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1. INTRODUCTION

In this paper we shall describe a new numerical method for solving conservation laws. It is

much simpler than a typical high resolution method [1]. No flux limiter or any characteristics-

based technique is involved. No artificial viscosity or smoothing is introduced, and no moving

mesh is used. Yet this method is capable of generating highly accurate shock tube solutions. The

slight numerical overshoot and/or oscillations generated can be removed if a simple averaging

formula initially used is replaced by a weighted averaging formula. This modification has no

discemable effect on other parts of the solution. Because of its simplicity, multi-dimension

generalization is straightforward and it allows for the simultaneous treatment of variables in

different spatial directions.

2. CONSERVATION LAWS

We consider a dimensionless form of the 1-D unsteady Euler equations for an ideal gas. Let

p, u, p, and 7, respectively, be the mass density, velocity, static pressure, and constant specific

heat ratio. Let

ql=P , q2=P u , q3=P/(Y-I)+(1/2)pu

fl =q2 1
f2 = (Y- 1)q3 + (1/2)(3-7)(q2)2/q1

f3 = 7q2q3/q J - (1/2) (7- 1) (q 2) 3 / (q i )2

Then the Euler equations can be expressed as

Oq,,,/Ot +_)f,,,/Ox=O , re=l,2, 3

(2.1)

(2.2)

(2.3)

§ This work is dedicated to the memory of a teacher, Mr. Nylon Cheng
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Let x i = x and x2 = t be considered as the coordinates of a two-dimensional Euclidean space

E 2. The integral form of Eq. (2.3) in the space-time E2 can be expressed as (see Fig. 1)

, m= ,2,3 (2.4)(v)"

where (i) S(V) is the boundary of an arbitrary space-time volume V in g2, (ii)-_,,, = (fm,qm) are

.space-time current density vectors in E2, and (iii) __s= da_with da and _ respectively, being

the area and the outward unit normal of a surface element on S (V). Note that (i) -_,n'_s is the

space-time flux of _m leaving the volume V through the surface element _s, and (ii) all

mathematical operations can be carried out as though E2 is an ordinary two-dimensional

Euclidean space.

3. NUMERICAL METHOD

Let E2 be divided into nonoverlapping rhombic regions (see Fig. 2) referred to as_solution

elements (SEs). Each SE is centered at a mesh point (.],n) where n = 0, 1/2, 1, 3/2, • --, and j =

(n+l/2), (n:J:3/2), .. •, i.e., j is a half-integer (whole integer) if n is a whole integer (half-integer).

In other words, j and n are both whole integers or both half-integers if, as occurring in Fig. 2, a

SE is centered at the mesh point O',n+l/2). Thus, the locations of SEs and their centers are

staggered over every half time-step. A SE centered at (j,n), and its interior are denoted by

SE(j,n) and SE'(j,n), respectively.

For any (x,t)_ SE'(j,n), qm(x,t), fm(x,t), and -_m(X,t), respectively, are approximated by

q_m(x,t;j,n), f_m(x,t;j,n), and_m(x,t ;j,n) which we shall define immediately. Let

q.,.(x,t;j,n)=(o,.)_ + (Ct-m) 7 (X--Xj) + ([_nn)7 (r-in) , m = l, 2, 3 (3.1)

where (c,.)_, (c_)_, and (13m)_ are constants in SE'(j,n), and (xj,t") are the coordinates of the

mesh point (.j,n). Note that

q.,,,(xj.tn;j,n) = (c,,,) 7 , _q_..,(x,t;j,n)/_x = (tz,,,)'_ , 3qm(X,t;j,n)/_t = (13,.)_ (3.2)

Moreover, if we identify (c,,,)_, ((x,,,)_, and (13,,,)_, respectively, with the values of q,,,, _q,,,/Sx,

and _)q.,/St at (xj,t"), the expression on the right side of Eq. (3.1) becomes the first-order

Taylor's expansion of q,,,(x,t) at (xj,t"). As a result of these considerations, (c,,,)7, (a,,,)7, and

(13,,,)7 will be considered as the numerical analogues of the values of qm, 8qm/SX, and 8q,. 1St at

(xj, t" ), respectively.

Letf,.(x.t;j,n), m = 1, 2, 3, be defined in terms ofq,,,(x,t;j,n), m = 1, 2, 3, according to Eq.

(2.2) with the understanding that fm and q,. in Eq. (2.2) be replaced by f m(X,t;j,n) and

q,.(x,t;j,n), respectively. Using Eq. (3.1), f m(X,t;j,n) is expressed as a function of (x-xj) and

(t-t"), and then expanded as a power series of them. The new method is simplified by truncating
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thepowerseriesafterfirst-orderterms.This is consistentwith the first-orderapproximation
givenin Eq.(3.1). In thenewmethod,onlyf_ at x = xj are needed. Let c,, = (a",)'] and _,_ =

(_,,,)7. Then explicitly, we have:

fj (xj,t ;j,n ) = a2 + _2(t-t n) (3.3)

f2(xj, t ;j, n) = (y- 1) a3 + (1/2) (3 - y) (a2) 2/_l

+[(y_l)[_ +(3_¥)(C2_/al)_(1/2)(3-y)(a2/Cl)2_51](t-t _) (3.4)

f3(xj,t;j,n) = ya2c3/el - (1/2) (_'- 1) (a2) 3/(al)2 + { y[(C2_ + C31_12)/Cl

- _2_3_1/(el) 2 ] + (1/2)()'- 1) [2(a2/t_l)3_l - 3(a2/cl)2152 ] } (t -tn) (3.5)

Since _m = (f",,qm), we define h.n(x,t ;j, n) = (f",(x,t ;j,n), q",(x,t ;j,n) ).

Let E2 be divided into nonoverlapping rectangular regions (see Fig. 2) referred to as

conservation elements (CEs). They are also staggered over every half time-step. Let the CE with

its upper edge centered at Q',n) be denoted by CE(j,n). Then the current approximation of Eq.

(2.4) is

_S(CE(j,,)) _-_=0 ( all possible m and (j,n)) (3.6)

Because the entire boundary (except for three isolated points) of a CE is located within the
-.>

interiors of three neighboring SEs, h._ is continuous across any interface separating two

neighboring CEs. Thus Eq. (3.6) will remain valid if CE(j,n) is replaced by the union of any

combination of CEs.

Because each S (CE(j,n)) is a simple closed curve in E2 (see Fig. 1), the surface integration

form Eq. (3.6) can be convened into a line integration form [2, p.14], i.e.,

....)

gin" = 0 ( an possible m and (j,n)) (3.7)

....)
whereg,, = (-q_", ,f_ ) and _ = (dx,dt).

For each SE(j, n), let

s 10',n) = (Ax / 8) al + (1/2) (At lax) [ (Y2 + (At/4) [_2 ] (3.8)

s2(j,n) = (ax/8) 0t2 + (1/2)(At lAX) [0'- 1)C3 + (1/2) (3-Y) ((_2)2/al ]

+(1/8)[ (At)2 /ax ] { (_l_l)fJ3 + (3-y)[t_2f_2/Oi -(1/2)(t_2/_l)2_j1] } (3.9)

s 3(J, n)= (ax/8) ot3 + (1/2) (At/ax) [yo2c33 /al - (1/2) (y- 1)(t32)3/(t31 )2 ] + (1/8) [ (At)2/ax ]

X {('_/(_1) ((_2_3 + (_3_2 -- (_2(_3_1/(_1) + (Y-- 1) [ ((_2/(_1)3_1 -- (3/2) (_2/Cl)2152] } (3.10)
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whereOm = (C=)_, am = (t_)_, and 13,, = (l_m)_. Then Eq. (3.7) implies that, for each

SE(j,n+I/2),

(_)7+1/2 = (1/2) [(o=)_-1r2 + (Om)_+!_2 ] + Sm(j-1/2,n) - Smfj+l/2,n) , m = 1, 2, 3 (3.11)

i:e., (am)7 ÷1c_is determined in terms of the numerical variables associated with SE(j-1)2,n) and

SE(j+I/2,n). Similar formulae for (t_)_ *I_2 and (_m)7 ÷v2 will be given next.

(see Fig. 2) denote (xj+l12,t_+lt2), (xj,tn*lr2), and (xj_l_2,tn+112),Let A+, A, and A_

respectively. Let

q m+ = q m(xj± 1/2, t_ +lt: ;j+l/2, n) (3.12)

Because A± do not belong to SE'Q'±I/2,n), the expression on the right side of Eq. (3.12) is to be

evaluated at the two points immediately below them. A central-difference formula for evaluating

(am)7 +1t2, the numerical analogue of Oqm IOx at point A, is

(_)_+v,_ = (q___+_ q_,_) lax (3.13)

This formula is valid as long as no discontinuity of qm (or its derivatives) occurs between A_ and

A+. In the following discussion, we develop an alternate which is valid even in the presence of

discontinuity.

Let

_ xn+l/2
t_±Sj = :t:[q_m± - (Om)7+l/2]/(Ax/2) (3.14)

where (Om)7 +1r2 has just been obtained using Eq. (3.11). Because q__m+,(am); +1/2, and q.m- are

the numerical analogues of qm at A +, A, and A_, respectively, (ctm+)7 +i/2 and (ct__)7-1/2 are two

numerical analogues of Oqm(Xj,t_+i/2)/Ox with one being evaluated from the right and another

from the left. Note that (t_m)7 +I/2 defined by Eq. (3.13) is equal to the average of (o_m+)_+1/2 and

+i':.

In case that a discontinuity occurs between A and A+ but not between A and A_, one would

expect that I(t_ +)_ +1/21:*" I(otm-)_ +I/2I. Moreover, because A and A _ are on the same side of the

discontinuity while A and A+ are on the opposite sides, (t_m)7 +1_2should be closer to (t__)_ +1/2

than (t_+)7 +1_2. This observation suggests that (_m)_ +1'2 should be a weighted average of

(t_+)_ +1t2 and (t_m_)_ +I/2 biased toward the one with the smaller magnitude.

As a result of the above and other considerations [3], Eq. (3.13) will be generalized by

(Otm)7+1/2 = F ((0_,,,_)_*+i/z, (0_m+)7+1/2;C) (3.15)

Here c_>0 is an adjustable constant and the function F is defined by (i) F (0,0;c) = 0 and (ii)
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F(__,_+;C)=(Io_I'_-÷IoLI'_+)/(Io_I'+IOLI'), (10_l÷ I_-I > 0) (3.16)

where m and or+ are any two real variables. Note that F(c__,cL,;c) = (a._ + ¢_.)/2 if c = 0 or loll

= ]ot,_I, i.e., F,q. (3.15) is reduced to Eq. (3.13) if c = 0 or Ira[ = la, I. Also the expression on the

right side of Eq. (3.16) represents a weighted average of __ and o_ with the weight factors

io_ [c / (Ict+Ic + la_. I_) and I(z_.I_ / (l°q- 1_+ Ira. Ic). For c > 0, this average is biased toward the one

among (z._ and oq. with the smaller magnitude. For the same values of I_1 and loll, the bias

increases as c increases.

Substituting Eq. (2.2) into Eq. (2.3), one obtains three equations in which aq,,IOt, m = 1, 2, 3,

are expressed in terms of q,, and aq,,, / i)x, m = 1, 2, 3. Let q,, and their derivatives be replaced by

the corresponding numerical analogues at the mesh point (j',n +1/2), one obtains that

(131)7.1/2 = _ a2 (3.17)

(_2)_ +la = (1/2) (3 -7) (o: /ol )2 al - (3 -_/) (02 /ol ) oc2 - ('_- 1) or3 (3.18)

(_)_+v2 = [_'o_o3/(ol) 2 - (_'- 1) (05/ol) 3 ] al

+ [ (312) (3'- I) (02 /01 )2 _ T03 /01 ] as - _[(o2 /O1 ) 0_3 (3.19)

where o,n = (o,,)7 +I/2 and (_ = ((_m)7+I/2.

With the aid of Eqs. (3.11), (3.15), and (3.17) - (3.19), ((Sm)7, ((Zm)7, and (_,,)7 can be

,(j ,0 , .. and (ct,.)°i/2, 0• (_)+_.s,2 "'"determined in terms of the initial values (o,,,)°1/2, _ _)+3/2 ,

4. NUMERICAL RESULTS

We consider a shock tube problem used by Sod [4]. Let 7 =1.4. At t = 0, let (i) (p,u,p) =

(1,0,1), i.e., (ql,q2,q3) = (1,0,2.5), ifx < 0, and (ii) (p,u,p) = (0.125,0,0.1), i.e., (ql,q2,q3) =

(0.125,0,0.25), ifx > 0. Thus

0 0 0 J
(i) ((o1)j, (o2)j, (03)j ) =

(1,0,2.5)

(0.125,0,0.25)

if j =-1/2, -3/2, • ""

ifj=1/2,3/2, ""
(4.1)

and (ii) (am) ° = 0, j = +1/2, +3/2, "". Eqs. (3.17) - (3.19) imply that (13,,,)° = 0, j = +1/2, +3/2,

.. ,

The above initial conditions, and Eqs. (3.11), (3.15), and (3.17) - (3.19), imply that (o,,,)7,

(ct,,,)7, and (13,,,)7 are constant in two separate regions which, respectively, are defined by j <

-(n+l/2) and j >- (n+l/2). Thus one needs to evaluate the above variables only if (n+l/2) > IJ I-

The current scheme is stable if CFL = max (lul + lal)At/ax -< I [31. Here a = local sound

speed. In the current computations, &x = 0.01, At = 0.004, and CFL - 0.88. Numerical results

(dots) at t = 0.4 are compared with the exact solutions (solid lines) in Fig. 3. Since each
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marching step advances the solution from t to t+At/2, these results are obtained after 200 steps.

Note that (i) shock discontinuity is resolved almost within one mesh interval, and (ii) the slight

numerical overshoot and oscillations generated when c = 0 essentially disappear when c = 1 is

used.

5. CONCLUSIONS AND DISCUSSIONS

The current scheme has a stencil containing ordy two points. This minimization of stencil has

the effect of reducing numerical diffusion [5]. It is achieved by including (o_)_ and (15,.)_ as

numerical variables. The fluxes at an interface separating two CEs are evaluated with no

interpolation or extrapolation. Accuracy of flux evaluation is enhanced by requiring that the

solution given in Eq. (3.1) satisfies the Euler equations at the center of every SE. This makes the

use of characteristics-based techniques less necessary. The above key features all contribute to

the simplicity, generality, and accuracy of the current scheme. They all owe their existence to the

use of staggered SEs and CEs.

In the current method, flux evaluation within each SE(j,n) is required only at a subset of

SE(j,n), i.e., a horizontal line segment centered at (j,n) and a vertical line segment starting

upward from (j,n) (see Fig. 2). As a result, we may redefine SE(j,n) to be this subset. This new

definition is used in the following sketch of an extension of the the current scheme to a three-

dimensional Euclidean space E 3 (x i = x, x 2 = y, and x3 = t).

A SE contains three mutually perpendicular rectangles (see Fig. 4a). The point of intersection

is referred to as the center of this SE. The SEs are staggered in both x- and y- directions over

every half time-step. The CEs are rectangular boxes (see Fig. 4b) also staggered in both x- and

y- directions over every half time-step. From Fig. 4b, it is seen that the boundary of a CE can be

divided into five parts which, respectively, belong to five neighboring SEs. As a result, the

solution procedure described in Section 3 can be easily extended to E3.
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= (x, t)

t d_ = (dx, dt)

Figure 1 .---A surface element ds and a line

segment dr on the boundary S(V) of a
volume V in a space-time E2.

j-3/2 j-1 j-1/2 j j+1/2 j+l j+3/2

I I I I I I I

o--_- .--_- e--_-- n + 1

(n. 1/2)At ,_,,_ /:_ /,,- n.

1/2

t=nAt--_ i 6 n

t= ,,_. _. _ _,,.
-0 - -6 - -6- n - 112

(n - 1/2)At
I I

t __._X_______..'X_____ n- 1

1 I !x = jAx

x x = (j - 1/2)Ax x = "+ 1/2)Ax

Figure 2.--The SEs (the rhombuses formed by solid lines)
and the CEs (the rectangles formed by dashed lines).

The dots represent the centers of SEs.
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Figure 3. Shock tube solution ott = 0.4.
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(d) Pressure (c = 1)
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Figure 5 (cont.). Shock tube solution et t = 0.4.
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(g) Pressure (c = 2)
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Figure 3 (cont.). Shock tube solution of t = 0.4.
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(i) Pressure (c = 3)
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F;gure 3 (cont.). Shock tube solution at t = 0.4.
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(a}

Figure 4.mA SE and a CE in E 3.

(b)

The dots represent the centers of SEs.
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c

c

c

c

c

implicit real*8(a-h,o-z)

dimension ql(lO00), q2(lO00), q3(lO00), qlx(lO00), q2x(lO00),
q3x(lO00), qlt(lO00), q2t(lO00), q3t(lO00), qln(lO00),
q2n(lO00), q3n(lO00), sl(lO00), s2(lO00), s3(lO00),
xx(lOOO)

it = 200

iw = 200

iwi = i0

dt = O. 4d-2

dx = O. id-i

ga = I. 4dO
rhol = l.dO

ul = O.dO

pl = l.dO
rhor = 0.125d0

ur = O.dO

pr = O. IdO
ic= I

open (unit=8,file='forO08')

write (8,10) it,iw, iwi,ic

write (8,20) dt,dx,ga

write (8,30) rhol,ul,pl

write (8,40) rhor,ur,pr

dtl = 0.5dO*dt

dt2 = dt**2/8.dO

hdx = 0.5dO*dx

dXl = 0.25dO*dx

dx2 = 0.125dO*dx

gal = ga - 1.dO

ga2 = 3.dO - ga

ga3 = 0.5dO*ga2

ga4 = 0.5dO*gal

q1(1) = rhol

q2(1) = rhol*ul

q3(1) = pl/gal + 0.5dO*rhol*ul**2

q1(2) = thor

q2r = rhor*ur

q3r = pr/gal + 0.5dO*rhor*ur**2

q2(2) = q2r

q3(2) = q3r

glx(1) = O.dO

qlx(2) = O.dO

q2x(1) = O.dO

q2x(2) = O.dO

q3x(1) = O.dO

q3x(2) = O.dO

qlt(1) = O.dO

qlt(2) = O.dO

q2t(1) = O.dO

q2t(2) = O.dO

q3t(1) = O.dO

q3t(2) = O.dO

m= 2

do 600 i = l,it
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c

c

c

100

c

20O

c

300

c

do I00 j = l,m

vl = ql(j)

v2 = q2(j)

v3 = q3(j)

vlt = qlt(j)

v2t = q2t(j)

v3t = q3t(j)

Sl(j) = dx2*qlx(j) + (dtl*v2 + dt2*v2t)/dx

s2(j) = dx2*q2x(j) + (dtl*(gal*v3 + (ga3/vl)*v2**2) + dt2*(gal*v3t

* + (ga3/vl)*(2.dO*v2*v2t - v2**2*vlt/vl)})/dx

s3(j) = dx2*q3x(j) + (dtl*(ga*v2*v3/vl - ga4*v2**3/vl**2) + dr2*

* ((ga/vl)*(v2*v3t + v3*v2t - v2*v3*vlt/vl) - (ga4*v2/vl**2)

* *(3.dO*v2*v2t - 2.dO*v2**2*vlt/vl)))/dx

continue

mm =m- 1

do 200 j = l,mm

qln(j+l) = 0.5dO*(ql(j) + ql(j+l)) + sl(j ) - sl(j+l)

q2n(j+l) = 0.5dO*(q2(j) + q2(j+l)) + s2(j) - s2(j+l)

q3n(j+l) = 0.5dO*(q3(j) + q3(j+1)) + s3(j) - s3(j+l)

vlxl = (qln(j+l) - ql(j) - dtl*qlt(j))/hdx

vlxr = (ql(j+l) + dtl*qlt(j+l) -gln(j+l))/hdx

v2xl = (q2n(j+l) - q2 (j) - dtl*q2t(j))/hdx

v2xr = (q2(j+l) + dtl*q2t(j+l} - q2n(j+l))/hdx

v3xl = (q3n(j+l) - q3(j) - dtl*q3t(j))/hdx

v3xr = (q3(j+l) + dtl*q3t(j+l) -q3n(j+l))/hdx

qlX (j+l) = (VlXI* (dabs (vlxr)) **ic + vlxr* (dabs (vlxl}) **it)/

* ( (dabs(vlxl))**ic + (dabs(vlxr)) **ic + 1.d-60)

q2x(j+l) = (v2xl* (dabs (v2xr)) **ic + v2xr* (dabs (v2xl)) **ic) /

* ( (dabs (v2xl))**ic + (dabs(v2xr))**ic + I .d-60)

q3x (j+l) = (v3xl* (dabs (v3xr)) **ic + v3xr* (dabs (v3xl)) **ic) /

* ((dabs(v3xl))**ic + (dabs(v3xr))**ic + l.d-60)

continue

do 300 j = 2,m

ql(j) = qln(j)

q2(j) = q2n(j)

q3(j) = q3n(j)

vl = q1(j)
v2 = q2(j)

v3 = q3(j)
VlX = qlx(j) ""

V2X = q2x(j)

v3x = q3x(j)

qlt(j) = -v2x

q2t(j) = ga3*(v2/vl)**2*vlx - ga2*(v2/vl)*v2x - gal*v3x

q3t(j) = (ga*v2*v3/vl**2 - gal*(v2/vl)**3)*vlx + (l.5dO*gal*

* (v2/vl)**2 - ga*v3/vl)*v2x - ga*(v2/vl)*v3x
continue

m=m+ 1

ql(m) = thor

q2 (m) = q2r

q3 (m) = q3r

qlx (m) = O.dO

q2x (m) = O.dO
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q3x(m) = O.dO

qlt(m) = O.dO

q2t(m) = O.dO

q3t(m) = O.dO

if (i.ne.iw) goto 600

iw = iw + iwi

t = dtl*dfloat(i)

write (8,50) i,t

mm=m- 1

t2 = dx*dfloat (mm)

xx(1) =-0.5dO*t2

do 400 j = l,mm

xx(j+l) = xx(j) + dx

continue

do 500 j = 1,m

x = q2(j)/ql(j)

y = q3(j)/ql(j) - 0.5dO*x**2

z = gal*y*ql(j)

write (8,60) xx(j),y,ql(j),x,z

continue

continue

close (unit=8)

format(' it = ',i4,' iw = ',i4,' iwi = ',i4,' ic = ",i4)

format(' dt = ',g14.7,' dx = ',g14.7,' gamma = ",g14.7)

format(' rhol = ',g14.7," ul = ',g14.7,' pl = ",g14.7)

format(' rhor = ",g14.7,' ur = ',g14.7,' pr = ',g14.7)

format(' i = ',i4,' t = ',g14.*******************************

format(' x =',f8.4,' e =',gll.4,' rho =',gll.4,' u =',gll.4,

* ' p =',g11.4)

stop
end
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