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Abstract

The algebraic approach to quantum mechanics is briefly reviewed. The role of

oscillator realizations 1s discussed. Applications to vibrations of complex

molecules are presented.

1 Introduction

In recent years,

a formulation of gquantum mechanics, called algebraic theory,

has been put forward, in which any quantum mechanical problem is mapped onto an

algebraic structure following the logic scheme shown in Fig. 1.

Quantum Mechanical System

¢

Algebraic structure

§

Observables

¢

Experiment

[Lie algebras

Graded Lie algebras

4Infinite dimensional (Kac-Moody) algebras
q-deformed (Hopf) algebras

L .

(Energies
4Transition rates

L e .

Fig.l. Logic scheme of algebraic theory.

In implementing algebraic theory, it has been found to be very useful to make
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use of oscillator representations. In this contribution, I will briefly review

the use of oscillators in algebraic theory.
2 Oscillators in v dimensions

I begin with the (trivial) example of the one-dimensional harmonic
oscillator. 1In the algebraic theory this case is described by the introduction

of the Heisenberg algebra [1]

H(2) : a, al, 1, ata (2.1)

Table I shows the parallelism between the usual treatment in terms of
differential operators (Schrddinger equation) and the algebraic approach. This
case is well known and does not require further explanation.

I consider instead the (non-trivial) example of the one-dimensional
‘anharmonic Morse oscillator. The differential approach requires the solution of

the eigenvalue problem

Hy =Ep ,

2 2
i H= -2 8 v ,
2u dax? o
V(x) = D{1 - exp(-p0)]° . | (2.2)

The solution of the eigenvalue problem produces wave functions

z 1
2t 2 xﬁL2n-2v-1
v

(z) (2.3)

¢V(x) - Nv z"'v e

where Nv is a normalization and L(z) denotes a Laguerfé'pdiynomial. Also
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Table I. Differential and algebraic treatment of the one dimensional harmonic

oscillator.
Differential approach Algebraic approach
H=3 (7 + %) - a- T+ L
J2
1 ( &2 2 1 d
-3 [- ) + X ] a1 - = (x - a;)
dx J2
- H -
Hy =E L [a,al) 1
H = (aTa + % )
1 1
E = (n+ 5) En = (n + 5)
SREE
uo(x) - e |0>
1 _1 . .12 1
2 .n 2 d 2 2 n
un(x) - [w 2 n!] (x - E;) e |n> = (n!) (aT) |O>
+®
d '
I -J u (%) £(x,g) u (x) dx I, =<n |£(a,al)|n>
-0
z =2 e P% n-;—ﬂIZ#D : v-O,l,...,n-% RS

The eigenvalues are
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2.2 2
E(v) = 2hﬂj§£ v + %) . % ﬁ—é— (v + %) . (2.5)

The mass p, strength of interaction D and range B have been put explicitly in
Eqs. (2.2)-(2.5), while they were deleted in Table I.

In algebraic theory, the one-dimensional Morse oscillator can be dealt with
by introducing [2] the Lie algebra U(2), composed of four elements F+,F-,FO,N.

The Hamiltonian can be written as
H = AC ; C=F - N y (2.6)

where C is the Casimir operator of the 0(2)Vsuba1gebra of U(2). The eigenvalues

are

E(m) = A(m2-N2) , m=N,N-2,...,1 or 0 (N=odd or even). 2.7)
With the change of variable v = (N-m)/2 one has

E(v) = - 4A(NV-vE)

ve=20,1,..., (N= even or odd) , (2.8)

o
NI

or 3 -
2

which are the eigenvalues of the Morse oscillator, Eq. (2.5). The eigenstates

can be written as

U(2)y > 0(2)
i} } (2.9)
N v

and intensities can be computed by taking matrix elements of operators
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<N, v'|T|N,v> (2.10)

As a result, all calculations for anharmonic oscillators can be done very easily.
An oscillator realization of U(2) 1is provided by the Jordan-Schwinger
construction in terms of two boson operators o, r and their adjoints ot,rf. The

algebra is
Uu(2) : rfa, UTT, fff, aTa . (2.11)

Incidentally, in the oscillator realization the harmonic oscillator appears as a

contraction of the anharmonic oscillator, obtained by letting

N + o , N » » ,
o
rto Jﬁ_ ot . otr o Iﬁ— T ,
c o
rTr -+ TTT , 010 - Na . (2.12)

Thus, by adding one extra dimension (with the constraint N=const) one can treat,
within the same framework, both harmonic and anharmonic oscillators. The
anharmonic Morse oscillator in one dimension is related to the harmonie

oscillator in two dimensions.

The same situation occurs in any number of dimensions. For example, in three

dimensions, one introduces four boson operators [3,4]

bl " nL (4=0,%1)  ; a=1,....4

ba =0 |, r” (p=0,%1) ; a=1,...,4 ; (2.13)

divided into a scalar ¢ and a vector - The bilinear products bTabﬂ generate
the Lie algebra U(4)
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. t
g : G g=b,b (2.14)

af /2

The contracted form of U(4) is the oscillator algebra in three dimensions, H(4).
In three dimensions the situation is even richer than in one dimension, since

the algebra of U(4) can be reduced in two ways:

, U(3) > 0(3) o 0(2) , ()
U({4)
NO0(4) D 0(3)y o 0(2) , (11y (2.15)

corresponding to spherical (I) and deformed situations (I1). 1In one dimension we

have

, U
U(2) , (2.16)
N0(2)

but U(1)=0(2) and therefore the spherical and deformed coincide.

It has been suggested [3] that in general any quantum mechanical problem in v
space dimensions can be written in terms of the unitary algebra U(v+l). The
harmonic oscillator in v dimensions can be obtained from U(v+l) by a limiting
procedure leading to H(v+1l). The Heisenberg algebra H{(v+1) contains U(v), the
degeneracy algebra of the v dimensional harmonic oscillator. The anharmonic
oscillator and the deformed anahrmonic roto-oscillator can all be obtained from
U(v+1). These results allow one to do anharmonic analysis of spectral problems in

a way as simple as that of harmonic analysis.
3 Coupled oscillators in » dimensions

In most problems in physics, one often encounters coupled systems. In
algebraic theory, the coupling of physical systems corresponds to the coupling of
algebras. Oscillator realizations are particularly useful here and, as a simple
example, I will discuss the case of coupled one-dimensional anharmonic
oscillators. The algebraic structure of the system is the direct sum of the

individual U(2) algebras
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n

G = Z ® Ui(2) , (3.1)
i=1
where the sum extends over the number of oscillators, n. An oscillator
realization can be done in terms of boson operators ’11' ati, Ti, 04- Each

algebra Ui(2) is

Ui(2) : flai, alfi, flri, aloi . (3.2)

Coupled harmonic oscillators can be obtained as before by eliminating the oy
bosons, as in Eq. (2.12).

In the last year, algebraic models of coupled anharmonic oscillators have
been used extensively in order to provide a realistic description of the
vibrations of complex molecules [5]. In general, the algebraic Hamiltonian of

coupled oscillators is written as

n n
H=3 h + ) V (3.3)
f=1 1 gqqer U
where
hi - Ai Ci (3.4)

The operators C; are the Casimir operators of the 0;(2) algebras and h; has

eigenvalues
ey = A (2N ) = hAg(Nvi vy D) (3.5)

The couplings Vij depend on the problem under consideration. Two types of
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couplings are usually considered: (i) diagonal couplings (Casimir couplings) and
(ii) non-diagonal couplings (Majorana couplings). In the product basis, labelled
by the quantum numbers of each Ui(2) o Oi(2) algebra, the matrix elements of the

Casimir couplings are given by

. M ; D> wm

ivVis
N, +N N +Nj
- 4[(vi+vj)2'(vi+vj)(N1+Nj)] - [‘iﬁ—i]a[viz'viNi] ) ( iN ]b[vjz-vij] ’
i 3
(3.6)

while the matrix elements of the Majorana couplings are given by:

<Ny, vy-15Ny,vy+l | M5 | NyviiNjvy > = - [P D @y -vi+1)

(3.7)

As an example of application of these models consider the case of the benzene
molecule, C6H6, (Fig.2).
This molecule has 12 atoms and thus 36-6=30 independent vibrations. A
conventional treatments of this molecule in terms of coupled differential
equations is rather complicated. On the other side, an algebraic treatment is
feasible, since the Hamiltonian, expressed in terms of algebraic operators, can
be easily diagonalized.

In view of the hexagonal geometry of benzene, in the coupling terms 213 iy’
one can have three types of couplings: (I) first neighbor couplings, (II) second
neighbor couplings and (III) third neighbor couplings. The algebraic Hamiltonian

appropriate to benzene can be written as
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Fig.2. The benzene molecule.

, (1) (1) (11) (11) (I11) (III)
H-A.HC+AHHC +AHH S +AHH S +)‘HH S , (3.8)

where

Ay =B 0 Ay A 0 Mgy T me o
C=3C, , C = %Y C , (3.9)
it i<j 1]

and the three operators S(I), s gng s(I1D) (called symmetry adapter

operators) are given by:

sDay e’y My sUD- 7 erm, . sTPay e1i™Myy
1< 1<3 1 1< J
1272373445 56 16 137247357 46715 26™0  + ©147¢ 257%36
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1272373, TC457C56™C16™0  ©137247C357C46™C 157 260 ¢ ©147¢ 55™C34™0;
"’- "'- "'- "’- "'- "'- "'- "I- "'- ”’- ”'- ’II-

R S R VRN R b e e I § R Y Rt ¥ e St T S

¢y, 5 e =1 : (3.10)

It is important to note that the use of algebraic oscillator realizations solves
another crucial problem in the theory of molecules, that 1is the construction of
states that transform according to irreducible representations of point groups
(For C6H6, the point group is D6h)' For this reason the operators S(I), S(II)
and S(III), whose diagonalization produces states that transform as irreducible
representations, have been called symmetry adapter operators [5,6]. The role of
these operators in the representation theory of finite groups will be discussed
elsewhere [7]. They can be constructed for any finite group and provide an
oscillator (or boson) realization of finite groups (a new and very important
mathematical result),

The algebraic Hamiltonians (3.8) allow one to do anharmonic analysis of
molecular vibration spectra. One determines the coefficients AH’AHH' A(I)HH’
A(II)HH and A(III)HH from some known energies and then computes all the others.
This procedure can be applied not only to the molecule CgHg, but also to all
other molecules obtained by replacing the hydrogen atoms with deuterium atoms
[8]. Table II shows some calculated frequencies and infrared intensities in CeHg
and C¢Dg. This Table, reproduced from Ref. [8], 1s shown here as an example of
the power of the method which allows a simultaneous calculation of all
frequencies and infrared intensities of many molecules. One must note that this
is still a small portion of the complete spectrum of benzene, since it describes
only the so-called stretching vibrations in which the hydrogen atoms move in a
radial direction relative to the carbon skeleton. (Vibrational modes v7.v13.V20
and vy in Wilson notation)[8]. A calculation of all the other modes and their
combinations has been performed and will appear soon [9].

Table ITI shows a partial comparison of the calculation with experiment. One
may note the close agreement not only for the fundamental vibrations (n=1) but
also for the overtones (n=2, n=3). This agreement originates from the use of
anharmonic oscillators. Had one wused harmonic oscillators the expected

frequencies of the n=2 and n=3 modes would have been respectively twice and three
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TABLE II. Calculated frequencies® and infrared intensitiesb

in C6H6 and C6D6.

CeHg CeD¢
Symm computed computed symm computed computed
energy IR int. energy IR int.
EZg(v7) 3056.91 E2g(v7) 2272.03
n=1 Blu(v13) 3057.51 Blu(v13) 2284 .62
Elu(VZO) 3065.13  0.16(+2) Elu(VZO) 2288.94 0.64(+1)
Alg(VZ) 3073.96 Alg(v2) 2303.20
6004 .04 A 4494 .02
1g lg
Elu 6004.40 0.10(+1) Elu 4497 .19 0.42(+0)
E 6004.92 E 4497 .55
g 2g
B 6005.10 B 4498.21
lu lu
A 6109.49 E 4550.04
1g 2g
E 6110.93 A 4556.93
2g lg
n=2 Elu 6113.02 0.17(-2) Elu 4557.10  0.65(-3)
B 6117.07 B 4559.26
2u 2u
A 6118.94 A 4571.15
lg 1g
E 6121.24 E 4572.49
2g 2g
B 6123.40 E 4575.46
lu 2g
E 6125.35 B 4579.11
2g lu
Elu 6128.15 0.60(-2) Elu 4582.29 0.15(-1)
A 6139.40 A 4600.31
lg lg

2A11 values in cm'l; bAll values in 106 barns/cm.
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TABLE IJI., Experimental frequenciesa and infrared intensitiesb in C6H6 and C6D6'

CH

66
Energy IR Intensity
symm. calc. obs. obs-calc calc. obs.
E2g(v7) 3056.91 3056.6 -0.31
Blu(v13) 3057.51 3057 -0.51
n=1 Elu(VZO) 3065.13 3064,367° -0.763 0.16(+2) 0.16(+2)
Alg(vz) 3073.96 3073.94 -0.02
n=2 Elu 6004 .40 6006 1.60 0.10(+1) 0.58(+0)
n=3 Eiu 8827.53 8827 -0.53 0.51(-1) 0.35(-1)
€66
Energy IR Intensity
symm. calc. obs. obs-calc calc. obs.
EZg(v7) 2272.24 2272.5 0.26
n=1 Blu(le) 2284.83 2285 0.17
Elu(VZO) 2289.14 2289.3 0.16 0.64(+1) 0.64(+1)
Alg(VZ) 2303.41 2303.44 0.03
n=2 Elu 4497 .60 4497 -0.60 0.42(+0) 0.42(+0)
n=3 Elu 6643.81 6644 0.19 0.22(-1) 0.22(-1)

8a11 values in cm'l; bA11 values in 106 barns/cm; Cdeperturbed value.
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times those of the fundamental, in disagreement with experiment.

4 Summary

In summary, algebraic theory is an expansion of all operators of physical

interest into elements of an algebra, §. For example, the Hamiltonian H can be

expanded as

1=

H=Ey+ Y e

G G -
ap ) 5 Yapys “ap 76 *

@p Gaﬁ ' afy

Gaﬂ €S . 4.1

In implementing algebraic theory an oscillator realization is often useful. The

elements of § are then constructed from boson creation and annihilation operators

bl b , a=1,...,041 . (4.2)
a a

The bilinear products

t
Gaﬁ - ba bﬂ ) (4.3)

generate the Lie algebras U(v+1l). Within this algebra one can describe both
harmonic and anharmonic situations (and isotropic and anisotropic situations).
The oscillators (and algebras) can be coupled. The expansion of the

operators is now in terms of the direct sum of algebras 9i,

s-Jeos, . (4.4)
i

The oscillator realization is in terms of boson operators
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t oy - . -
bl b ca=1,...041 ; i=1,...,n . (4.5)

The index a provides a treatment of continuous symmetries (space index). The

index 1 provides a treatment of discrete symmetries (oscillator index).
5 Conclusions

Algebraic theory is a powerful tool to deal with complex spectroscopic
problems. Oscillator realizations of this theory have proven to be very useful
in the analysis of several physical situations. In particular, the extension of
harmonic to anharmonic analysis has led to & new and deeper understanding of the

spectra of complex molecules.
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