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Abstract

Tile e x method for predicting transition onset is an am-

plitude ratio criterion that is on the verge of full matu-
ration for tllree-dimensional, compressible, real gas flows.

_Many of the components for a more sophisticated, absolute

amplitude criterion are now emerging: receptivity theory,

secondary instability theory, parabolized stability equa-

tions approaches, direct numerical simulation and large-

eddy sinmlation. This paper will provide a description of
each of these new theoretical tools and provide indications

of their current status.

1 Introduction

Robust tools for predicting the location of the onset of

transition in boundary layers on aerospace vehicles have

obvious technological importance. For practical engineer-

ing purposes one desires a prediction tool which is quan-
tatively and not just qualitatively correct: the issue is not

whether transition occurs but where. At present transition

prediction tends to be based on simple correlations, such

as crossflow Reynolds number or Reo/M; modified one-

or two-equation turbulence models which seek to trans-

late the freestream turbulence level into computations of
laminar-transitional-turbulent flow; and linear stability

theory.

The pioneering work of Smith & Gamberoni [1] and Van

Ingen [2] introduced an empirical method for estimating

the location of transition onset based on an amplitude ra-
tio criterion. This tool has come to be known as the e N
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method or the N-factor method. The next level of tran-

sition prediction methodology is likely to involve an ab-

solute amplitude criterion. In order to achieve this goal,

many more physical effects must be taken into account

and more analysis tools must be utilized.

The seeds of transition are the disturbance environment

in which the vehicle operates. Transition is born by the
receptivity process in which the background disturbances

are incorporated within the boundary layer as linear insta-

bility waves. It is nurtured by a relatively long region of

linear instability growth. Once secondary instability ef-
fects develop, they induce rapid growth, and at a suffi-

ciently high amplitude the nonlinear regimes are entered
and transition commences, as signified by, say, the skin
friction or heat transfer rise.

Characterization of the disturbance background is a pre-

requisite for an absolute amplitude criterion. Both ampli-

tude and spectral information are required. This is nec-

essarily an experimental task and will not be addressed

further in this paper.

The theoretical and computational tools which can now

be brought to bear on the transition problem include

Receptivity Theory, Linear Stability Theory (LST), Sec-

ondary Instability Theory (SIT), Parabolized Stability

Equations approaches (PSE), Direct Numerical Sinmla-

tion (DNS), and Large-Eddy Simulation (LES).

Receptivity theory is a very active area of current re-
search. The essential problem is that the freestream dis-

turbances often have much longer length scales than the

instability waves in boundary layers. Therefore, the incor-

poration of background disturbances into boundary-layer
instability waves requires a wavelength conversion mecha-

nism. A variety of linear and asymptotic techniques have

been applied to this problem. We refer the reader to [3]-[8]
for some recent work in this field. The latter two articles

are particularly concerned with compressible flow.

This paper furnishes a brief description of the remainder



of thesetoolsandprovidesexamplesof recentwork.We
shalllimit ourselvesto illustratingthesemethodsfor su-
personicflows,andshallhighlightsomerecentresultsfrom
the theoreticalandcomputationaltransitionprogramat
theNASALangleyResearchCenter.

2 Governing Equations

Although results will be presented here for flat plates,

cylinders and cones, the equations and notation will be

given just for the flat plate. See [9] for the appropriate
equations for the more general situation.

3 Linear Stability Theory

The starting point for these analysis tools is, of course, the
compressible Navier-Stokes equations. In dinaensionless

form the equations for a thermally and calorically perfect

gas are
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is the viscous dissipation. The Reynolds number is de-

noted by Re, the Prandtl number by Pr, the Mach num-

ber at the boundary-layer edge by M,, and the ratio

of specific heats by 7. (For all the examples in this

paper 7 = 1.4.) In these equations p is the density,

u =_ (u_, u2, us) = (n, v, w) the velocity, p the pressure,

and T the temperature. We shall denote the solution vec-

tor by q = (p, u, v, w,p). The coordinate system is chosen

so that x = (zl, x2, za) = (x, y, z), where x, y, and z are

the streamwise, spanwise, and wall-normal coordinate di-

rections, respectively.

edge of a boundary layer, u is the streamwise velocity, and
v is the kinematic viscosity. The viscosity, p', is assumed

to be given by the Sutherland formula.

The techniques of compressible linear stability theory

are quite well know; see, for example, [10]. The starting

point is a laminar mean flow, q0. In most cases an approx-
inaate mean flow is utilized, e.g., a quasi-parallel solution

of the boundary-layer equations. One must then imagine

that an appropriate forcing term has been added to Eq.

(1). See [11] for a recent discussion. The total flow field,

q(x, t), is written as

q(x,t) = qo(z) + A(q,(z)ei(O'+_'-_')+ c. c.) . (5)

The streamwise and spanwise wave numbers are denoted

by a and fl, respectively, and w is the (temporal) fre-

quency. The complex amplitude function, ql(z), deter-
mines the structure in the wall-normal direction. The

compressible Navier-Stokes equations are then linearized
about the mean flow to first-order in the amplitude A.

When combined with appropriate boundary conditions, an

eigenvalue problem results.

The spanwise wavenumber is invariably taken to be real.

In temporal theory, a is real and ,_ is the (complex) eigen-

value, with x the spatial growth rate. In the spatial con-

cept, _ is real and a is the eigenvalue, with -oi the spatial

growth rate. In many cases the simpler temporal theory

is applied, and the spatial growth rate approximated by

-ai = wi/cg, where % is the group velocity of the wave.
The linear instability is referred to as the primary insta-

bility.

Some recent developments for compressible flow include

incorporation of non-parallel effects through multiple-scale

techniques [12], real gas effects [13], proper shock-wave

boundary conditions [14], and clarification of some issues

regarding propagation of three-dimensional waves [15].

The N-factor method is applied by first computing the
laminar mean flow past the body of interest an-d-then

applying LST to that flow. For a given frequency, w,

In this paper, most dependent variables are normal- the streamwise location at which a wave first becomes
ized with respect to their boundary-layer edge values; p unstable, z0, is i:imtified and then the spatial growth

is scaled by pTu'e 2. Distances are scaled by the variable rate is integrated downstream to produce the::N-factor:

L* = (uex'/ue) 1/_'. The superscript * characterizes a di- N(_) = ffo(-ai)dz'. (Note that if the amplitude of the
mensional quantity, the subscript e indicates a value at the instability at z0 is denoted by A0, then the amplitude at

x is given by A/Ao = eN(*'); thus, e N('°) measures the am-

plitude ratio.) This calculation is performed for a range of

frequencies, and for each x, the maximum over w, denoted



byjust N, is taken.

The estimate of transition onset• is based upon an em-

pirical correlation between N and the location of transi-
tion. The N-factor method has had a surprising degree of

success, even considering its limitations, such as inapplica-

bility to flows in a high disturbance background for which
the linear instability regime is "by-passed". The N-factor

method has matured to the point at which an analysis ca-

pability is imminent for transition estimation across the

speed range (including real gas effects) and for arbitrary
steady three-dimensional mean flows.

The computer requirements for solving a single LST

eigenvalue problem are inconsequential. Even application
of the N-factor method to a three-dimensional mean flow

requires only on the order of an hour of supercomputer
time. However, a non-trivial related task is computa-

tion of an accurate mean flow. LST requires accurate

(and oscillation-free) mean flows and this is a far more

stringent requirement than is custolnary in conventional

steady-state CFD. This can take many tens of supercom-

puter hours for a three-dimensional configuration.

4 Secondary Instability Theory

Secondary instability theory picks up where LST leaves
off. In SIT one includes some weakly nonlinear (and three-

dimensional) effects. One considers the linear stability

with respect to secondary disturbances of a base flow com-

prised of a laminar mean flow (assumed locally parallel)

modulated by a small (but finite) amplitude primary dis-
turbance. SIT is now well-established for incompressible

flow. See Herbert [16] for a thorough review of the subject.

In recent years it has been extended and applied to com-

pressible boundary layers in [17], [18], [19], and [20]. Here
we review some of the developments discussed in [20].

The frequency, wavelength, and shape of the primary
disturbance are obtained using LST. The primary wave

is assumed to have no growth during the evolution of the

secondary disturbance. In a Galilean frame, z + = x - c_t,

moving with the phase velocity, e_, of the primary wave,
the total flow variable, q, can be written in the Floquet
form

q = qb + _{e a'e'rz+eiz2veih_2_'r+ E

where qb is given by Eq. (5). Hereafter, the subscripts 0,
b, 1, and 2 refer, respectively, to the laminar mean flow,

the modulated base flow, the primary disturbance, and the

secondary disturbance. The primary wave amplitude, A,
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Figure 1: Variation of % with B when ,rife = 1.6. Funda-
mental at .4 = 2.9%. Subharmonic at A = 1.5%.

is defined so that it corresponds to the maximum value

of the perturbation mass flux. The equations governing

the secondary disturbance are obtained by linearizing Eq.

(1) about the modulated base flow. The discretized dis-

turbance equations are converted into a complex algebraic

eigenvalue problem for a or _t and their associated eigen-
functions. In temporal theory, 7 = 0 and a # 0 is the

complex eigenvalue to be determined. In the spatial con-
cept, we write a = "tc, in Eq. (6) and solve for 7 as the

eigenvalue [16]. The temporal and spatial growth rates are
given by the real parts of cr and 7, respectively. The detun-

ing parameter, h, defines the type of secondary instability.

The subharmonic modes are given by h = 1, while the

fundamental.modes correspond to h = 0. In practice the

sum in Eq. (6) includes from 2 to 5 modes.

As one example, consider the boundary layer over an

insulated flat plate at Mach number -_fe - 1.6, Reynolds
number Re = 1050, Prandtl number Pr -- 0.72, and

temperature T, = 216 ° Rankine. The primary wave

is slightly damped, and is located near branch two of

the neutral stability curve with al - 0.1471 and F =

106 x wl/Re = 82.6. For clarity, the secondary growth
rate obtained from the temporal theory, which has been

converted to a spatial growth rate by using the transfor-

mation 7r = a_/Cr, is termed the "transformed-spatial"

growth rate. In many cases of interest both the dominant
fundamental and subharmonic travel synchronously with

the primary, i.e., 7i = 0.

q2.i(z)eiJ_;_+}, In Fig. 1, the secondary growth rate is plotted
....... as a function of the normalized spanwise wavenumber

(6) B - 103 x /32 /Re. (For constant boundary-layer

edge conditions, the parameter B signifies a wave of fixed

spanwise wavelength as it propagates downstream.) The
"transformed-spatial" growth rate agrees well with the

(true) spatial growth rate. The most amplified subhar-
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Figure 2: Variation of % whh ,4 when M_ = 1.6.

monic disturbance consists of a pair of oblique waves trav-

eling at equal and opposite angles at about 700 to the
mean-flow direction. The most unstable fundamental dis-

turbance is comprised of a stationary mode, which repre-

sents a spanwise periodic distortion of the mean flow, and

a pair of oblique waves propagating in opposite directions
at about 570 to the mean-flow direction.

Figure 2 depicts tile typical catalytic effect of the pri-

mary amplitude on the growth rates of the secondary dis-

turbances. The spanwise wavenumbers, B, of the sub-
harmonic and the fundamental are 0.19 and 0.22, respec-

tively; these particular values of B correspond roughly to
the most amplified secondary disturbances. The subhar-

monic instability prevails over the fundamental instability

in an environment with a primary amplitude, A, of less

than about 2.8%, while the converse is true for higher val-

ues of A. The transformed-spatial growth rates of the sub-

harmonic modes are almost identita] to the spatial rates
for small A -- the former increasingly underpredicts the
latter as A increases from 1.5%.

The preceding behavior is expected, since the use of

temporal data to approximate spatial growth becomes less
accurate when the growth rate is relatively high. Still,

the transformation of temporal data to approximate the

spatial growth rates of fundamental resonanc_ mode s is

surprisingly accurate even for a primary amplitude as high
as 4%.

The second example, given in Fig. 3, corresponds to a

laminar boundary layer on an insulated 7-degree half-angle

sharp cone at ,rile = 6.8. The parameters are Re = 1939,
T, = 128 ° Rankine, Pr = 0.70. The primary distur-

bance is axisymmetric and is of the "second mode" type

with al = 0.2788 and F = 135. The two sets of cal-

culations also serve to contrast the secondary instability
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Figure 3: Effect of the detuning parameter on "_. Me = 6.8
and B = 0.135.

arising from a first-mode primary (at 3I_ = 1.6) with that

arising from a second-mode primary (at ._/_ = 6.8). Over
a range of Mach numbers up to at least 6.8, subharmonic

secondary instability (h = 1) is found to prevail in a low
primary-disturbance environment. This is especially true

for high-speed flows. In particular, as illustrated in Fig.

3, no fundamental instability (h = 0) for Me = 6.8 exists

even for a primary amplitude of 2.625%. In fact, both

tile first- and second-mode primary waves associated with

high-speed flows have been found ineffective in catalyzing
unstable fundamental resonance modes.

Recent developments in SIT include incorporation of

non-parallel effects (but only for for the evolution of the

primary wave) [17]. Ng & Erlebacher [19] have developed
a fairly generai-capab]iitv which allows for oblique primary

waves (important at low supersonic Mach number, where

the naost unstable:primary is oblique). =

SIT has greater computational requirements than LST

- the matrix eigenvalue problems which must be solved

are larger than in LST. Nevertheless, a solution can be

obtained in minutes On a supereomputer.

5 Parabolized Stability Equations

As a consequence of the rapid growth of the secondary

wave, many harmonic waves, including the mean flow cor-

rection mode, are excited to large amplitudes, and eventu-
ally strongly nonlinear effects ensue; the flow then becomes

transitional. Although SIT furnishes a guide to mecha-

nisms that may be present near transition onset, it does

not at present account for many non-parallel effects, and

it incorporates only the lowest level non-linearity.
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One efficient method which does incorporates both non-

parallel and non-linear effects is the parabolized stabil-

ity equations approach, first suggested by Herbert and

Bertolotti [21], [22]. The PSE method facilitates the so-

lution of the full partial differential equations for the dis-

linear effects such as wave/wave interaction or secondary
instability can be sinmlated by the non-linear PSE.

To demonstrate the applicability of the PSE approach,

we present some of the results given in [24]. Linear

PSE calculations were performed for a Mach 1.6 flat-plate
boundary layer previously studied by E1-Hady [12]. The

frequency of. the disturbances is F = 40. Calculations

were performed for both 2-D and 3-D linear disturbances;

turbances by employing a partial parabolization along the tlie wave angle for the oblique, 3-D waves was about 50 °.
dominant flow direction. In this approach, the disturbance The growth rate of the mass flow fluctuations from the

is decomposed into a wave part and a shape functi0n'part. PSE Calculati0nstogether with the mu]:tiple-scales results

The elliptlc terms are retained £0r tlae wave part, Whereas ='-are plott'ed along with the growth rates obtained by quasi-

the governing equations for the shape function are parab' parallel LST in Fig:-4. PSE results agree quite well with
olized in the streamwise direction. The parabolized equa- those obtained from the multiple-scales approach. The re-

tions for the shape function are then solved numerically by sults also indicate that for the first mode disturbance at

a marching procedure. The wave properties are extracted Mach 1.6, flow non-parallelism has more effect on three-
from a local analysis. Nonlinear terms are formulated as dimensional disturbances than on two-dimensional ones.

forcing functions for the corresponding linear equations.
Because the equation set contains non-parallel as well as

nonlinear terms, the PSE method governs the spatial evo-

lution of disturbances from the linear stage up to the tran-

sitional stage.

The PSE approach has been successfully applied to the

stability of supersonic two-dimensional boundary layers by

Bertolotti & Herbert [23] and Chang et ai. [24]. In the

linear regime, the method provides a means to include non-

parallel effects due to the growth of the boundary layer,

which is ignored in traditional LST. Furthermore, non-

The non-parallel effect on oblique waves is qualitatively

very similar to that in incompressible flows, as found by

Bertolotti [21].

Compressible non-linear PSE computations for sec-

ondary instability mechanisms and the subsequent start
of laminar breakdown have also been demonstrated . The

flow is again a Mach 1.6 flat-plate boundary layer with a

primary disturbance frequency of F = 50. The free-stream

temperature is 540 ° Rankine and _he Prandtl number is

Pr = 0.71. Figure 5 shows the evolution of primary and
subharmonic disturbances for various initial amplitudes of
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the primary waves (the subharmonic amplitudes are the Figure 7: PSE wall shear of laminar and perturbed flows
same for all three cases). The spanwise wave number of for a ,_I_ = 1.6 fundamental breakdown.

the subharmonic mode is fixed at B = 0.053, which corre-

sponds to an oblique wave angle of 45 °. As can be seen, a Linear PSE computations (equivalent to non-parallel
1.1% initial amplitude for the primary mode is enough to

trigger the secondary growth.

Non-linear PSE calculations were also performed for the
same Mach 1.6 case but for a fundamental-type secondary

resonance. The initial amplitude of the primary wave is

again 3_ and that of the secondary is taken to be 0.005_.

The spanwise wave number is B = .152 (oblique wave an-

gle of 60 ° for the secondary wave) and the primary wave

frequency is again F = 50. The_non-linear evolution of

themaximum rms amplitude of u' (a prime is used to de-

LST) are quite cheap. Nonlinear PSE can compute up
to the skin friction rise in no more than an hour of su-

percomputer time. However, current numerical techniques

for nonlinear PSE have computational requirements which
scale quadratically with both ti_e number of spanwise

Fourier components and the number of temporal frequen-

cies retainedin the approximation. This means that PSE
computations for the later stages of transition and for ran-

dom inflow and/or freestream conditions are exceedingly

expe_give.

note the fluctuating part of a variable) is shown in Figure The SIT and PsE tools that have been described up
6 Clearh, the presence of the primary 2 D and secondary ........• ". -' . - . to this point areorienied:to-wards:forced:trans[t[0_, Le.,
3 D d_sturbances results m wave resonance and strong see- " transition characterized by sharply defined frequencies as
ondary growth of the oblique wave. When the secondary might occur from specific forcing. The technologically in-
disturbance is amplified to about the same amplitude of

the primary wave, all harmonics are excited and the flow

becomes transitional. This is confirmed by plotting the

average wall stlear in Figure 7. The computed wall shear

is only slightly above the laminar value for most of the

computational domain. (The PSE wall shear lies above
the laminar value right from the beginning because of the

relatively high initial amplitude of the 2-D primary dis-

turbance.) Eventually the wall shear departs sharply from

the laminar value, indicative of transition onset. Thus, the

PSE computation captures the skin friction rise, which is

one of the criteria for transition onset; accurate predic-

tion of its location is a prime goal of transition prediction
methods.

teresting problem is that of natural transition, for which

a broad range of frequencies is present. To capture the

nonlinear interaction between a wide range of frequencies,
DNS and LES are currently the most appropriate tools.

6 Direct Numerical Simulation

Direct numerical simulation solves the time-dependent,

three-dimensional, nonlinear, Navier-Stokes equations

subject to prescribed initial and boundary conditions with-
out recourse to empirical models. A thorough review of

this approach has been given by Kleiser & Zang [25].
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When attacked as the total boundary-layer transition

problem - from receptivity through fully-developed tur-

bulence - the non-parallel, spatial formulation is certainly

more appropriate than the temporal approximation. How-

ever, DNS for the complete transition process is an exceed-

ingly expensive tool even for the low Reynolds numbers

to which it is of necessity restricted. Gilbert & Kleiser

[26] performed the first well-resolved simulation of the

complete transition to turbulence and this took several

hundred supercomputer hours for a temporal computa-
tion of forced incompressible transition. With somewhat

relaxed resolution requirements Rai & Moin [27] have re-

cently computed bypass transition for low-speed flow past

a flat plate. This required many hundreds of supercom-

puter hours and it remains to be seen what the require-

ments are for a well-resolved computation for this problem.
For the foreseeable future, both temporal and spatial DNS

have a role, but this tool ought to be applied selectively.

One role for DNS is the corroboration of simpler tools,

such as SIT and PSE. For compressible flows it has been

used to verify temporal SIT [19], [9], spatial SIT [20], and

some aspects of nonlinear PSE [24]. Given the algebraic

complexity of SIT and PSE, particularly for oblique pri-
maries, this role is a needed one to establish confidence in

them. (It also furnishes a stringent calibration of DNS.)

One comparison between spatial (but quasi-parallel)

SIT and DNS by Ng & Zang [20] was performed for a
fundamental type instability at Me = 1.6, Re = 613,

Pr = 0.70, and T_ = 5200 Rankine. The primary wave is a

2-D first mode with frequency F = 73: The subharmonic

secondary wave has spanwise wavenumber B = 0.1465.

The amplitude of the primary is chosen to be 6%, while

that of the secondary is 0.1%. Although the spatial DNS

code is designed for non-parallel flow, for comparison with
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Figure 9: Evolution of selected harmonics from DNS of

Me = 4.5 cylinder subharmonic transition.

the quasi-parallel SIT theory the mean flow was con-
strained to be parallel by using a forcing function. The ini-

tial conditions consisted solely of the laminar mean flow.

At the inflow boundary, x ° = x_ = ueL /v_, the flow

consisted of the mean flow plus the appropriate contribu-

tions from the linear and secondary eigenfunctions. The

physical domain consisted of 8 wavelengths of the pri-

mary wave, with "buffer domain" modifications [28] to the

Navier-Stokes equations in the last 2 wavelengths used to

ameliorate potential difficulties with the outflow boundary

conditions. (See [20] for details.) Figure 8 shows the span-
wise velocity component, v, at z = 0.26", where 6" is the

displacement thickness, and/32y = _'/2 after 10 periods of

forcing; this component is due solely to the secondary in-

stability. The agreement between the DNS and SIT results

is excellent, except, of course, in the buffer domain.

This computation utilized 12 points per streamwise

wavelength. For transition in high-speed flows the growth
rates of both primary and secondary disturbances are

lower than for incompressible flow. As a consequence on

the order of l0 s wavelengths would be needed to follow the

primary/secondary stages from about the 1% level to the

skin friction rise. This is a prohibitive expense and argues

strongly for the use of simpler methods such as SIT and

especially PSE for routine application to the early stages
of transition.

The unique niche for DNS is the highly nonlinear, lami-

nar breakdown stage and the subsequent transition to tur-
bulence; for this the non-parallel effects appear to be less

significant than they are for the rather lengthy primary

and secondary instability stages. These early stages are
nowadays treated far more effÉciently by SIT and PSE ap-
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proaches than by DNS. Indeed, the simpler theories can

well be used to set the stage for the DNS: LST selects the

dominant primary instability (and determines the relevant

streamwise scales); SIT and/or PSE select the dominant
spanwise scales and can be used to "jump start" the DNS

at fairly high disturbance levels.

This is the approach that was taken by Pruett & Zang

[29] in their temporal DNS of transition in Mach 4.5 flow

past a cylinder. The primary disturbance was a second
mode and the secondary disturbance was of subharmonic

type. Due to the periodicity assumptions in the stream-

wise (z) and spanwise (y) directions, the dependent vari-
ables have Fourier series representations in these direc-

tions. A useful measure of tlle strength of a given Fourier
harmonic is

/;Ek=,k,(t) = dk, de, po(z)lfi_.,k.(z, t)12dz, (7)

where fl_,,_ v is the Fourier coefficient of the velocity cor-

responding to wavenumbers k= and k_ (with respect to al
and ,32, respectively;

d_: = 2 - 6ko (8)

accounts for some of the symmetries in the problem. The

quantity Ek=,k, is approximately the kinetic energy of the
(k=, kv) mode.

Figure 9, taken from [29], summarizes the time evolu-
tion of the principal modes for the Mach 4.5 cylinder sim-

Figure ll: Cartoon of the precursor transition effect (top)

[30] and its manifestation in the spatially-reconstructed
Reynolds stress from DNS of Me = 6.8 cone subharmonic

transition (bottom),

ulation. (Time is reckoned in units of the period of the

primary wave.) The DNS proceeded through the stages
of primary/secondary instability then underwent weakly

nonlinear and strongly nonlinear stages, and finally com-

menced laminar breakdown. The stages cited above last

from 0-15, 15-35, 35-45 and 45-00, respectively. The sym-

bols on the figure are the predictions from LST and SIT

for the growth of the primary and secondary disturbances.
They are in good agreement with the DNS. One interest-

ing feature of this simulation is the prominence that the

(0, 2) mode assumes in the latter stages of transition. This

mode is not present in the initial conditions (nor in SIT)
and is generated by nonlinear effects. Additional DNS

have revealed that this mode plays an essential role in the
final laminar breakdown.

Figure 10 shows the evolution of the skin friction, (5'I,
and the shape factor, H, for the Mach 4.5 cylinder tran-

sition. This simulation was stopped at about 60 peri-

ods because of strong gradients that even its million grid

points could not resolve. Indeed, tlle judgment of Pruett

& Zang [29] was that the resolution became questionable
after 55 periods. This resolution problem intensifies as

Mach number increases, and in a particular computation

may eventually manifest itself in negative values of some

of the thermodynamic quantities. This particular diffi-

culty does not arise for low-speed DNS. For compressible

flow the dilemma!s tha_t hi_hly-ac - curate centra)-difference

s.chemes do not have suffic!ent artificial viscosity to resolve
strong gradients at high Reynolds number, where_ c0n-

ventional upwind CFD schemes=are s0 dissipative that they
corrupt the delicate physics of transition. An encourag'

ing recent development is the work of Atkins [30], which
demonstrated good results for a compressible free shear

layer transition using a fifth-order ENO scheme.

The shape factor plot suggests that the simulation
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Figure 12: Experimental (top) [32] and DNS (bottom)

[25] visualizations of the rope-like structures in supersonic
transition.
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Figure 13: Evolution of turbulent kinetic energy and dis-

sipation for M_ = 4.5 cylinder subharmonic transition.

a promising candidate.

has proceeded almost completely through the transition

process• Figure 11 presents the spatially-reconstructed

streamwise velocity fluctuations, as represented by the

Reynolds-stress component rn = --_u'u _, from a Mach

6.8 cone simulation [29]. These exhibit the so-called "pre-
cursor transition effect", sketched in the cartoon in the top

part of the figure, whereby the transition originates near
the boundary-layer edge and gradually propagates toward

the wall. This same effect ispresent in the DNS. Flow-

field visualizations presented in Fig. 12 demonstrate the

presence in the Mach 4.5 cylinder DNS of the "rope-like

structures" that have been observed in numerous experi-

ments ([31],[32], [33]). One of the more significant conclu-

sions of [29] was that the rope-like structures are actually

manifestations of SIT and not LST, as had long been sus-
pected.

A last sample of results from this DNS is presented in

Fig. 13. It illustrates the evolution of the turbulent kinetic

energy, k, and the turbulent dissipation, e, through the

transition region. This kind of information, supplemented

by detailed information on the key terms in the evolution

equations for these quantities, has the potential to lead to

substantial improvements in two-equation models for tran-

sitional flow. However, DNS (particularly spatial DNS) is
so computationally intensive that a less drastic, but still

effective, tool for exploring the later stages of transition

would be quite desirable. The following section describes

7 Large-Eddy Simulation

In large-eddy simulation the small scales of the flow are
modeled in terms of the large-scale flow. The Reynolds-

averaged Navier-Stokes equations, in contrast, model the

higher-order moments in terms of the lower-order mo-
ments. In LES the flow variables are decomposed into

a large-scale (resolvable) component and a small-scale

(subgrid-scale) component. LES was originally developed

for turbulent flow (see [34] for a survey of the state-of-

the-art in LES), and, at least with the more established

subgrid-scale ($GS) models., some refinements have proven

necessary to handle transitional flow properly. In the tran-
sitional case one not only wants to have a model which

works well for the final turbulent state, but also one which

captures the primary, secondaxY and nonlinear stages cor-

rectly (without, for example, exerting excessive damping
of the instability waves), predicts well the location of tran-

sition onset, and makes good predictions from transition

onset through the transitional zone to the fully turbulent

state. Piomelli and co-workers ([35], [36], [37], [38]) have
led the effort to utilize DNS of transition to calibrate and

refine SGS models for this process. This work has to date

been confined to incompressible flow. In this section we
describe some recent developments for compressible tran-

sition modeling via LES.
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The large-scale field is defined by tile filtering operation:

Y(x) = f C,(x, x')f(x')fx', (9)

where the integral is extended over the entire spatial do-

main and G = G1G2Ga, where Gi(xi) is the filter func-
tion in the ith direction. For the velocity and tempera-

ture, Favre filtering is utilized: 2" = .T + 2"', where 2''

is the SGS part of 2- and the Favre filter is defined by

.T = p-'-f/-_. The sharp Fourier cutoff filter is chosen for

this work because of previous experience with this filter in

LES of incompressible transition ([35]).

The dimensionless governing equations for compressible

cg(_ak)= 0
a-7+ co----_-

co(_k_)_ _P +

LES are

CO(_k) O_z cor_z
cot + co.-----7- 0., + co%-7
ap

ak-z_-+ 7P_zk = M2PrRe COzk

7_Rel ,VI21OQkozk cop+ _+ + (7- 1)uk_x k - (7 - 1)ilk

7M:ff = P-'T. (10)

The SGS stress tensor rkl and the SGS heat flux Qk are

defined by_rkl = ---fi(fzkh, -- _tkfiz + u_ fit + u_hj:_+ u _ktq)' and

Q,. = -p(_ - _kT"+ ,17_ + _.--_' + ,i-Y').

There have been a number of SGS models proposed for

compressible/ES ([39],[40], [41],[42]). Two of these mod-

els have been applied to the Mach 4.5 transition problem
discussed in the preceeding section.

The first SGS model considered is the SEZHu model

derived by Speziale et al. [40] for compressible isotropic
turbulence. This model has been chosen because there

are now available some extensive a posteriori comparisons

of its performance on compressible, isotropic turbulence

Sk, = (COhk/COx,+ Ohl/coXk)./2 is the Favre-fihered rate-

of-strain tensor and II_ = S,=,,b_, is its second invariant.
Ca is the compressible Smagorinsky constant, Prr is the

turbulent Prandtl number, and A = (.Xx-kyAz) 1/3. The

function P is an intermittency-like term that turns itself

on slowly in the transitional zone [35]. Eq. (13) represents

a Van Driest wall damping and z + indicates a wall-normal
distance made dimensionless by the wall shear velocity and

kinematic viscosity.

The second SGS model considered here is the structure

function model [43], which is based on a physical space

implementation of the concept of spectral eddy viscosity.

Some results for this model have been reported for a spa-

tial LES of a Mach 5 boundary layer [41]. The structure
function model is of the following form for the SGS shear
stress and heat flux:

1 =,

(14)

CRZWFAz _2 (x, &z, &y, 07;
Q _ = P r T t ) -:_x , (15)

where

I

+ ilu(x, v, z, t) - u(x - Ax, y, .-,t)ll _

_(llu(_, v + ±v, z,t) - u(_, v, _,t)ll _+

+ llu(z,v,:,t)-u(z,y- ±y,z,t)llU)). (16)

Although neither Van Driest wall damping nor the inter-
mittency term were in the structure function model as

used in [41], they were added here as they seem to furnish
better results.

([44], [45]). Following the work of Piomelli et al. [46], only The structure-function SGS model was tested a poste-
the Smagorinsky portion of the SEZHu model is used with rior;b i _ an " h "'n " v" , "................... oth w tl d w_t out the , termtttenc_ fu..ctlon
the Fourier cutoff filter (This filter is applied in x and y, - .........• " and a comparison is given in Fig:14_for/he primary and

no filtering is applied in the inhomogeneous z direction.) secondary components. (In the latter case F = 1.) The
Hence, the SGS stress model is of the form

rkI = 2 CRI)F'p A2 IIlg/2 (Skl _Smrn_kl)

and the SGS heat flux is given by

CRDF'ff A ,II1/2 oqT

where

D=(l_e-*+/2s) a,

coefficients for these runs were Ca = 0.06, which is the

value recommended in [41], and PrT = 0.70. The LES
(11) used 104 grid points, two orders of magnitude fewer than

the DNS. The original structure function model is clearly

far too dissipative in the early stages, whereas the modi-

fied model agrees very well with the high-resolution DNS.

(12) In this respect these results are similar to those reported
in [35] for the original and modified Smagorinsky model

when applied to incompressible transition. The integral

properties are in quite good agreement with those of the
(13) high-resolution DNS up to T = 55; they are summarized

10
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in Figure 15. Note that tile computation reaches the fully

turbulent regime.

For the SEZHu model tile nominal coefficient is CR =

0.011 [44]. However, on the same grid as was used for

the previous LES computations this had to be increased

to Ca = 0.50 in order to compute all the way through

to turbulence. The reason for this is not entirely clear at

present. It might be that the larger value of the Smagorin-

sky constant serves to provide artificial viscosity needed to

stabilize the computation, or it might be due to the much

smaller length scales involved in second mode transition.

The later stages of the DNS suggest that for the turbulent

state the computational box, in wall units, was 240 in z

and 150 in y, as opposed to typical values from incom-

pressible flow of 2000 and 1000, respectively.

Kral & Zang [47] have performed some LES of a Mach

4.5 turbulent boundary layer with computational domains

closer to the standard incompressible sizes. Here they

found that reasonable results could be obtained with the

constants Ca closer to the accepted incompressible values.

It appears that application of the dynamic eddy viscosity

concept [37] to this problem would be quite fruitful.

The potential of LES for transition is that it permits

computations through the transitional zone at an order of

magnitude or more lesser expense than for DNS. A discus-

sion of what sort of information can be reliably provided

by LES and DNS is given in [48]. For incompressible flow,

demonstrations are needed for spatial transition; for corn-

pressible flow, the role of the SGS viscosity needs clarifi-

cation: To what extent is it furnishing artificial viscosity

rather than serving its intended purpose of modeling the

physics?

8 Prospects

The past several years have witnessed many exciting de-

velopments in transition research, particularly for com-

pressible flow, that make an absolute amplitude criterion

for prediction of transition onset a tantalizing prospect.

Many of the components of such a methodology have been

discussed in this paper. LST technology is virtually com-

plete for real configurations. SIT is likely to be absorbed

within PSE. The scope of PSE needs to be vastly increased

and it would greatly benefit from a firmer mathemati-

cal foundation. DNS will no doubt undergo algorithmic

improvements and take advantage of increased computa-

tional power. LES will likely evolve through several gen-

erations of SGS model improvements.

The philosophy, not only for transition prediction, but

also for basic research into transition physics, ought to be

to apply to each stage of transition or to each physical

problem the most economical and revealing method in the

transition prediction toolkit.
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