _)))

q_+1/2 = qj+x

+ - -

where p > I is calhd a compress/on factor.

l
Note that for p taken larger than 1 we have generically that qj+x/_ = q_+1/2 = q_l/_"
Therefore, generically

hs(qi+_/_; z "qj+l/2, qj+l/2) - g(q_'_l/_)"

In the case when g(q) = q and q E R x, the finite difference formula above reduces

generically to

_ _(q_+, - __,) - _(q_+, - 3q_+ 3__I - ___) .

(See Section 3.2.)

In the next section we motivate the basics of multigrid and study its convergence

for an upwind scheme. In Section 3 a hybrid of multigrid with an approximate Newton's

iteration is introduced and analysed. In the last section, we numerically treat an example

supersonic flow problem using the ditrerence formula given above together with a multigrid

algorithm developed below.
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§2.1 The basics of multlgrid. Textbooks are filled with iterative techniques to solve

large, sparse linear systems. Such systems are generally encountered when seeking ap-

proximations to steady-state solutions of partial differential equations in one, two or three

space dimensions. The rate of convergence offered by almost all iterative techniques un-

fortunately depend on the size of the system. Specifically, by increasing the number of

spatial grid points, the iterative technique will require a greater number of iterations to

achieve a given error reduction. This phenomena can be exhibited by considering the finite
difference scheme

1

X-_ (uj - uj-1) + f(z_) =0

1

= J,

with periodic boundary conditions,

UO _ UJ_

j = 1,2,...,J,

used to approximate the solution to the differential equation

0

+ = 0,
=

(The finite difference scheme above has a nonunique solution provided that 3 f( i) =
0.) Letting u represent the J dimensional vector of unknowns uj, and f the J dimensional

vector of f(zj), we can write the finite difference scheme above symbolically as

(2.1) Dju + f = O,

where D3 is a J × J matrix, and we will consider the rate of convergence of the artificial

time relaxation technique

(2.2) U _ = U _-1 _ p(Dju _-1 + f),

U 0 "-- V_

where p > 0 is a relaxation parameter and v is an arbitrary starting vector.

limh--.oo u k exists, the limit solves (2,1).

Recall the discrete Fourier transform of a J-periodic grid function _j:

Clearly, if

J
1

_l = _ ._ vie _3izj,
jffil

and its associated inversion formula,
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J
1

1=-1

Let u _ denote the kth iterate coming from (2.2), let u denote the unique stationary solution

J J 0 _h U kto (2.1) normalized so that _'_i=1 uj = _j=l uj, and let - u - denote the artifidal

time iteration error wfter k iterations. By taking

J

1 i

one easily calculates that the the Ith Fourier coefficient of error at iteration step k is given

explicitly by

_=((1-_)+_ / _.

(Note that the normalization of u implies e_ = 0.) Taking cr - p/Az < 1, we have that

p

I(I - _-g)+ _g=_'I < I,

for each I = 1, 2,... ,J - 1. Moreover, the high frequency components of the error are

contained in the Fourier coefficients _ with l ,_ J/2. From above, we see that these high

frequency components decay at a rate on the order of

11- 2o'l.

Therefore, these coefficients decay at a rate that is independent of the number of grid

points J. On the other hand, the low frequency components of the error are contained in

_ with l _ 1 or with l _ J - 1. These components decay at a rate on the order of

2., ;).1 - _-_(1 -

Therefore, for this example, doubling the number of grid points J can necessitate many

more than twice the number of artificial time iterations to achieve a given error reduction.

The basic idea of multigrid is the following: One attempts to capture the low frequency

components of u on a coarse mesh. This can be accomplished by a variety of methods. The

coarse grid information is then included into the current guess on the fine grid, and the

high frequency components of the error can be rapidly damped there by using an iterative

technique such as the one above. Normally, the divide and conquer strategy is employed

in multigrid. That is, a nested sequence of coarse meshes is utilized to rapidly capture all

frequencies of the solution.
$
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To illustrate the multigrid approach, we will apply an/dea/two grid multigrid strategy

to example (2.1) above. Given the current approximation u _ to u, we have that

Dju + f = Dj(u k + c_) + f = 0

or,

(2.3) Dje _ + r k = O,

where the residual is defined by r h = Dju k + f, and Dj is the J x J difference matrix

defined above. The solution to the residual equation (2.3) is approximated by solving

z>s/2e /2+ r /2 = o

where,

r /2 = x(:.-.:/2)rk.

-[(J"-*J/2) denotes an injection operator that takes vectors from ]BLJ into the lower dimen-

sional space R J� 2. (Solving the coarse grid equation above exactly is what defines an ideal

two grid strategy. In practice, multigrid is nested. That is, a nested sequence of lower

dimensional mtdtigrid iterations is applied to a nested sequence of coarser grid residual

equations.) The fine grid error is then approximated by "

k
ek x( 12-. e 12 - %,

where I(j/3_.j) denotes an interpolation operator that takes vectors from I_LJl2 back into

P,.J. e_s is called the coarse grid correct/on. One expects that e_8 will agree well with the

true error in the low frequencies. However, it in genera] will not agree well with the true

error in the high frequency regime. To capture the high frequencies, we may for example

use the artificial time scheme above, e.g., for n - 1, 2,..., v

(2.4) e" = e "-1 - p(Dje "-1 + rk),

with

(This step of multigrid is often referred to as the smoother. The term smoother is in fact

a misnomer. In actuality, this step is used to capture the high frequency components of

the error.) Finally, since

U-- U h + e L _ U h + e n',

we update u i via

uk+I .- U h .}- e s'.

This defines one cycle of a simple two level muitigrid technique. We should remark that

the update step above is equivalent to setting

u I+I =" S_(u I' + e_.f, f),

where S}(v,f) denotes 1., iterations of the basic iteration scheme (2.2) on grid J.
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§2.2 Ideal two grid analysis for the example first order one sided scheme. A

multigrid strategy requires three basic ingredients. They are:

(i) The so-c_ed smoother; see (2.4) above.

(ii) The fine to coarse grid residual injection operator; I(j-,j/2) above.

(iii) The coarse to fine grid error interpolation operator; l(j/2..,j) above.

The performance of a multigrid algorithm relies heavily on the choice of these ingredients.

In this subsection, we analyse the convergence rate of the strategy outlined above taking

the artificial time relaxation technique (2.2) as the smoother, and

1

(2.5) (I(j-.j/2)r)j ---- -_(r_ i + r_i-i ),

as the fine to coarse grid injection operator, and

(2.6) (I(j/_-.,j)e)2j -- _i

(I(.7/2--.i)_)2j-I = ci,

as the coarse to fine grid interpolation operator. In the context of finite volume, these inter-

grid operators seem most natural. A multigrid iteration step above is written symbolically

as

(2.7)

u = s Cu + f).

Using the fact that u = S_(u, f), we may write (2.7) in terms of the error ek as

(2.8) =f-cg

_'+_ S_(__ '= - %,0),

where again we normalize u such that J J 0 = 0.

Unfortunately, unlike the single grid example above, the two grid multigrid algorithm

(2.8) does not completely decouple into Fourier modes. Following [3], a J-periodic grid

function v can be decomposed into a Fourier series on the odd grid points, and a Fourier

series on the even grid points. The explicit formulae are

(2.9) v i --

I _ _Ie-YYVCJ+I)/2

J/2
1 "

1=1 .

ifj = 1,3,...,J- I

ifj = 2,4,...,J
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tact,ir,,i = _ _,"=,'_,e-_'J, a _implec_culatio-.in reve_that

v_
(2.1o) _' = -5-(_ - _'÷_/_)e_,,

-5- (_'+_'+_/_)'

for each l = 1,2,...,3/2.

(2.9) and (2.10) allow us to examine the degree to which the coarse grid correction

e_e approximates the true error ek. Writing

J

or equivalently

3/2

1 _ _e__z(_+_)/=

1 J/2

1--1

ifj = 1,3,...,3- 1

ifj = 2,4,...,3

we compute that

1= -
Therefore, on the coarse grid, with j running from 1 to 3/2, we have

1

(XC.,_+s/=)D.,,?)i = _ ((D.,J%_, + (D+,,'%)

_ 1 J/t_a=ll( _,) V/_ l_=z_...=(l_V/_ ffi 2 _k I + e__l:_=li = I .I/= I e_./_=l)_e__/j=zi.

Solving the coarse grid problem exactly leads to

z _,+e-_'i,

and we find, a_er applying the coarse to fine grid interpolation (2.6), that the coarse grid

correction is given by

k _ 1 x"" =_ - _-_li(%)=_+-_ == (%)=.+ - 2.,qe .
%2/'_ 1=1
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Making use of the formulae in (2.10), we can write the coarse grid correction in terms of

(2.ira)

(2.11b)

(_,),= (1+ _-"_')(_t+ ',+.V_)

(_._,),+.,I_= _(1- "-"_')(_L_,l_+ _)

(z= _,2,...,J/2).

Notice that for l _ 1, the coarse grid correction coefficients given in (2.11a) agree well

with the true error coefficients modulo a high frequency component. The same conclusion

follows from (2.11b) with 1 + J/2 _ J. That is, modulo high frequency pollution, the

coarse grid correction accurately predicts the low frequency components of the error.

Finally, after applying v iterations of the smoother (e h+l S_(e k k= - ecg , 0)), one cycle

of this ideal multigrid iteration yields an error which satisfies the coupled system

(2.12)

where

ay= ((1- ,,-)+ o-_')".

We calculate the eigenvalues of the amplification matrix above:

_1=0

1 i,
_._= _(¢, (1 - c-;L_'i')+ aF+.t/2(1+ e-;L)'_')).

In the special case when v = 1 and _ = 1/2, we have that _2 = 0. Therefore, this multigrid

scheme yields the exact solution u after at most two cycles regardless of its initial guess.

More generally for any _, __ 1 and any fixed 0 < o < 1, one can show, independently of the

number of grid points J, that 1_21 is strictly less than one. So in the general case, the rate

of convergence of this ideal multigrid scheme does not degrade with grid size.

As mentioned above, the ideal scheme is not practical. One does not wish to solve the

coarse grid problem exactly. Nevertheless, the analysis above does indicate that the fully

nested multigrid approach should converge rapidly in a grid size independent manner.
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§3.1 A hybrid of multigrid. Consider for the moment the possibly nonlinear differential

equation

ag(,,) + f(z) = o,

together with given boundary conditions. Assuming that this equation has a solution,

Newton's method is developed by setting u = u k + ek, where u h is the current guess to the

solution, and expanding g(u h + ek) = 9(u k) + 9'(u_)e _ +.... Therefore,

8 8

o= _g(,,) + f(z) .__(90, h)+ 9'(,,_)_k)+ f(z),

and we let e.,__ solve the lineaxized equation

a(g'0,")_,_) + ag0,h)+ f(_,)= o,

to update

k

This idea extends equally well to finite difference schemes associated to this differential

equation. That is, if we seek the solution to the finite difference scheme

D j(9; u) + f = 0,

where D j(9; u) denotes a finite difference operator consistent to azg(u), we solve

Ou(Dj(g;ul'))e_rn + DJ(9; u' ) + f= 0,

where _9_(Dj(9; uk)) denotes the Jacobian matrix of Dj(9; u) at u = u h, and update
k

U k+l = U k ._- F.nm.

Newton's method has two main drawbacks: (i) Each iteration requires the inversion

of a laxge lineax system. (ii) The Jacobiem matrix of Dj(g;u)) may be qmte complicated

to compute analytically. In fact, for many modern finite difference schemes, the function

Dj(g; u)) may lack the necessary smoothness to gain the quadratic convergence offered by

Newton's method. We propose the following simplification: Suppose we wish to solve

D(j h')(9; u) + f : O,

where D(hi)(9; u) denotes a (possibly high order) finite difference operator consistent with

af(g(u)). Let D_°)(9'(u))e denote a (possibly low order) finite difference operator that is

consistent to affi(9'(u)e). Rather than solving the correct linearization of the finite difference

scheme above, we solve (or approximate the solution of)

(3.1) D_°)(9'(u_))'(_ + D(h0(9; u'_)+ f= 0,
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to update u k+l = u k + ek_._. Certainly there is no reason to expect quadratic convergence
m_

from this approach. Therefore, rather than solving (3.1) exactly, we approximate ek--- by
m_7_

applying multigrid to (3.1). Speci_ca_y, suppose that u _ is known. Then

(3.2)
Step 1:

Step 2:

Step 3:

Step 4:

Compute R_u l') = D(fO(g; u s) + f.

Apply r/>__ 1 cycles of multigrid with initial guess 0 to approximate

the solution to

D_°)(g'(_s))_+ R(us)= o,
calling the result ek

Update u s+1 = u k + e_g.

(Optional) Steps 1-3 may not capture the high frequency components

of u well. Therefore, applying a few iteration of a smoother consistent

to D_h0(g; u) + f-- 0 may be advised; (see below).

§3.2 Convergence of the hybrid multlgrid approach for a model problem. Whether

iterates coming from (3.2) converge or not depends in a crudal way on the choice of both

D_ ") and D_ h0. We again only perform ideal two grid multigrid analysis to the linear

problem g(u) -- u. The problem is made somewhat more interesting by taking an upwind

third order scheme for D_ s0

(3.3_) (D(,")u)i 1= 2-_("i+, -"i-,)

and a first order upwind scheme for D_ °)

1

(3.3b) (D(J°)e)j = _z(ej - ej_l),

1

6Az(Uj+1 - 3uj + 3uj_, -- ui_a )

together with periodic boundary conditions. (Note that (3.3a) is third order in the sense

of cell averages.) We still require that J_"_j=1/(zj) = 0 for solvability.

Before studying (3.1) & (3.3) hybridized with multigrid, observe that if el, = u - u s
J

(where again u is normalized such that Ej=:(ui -u_) = 0), the,, e_ (see 3.1) satisfies
nm

(_.4) (_.-_)!= ,_,#,
where the amplification factor _'1 is given by

_, = (-ira(s,)- 1/3(cos(e,)- 1)(1- _,e,))
(f _ eiO,)
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The error reduction rate expected from algorithm (3.1) (or equivalently algorithm (3.2)

with Step 2 solving exactly) is on the order ofmax1<l<j-1 [1-_i[ _ 0.53 and the maxhnum

is attained in the mid frequencies. For the high frequencies l _, J/2 we have that II -_z[

1/3, and for the low frequencies l _ I or l _ J - I we have that [I - _z[ _-, 0. So we see

that the low frequency components of the error are captured quite rapidly whereas the

mid to high frequencies decay less rapidly. Step 4 can therefore be ut;];-.ed to knock down

the told to high frequency components of the error without affecting the low frequency

convergence.

The results of Section 2 make the analysis of the hybrid multigrid algorithm (3.2)

applied to the difference operators in (3.3) an easy matter. Since ek"_n,n- e,ngk is the error of

Step 2, using (2.12) we find that

So if we denote the 2 x 2 multigrid amplification matrix above by M_(__'v''), and define

o)_'z+J/2 '

then referring back to (3.4) we find that the 2 x 2 matrices

(3.5) A",= (z-(z- (l =1,2,...,J/2),
define the amplification matrix to the full (Steps 1-3) hybrid algorithm (3.2). The spectral

radius of the hybrid amplification factor is plotted as a function of _ in Figure 1. (Recall

that _ is the ratio of the artificial time step size p to the grid size _z in the approximate

linearization multigrid smoother.) Note that for _ - 0.40 we actually achieve better error

reduction using multigrid in Step 2 than if we solved (3.1) exactly.

1.0000

0.90000 _

0.80000,

0.70000,

0.60000.

0.50000,

0.400(X -- , , ,
0.0000 0.20000 0.40000 0_(X)O0 0.80000 1.0000

Figure 1. The spectrgl radius of diag(f41) plotted against o'.

(u --- 2, r/-" 2.)
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Notice the sensitivity of the error reduction rate to _r in Figure 1. This dearly indi-

cates the relationship of multigrid error reduction to linearization wave speeds. Therefore,

for nonlinear problems where the wave speeds are not constant, (especially for nonlinear

systems with multiple wave speeds), we expect a poor convergence rate from the primitive

algorithm outlined above. This problem will be addressed in the next section.

§4. Application to the one dlmens|onal Euler equat|ons. The partial differential

equations that govern the flow of a compressible and inviscid gas in a quasi one dimensional

expanding duct are

 (pA) + = 0
O O

O( A) + ((p 2+ p)A)-p A = 0

(peA)+ ((pe+ =0,

where p is the fluid's density, u its velocity and e its total energy per unit mass. The given

function A -- A(z) defines the cross sectional area of the duct as a function of position

along its length, p represents the fluid's pressure and is given by the equation of state

p -- (_/- 1)p(e - u2/2). We take _/ -- 1.4 in the results presented below. We seek a

steady state solution to problem on the interval 0 _< z _< 10, taking a supersonic inflow

boundary condition at z = 0: (p,u,p) = (0.502,1.299, 0.3809); and a subsonic outflow

condition at z = 10: (p,u,p) = (0.776, 0.5063, 0.7475). The cross sectional area is given

by A(z) -- 1.398 -F 0.347 tanh(0.8z - 4).

To demonstrate a need for a technique that speeds convergence to steady state, we seek

a steady state to this duct example by applying the third order accurate finite difference

scheme from the introduction together with artificial time relaxation. Specifically, we

iterate/¢ = 1,2,...

qk _ qh-I _ pRff,)(q_-l),

where the residual Rff")(q) is given by

(R(hi)Cq)) j 1 (hs(qi+,/_; , _. qj-1/2,qj-1/2)) -t- $(q/)-"--- qj+i/2, qj+l/2) -- hg(qj_l/2; ! _"Affi

The compression factor in the slope limiting above as well as in all other examples presented

is taken to be 3. We initialize the iteration by a linear interpolation of the boundary data

in the conserved variables. The relaxation factor p is taken so that the CFL number (the

ratio of time step size times the fastest wave speed to the space step size) is 0.30 and we

19-13



0._ I I I I

÷ ÷ +

-1.0000,

-2.0000.

-3.0000

-4.0000

-5.0000
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0.0000 500.00 1000.0 1500.0 2000.0 2500.0

tlons for the artificial tune scheme.

use 64 grid points on the interval [0,10]. In Figure 2, we plot the base 10 log of the L2

norm of the (first component of the) residual versus the number of iterations.

To apply the muitigrid algorithm (3.2), we need to decide on the approximate lin-

earization of the third order scheme used above. We take for D(z°)(g'(q))e the following
first order scheme

where

(to)
_------z'(h('_)(q,/+x/2; ej, ej+x)- ha,s(qj_x/,; ej-x, ej)),

(Io) )
1

= _ (Oqg(q#+,/:)(_i+1 + "S) - IOqg(qi+,/,)l(_+, - _i))-

As usual, laqg(q)l denotes the matrix R(q)]A(q)lL(q). The obvious choice for a smoothing
iteration scheme is

J,+l k ( 1 (lo) . k k=  j-p (ha.8(qj+ /2,

_ h (zo)r- J, '_
edt__,/2; :j_,, e_) ) + aqS(Oj)e_ + (r('0(q))j),

where p is fixed Lccording to the largest wave speed of the variable co¢fllcient problem.

However, from our analysis in Section 3, we can expect this approach to yield very poor

convergence rates. We base this conclusion on the following observation: The choice of p

for the smoother above must be based on the largest eigenvalue of @qg. This is needed for

stability. Since the flow contains a supersonic region, the eigenvalue u + c (c is the local

speed of sound and u > c is assumed) is quite large. Therefore, p must be taken quite

small. On the other hand, near a sonic region, u - c is quite small. Therefore with this

simple smoother, the hybrid multigrid performance in sonic regions can be predicted by

the restdts in Figure 1 with ¢r near zero. There, the error reduction rate is near unity.
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For this reason, we propose characteristic time stepping. This is accomplished by a simple

modification of the smoothing iteration above:

ek+1 s, ( 1 (lo) kj = - pR( )111^(qj)lLCq ) )

- h(_)Cqj_l/2; e__l, e_)) + OqsCq/)e_ + (RC'0(q))j _,
/

where now, p is taken to be p = 0.4Az.

We implement algorithm (3.2) to this duct test problem, agv.in using 64 grid points

on the interwd [0,10]. Multigrid Step 2 is done using every grid level 21, 22, 2 s, 24, 25,
1 k

26, with v = 4 and _7 = 1. Step 3 is relaxed somewhat, specifically q_+l _ q_ -t- _e,,_ 0,

because of the presence of the supersonic-subsonic shock. Around the shock, the slope

limiting algorithm introduces a small amount of numerical viscosity and this viscosity can

introduce an instability into the approximate Newton iteration; (see equation (3.4)). Step

4 of the hybrid algorithm is also utilized with 2 characteristic time stepping iterations

applied to the third order residual. •

0.0000

-1.0000

-2.0000

-3.0000

-4.0000,

-5.0000.

-8.0000
0,0000

4,

J

4"

+ +

+
+

.k

+

+

+

+

5.0000 10. 15. 20.000 25.000

Figure 3. Log residual versus hybrid multigrid cycles, again ap-

plied to the duct problem with 64 grid points.

Comparing Figure 2 with Figure 3, we see that the multigrid algorithm reduces the residual

of this test problem in 100 times fewer iterations than the artificial time scheme, whereas

each multigrid cycle costs on the order of only 4 times the work. Figure 5 depicts the resid-

ual reduction from the hybrid multigrid scheme on 5 grids; from level=4 (16 grid points)

to level-8 (256 grid points). This last figure demonstrates the virtual grid independence

of the hybrid algorithm.
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0.80000 ' ' ' '

0.70000

0.60000

0.50000

0.40000.

i i

0.0000 P_O000 4.0000
0_30000 ' '

6.0000 8.0000 10.000

Fixture 4. The computed density for the duct test problem using

grid points.

# levels ( 4 6 6 7 8 ) ~ ( +.x o n _c )

] iu........O.O50O w |

:wii|  
I-,oooo '

_.ooooI J_"
xw

-8.00001 *_, eltli i.
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Figure 5. The log residual versus hybrid multigrid cycles for the

duct test problem using 16 to 256 p'id points.
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