NASA Technical Memorandum 105757

IN-64 160258 P.17

A Brief Description of a New Numerical Framework for Solving Conservation Laws–The Method of Space-Time Conservation Element and Solution Element

Sin-Chung Chang National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

and

Wai-Ming To Sverdrup Technology, Inc. Lewis Research Center Group Brook Park, Ohio

Prepared for the 13th International Conference on Numerical Methods in Fluid Dynamics Rome, Italy, July 6–10, 1992

(NASA-TM-105757) A BRIEF DESCRIPTION OF A NEW NUMERICAL FRAMEWORK FOR SOLVING CONSERVATION LAWS: THE METHOD OF SPACE-TIME CONSERVATION ELEMENT AND SOLUTION ELEMENT (NASA) 17 p N93-26560

Unclas

G3/64 0160258

· · · ·

.

•

v

•

A BRIEF DESCRIPTION OF A NEW NUMERICAL FRAMEWORK FOR SOLVING CONSERVATION LAWS — THE METHOD OF SPACE-TIME CONSERVATION ELEMENT AND SOLUTION ELEMENT §

S.C. Chang † and W.M. To ‡

† NASA Lewis Research Center, Cleveland, Ohio 44135, U.S.A.
‡ Sverdrup Technology, Inc., Cleveland, Ohio 44142, U.S.A.

1. INTRODUCTION

In this paper we shall describe a new numerical method for solving conservation laws. It is much simpler than a typical high resolution method [1]. No flux limiter or any characteristicsbased technique is involved. No artificial viscosity or smoothing is introduced, and no moving mesh is used. Yet this method is capable of generating highly accurate shock tube solutions. The slight numerical overshoot and/or oscillations generated can be removed if a simple averaging formula initially used is replaced by a weighted averaging formula. This modification has no discernable effect on other parts of the solution. Because of its simplicity, multi-dimension generalization is straightforward and it allows for the simultaneous treatment of variables in different spatial directions.

2. CONSERVATION LAWS

We consider a dimensionless form of the 1-D unsteady Euler equations for an ideal gas. Let ρ , u, p, and γ , respectively, be the mass density, velocity, static pressure, and constant specific heat ratio. Let

$$q_1 = \rho$$
, $q_2 = \rho u$, $q_3 = p/(\gamma - 1) + (1/2)\rho u^2$ (2.1)

$$\begin{cases}
f_1 = q_2 \\
f_2 = (\gamma - 1)q_3 + (1/2)(3 - \gamma)(q_2)^2 / q_1 \\
f_3 = \gamma q_2 q_3 / q_1 - (1/2)(\gamma - 1)(q_2)^3 / (q_1)^2
\end{cases}$$
(2.2)

Then the Euler equations can be expressed as

$$\partial q_m / \partial t + \partial f_m / \partial x = 0$$
, $m = 1, 2, 3$ (2.3)

[§] This work is dedicated to the memory of a teacher, Mr. Nylon Cheng

Let $x_1 = x$ and $x_2 = t$ be considered as the coordinates of a two-dimensional Euclidean space E_2 . The integral form of Eq. (2.3) in the space-time E_2 can be expressed as (see Fig. 1)

$$\oint_{\mathcal{S}(V)} \overrightarrow{h}_m \cdot \overrightarrow{ds} = 0 \quad , \qquad m = 1, 2, 3 \tag{2.4}$$

where (i) S(V) is the boundary of an arbitrary space-time volume V in E_2 , (ii) $\vec{h}_m = (f_m, q_m)$ are space-time current density vectors in E_2 , and (iii) $\vec{ds} = d\sigma \vec{n}$ with $d\sigma$ and \vec{n} , respectively, being the area and the outward unit normal of a surface element on S(V). Note that (i) $\vec{h}_m \cdot \vec{ds}$ is the space-time flux of \vec{h}_m leaving the volume V through the surface element \vec{ds} , and (ii) all mathematical operations can be carried out as though E_2 is an ordinary two-dimensional Euclidean space.

3. NUMERICAL METHOD

Let E_2 be divided into nonoverlapping rhombic regions (see Fig. 2) referred to as solution elements (SEs). Each SE is centered at a mesh point (j,n) where $n = 0, 1/2, 1, 3/2, \dots$, and $j = (n\pm 1/2), (n\pm 3/2), \dots$, i.e., j is a half-integer (whole integer) if n is a whole integer (half-integer). In other words, j and n are both whole integers or both half-integers if, as occurring in Fig. 2, a SE is centered at the mesh point (j,n+1/2). Thus, the locations of SEs and their centers are staggered over every half time-step. A SE centered at (j,n), and its interior are denoted by SE(j,n) and SE'(j,n), respectively.

For any $(x,t) \in SE'(j,n)$, $q_m(x,t)$, $f_m(x,t)$, and $\overrightarrow{h}_m(x,t)$, respectively, are approximated by $q_m(x,t;j,n)$, $f_m(x,t;j,n)$, and $\overrightarrow{h}_m(x,t;j,n)$ which we shall define immediately. Let

$$\underline{q}_{m}(x,t;j,n) = (\sigma_{m})_{j}^{n} + (\alpha_{m})_{j}^{n}(x-x_{j}) + (\beta_{m})_{j}^{n}(t-t^{n}) , \qquad m = 1, 2, 3$$
(3.1)

where $(\sigma_m)_j^n$, $(\alpha_m)_j^n$, and $(\beta_m)_j^n$ are constants in SE'(j,n), and (x_j,t^n) are the coordinates of the mesh point (j,n). Note that

$$\underline{q}_m(x_j,t^n;j,n) = (\sigma_m)_j^n \quad , \quad \partial \underline{q}_m(x,t;j,n) / \partial x = (\alpha_m)_j^n \quad , \quad \partial \underline{q}_m(x,t;j,n) / \partial t = (\beta_m)_j^n \quad (3.2)$$

Moreover, if we identify $(\sigma_m)_j^n$, $(\alpha_m)_j^n$, and $(\beta_m)_j^n$, respectively, with the values of q_m , $\partial q_m / \partial x$, and $\partial q_m / \partial t$ at (x_j, t^n) , the expression on the right side of Eq. (3.1) becomes the first-order Taylor's expansion of $q_m(x,t)$ at (x_j, t^n) . As a result of these considerations, $(\sigma_m)_j^n$, $(\alpha_m)_j^n$, and $(\beta_m)_j^n$ will be considered as the numerical analogues of the values of q_m , $\partial q_m / \partial x$, and $\partial q_m / \partial t$ at (x_j, t^n) , respectively.

Let $\underline{f}_m(x,t;j,n)$, m = 1, 2, 3, be defined in terms of $\underline{q}_m(x,t;j,n)$, m = 1, 2, 3, according to Eq. (2.2) with the understanding that f_m and q_m in Eq. (2.2) be replaced by $\underline{f}_m(x,t;j,n)$ and $\underline{q}_m(x,t;j,n)$, respectively. Using Eq. (3.1), $\underline{f}_m(x,t;j,n)$ is expressed as a function of $(x-x_j)$ and $(t-t^n)$, and then expanded as a power series of them. The new method is simplified by truncating the power series after first-order terms. This is consistent with the first-order approximation given in Eq. (3.1). In the new method, only f_m at $x = x_j$ are needed. Let $\sigma_m = (\sigma_m)_j^n$ and $\beta_m = (\beta_m)_j^n$. Then explicitly, we have:

$$f_1(x_j, t; j, n) = \sigma_2 + \beta_2(t - t^n)$$
(3.3)

$$\underline{f}_{2}(x_{j},t;j,n) = (\gamma-1)\sigma_{3} + (1/2)(3-\gamma)(\sigma_{2})^{2}/\sigma_{1} + [(\gamma-1)\beta_{3} + (3-\gamma)(\sigma_{2}\beta_{2}/\sigma_{1}) - (1/2)(3-\gamma)(\sigma_{2}/\sigma_{1})^{2}\beta_{1}](t-t^{n})$$
(3.4)
$$\underline{f}_{3}(x_{j},t;j,n) = \gamma\sigma_{2}\sigma_{3}/\sigma_{1} - (1/2)(\gamma-1)(\sigma_{2})^{3}/(\sigma_{1})^{2} + \{\gamma[(\sigma_{2}\beta_{3} + \sigma_{3}\beta_{2})/\sigma_{1} - \sigma_{2}\sigma_{3}\beta_{1}/(\sigma_{1})^{2}] + (1/2)(\gamma-1)[2(\sigma_{2}/\sigma_{1})^{3}\beta_{1} - 3(\sigma_{2}/\sigma_{1})^{2}\beta_{2}]\}(t-t^{n})$$
(3.5)

Since $\overrightarrow{h}_m = (f_m, q_m)$, we define $\overrightarrow{h}_m(x, t; j, n) = (f_m(x, t; j, n), q_m(x, t; j, n))$.

Let E_2 be divided into nonoverlapping rectangular regions (see Fig. 2) referred to as <u>conservation elements</u> (CEs). They are also staggered over every half time-step. Let the CE with its upper edge centered at (j,n) be denoted by CE(j,n). Then the current approximation of Eq. (2.4) is

$$\oint_{S(\operatorname{CE}(j,n))} \overrightarrow{\underline{h}}_{m} \cdot \overrightarrow{ds} = 0 \qquad (\text{ all possible } m \text{ and } (j,n)) \qquad (3.6)$$

Because the entire boundary (except for three isolated points) of a CE is located within the interiors of three neighboring SEs, \vec{h}_m is continuous across any interface separating two neighboring CEs. Thus Eq. (3.6) will remain valid if CE(j,n) is replaced by the union of any combination of CEs.

Because each S(CE(j,n)) is a simple closed curve in E_2 (see Fig. 1), the surface integration form Eq. (3.6) can be converted into a line integration form [2, p.14], i.e.,

$$\oint_{S(CE(j,n))} \overrightarrow{\underline{g}}_m \cdot \overrightarrow{dr} = 0 \qquad (\text{ all possible } m \text{ and } (j,n)) \qquad (3.7)$$

where $\overrightarrow{g_m} = (- q_m, f_m)$ and $\overrightarrow{dr} = (dx, dt)$.

For each SE(j, n), let

$$s_1(j,n) = (\Delta x/8) \alpha_1 + (1/2) (\Delta t/\Delta x) [\sigma_2 + (\Delta t/4)\beta_2]$$
(3.8)

$$s_{2}(j,n) = (\Delta x / 8) \alpha_{2} + (1/2) (\Delta t / \Delta x) [(\gamma - 1) \sigma_{3} + (1/2) (3 - \gamma) (\sigma_{2})^{2} / \sigma_{1}] + (1/8) [(\Delta t)^{2} / \Delta x] \{ (\gamma - 1) \beta_{3} + (3 - \gamma) [\sigma_{2} \beta_{2} / \sigma_{1} - (1/2) (\sigma_{2} / \sigma_{1})^{2} \beta_{1}] \}$$
(3.9)

$$s_{3}(j,n) = (\Delta x/8) \alpha_{3} + (1/2) (\Delta t/\Delta x) [\gamma \sigma_{2} \sigma_{3}/\sigma_{1} - (1/2) (\gamma - 1)(\sigma_{2})^{3}/(\sigma_{1})^{2}] + (1/8) [(\Delta t)^{2}/\Delta x]$$

$$\times \{(\gamma/\sigma_{1}) (\sigma_{2}\beta_{3} + \sigma_{3}\beta_{2} - \sigma_{2}\sigma_{3}\beta_{1}/\sigma_{1}) + (\gamma - 1) [(\sigma_{2}/\sigma_{1})^{3}\beta_{1} - (3/2) (\sigma_{2}/\sigma_{1})^{2}\beta_{2}]\} (3.10)$$

where $\sigma_m = (\sigma_m)_j^n$, $\alpha_m = (\alpha_m)_j^n$, and $\beta_m = (\beta_m)_j^n$. Then Eq. (3.7) implies that, for each SE(j, n+1/2),

$$(\sigma_m)_j^{n+1/2} = (1/2) \left[(\sigma_m)_{j-1/2}^n + (\sigma_m)_{j+1/2}^n \right] + s_m (j-1/2,n) - s_m (j+1/2,n) \quad , \quad m = 1, 2, 3$$
(3.11)

i.e., $(\sigma_m)_j^{n+1/2}$ is determined in terms of the numerical variables associated with SE(j-1/2,n) and SE(j+1/2,n). Similar formulae for $(\alpha_m)_j^{n+1/2}$ and $(\beta_m)_j^{n+1/2}$ will be given next.

Let A_+ , A_- and A_- (see Fig. 2) denote $(x_{j+1/2}, t^{n+1/2})$, $(x_j, t^{n+1/2})$, and $(x_{j-1/2}, t^{n+1/2})$, respectively. Let

$$q_{m\pm} = q_m(x_{j\pm 1/2}, t^{n+1/2}; j\pm 1/2, n)$$
(3.12)

Because A_{\pm} do not belong to SE'($j\pm 1/2, n$), the expression on the right side of Eq. (3.12) is to be evaluated at the two points immediately below them. A central-difference formula for evaluating $(\alpha_m)_i^{n+1/2}$, the numerical analogue of $\partial q_m / \partial x$ at point A, is

$$(\alpha_m)_j^{n+1/2} = (\underline{q}_{m+} - \underline{q}_{m-})/\Delta x$$
(3.13)

This formula is valid as long as no discontinuity of q_m (or its derivatives) occurs between A_- and A_+ . In the following discussion, we develop an alternate which is valid even in the presence of discontinuity.

Let

$$(\alpha_{m\pm})_{j}^{n+1/2} = \pm [q_{m\pm} - (\sigma_{m})_{j}^{n+1/2}] / (\Delta x/2)$$
(3.14)

where $(\sigma_m)_j^{n+1/2}$ has just been obtained using Eq. (3.11). Because q_{m+1} , $(\sigma_m)_j^{n+1/2}$, and q_{m-1} are the numerical analogues of q_m at A_+ , A_1 , and A_- , respectively, $(\alpha_{m+1})_j^{n+1/2}$ and $(\alpha_{m-1})_j^{n-1/2}$ are two numerical analogues of $\partial q_m(x_j, t^{n+1/2}) / \partial x$ with one being evaluated from the right and another from the left. Note that $(\alpha_m)_j^{n+1/2}$ defined by Eq. (3.13) is equal to the average of $(\alpha_{m+1})_j^{n+1/2}$ and $(\alpha_{m-1})_j^{n+1/2}$.

In case that a discontinuity occurs between A and A_+ but not between A and A_- , one would expect that $|(\alpha_{m+})_j^{n+1/2}| \gg |(\alpha_{m-})_j^{n+1/2}|$. Moreover, because A and A_- are on the same side of the discontinuity while A and A_+ are on the opposite sides, $(\alpha_m)_j^{n+1/2}$ should be closer to $(\alpha_{m-})_j^{n+1/2}$ than $(\alpha_{m+})_j^{n+1/2}$. This observation suggests that $(\alpha_m)_j^{n+1/2}$ should be a weighted average of $(\alpha_{m+})_j^{n+1/2}$ and $(\alpha_{m-})_j^{n+1/2}$ biased toward the one with the smaller magnitude.

As a result of the above and other considerations [3], Eq. (3.13) will be generalized by

$$(\alpha_m)_j^{n+1/2} = F((\alpha_{m-1})_j^{n+1/2}, (\alpha_{m+1})_j^{n+1/2}; c)$$
(3.15)

Here $c \ge 0$ is an adjustable constant and the function F is defined by (i) F(0,0;c) = 0 and (ii)

$$F(\alpha_{-},\alpha_{+};c) = (|\alpha_{+}|^{c}\alpha_{-} + |\alpha_{-}|^{c}\alpha_{+})/(|\alpha_{+}|^{c} + |\alpha_{-}|^{c}) , \quad (|\alpha_{+}| + |\alpha_{-}| > 0)$$
(3.16)

where α_{-} and α_{+} are any two real variables. Note that $F(\alpha_{-}, \alpha_{+}; c) = (\alpha_{-} + \alpha_{+})/2$ if c = 0 or $|\alpha_{-}| = |\alpha_{+}|$, i.e., Eq. (3.15) is reduced to Eq. (3.13) if c = 0 or $|\alpha_{-}| = |\alpha_{+}|$. Also the expression on the right side of Eq. (3.16) represents a weighted average of α_{-} and α_{+} with the weight factors $|\alpha_{+}|^{c}/(|\alpha_{+}|^{c} + |\alpha_{-}|^{c})$ and $|\alpha_{-}|^{c}/(|\alpha_{+}|^{c} + |\alpha_{-}|^{c})$. For c > 0, this average is biased toward the one among α_{-} and α_{+} with the smaller magnitude. For the same values of $|\alpha_{+}|$ and $|\alpha_{-}|$, the bias increases as c increases.

Substituting Eq. (2.2) into Eq. (2.3), one obtains three equations in which $\partial q_m / \partial t$, m = 1, 2, 3, are expressed in terms of q_m and $\partial q_m / \partial x$, m = 1, 2, 3. Let q_m and their derivatives be replaced by the corresponding numerical analogues at the mesh point (j, n+1/2), one obtains that

$$(\beta_1)_i^{n+1/2} = -\alpha_2 \tag{3.17}$$

$$(\beta_2)_j^{n+1/2} = (1/2) (3-\gamma) (\sigma_2/\sigma_1)^2 \alpha_1 - (3-\gamma) (\sigma_2/\sigma_1) \alpha_2 - (\gamma-1) \alpha_3$$
(3.18)

$$(\beta_3)_j^{n+1/2} = [\gamma \sigma_2 \sigma_3 / (\sigma_1)^2 - (\gamma - 1) (\sigma_2 / \sigma_1)^3] \alpha_1 + [(3/2) (\gamma - 1) (\sigma_2 / \sigma_1)^2 - \gamma \sigma_3 / \sigma_1] \alpha_2 - \gamma (\sigma_2 / \sigma_1) \alpha_3$$
(3.19)

where $\sigma_m = (\sigma_m)_j^{n+1/2}$ and $\alpha_m = (\alpha_m)_j^{n+1/2}$.

With the aid of Eqs. (3.11), (3.15), and (3.17) – (3.19), $(\sigma_m)_j^n$, $(\alpha_m)_j^n$, and $(\beta_m)_j^n$ can be determined in terms of the initial values $(\sigma_m)_{\pm 1/2}^0$, $(\sigma_m)_{\pm 3/2}^0$, \cdots , and $(\alpha_m)_{\pm 1/2}^0$, $(\alpha_m)_{\pm 3/2}^0$, \cdots .

4. NUMERICAL RESULTS

We consider a shock tube problem used by Sod [4]. Let $\gamma = 1.4$. At t = 0, let (i) (ρ, u, p) = (1,0,1), i.e., (q_1, q_2, q_3) = (1,0,2.5), if x < 0, and (ii) (ρ, u, p) = (0.125,0,0.1), i.e., (q_1, q_2, q_3) = (0.125,0,0.25), if x > 0. Thus

(*i*)
$$((\sigma_1)_j^0, (\sigma_2)_j^0, (\sigma_3)_j^0) = \begin{cases} (1, 0, 2.5) & \text{if } j = -1/2, -3/2, \cdots \\ (0.125, 0, 0.25) & \text{if } j = 1/2, 3/2, \cdots \end{cases}$$
 (4.1)

and (ii) $(\alpha_m)_j^0 = 0, j = \pm 1/2, \pm 3/2, \cdots$. Eqs. (3.17) – (3.19) imply that $(\beta_m)_j^0 = 0, j = \pm 1/2, \pm 3/2, \cdots$.

The above initial conditions, and Eqs. (3.11), (3.15), and (3.17) – (3.19), imply that $(\sigma_m)_j^n$, $(\alpha_m)_j^n$, and $(\beta_m)_j^n$ are constant in two separate regions which, respectively, are defined by $j \leq -(n+1/2)$ and $j \geq (n+1/2)$. Thus one needs to evaluate the above variables only if (n+1/2) > |j|.

The current scheme is stable if $CFL = max (|u| + |a|)\Delta t / \Delta x \le 1$ [3]. Here a = local sound speed. In the current computations, $\Delta x = 0.01$, $\Delta t = 0.004$, and $CFL \doteq 0.88$. Numerical results (dots) at t = 0.4 are compared with the exact solutions (solid lines) in Fig. 3. Since each

marching step advances the solution from t to $t+\Delta t/2$, these results are obtained after 200 steps. Note that (i) shock discontinuity is resolved almost within one mesh interval, and (ii) the slight numerical overshoot and oscillations generated when c = 0 essentially disappear when c = 1 is used.

5. CONCLUSIONS AND DISCUSSIONS

The current scheme has a stencil containing only two points. This minimization of stencil has the effect of reducing numerical diffusion [5]. It is achieved by including $(\alpha_m)_j^n$ and $(\beta_m)_j^n$ as numerical variables. The fluxes at an interface separating two CEs are evaluated with no interpolation or extrapolation. Accuracy of flux evaluation is enhanced by requiring that the solution given in Eq. (3.1) satisfies the Euler equations at the center of every SE. This makes the use of characteristics-based techniques less necessary. The above key features all contribute to the simplicity, generality, and accuracy of the current scheme. They all owe their existence to the use of staggered SEs and CEs.

In the current method, flux evaluation within each SE(j,n) is required only at a subset of SE(j,n), i.e., a horizontal line segment centered at (j,n) and a vertical line segment starting upward from (j,n) (see Fig. 2). As a result, we may redefine SE(j,n) to be this subset. This new definition is used in the following sketch of an extension of the the current scheme to a three-dimensional Euclidean space E_3 ($x_1 = x, x_2 = y$, and $x_3 = t$).

A SE contains three mutually perpendicular rectangles (see Fig. 4a). The point of intersection is referred to as the center of this SE. The SEs are staggered in both x- and y- directions over every half time-step. The CEs are rectangular boxes (see Fig. 4b) also staggered in both x- and y- directions over every half time-step. From Fig. 4b, it is seen that the boundary of a CE can be divided into five parts which, respectively, belong to five neighboring SEs. As a result, the solution procedure described in Section 3 can be easily extended to E_3 .

REFERENCES

- 1. R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag, 1990.
- S.C. Chang and W.M. To, A New Numerical Framework for Solving Conservation Laws The Method of Space-Time Conservation Element and Solution Element, NASA TM 104495.
- 3. S.C. Chang and W.M. To, A New Development in the Method of Space-Time Conservation Element and Solution Element — Application to Shock Tube Problem, to appear.
- 4. G.A. Sod, J. Computational Phys. 27 (1978), 1.
- 5. S.C. Chang, On An Origin of Numerical Diffusion: Violation of Invariance under Space-Time Inversion, to appear in the proceeding of 23rd Conference on Modeling and Simulation, April 30 – May 1, 1992, Pittsburgh, PA, USA.

Figure 2.—The SEs (the rhombuses formed by solid lines) and the CEs (the rectangles formed by dashed lines). The dots represent the centers of SEs.

Figure 3. Shock tube solution at t = 0.4.

Figure 3 (cont.). Shock tube solution at t = 0.4.

Figure 3 (cont.). Shock tube solution at t = 0.4.

Figure 3 (cont.). Shock tube solution at t = 0.4.

Figure 4.—A SE and a CE in E_3 . The dots represent the centers of SEs.

implicit real*8(a-h,o-z) С dimension q1(1000), q2(1000), q3(1000), q1x(1000), q2x(1000), q3x(1000), q1t(1000), q2t(1000), q3t(1000), q1n(1000), q2n(1000), q3n(1000), s1(1000), s2(1000), s3(1000), * xx(1000) * С it = 200iw = 200iwi = 10dt = 0.4d-2dx = 0.1d - 1ga = 1.4d0rhol = 1.d0ul = 0.d0pl = 1.d0rhor = 0.125d0ur = 0.d0pr = 0.1d0ic = 1С open (unit=8,file='for008') write (8,10) it, iw, iwi, ic write (8,20) dt,dx,ga write (8,30) rhol,ul,pl write (8,40) rhor, ur, pr С dt1 = 0.5d0 * dtdt2 = dt * * 2/8.d0hdx = 0.5d0 * dxdx1 = 0.25d0 * dx $dx^2 = 0.125d0 * dx$ gal = ga - 1.d0ga2 = 3.d0 - gaqa3 = 0.5d0*ga2ga4 = 0.5d0*ga1 ql(1) = rhol $q_2(1) = rhol*ul$ q3(1) = pl/gal + 0.5d0*rhol*ul**2 q1(2) = rhorq2r = rhor * urq3r = pr/gal + 0.5d0*rhor*ur**2 $q_2(2) = q_2r$ $q_{3}(2) = q_{3}r$ qlx(1) = 0.d0qlx(2) = 0.d0q2x(1) = 0.d0q2x(2) = 0.d0 $q_{3x(1)} = 0.d0$ $q_{3x(2)} = 0.d0$ qlt(1) = 0.d0qlt(2) = 0.d0q2t(1) = 0.d0q2t(2) = 0.d0q3t(1) = 0.d0 $q_{3t(2)} = 0.d0$ С m = 2do 600 i = 1, itС

```
do 100 j = 1, m
             vl = ql(j)
             v_2 = q_2(j)
             v_3 = q_3(j)
             vlt = qlt(j)
             v2t = q2t(j)
             v3t = q3t(j)
С
             s1(j) = dx2*q1x(j) + (dt1*v2 + dt2*v2t)/dx
С
             s2(j) = dx2*q2x(j) + (dt1*(ga1*v3 + (ga3/v1)*v2**2) + dt2*(ga1*v3t)
                                 + (ga3/v1)*(2.d0*v2*v2t - v2**2*v1t/v1)))/dx
             s3(j) = dx2*q3x(j) + (dt1*(ga*v2*v3/v1 - ga4*v2**3/v1**2) + dt2*
С
                                 ((ga/v1)*(v2*v3t + v3*v2t - v2*v3*v1t/v1) - (ga4*v2/v1**2)
            *
                                 *(3.d0*v2*v2t - 2.d0*v2**2*v1t/v1)))/dx
С
100
              continue
С
             mm = m - 1
              do 200 j = 1, mm
              qln(j+1) = 0.5d0*(ql(j) + ql(j+1)) + sl(j) - sl(j+1)
              q_{2n}(j+1) = 0.5d0*(q_2(j) + q_2(j+1)) + s_2(j) - s_2(j+1)
              \vec{q}_{3n}(j+1) = 0.5d0*(\vec{q}_{3}(j) + \vec{q}_{3}(j+1)) + s_{3}(j) - s_{3}(j+1)
              vlxl = (qln(j+1) - ql(j) - dtl*qlt(j))/hdx
              vlxr = (ql(j+1) + dtl*qlt(j+1) - qln(j+1))/hdx
              v2x1 = (q2n(j+1) - q2(j) - dt1*q2t(j))/hdx
              v2xr = (q^2(j+1) + dt^{1*}q^{2t}(j+1) - q^{2n}(j+1))/hdx
              v_{3x1} = (q_{3n}(j+1) - q_{3}(j) - dt_{1*q_{3t}(j)})/hdx
              v_{3xr} = (q_3(j+1) + dt_1 + q_3t(j+1) - q_3n(j+1))/hdx
              qlx(j+1) = (vlxl*(dabs(vlxr))**ic + vlxr*(dabs(vlxl))**ic)/
                                         ((dabs(v1x1))**ic + (dabs(v1xr))**ic + 1.d-60)
                                        (v2xl*(dabs(v2xr))**ic + v2xr*(dabs(v2xl))**ic)/
              q2x(j+1) =
                                         ((dabs(v2x1))**ic + (dabs(v2xr))**ic + 1.d-60)
             *
              q_{3x}(j+1) = (v_{3x}l*(dabs(v_{3xr}))**ic + v_{3xr*}(dabs(v_{3xl}))**ic)/
                                         ((dabs(v3x1))**ic + (dabs(v3xr))**ic + 1.d-60)
            *
 200
              continue
 С
               do 300 j = 2, m
               ql(j) = qln(j)
               q_2(j) = q_2n(j)
               q_{3}(j) = q_{3}n(j)
               vl = ql(j)
               v_2 = q_2(j)
               v_3 = q_3(j)
                                                                                                             . -
               vlx = qlx(j)
               v2x = q2x(j)
               v_{3x} = q_{3x}(j)
               alt(j) = -v2x
               q_{2t}(j) = ga_{3*}(v_{2}/v_{1})**2*v_{1x} - ga_{2*}(v_{2}/v_{1})*v_{2x} - ga_{1*v_{3x}}
               q_{3t}(j) = (g_{a}*v_{2}*v_{3}/v_{1}**2 - g_{a}1*(v_{2}/v_{1})**3)*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x})*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x})*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x})*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x})*v_{1x} + (1.5d_{0}*g_{a}1*v_{1x})*v_{1x})*v_{1x})*v_{1x} + (1.5d_{0}*g_{1x})*v_{1x})*v_{1x})*v_{1x})*v_{1x} +
                                      (v2/v1)**2 - ga*v3/v1)*v2x - ga*(v2/v1)*v3x
               continue
 300
 С
               \mathbf{m} = \mathbf{m} + \mathbf{1}
               ql(m) = rhor
               q_2(m) = q_2r
               q_3(m) = q_3r
               qlx(m) = 0.d0
               q2x(m) = 0.d0
```

```
- 14 -
```

```
q_{3x}(m) = 0.d0
     qlt(m) = 0.d0
     q2t(m) = 0.d0
     q3t(m) = 0.d0
С
     if (i.ne.iw) goto 600
     iw = iw + iwi
     t = dt1*dfloat(i)
     write (8,50) i,t
     mm = m - 1
     t2 = dx*dfloat(mm)
     xx(1) = -0.5d0 \star t2
С
     do 400 j = 1, mm
     xx(j+1) = xx(j) + dx
     continue
400
С
     do 500 j = 1,m
     x = q^{2}(j)/q^{1}(j)
     y = q_3(j)/q_1(j) - 0.5d0*x**2
     z = gal*y*ql(j)
     write (8,60) xx(j),y,ql(j),x,z
500
     continue
600
     continue
С
     10
20
30
40
50
60
     * -
      stop
      end
```

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of gathering and maintaining the data needed, collection of information, including suggestion Davis Highway, Suite 1204, Artington, VA 2	information is estimated to average 1 hour per and completing and reviewing the collection of ins for reducing this burden, to Washington Hea 2202-4302, and to the Office of Management a	response, including the time for rev information. Send comments regar dquarters Services, Directorate for i nd Budget, Paperwork Reduction P	newing instructions, searching existing data sources, ding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson roject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AND	D DATES COVERED
	July 1992	Te	chnical Memorandum
 A Brief Description of a N Conservation Laws-The N Element and Solution Eler AUTHOR(S) 	ew Numerical Framework for So tethod of Space-Time Conservat nent	olving ion	5. FUNDING NUMBERS WU-505-62-52
Sin-Chung Chang and Wa	-Ming To		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. P F			8. PERFORMING ORGANIZATION REPORT NUMBER
National Aeronautics and Space Administration			
Lewis Research Center Cleveland, Ohio 44135-3191			E-7169
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Space Administration Washington, D.C. 20546–0001			NASA TM-105757
 SUPPLEMENTARY NOTES Prepared for the 13th Internat Chang, NASA Lewis Researc Center Group, 2001 Aerospac 2a. DISTRIBUTION/AVAILABILITY 	ional Conference on Numerical Met h Center, Cleveland, Ohio 44135, ar e Parkway, Brook Park, Ohio 44142 STATEMENT	hods in Fluid Dynamics, Ro d Wai-Ming To, Sverdrup 7 . Responsible person, Sin-(ome, Italy, July 6–10, 1992. Sin-Chung Technology, Inc., Lewis Research Chung Chang, (216) 433–5874. 12b. DISTRIBUTION CODE
 SUPPLEMENTARY NOTES Prepared for the 13th Internat Chang, NASA Lewis Researc Center Group, 2001 Aerospac DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Category 64 	ional Conference on Numerical Met h Center, Cleveland, Ohio 44135, ar te Parkway, Brook Park, Ohio 44142 STATEMENT	hods in Fluid Dynamics, Ro d Wai-Ming To, Sverdrup 7 . Responsible person, Sin-(ome, Italy, July 6–10, 1992. Sin-Chung Technology, Inc., Lewis Research Chung Chang, (216) 433–5874. 125. DISTRIBUTION CODE
 SUPPLEMENTARY NOTES Prepared for the 13th Internat Chang, NASA Lewis Researc Center Group, 2001 Aerospac DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Category 64 ABSTRACT (Maximum 200 word A new numerical method f established methods, i.e., f methodology. It is much si characteristics is involved. method is capable of gener oscillations generated can i This modification has little method for multi-dimensio 	ional Conference on Numerical Met h Center, Cleveland, Ohio 44135, ar the Parkway, Brook Park, Ohio 44142 STATEMENT ads) or solving conservation laws is b inite difference, finite volume, fi impler than a typical high resolut No artificial viscosity or smooth ating highly accurate shock tube be removed if a simple averaging effect on other parts of the solut nal problems is straightforward.	hods in Fluid Dynamics, Ro d Wai-Ming To, Sverdrup 7 . Responsible person, Sin-(eing developed. It differ nite element, and spectra ion method. No flux lim ning is introduced, and no solutions. The slight nu formula initially used is ion. Because of its simp	ome, Italy, July 6–10, 1992. Sin-Chung Technology, Inc., Lewis Research Chung Chang, (216) 433–5874. 12b. DISTRIBUTION CODE The substantially from the well- l methods, in both concept and hiter or any technique related to to moving mesh is used. Yet this merical overshoot and/or the replaced by a weighted formula. licity, generalization of this new
 SUPPLEMENTARY NOTES Prepared for the 13th Internat Chang, NASA Lewis Researc Center Group, 2001 Aerospace DISTRIBUTION/AVAILABILITY Unclassified - Unlimited Subject Category 64 ABSTRACT (Maximum 200 word A new numerical method f established methods, i.e., f methodology. It is much s: characteristics is involved. method is capable of gener oscillations generated can This modification has little method for multi-dimensio SUBJECT TERMS Space-time; Conservation of 	ional Conference on Numerical Met h Center, Cleveland, Ohio 44135, ar the Parkway, Brook Park, Ohio 44142 STATEMENT (ds) or solving conservation laws is b inite difference, finite volume, fi impler than a typical high resolut No artificial viscosity or smooth ating highly accurate shock tube be removed if a simple averaging effect on other parts of the solution nal problems is straightforward. elements; Solution elements	hods in Fluid Dynamics, Ro id Wai-Ming To, Sverdrup T . Responsible person, Sin-O eing developed. It differ nite element, and spectra ion method. No flux lim ning is introduced, and no solutions. The slight nu formula initially used is ion. Because of its simp	Italy, July 6–10, 1992. Sin-Chung Technology, Inc., Lewis Research Chung Chang, (216) 433–5874. 12b. DISTRIBUTION CODE Trs substantially from the well- I methods, in both concept and niter or any technique related to o moving mesh is used. Yet this merical overshoot and/or replaced by a weighted formula. licity, generalization of this new 15. NUMBER OF PAGES 18 16. PRICE CODE AO3

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Official Business Penalty for Private Use \$300 FOURTH CLASS MAIL

.

٠

ADDRESS CORRECTION REQUESTED

.