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Abstract

The problem considered is the development of the necessary plate

stiffnesses for use in the general purpose program VICONOPT for buckling

and vibration of composite plate assemblies. The required stiffnesses

include the effects of transverse shear deformation and are for sinusoidal

response along the plate length as required in VICONOPT. The method is

based on the exact solution of the plate differential equations for a

composite laminate having fully populated A,B, and D stiffness matrices

which leads to an ordinary differential equation of tenth order.

Introduction

The VICONOPT program is described in reference 1 and is summarized in

reference 2. The program performs buckling and vibration analysis of any

prismatic assembly of composite plates and, optionally, the optimization of

such plate assemblies. The assumptions made in the analysis are that the

response in the longitudinal or x direction is sinusoidal and that individual

plates have stiffness properties that result from balanced symmetric

laminates though asymmetric laminates are treated approximately. For

orthotropic plate assemblies without shear loading, the sinusoidal response

is exact for simply supported end conditions. For other cases, a series of

sinusoidal modes is used with a Lagrangian multiplier technique to obtain

results for quite general support conditions and loadings. The use of the

term "exact" in the title refers to the fact that the analysis uses stiffness

matrices that result from the exact solution of the uncoupled inplane and

out-of-plane plate differential equations derived from classical plate

theory. Because each of these equations are of fourth order, analytical
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expressions can be written for these stiffnesses. The introduction of

transverse shear deformation increases the order of the out-of-plane

differential equation to six so that a numerical approach is required to

obtain its solution and the subsequent plate stiffnesses. Once the

numerical approach is chosen, it can be developed in a general way to

include the coupled case which is of tenth order when transverse shear is

included and of eighth order otherwise. The coupled case allows the

treatment of any laminate exactly with an arbitrary location of its
reference surface.

The standard numerical approach for solution of the coupled plate

equations with or without transverse shear is to write the plate

equilibrium equations in terms of displacements, assuming a sinusoidal

response in one coordinate direction to obtain a set of ordinary differential

equations with independent variable the coordinate in the other direction.

The characteristic roots are obtained by setting to zero the determinant of

the coefficients of the displacement variables. This approach leads to

increasingly long and complicated expressions that are impractical to

implement for the most general cases. For plates with fully populated A,

B, and D stiffness matrices, the number of terms is of the order ten

thousand when transverse shear is included. The approach herein is to

write the differential equations as a first order system with the

displacements and the associated forces as unknowns as was done by

Cohen in reference 3. The resulting matrix has typically two or three

terms in each matrix element for the most general case. These equations

can be arranged so that the characteristic root of the differential equation

system appears only on the diagonal, thus a standard linear eigenvalue

solver can be used. The eigenvectors then give the relationships between

all the forces and displacements.

Because exact expressions are used for stiffnesses, there is no need to

subdivide a plate into segments as is done with conventional finite element

methods to obtain accuracy. Nodes are required only where different

plates are joined, usually at an angle with one another. The assumptions of

plate theory are such that continuity of rotation at the junction of two or

more plates requires that the shear angle in the plane of the edge forming

the junction must be zero unless all plates are coplanar. A key step in the

analysis is to use the shear angle as the additional unknown over classical

plate theory, as was done by Cohen in reference 3. After calculation of the

plate stiffness matrix, the rows and columns corresponding to the shear

angle are simply removed so that the remaining unknowns are the same as

classical plate theory. Thus the part of the computer code involving

assembly of the global stiffness matrix from individual plate stiffnesses is
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unchanged from that used for classical plate theory. Only additional

routines to calculate the plate stiffnesses including transverse shear need

to be developed.

Theory

Governing Plate Equaljons

It is assumed that the plate has fully populated A, B, and D stiffness

matrices with a reference surface arbitrarily located in the x-y plane as

shown in figure 1. The plate is loaded by uniform inplane stress resultants

N x, Ny, and Nxy that act in a centroidal plane shown in figure l(a). The

centroidal plane is located at a distance z c from the reference surface and

passes through the centroid determined from beam theory considering the

plate to be wide beam whose length is in the x direction. Figure l(b)

shows the additional inplane forces n x, ny, nxy, moments m x, my, mxy,

and transverse shearing forces qx, qy that occur during buckling or the

amplitudes of these forces and moments when vibration at a frequency of

o) is considered. The deflections u, v, and w of the reference surface are in

the x, y, and z directions respectively. For vibration or buckling, deflection

in all three directions is resisted by Winkler elastic foundations of stiffness

K x, Ky, and K z. The equations of equilibrium are

nx, x +nxy,y- N x U0,xx - K x u+4_26o2(m 0 u-m l_t x)=0

nxy, x + ny,y - N x V0,xx - Ky v + 4 rt2 6o2 (m 0 v - mlVy ) = 0

qx,x + qy,y - Kz w - N x W,xx - Ny W,yy - 2 Nxy W,xy + 4 n2 co2m0 w = 0

mxy, x + my,y -qy - N x zc V0,xx + 4 rt26o 2 (m I v - m 2 Wy) = 0 (1)

mx,x + mxy,y- qx - Nx Zc U0,xx +4rt26o 2 (m I u- m 2vx) = 0

where a comma indicates differentiation with respect to the variables that

follow, u 0 and v 0 are inplane deflections at the centroidal plane, mj is the

jth moment of mass about the reference surface and Vx and _y are

rotations of the normals to the reference surface about the y and x faces,

respectively. These equations are generalized from those of reference 4 to

allow for the applied load N x to act at the centroidal surface which may be

different from the reference surface. As in reference 4, it is assumed that

the only inplane force to affect the inplane equilibrium equations is N x.

The inplane displacements in the centroidal plane, u 0 and v 0, are given by



u 0 = u - z c _x

v 0 = v - zc _y

(2)

Stiffness Matrix

The objective of the analysis is to derive a stiffness matrix that relates the
b

force quantities along the edges y = +_ _- to the displacements along the

same edges. (Because of the sinusoidal variation in the x direction, the

stiffness matrix will involve the amplitude of these quantities).

The desired displacement variables are

1
: i u

! v

W

d -',
_y

i Tx

Ii

(3)

where _'x = W,x- _tx has been introduced as a fundamental displacement

variable rather than the rotation _t x in order to preserve continuity of

rotations along nodal lines corresponding to plate junctions.

The corresponding force variables are

f

w

inxy

ny

Qy

my

i mxy

(4)

The imaginary number i has been introduced so that the phase shift

between the various quantities that occurs for orthotropic plates without

shear loading results in real plate stiffnesses for such plates. The

transverse shearing edge force in the z direction, denoted as Qy, must be

normal to the reference surface of the undeflected plate. This is

accomplished by replacing qy with the Kirchhoff value

4



qy = Qy - mxy, x + Ny W,y + Nxy w,x (5)

Note that the mxy, x term which is found in the Kirchhoff shear term of

classical plate theory is also present in the transverse shear case when _x

is used as a fundamental displacement variable. (This fact can be shown

from the principle of virtual work).

The problem is changed to an ordinary differential equation in y by

assuming a sinusoidal variation in the x direction. If the variables in

equations (3) and (4) are considered to be functions of y, the

displacements and forces throughout the plate are given by

Z(x,y)= exp( i rt x)X z(y ) (6)

where

and ?,. is the half-wavelength of the response in the x direction. The next

step is to express all unknowns in terms of z. The stress resultant strain

relationships given in terms of the A, B, and D stiffness matrices are

partially inverted to give needed quantities in terms of the fundamental

variables or terms derivable from fundamental variables without any y

derivatives.

nx

_y

exy

m x

_:y

_:xy

hl 1 hl 2 hl 3 hl 4 hl 5 hl 6 "_

-hi 2 h2 2 h2 3 h2 4 h2 5 h2 6

-h13 h23 h3 3 h3 4 h3 5 h3 6

hl 4-h24-h34 h4 4 h4 5 h4 6

-hi 5 h2 5 h3 5-h45 h5 5 t15 6

-hi 6 h2 6 h3 6-h46 h5 6 h6 6

'ty -h78 h8 8 qy

EX

ny

nxy

my

mxy

(7)



where

E x = U,x

KX = -q/X,X

• x = W,x " Yx

The constants hij appearing in the first of equations (7) can be calculated

from the standard A, B, and D stiffness matrices of laminate theory. The

shear stiffness terms in the last two equations are determined from

reference 5.

It is also necessary to write equation (5) without the appearance of any y
derivatives. The result is

(Qy mxy,x + Ny (_y -7x h78) + Nxy) (8)
qY = 1 -Ny h 8 8

The five strain displacement equations are

exy = U,y + v, x

ey = V,y

7y = W,y -_¢y

_¢y = - gty,y

_:xy = Yx,y - Yy,x - 2 _ty, x

(9)

Using equations (7) and (8), the strain-displacement and equilibrium

equations can be written in terms of the elements of z as follows

z' = P z (10)

where a prime denotes differentiation with respect to y.

are assumed to be given by

The elements of z

zj=cj exp( i [3 Y)b (11)

where 13 is a characteristic root of the differential equation with as many

values as the order of the differential equation system. Substituting

equation (11) into equation (10) results in
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(R -131) c-0 (12)

where I is the identity matrix and c is the vector formed from the cj of

equation (11). Thus, the characteristic roots of the differential equation

are the eigenvalues of R which is not symmetric but can be made real by

multiplying or dividing appropriate rows and columns by i. The elements

of R are given in Appendix A for both the classical and transverse shear

deformation cases and it can be seen that they are not complicated and are

easy to implement in a computer program. For each eigenvalue, the

associated eigenvector corresponds to the cj of equation (12). If C is a

matrix with columns as the eigenvectors, the upper half, denoted as a, will

be associated with displacements and the lower half, denoted as b, will be

associated with forces as follows

IalC= b (13)

Denoting quantities evaluated at y = -b/2 by superscript 1 and quantities

evaluated at y = b/2 by superscript 2, the amplitudes of the

displacements and forces at the two edges of the plate may be written as

N

£ajkrkpex ( 7i

k=l

N

k=l

ajkrk
N

Zbjkrkexp/-i /
k=l

(14)

N

k=l



where r k are constants to be determined from the edge values and N is the

order of the differential equation. In matrix form, equations (14) are
written as

2 =Er (15)

[fl]f2 = F r (16)

Eliminating r from equations (15) and (16) gives

where K is the desired stiffness matrix given by

K = F E -1 (18)

The rows and columns of K corresponding to "/x are deleted to obtain a

stiffness matrix of the same size and involving the same unknowns as for

the classical case. An alternate procedure that yields a lower bound

solution is to reduce the stiffness matrix to the same final unknowns by

setting mxy to zero which is an option available in the program. (For the

case of two plates that are coplanar, the substructuring capability of the

program may be used with five degrees of freedom at each edge to join the

two plates before the extra degree of freedom is removed). As for the

classical case, K is real and symmetric for orthotropic plates without shear

loading and is Hermitian otherwise. The resulting stiffness matrix can be

used without further alteration in the original coding for the classical case.

Obtaining accurate numerical results for K from equation (18) can be a

problem for certain ranges of parameters. The methods used to overcome

these problems is discussed in Appendix B.

Eigenvalues for Clamped Edges

The analysis procedure used in VICONOPT described in reference 1 is an

iterative procedure that requires the plate stiffnesses to be evaluated at a

series of trial values of the eigenvalue (load factor for buckling or

frequency for vibration and not to be confused with the eigenvalues of the

8



R matrix) that converge to the desired result. For each trial value, the

analysis requires not only the plate stiffness but also the number of

eigenvalues exceeded for each individual plate assuming its edges were

clamped. (See reference 4 for a complete discussion of the algorithm for

finding the buckling or vibration eigenvalue). It would be quite difficult to

obtain the eigenvalues of the individual plate with clamped edges for the

most general case by applying standard analysis techniques The

approach used herein was developed in reference 4 and requires the plate

to be subdivided into smaller elements with a width small enough to

guarantee that none of the subdivided plate clamped edge eigenvalues are

exceeded. Using this divided plate as a substructure that is repeatedly

doubled to return to the original width, the procedure of reference 4

allows the number of eigenvalues exceeded for clamped edges to be

determined.

To implement this procedure, a suitable number of subdivisions is

determined as follows. Appendix A shows that every term of the R matrix

is proportional to the plate width b, and thus the eigenvalues of R are

proportional to b. Noting that an eigenvalue equal to rt corresponds to

buckling or vibration with simply supported edges, successively halving b

until all the real eigenvalues of R are less than rt gives the width of a plate

for which no eigenvalues are exceeded if the edges are simply supported.

and consequently none are exceeded if the edges are clamped.

Result,_

Results have been obtained for single sandwich plates with isotropic face

sheets and agree exactly with published results in the literature for

various boundary conditions.

The accuracy of the transverse shear theory for use in eigenvalue

problems is indicated by comparison with the results of reference 6 where

three dimensional elasticity results were obtained for comparison with

various shear deformation theories. The exact elasticity results are

compared in table 1 for the vibration of a composite simply supported

circular cylinder having a length equal to the radius. The cylinder wall is

composed of ten equal thickness layers with the ply angles alternating

between 90 ° and 0 °. Results are shown for one axial half-wave in the

length direction and circumferential waves having harmonics varying from
1 to 10. The first column in the table is the circumferential wave number

n, the second column is the error in the present results relative to the

elasticity solution and the third column is the ratio of frequency co to cocl,
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the frequency obtained neglecting transverse shear deformation. It can be

seen that for a ratio of wall thickness h to cylinder radius r of .05 which is

representative of a relatively thick shell, the effect of transverse shear is

still small until n becomes large. The error for the present results is quite

small for the entire range. For h/r = .3 which is well beyond proportions

usually encountered, the effect of transverse shear is appreciable but the

present results have errors of only about two per cent. These results are

in agreement with the conclusion of reference 6 that first order shear

deformation theory is adequate to predict global response such as

vibration or buckling. The present results were obtained by subdividing

the circular arcs into small segments and linking them together by

substructuring techniques retaining all five degrees of freedom at an edge.

Table 1 Accuracy of shear deformation theory for cylinder vibration.

n

1

2

3

4

5

6

7

8

9

10

h/r= .05 h/r= .3

Error, %

-.39

-.06

-.17

.30

0.)

O3cl

.996

.996

.989

.977

Error, %

.95

1.56

1.96

2.29

.51

.70

.89

1.05

1.23

1.39

.955

.932

.909

.884

.859

.834

2.39

2.31

2.20

1.98

1.72

1.46

CO

mcl

.818

.716

.660

.589

.520

.463

.426

.449

.487

.521

Tile effect of shear deformation is of particular importance when low

density cores are used to form a structural sandwich. The following

example illustrates the increased efficiency and the importance of
transverse shear deformation for such structures.

The problem considered is a flat panel with blade (web) stiffeners

designed to carry an axial load of 5000 lb/in, acting as a simply supported

wide column of 30 inch length. The composite material used has stiffness

properties E 1 = 19.x106, E 2 = 1.89x106, El2 = .93x106, El3 = El2,

E23 = 5E12, all with units psi. and Poisson ratiov=.31. The subscript

1 refers to the fiber direction, the subscript 2 refers to transverse to the

fiber in the laminate plane, and subscript 3 refers to normal to the
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laminate plane The density is .0571 lb/cu in. The sandwich core material

is available in a range of densities which result in a varying shear stiffness.

A typical variation of the shear stiffness of a foam core suitable for

sandwich construction is shown in figure 2. The foam core was assumed to

have a constant Young's modulus of 1000 psi at all densities with Poisson

ratio of zero. Using these properties, optimized designs were determined

for solid composite and sandwich construction assuming both classical and

transverse shear deformation theory. Typical cross-sections resulting from

these analyses are shown in figure 3 where the relative size of one bay of

the wide column panel is shown along with the actual panel dimensions.

Only the design based on transverse shear theory is shown for the solid

composite as it differs little from that based on classical theory. The

composite laminates considered were [ +_45"/0°]S for each plate with a

central foam core added for the sandwich configurations. The thickness of

the various layers are given using the subscripts 45 or 0 for the composite

material and a c to indicate the total thickness of the foam core for the

sandwich configurations. For sandwich construction, the efficiency is such

that unrealistically high strains result if the design is unconstrained so

allowable strain limits were imposed of .006 along a fiber, .004 normal to a

fiber and .005 for shear strain. These limits led the optimizer to reduce

the thickness of the +_45 ° plies to zero so they were omitted in the

sandwich designs.

The mass of the various designs as a function of core density is shown in

figure 4. Designs based on classical theory show a monotonic increase of

mass with core density since the shear modulus of the core does not affect

the result. Accounting for transverse shear results in a minimum mass at

about ten lb/cu ft core density. However there is a range of core densities

that can achieve nearly the minimum mass. The upper line showing the

mass of the solid composite panel is about 1.6 times the minimum mass

achievable with sandwich construction. For the higher core densities and

the solid composite, there is very little difference in the mass achievable

using classical or transverse shear theory. However even for these cases, a

panel that just meets the design buckling load using classical theory would

have a buckling load 5 to 10 per cent below the design value if analyzed

using transverse shear theory.

The sandwich cross-sections shown in figure 3 were obtained for a core

density of 6.9 Ib/cu ft so they are in the range where transverse shear

effects are significant. In this case, using classical theory to design the

panel (the middle configuration of figure 3) results in a configuration that
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would buckle at only 65% of the buckling load design requirement if

analyzed using transverse shear theory.

12qngluding Remarks

A numerical approach to obtain exact plate stiffnesses including the effects

of transverse shear has been presented. The generality of the method

allows inclusion of fully populated A, B, and D stiffness matrices. These

stiffnesses have been incorporated in the VICONOPT program for analysis

and optimization of composite panels. Before the incorporation of this new

capability, VICONOPT was limited to plates analyzed with classical theory

having a zero B matrix so the addition of the new capability is an

improvement for cases when classical theory is used as well as the
transverse shear case.

Two key items in the approach are:

(1) expressing the necessary equations as a first order system involving

the displacement and force quantities desired in the final stiffness relation.

(12) using the shear strain rather than a rotation for the extra degree of

freedom introduced by transverse shear.

The first item allowed the characteristic roots of the differential equation

to be obtained from a relatively simple matrix. This is in contrast to

previous conventional approaches for this type of problem which could
lead to matrices whose elements consist of over ten thousand terms for the

tenth order system associated with the coupled case including transverse

shear. The second item allows the plate stiffness matrix to be reduced to

the same size as that for classical plate theory because continuity of

rotation requires the shear strain to be zero _ the junction of two plates

that are not coplanar. A junction having all plates coplanar is treated by

creating substructures with all degrees of freedom present and eliminating

the extra degrees of freedom before assembly in the final stiffness matrix.

Thus no additional coding is required to assemble the global stiffness

matrix and to solve the resulting eigenvalue problem.

Results of the analysis applied to the vibration of a composite cylinder

show that the shear deformation theory used gives results with little error

compared to the elasticity solution. The analysis applied to a typical

design problem showed that sandwich construction can give significant

mass savings compared to solid composite construction. The analysis

makes possible the determination of optimum core density for sandwich
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construction and indicates the need to account for shear deformations
especially when the lower mass core materials are used.
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At_pendix A

Matrix for Characteristic Roots

The eigenvalues of R of equation (12) are the characteristic roots of the

differential equations governing plate behavior. The nonzero elements of

the 10 by 10 matrix R are

rl#1 = rg6 = -cthl 3

r# 3 _r_6 cx o_ cx2
= =- _-r15 =- _rl 06 = ---_-h3 4

r#7 -- r_6 = -bh23

rll0 =r56 = -bh36

o_2

r_3 -r_7 _r25= =- =- b-rl 07 -- -b--h2 4

r_9 = -r_7 - _bh25

otNxyh88
r33 = r88 = S

bh78

r35 = -r108 =- S

r_l = -r_9 = othl5

r_ 3 = r_ 9 ot ot o_2
: -b-r45 : b-'rl 09 :--b---h4 5

r_9 = bh5 5

rl2=r 6=-a

#
r 16 = -bh3 3

r_9 =-r_6 = -bh35

r21 = r 7 = -°_hl 2

r_7 = -bh22

r210 - r57 = -bh26

b

r34 = r98 = S

ot o_h88

r310 = -r58 = -_r38 = -- S

r410 =-r59 - bh56
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r51 =r610 =-othl6

r 54 = -r9 10 = ot +_-

ot2h8 8

r510 = -bh66 - bS

r 3 --- 1 =-_-r65 =- b rl01 --

r_2 = -By

°_2N2yh8 8
r83 = B z + ot2X 2 +

bS

c_Nxyh78
r85 = -rl 03 = -°_bX2 - S

bNyh78

r95 = "r104 =- S

a3h14

b 2

ot2 Nxyh88)
r53 = "r8 10 = --_--(h46+ S

h78.

r55 = rl 0 10 = -ot(h46+--_)

oc2h I 1
r_l = -B x +

b

+ otX 1

r_4 =-r_2 = bX 1

o_Nx_
r84 = r93 = S

oc2 ,,
r94 = --b--h44 + bzX2+ S

bNxyh_8
rl 05 = -b2X2 + b h77 - S

where

_b

Z.

S = 1 - Nyh 88
Nz

X1 =_2(4m 1 co2+

X2 =n2(4 m 2 o_2 _ ct2
b + bk2 )- _ -h44

B g = n2b(4 m 0 0)2 +_2 " bKI-t

where _t can be x, y or z.

Equations for the classical case can be obtained by setting the transverse

shear strains, _'x and _/y, equal to zero and noting that _x = W,x. The

partially inverted stress strain relations corresponding to equations (7) are

slightly different in that mxy and _Cxy are interchanged. Only the first four

equilibrium equations from equations (1) are used (the fifth is satisfied by

14



incorporation into the final form of the third). Following the same steps as
for the transverse shear case, the matrix whose eigenvalues are the
characteristic roots is of order eight. Elements with a superscript #
previously given for the transverse shear case apply also to the classical
case if 1 is subtracted from any index greater than 4. The remaining
elements not given above are

r14 =-r85 =-2c_h36

r34 = r87 = b
2ot2

r54 =-r81 =- b hI6

2c_3
r74 = r83 = c_Nxy- b2h46

r24 =-r86 = -2ah26

r44 = r88 = 2ah56

r73 = Bz + c_2X2

r84 = °_2 h44"4h66
b + b2X 2 + bNy

Appendix B
Numerical Solution of Eauations

There are several possibilities of numerical problems arising in

determining K given in equation (18) as

K = F E -1 (B1)

First the eigenvectors of the matrix R which form the elements of E and F

must be determined accurately for extreme proportions and a wide range

of scaling. With accurate values of the elements of E and F, the solution

procedure is as follows. Solve the system of equations

E* x = F* (B2)

The solution is

x = (E*)-IF* = K* (B3)

where superscript * indicates Hermitian transpose of the matrix. The

solution is accomplished by Gaussian elimination with pivoting on the

largest current diagonal except as will be discussed subsequently for

transverse shear cases. A typical element in row k in the matrix equation

+il3k

(B3) has a multiplying factor of exp(=-_) where 13k is the k th characteristic

root. If the imaginary part of 15k is too large, numeric overflow will occur.

To prevent this, a real number is subtracted from the argument of each
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exponential in the kth row such that overflow will not occur for the

particular computer being used. This has the effect of multiplying the kth

equation by a constant which does not change the solution.

An additional problem occurs for transverse shear cases where the

transverse shear effects are small. One pair of characteristic roots becomes

very large and the remainder approach the values for the classical case.

Finite element formulations have had serious problems for this case and

much effort has been spent to avoid errors from too stiff elements

associated with locking that can occur with routine application of theory.

This problem is handled for the present case by placing the terms

involving these large roots in the last two rows of equation B2 and not

including these rows in the logic for pivoting on the largest diagonal. This

approach has proved to be quite successful, stiffnesses and buckling loads

having been accurately calculated for aluminum plates with width-

thickness ratios as high as one thousand.

In some cases, particularly for unloaded isotropic plates, the characteristic

roots 13 from equation 12 occur in repeated pairs and the above procedure

breaks down. For this case small perturbations in the positive and

negative directions are made to all three foundation stiffnesses (K x, Ky, K z

in equation 1) in order to separate the repeated roots. The stiffness matrix

is obtained by interpolation between the two stiffness matrices resulting

from the perturbed foundation stiffnesses.
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