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Abstract

The algebraic approach to quantum mechanics is briefly reviewed. The role of

oscillator realizations is discussed. Applications to vibrations of complex

molecules are presented.

I Introduction

In recent years, a formulation of quantum mechanics, called algebraic theory,

has been put forward, in which any quantum mechanical problem is mapped onto an

algebraic structure following the logic scheme shown in Fig. i.
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Fig.l. Logic scheme of algebraic theory.

In implementing algebraic theory,_ it has been found to be very useful to make
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use of oscillator representations. In this contribution, I will briefly review

the use of oscillators in algebraic theory.

2 Oscillators in v dimensions

I begin with the (trivial) example of the one-dimensional harmonic

oscillator. In the algebraic theory this case is described by the introduction

of the Heisenberg algebra [I]

H(2) : a, a t, i, ata (2.1)

7 i: q

Table I shows the parallelism between the usual treatment in terms of

differential operators (Schr_dinger equation) and the algebraic approach. This

case is well known and does not require further explanation.

I consider instead the (non-trivlal) example of the one-dimensional

anharmonic Morse oscillator. The differential approach requires the solution of

the eigenvalue problem

H¢-E¢

fi2 d 2
H + V(x) ,

2# dx 2

V(x) - D[I - exp(-_x)] 2 (2 2)

The solution of the eigenvalue problem produces wave functions

i

_ £ + _ X_L2_-2v-l(z )
Cv(X) - N z_'v e 2

V V

(2 3)

where Nv is a normalization and L(z) denotes a Laguerre polynomial. Also
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Table I. Differential and algebraic treatment of the one dimensional harmonic

oscillator.

Differential approach Algebraic approach

I
nn '

I
H - _ (p2 + x 2) -

i[.2 ].... +X 2

2 dx 2

H _n " En %bn

E - (n + In 3)

Uo(X) -

I I x 2
4 2

e

i I I x 2

[ ]Un(X ) - _" 2 2n n! -- _ (x - _xx) e

-4-oo

d- Un,(X) f(X,_x) Un(X) dx

-CO

I d
a -- -- (X +

. _ dat l(x-

[a,a t ] -- i

i
H ,- (ata + _ )

- (n+ 1
En _)

I0>

i

In>- (n!) 2(at) n I0>

Inn, - <n'If(a.at)In>

i 2]_-fi 1Z - 2 7 e "_x ; _ -- _ ; v- 0,i ..... U -
(2.4)

The eigenvalues are
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1 I _2_2 (v + 1 2E(v) - 2_ iv + _) - _ _ _) (2.5)

The mass _, strength of interaction D and range _ have been put explicitly in

Eqs. (2.2)-(2.5), while they were deleted in Table I.

In algebraic theory, the one-dimensional Morse oscillator can be dealt with

by introducing [2] the Lie algebra U(2), composed of four elements F+,F_,Fo,N.

The Hamiltonian can be written as

- AC ; C - F02 N 2 ,H

where C is the Casimir operator of the 0(2) subalgebra of U(2).

are

(2.6)

The eigenvalues

E(m) - A(m2-N 2) , m - N,N-2 ..... I or 0 (N-odd or even). (2.7)

With the change of variable v - (N-m)/2 one has

E(v) - - 4A(Nv-v 2) ,

N N I
v - 0,i ..... _ or _ - _ (N- even or odd) (2.8)

which are the eigenvalues of the Morse oscillator, Eq. (2.5).

can be written as

I U(2) D 0(2) >
N v

The eigenstates

(2.9)

and intensities can be computed by taking matrix elements of operators
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<N,v'ITIN,v> (2.10)

As a result, all calculations for anharmonic oscillators can be done very easily.

An oscillator realization of U(2) is provided by the Jordan-Schwinger

construction in terms of two boson operators a, • and their adjoints at,_ #. The

algebra is

U(2) :rto, atr, rtr, ata (2.11)

Incidentally, in the oscillator realization the harmonic oscillator appears as a

contraction of the anharmonlc oscillator, obtained by letting

N .4 _ , N =4 _ ,
G

_ta -. ]-N-_ _t , at_ -_ ]'_ _

_t¢ -,rtr , ate -*N
a

(2,12)

Thus, by adding one extra dimension (with the constraint N-const) one can treat,

within the same framework, both harmonic and anharmonic oscillators. The

anharmonic Morse oscillator in one dimension is related to the harmonic

oscillator in two dimensions.

The same situation occurs in any number of dimensions. For example, in three

dimensions, one introduces four boson operators [3,4]

bt . at , _t (_-0,+I) ; _-I . ,4

b - a , _ (p-0,+l) ; a-I ..... 4 ; (2.13)

divided into a scalar a and a vector _#. The bilinear products bt_b_ generate

the Lie algebra U(4)
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• Ga_ - bt_b_ (2.14)

The contracted form of U(4) is the oscillator algebra in three dimensions, H(4).

In three dimensions the situation is even richer than in one dimension, since

the algebra of U(4) can be reduced in two ways:

U(4)
/ u(3) m 0(3) _ 0(2) . (z) ,

\ 0(4) _ 0(3) m 0(2) . (II) , (2.15)

corresponding to spherical (I) and deformed situations (II). In one dimension we

have

/ u(1)
u(2) , (2.16)

\ o(2)

but U(1)=O(2) and therefore the spherical and deformed coincide.

It has been suggested [3] that in general any quantum mechanical problem in v

space dimensions can be written in terms of the unitary algebra U(v+l). The

harmonic oscillator in v dimensions can be obtained from U(v+l) by a limiting

procedure leading to H(v+l). The Heisenberg algebra H(v+l) contains U(v), the

degeneracy algebra of the v dimensional harmonic oscillator. The anharmonic

oscillator and the deformed anahrmonic roto-oscillator can all be obtained from

U(v+l). These results allow one to do anharmonic analysis of spectral problems in

a way as simple as that of harmonic analysis.

3 Coupled oscillators in v dimensions

In most problems in physics, one often encounters coupled systems. In

algebraic theory, the coupling of physical systems corresponds to the coupling of

algebras. Oscillator realizations are particularly useful here and, as a simple

example, I will discuss the case of coupled one-dimensional anharmonic

oscillators. The algebraic structure of the system is the direct sum of the

individual U(2) algebras
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n

- _ _ Ui(2 ) , (3.1)
i-1

where the sum extends over the number of oscillators, n. An oscillator

realization can be done in terms of boson operators _$i' ati' _i' ai" Each

algebra Ui(2) is

(3.2)

Coupled harmonic oscillators can be obtained as before by eliminating the a i

bosons, as in Eq. (2.12).

In the last year, algebraic models of coupled anharmonic oscillators have

been used extensively in order to provide a realistic description of the

vibrations of complex molecules [5]. In general, the algebraic Hamiltonian of

coupled oscillators is written as

n n

H - _ h i + _ Vij (3.3)
i-I i<j-I

where

hi - A i C i (3.4)

The operators C i are the Casimir operators of the Oi(2) algebras and h i has

eigenvalues

_i " Ai (mi2"Ni2) - "&Ai(Nivi'vi2)
(3.5)

The couplings Vij depend on the problem under consideration. Two types of
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couplings are usually considered: (i) diagonal couplings (Casimir couplings) and

(ii) non-diagonal couplings (Majorana couplings). In the product basis, labelled

by the quantum numbers of each Ui(2) D 0i(2) algebra, the matrix elements of the

Casimir couplings are given by

< Nivi;Nj,v j I Cij I Ni,vi;Nj,vj > "

[ NiJ

rSlSl

(3.6)

while the matrix elements of the MaJorana couplings are given by:

<Ni,vi;Nj,v j I Mij i Ni,vi;Nj,vj > " viNj + vjNi " 2vivj

<Ni,vi+l;Nj,vj-i I Mij I Ni,vi;Nj,vj >- - Jvj(vi+l)(Ni-vi)(Nj-vj+l)

<Ni,vi'l;Nj,vj+l I Mij I Nivi;Njvj > " " Jvi(vj+l)(Nj'vj)(Ni'vi+l)

(3.7)

As an example of application of these models consider the case of the benzene

molecule, C6H6, (Fig.2).

This molecule has 12 atoms and thus 36-6-30 independent vibrations. A

conventional treatments of this molecule in terms of coupled differential

equations is rather complicated. On the other side, an algebraic treatment is

feasible, since the Hamiltonian, expressed in terms of algebraic operators, can

be easily diagonalized.

In view of the hexagonal geometry of benzene, in the coupling terms _ijVij,

one can have three types of couplings: (I) first neighbor couplings, (II) second

neighbor couplings and (III) third neighbor couplings. The algebraic Hamiltonian

appropriate to benzene can be written as
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Fig.2. The benzene molecule.

+,(III) S(III) (3 8)
AHH , •

where

Ai-AN. ; AIj'AHH ;

c-lc i , co- Z clj
i i<j

(3.9)

and the three operators S (I)

operators) are given by:

S (II) and S (III) (called symmetry adapter

I l

s(1)- I c' s(II)- Z ctj Mij ,
i<j ljMij ' i<j

_e

S (III)- _ clj'M
i<j ij '

I m r m P ,m I m i m I I m I m I _ l _ r m F m r W m e .

c12 c23 c34 c45 c56 c16 , c13 c24 c35 c46 c15 c26 0 ' c14"c 25 c36"0'
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P_m OFm *f If m _l m a* m fl m rl m Fr m Wl tt m rtm 7 fe m _y m #e_c12 c23 c34 -c45 c56 c16 0, c13 c24 c35 c46"c 15 c26 0 c14 c 25 c36 O;

Ffe R P#rR I#r_ _t#_ fSf_ afro0 _ Brr m yrl m #r# m fwl_ IrtR PI#_ Tc12 c23 c34 c45 c56 c16 c13 c24 c35 c46 c15 c26 0

ttWm Ill E rr_m

c14 c25 c36 I (3.10)

It is important to note that the use of algebraic oscillator realizations solves

another crucial problem in the theory of molecules, that is the construction of

states that transform according to irreducible representatlons of point groups

(For C6H 6, the point group is D6h). For this reason the operators S (I), S (II)

and S (III), whose diagonalization produces states that transform as irreducible

representations, have been called symmetry adapter operators [5,6]. The role of

these operators in the representation theory of finite groups will be discussed

elsewhere [7]. They can be constructed for any finite group and provide an

oscillator (or boson) realization of finite groups (a new and very important

mathematical result).

The algebraic Hamiltonians (3.8) allow one to do anharmonic analysis of

molecular vibration spectra. One determines the coefficients AH,AHH, I(1)HH ,

A(II)HH and I(III)HH from some known energies and then computes all the others.

This procedure can be applied not only to the molecule C6H6, but also to all

other molecules obtained by replacing the hydrogen atoms with deuterium atoms

[8]. Table II shows some calculated frequencies and infrared intensities in C6H 6

and C6D 6. This Table, reproduced from Ref. [8], is shown here as an example of

the power of the method which allows a simultaneous calculation of all

frequencies and infrared intensities of many molecules. One must note that this

is still a small portion of the complete spectrum of benzene, since it describes

only the so-called stretching vibrations in which the hydrogen atoms move in a

radial direction relative to the carbon skeleton. (Vibrational modes v7,v13,v20

and v 2 in Wilson notation)[8]. A calculation of all the other modes and their

combinations has been performed and will appear soon [9].

Table III shows a partial comparison of the calculation with experiment. One

may note the close agreement not only for the fundamental vibrations (n-l) but

also for the overtones (n-2, n-3). This agreement originates from the use of

anharmonic oscillators. Had one used harmonic oscillators the expected

frequencies of the n-2 and n-3 modes would have been respectively twice and three
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TABLE II. Calculated frequencles a and infrared intensltles b in C6H 6 and C6D 6.

n-i

n-2

C6H 6 C6D 6

symm computed computed symm computed computed

energy IR int. energy IR int.

E2g(V 7) 3056.91

Blu(Vl3) 3057.51

Elu(V20) 3065.13

Alg(V2) 3073.96

0.16(+2)

E2g(V 7) 2272.03

Blu(Vl3) 2284.62

Elu(v20) 2288.94

Alg(V2) 2303.20

Alg

Elu

E2g

Blu

Alg

E2g

Elu

B2u

Alg

E2g

Blu

E2g

Elu

Alg

6004.04

6004.40

6004.92

6005.10

6109.49

6110.93

6113.02

6117.07

6118.94

6121 24

6123 40

6125 35

6128 15

0.I0(+I)

o.17(-2)

o.6o(-2)

6139 40

A
ig

Elu

E2g

Blu

E2g

Alg

Elu

B2u

Alg

E2g

E2g

Blu

Elu

Alg

4494.02

4497.19

4497.55

4498.21

4550.04

4556.93

4557.10

4559.26

4571 15

4572 49

4575 46

4579 Ii

4582 29

4600 31

0.64(+1)

0.42(+0)

0.65(-3)

0.15(-I)

aAll values in cm "I', bAll values in 106 barns/cm.
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TABLE III. Experimental frequencles a and infrared Intenslties b in C6H 6 and C6D 6.

C6H 6

n-i

Energy

symm. calc. obs. obs-calc

E2g(V7) 3056.91 3056.6 -0.31

Blu(Vl3) 3057.51 3057 -0.51

Elu(V20) 3065.13 3064.367 c -0.763

Alg(V2) 3073.96 3073.94 -0.02

Elu 6004.40 6006 1.60

Elu 8827.53 8827 -0.53

IR Intensity

calc. obs.

0.16(+2) 0.16(+2)

0.i0(+I) 0.58(+0)

0.51(-1) 0.35(-1)

C6D 6

Energy IR Intensity

calc. obs.

n-I

symm. calc. obs. obs-calc

E2g(V7) 2272.24 2272.5 0.26

Blu(Vl3) 2284.83 2285 0.17

Elu(V20) 2289.14 2289.3 0.16

Alg(V2) 2303.41 2303.44 0.03

Elu 4497.60 4497 -0.60

Elu 6643.81 6644 0.19

0.64(+1) 0.64(+1)

0.42(+0) 0.42(+0)

0.22(-i) 0.22(-I)

aAll values in cm "I" bAll values in 106 barns/cm; Cdeperturbed value.
w
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times those of the fundamental, in disagreement with experiment.

4 Summary

In summary, algebraic theory is an expansion of all operators of physical

interest into elements of an algebra, g. For example, the Hamiltonian H can be

expanded as

i

H - E 0 + _B _aB GaB + _ aB76_ uaB76 GaB G76 + "'"

e s (4.1)
GaB

In implementing algebraic theory an oscillator realization is often useful. The

elements of g are then constructed from boson creation and annihilation operators

b ? , b , a - i ..... v+l (4.2)

The bilinear products

G _ - b t_ b_ , (4.3)

generate the Lie algebras U(v+l). Within this algebra one can describe both

harmonic and anharmonic situations (and isotropic and anisotropic situations).

The oscillators (and algebras) can be coupled. The expansion of the

operators is now in terms of the direct sum of algebras gi'

- I • gi (4.4)
i

The oscillator realization is in terms of boson operators
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b t " _ - I, ,v+l ; i - I,. ,n (4.5)
_i ' b_i ......

The index _ provides a treatment of continuous symmetries (space index).

index i provides a treatment of discrete symmetries (oscillator index).

The

5 Conclusions

Algebraic theory is a powerful tool to deal with complex spectroscopic

problems. Oscillator realizations of this theory have proven to be very useful

in the analysis of several physical situations. In particular, the extension of

harmonic to anharmonic analysis has led to a new and deeper understanding of the

spectra of complex molecules.
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