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Abstract

The eN-method 15 employed with the spatial
amplification theory to compute the onset of tran-
sition on a swept wing tested in transonic cryo-
genic flow conditions. Two separate eigenvalue
formulations are used. One uses the saddle-point
method and the other assumes that the-ampiification
vector s normal to the leading edge. Comparisons
of calculated results with experimental data show
that both formulations give similar results and
indicate that the wall temperature has a rather
strong effect on the value of the n factor.

1. Introduction

In the absence of lYeading-edge contamination
and GOrtier instability, 1t is well known that
transition on swept wings may occur either due to
streamwise instability (related to the properties
of the streamwise velocity profile u) or cross-
flow instability (related to the properties of the
cross-flow velocity profile w). Since the
u-profiles look 1ike Falkner-Skan profiles, the
streamwise 1instability 1s similar to that of a
two-dimensional flow and leads to turbulence in
flows with positive pressure gradient. On the
other hand, the development of a cross-flow pro-
file s characterized by an inflectional instabil-
ity that can induce transition in flows with a
negative pressure gradient.

In order to design new aircraft wings, one must
be able to predict transition on swept wings. The
most popular method for predicting transition 1is
the el-method, which uzf initially developed for
two-dimensional flows'+2. This method is based
on the solution of the Orr-Sommerfeld equation
using either temporal or spatial ampiification
theory. In either approach the integrated ampli-
fication rates A/Ap of the unstable frequencles
are determined, and transition 1s computed on the
assumption that 1t occurs when the ratio A/A, of
the locally most unstable wave reaches a critical
value e", with n between 8 and 10 for a low dis-
turbance environment.

In the extension of this method to three-
dimensional flows, both temporal and spatial
ampiification theories can again be used. In the
former case, the eigenvalue problem involves five
scalars a, B, wp, wjy and R and in the latter case
it involves six scalars ap, a4, By, By, w and R.
In both approaches, the solution procedure s con-
siderably more difficult than 1ts counterpart 1in
two-dimensional flows because the nontrivial solu-
tion of the linear stability equations in three-
dimensional flows provides only two relations

between the eigenvalues a, B, w and R. To predict
transition for example, in spatial amplification
theory, w and R are prescribed, so two new rela-
tions between o and B are required before the solu-
tion of the 1inear stability equations can be
obtained.

To date, most problems of the three-dimensional
transition problems employing linear stability
theory have been treated by using the temporal
theory. When R and w, are specified, the values of
a and wy are not unique, since they both are func-
tions of B [a = a(B) and wy = wy(B)]. A possible
solution is to determine the wave number direction
v = tan-1(B/a) for which wy 1s maximum and inte-
grate wy along the group velocity direction accord-
ing to Gaster's transformation®. This "envelope
method® is one of the aqProaches used in the COSAL
code developed by Malik.

In spatial theory, the introduction of an addi-
tional scalar in the dispersion relation makes the
problem more difficult: the amplification rate vec-
tor is no longer a scalar; it is a function of
both «4 and By. As a result, a new relation 1is
needed ]n the elgenvalue formulation.

In this paper we consider two completely dif-
ferent eigenvalue formulations and compare their
predictions with measurements. The first formula-
tion is based on the wave packet theory (saddle-
point method) and the second is based gn the as-
sumption that the amplification vector is normal
to the wing leading edge. The experimental data
correspond to measurements obtained at ONERA/CERT
for a transonic swept wing. The tests have been
conducted in a cryogenic wind tunnel at very low
stagnation temperatures.

The following section describes the calcula-
tion method employing both eigenvalue formulations.
Results are presented in the third section and the
predictions of both methods are compared with mea-
surements. The paper ends with a summary of the
more important conclusions.

2.0 Description of the Computational Methods

The compressible stability equations and their
boundary conditions are well known and are given
in several references, see for example Ref. 4.
With the parallel flow approximation, they can be
written in the following dimensionless form:

Continuity:

1(au + Bw - wW)p + p[%% + 1(au + BW)) + %3 ; =0
(1)
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The above equations can be expressed as a first-
order system by defining the folliowing new vari-

ables with primes denoting differentiation with
respect to vy,
0 " - o " - . . 2=
Z, = au ¢ Bw, 7, =au' ¢ Bw', 7, = v, 7, yﬂz
e

- a L] a

g = T, o = T, Z, = oW - Bu, za = a;' - aﬁ'
(n
In terms of these new vartables, Egs. (1) to (6),

for a three-dimensional compressible flow can be
written as R -

' =Bz (8)

where Z = (21, z and B 1s a 8 x 8
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with 1ts nonzero elements given in Appendix 1.
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The solution of Eq.
conditions given by

(8) subject to the boundary

y =0, 7, =23 =25 =12y = 0

(10)
y+®, 2,23, 25, 23+ 0
can be obtained with two separate eigenvalue formu-
lations as described in the following two subsec-
tions, 2.1 and 2.2.

2.1 Eigenvalue Formulation ed _on the Direction
of the Amplification Vector {ONERA/CERT Method)

The basic ;umption of this method, first
proposed by Mack,’ 1s that on a wing with x and
z denoting the coord1nates normal to the leading
edge and spanwise direction, amplification only
occurs in the x-direction and not in the spanw\se
direction; that is,

. By = 0 (11)
This assumption, formulated for an infinite swept
~wing, reduces the number of unknown eigenvalues in
the spatial theory from six to five. With w and
R given in the transition prediction problem, the
unknown eigenvalues correspond to a4, ar and Bp.
For an assumed B,, the wave number o is then calcu-
lated so that the amplification rate a3 can be
determined. Additional calculations are lhen per-
formed for different values of B, in order to
determine the maximum ampiification rate. This
procedure, as in the saddle-point method, 1is
repeated for each x-station and the n- factor in
the eM-method 15 calculated from

n"I (51)
0

max (12)

for different specified frequencies. Here x4
corresponds to the x-station where the stability
calculations are initiated. Transition 1s assumed
to occur for the frequency for which the locally
most wunstable disturbance reaches a value of n
between 8 and 10.

2.2 envalue Formulation sed on ddle-
Point Method (CSC Method)
The Cebeci-Stewartson-Chen (CSC) method was

first proposed and used by Cebeci and Stewartson
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and 1s described in some detall in Ref. 7. In this
method the relationship between the two wave num-
bers a and 8 1s not assumed but computed from the
requirement that 2a/3B 1s real. According to this
requirement, the wave orientation and growth direc-
tion of the disturbance are given by

= -tany = - f (13)

da
(3B)u,R
where vy denotes the angle that the disturbance
makes with the x-axis, a« and B are related by
Eq. (13) and the disturbance propagating along the
ray is given by the two terms on the right-hand
side of Eq. (13). The disturbances are damped if
the amplification rate r defined by
da
r=a, - B1 (aB)u.R (14)
1s > 0, neutral if T = 0, and amplified if r < 0.
Once o and B are computed with the constraints of
£Eq. (13), the ampliification rate 3is obtained from
Eq. (14); additional calculations are then made for
different values of 23a/3f 50 that new values of a
and B are calculated to determine the maximum value

of I'. Further detalls of the solution procedure
are given in Ref. 8.

Resylts and Discussion
Experimental Conditions

The experimental data used in our studies cor-
respond to laminar flow on a 15-degree swept
tapered wing. The chord is 0.228m at the root and
0.145m at the tip. The wing has a span of 0.39m
with an AS409 cross-section and a tratling-edge
sweep angle of three degrees. The height of the
hollows on the wing s less than 0.05 mm (from
peak to valley) for a chordwise extent of about 2
cm. In order to avoid the need to perform full
three-dimensional stability/transition calcula-
tions, the measurements discussed in Ref. 9 and
summarized in Ref. 10, were carrifed out under
infinite swept conditions with the wing having a
mean sweep angle of 12 degrees at an angle of
attack of 0.3 degrees. The computations were made
at a mean chord of 0.186m.

3.0
3a

Figure 1 shows the Mach number distributions
measured at different Reynolds numbers for a free-
stream Mach number of 0.74 at two stagnation pres-
sures. As can be seen,-the Mach number distribu-
tion has "bumps"® around x/c = 0.3 and 0.47 caused
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by small hollows in the model. On the lower sur-
face, a smooth bend around x/c = 0.20 is visible.
These discontinuities are common for all experi-
ments and their effects on transition were part of
_the investigation conducted and discussed in detall
in Ref. 10.

Figure 2 shows the variation of the experi-
mental wall temperature distributions along the
chord. Each distribution s referenced to its
temperature, T4,, measured at the first thermo-
couple in the flow direction. The maximum relative
difference between the wail and freestream temper-
ature is 5 degrees, which indicates that the Influ-
ence of a nonadiabatic wall on transition must be
considered. This includes the relative undulation
as well as the absolute wall temperature.

Figure 3 shows the variation of the drag coef-
ficient with Reynolds numbers at three stagnation
pressures and several stagnation températures.
Since the drag coefficient increases significantly
for a turbulent boundary layer, 1t can be used as
an indicator of transition. The evolution of (4
was measured in the cryogenic, transonic wind tun-
nel, T2, at ONERA/CERT for different stagnation
pressures (1.7 to 2.5 bars) and different stagna-

tion temperatures (between 165 and 109K). The val- _

ues of Cq were obtained from wake measurements.

In the present study we consider two runs cor-
responding to 42 and 79, with Run 42 having a
stagnation temperature of 145K and a stagnation
pressure of 2.0 bar. The influence of higher temp-
erature at a higher pressure is examined with run
79, which has a stagnation temperature of 165K and
a stagnation pressure of 2.5 bar. 1In both cases
we calculate only the upper surface of the wing.
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Additional studies are in progress for run 60,
which has a stagnation temperature of 134K, and a
stagnation pressure of 2.0 bar. These studies will
be reported separately. '

Figure 4 shows the experimental transition
locations for runs 42 and 60. The location of
transition was determined from the change of the
wall temperature measured by thermocouples, along
the chord, resulting from the different heat
fluxes for laminar and turbulent flow. For run
79, the Tocation of transition was assumed to be
the same as that of run 42 because of the similar
drag coefficient and Reynolds number (Fig. 3).
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3.2 Calculations with the ONERA/CERT Method

A detalled discussion of the calculations for
the experimental work described in the previous
subsection s presented in Ref. 10. In this
subsection we present results for runs 42 and 79
for Mach number distributions containing “"bumps®
around x/c = 0.3 and 0.47 caused by small
hollows 1in the model and compare them with the
calculations employing the CSULB method in subsec-
tion 3.3. Studies are in progress for Mach number

distributions without bumps and will be reported

separately.

The boundary-layer and stability calculations
for run 42 were performed for an adiabatic wall
and specified wall temperature distributions at a
Reynolds number of 12.8 x 106, Figure 5 shows
the predictions of the ONERA/CERT method for the

adiabatic wall case together with the measured Hg,cjl;,,
number distribution (Fig. 5a) used in the boundary-

layer calculattons for a stagnation temperature of
145K and a stagnation pressure of 2.0 bar. Accord-

ing to Fig. 4, the location of transition corres-
ponds to x/c = 0.47.

The calculated n-factors shown in Fig. 5b were

obtained for seven frequencies which can be

classified in three groups: (1) the high ones from
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15 to 30 kHz, (2) the range from 9 to 15 kHz, and
(3) the Tow ones from 2 to 9 kHz. Beginning with
high frequencles, the calculations indicate rather
strong undulations of n-and of the wave directions
*T {Fig. 5c¢) along the chord. The undulations

n increase with frequency and show a strong
dependence on the pressure gradient. Excluding
the region of high rise of My (x/c = 0 to 0.06,
the following mechanism can be observed. A rela-
tive Tow pressure gradient has a stabilizing
effect, whereas a higher, even positive pressure
gradient 1s destabilizing. This effect becomes
more and more distinct with increasing x/c. Look-
ing, for example, at the n-curve with frequency
30770 Hz, we can see that the relative low pressure
gradient between x/¢ = 0.06 and 0.2 leads to an
almost constant n. The increase of dp/dx between
0.2 and 0.3 leads to a strong rise of n. The
steeper Mach number distribution from x/c = 0.3
to 0.41 leads to a restabilization. The process
is repeated as the pressure gradient chandes again
significantly at x/c = 0.41 and 0.47.

Figure 6 shows the vartation of the computed n
values obtained for seven freguencies at the mea-
sured transition location of x/c = 0.47. The max-
jmum value of n is around 4.B for a freguency of
approximately 25 kHz. The computed value of n for
transition 31s much lower than the value of n for
this cryogenic wind tunnel T2 of CERT which has a
freestream turbulence level of about 0.2% and a
transition value of n between 7 and 8 based on
experiments performed at ambient flow conditions.

34
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Fig. 6. Vvariation of n as a function of frequency

at the transition point x/c = 0.47.

To 1nvestigate the influence of wall temper-
ature on the stability calculations, the following
studies were conducted for specified wall temper-
ature distributions. Figure 7 shows that the
experimental wall temperature is higher than the
adiabatic wall temperature and varies more along
the chord. Since a higher wall temperature makes
the boundary layer more unstable, it is plausible
to assume that the stability calculations will
yield higher values of n than those corresponding
to adiabatic wall temperatures. = _

figure B8 shows the computed results for the
same two high and low frequencies studies previ-
ously. The characteristic shape of the curves has
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Fig. 7. Comparison of measured and adiabatic wall
temperature distributions along x/c.
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not changed and the previously discussed mechanisms s L
for the adiabatic wall temperature calculations are e 0770 H:
sti11 valid. However, in direct comparison with — {24389 H2
the adiabatic case, it can be observed that the —— 18462 H2
results with high frequency (Fig. 9a) show a € 1
remarkably higher n distribution for x/c greater —o—— (=13538H:
than 0.17 for the case of the experimental temper- n —— (921 H2 bood #
ature distribution while the n curves for the lower —— 9D H2 o ‘/,
frequencies are almost similar (see Fig. 9b). The 44 _,/
vy distributions for either case (see Fig. 10)
sﬂow that the most unstable directions are finde- ]
pendent of the wall temperature.

Figures 11 to 13 show the results for run 79 24
at a chord Reynolds number of 13.4 x 105, This
case essentially has the same drag coefficient and
Reynolds number as run 42. For this reason we
assume the location of transition to be at x/¢c = 0 - 1
0.47. 0,0 0.1 0.2 0.3 0.4 0.5 0.8 0.7

: : o x/c

Figure 11 shows the calculated n-factor dis-  Fig. 11, Distribution of computed n Factors for
tribution for an adiabatic wall temperature dis- adlabatic wall conditions in run 79.
tribution and Fig. 12 shows the comparison of the
n-factor distributions for adiabatic and experi- 42, the measured wall temperatures lead to higher

mental wall temperature distributions. As shown values of n than those obtained with adiabatic wall
in Fig. 13, the temperature differences between conditions. It can also be seen that, while the
adiabatic and measured wall temperatures for this value of n at transition location, x/c = 0.47, 1is
run is weaker than for run 42. As a result, the slightly over 7 for calculations performed with a
distribution of n factors for both cases do not measured wall temperature distribution, it 1is
differ much from each other although, as in run around 6.3 for adiabatic wall conditions.
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“We note from the above results that near the

leading edge (x/c < 0.10), all the unstable fre-
quencies are of the crossflow type. Further down-
stream, the most unstable direction of the high
frequencies decreases, leading to a more or less
streamwise instability. It s interesting to note
that this streamwise instability is very sensitive
to small Mach number variations {hollows) as well
as to the wall temperature. By contrast, the most
unstable direction of the low frequencies remains
close to 90°: they correspond to a crossflow insta-
bi14ty which does not "see* the hollows (the evolu-
tion of the n-factor is monotonic). This instabil-
1ty is also not sensitive to the wall temperature
variations. This is due to the fact that it 1s an
*inflectional® instability governed by an inflec-
tion point located near the outer edge of the

boundary layer.

3.3 Calculations with the CSC Method

A detailed descr\pfﬂoh of the stab111£y caicu-
lations for runs 42 and 79 are given 1n the previ-
ous section for the upper surface of the AS 409

wing. Similar detalled calculations have also been
performed for the same runs, including run 60,
using the CSC method described in subsection 2.2
and will be reported separately. In this subsec-
tion we shall present a summary of the predictions
of the saddle-point method of Cebec! and Stewartson
for the same runs, 42 and 79, by showing the dis-
tribution of n factors at several fregquencies. We
shall also present and discuss the procedure of
determining the frequencies used in the calculation
of amplification rates, which is different than any
other method which employs a combination of linear
stabi1ity theory and efi-method to predict tran-
sition. 1In fact, the studies conducted with this
method for incompressible flows on wings and bodies
of revolution and recent studies in compressible
flows over modern transport and military wings show
that the calculation of the critical frequencies
is the most important aspect of the transition pre-
diction procedure using stability theory. The
critical frequencies originate in a very narrow
regions and require care and patience to compute
their magnitudes and locations.

The frequencies needed in transition calcula-
tions are computed from zarfs recommended by Cebeci
and Stewartson. They essentially correspond to
neutral stability curves in three-dimensional flows
and have the following properties,

da
8 " real (15)

G1=B1I0,
In the saddle-point method, for given velocity
profiles obtained with the infinite-swept boundary-
layer method of Cebeci, the stability calculations
begin on the zarf where, with R known and oy, By
zero, the eigenvalue problem consists of calculat-
ing oy, By and w with the requirement given by Eq.
(13). With the eigenvalues and disturbance angle
v of the zarf known at a specified x/c-location
and with dimensional frequency specified, the calc-
ulations at the following x/c-station are performed
to obtain o« and 8 again with the reguirement that
da/3B 1s real. This eigenvalue procedure is then
repeated for different values of 3a/ap or y to find
the value of y for which r 1s maximum at each x/c-

station. This process is repeated for each x/c-
station, and n 1s calculated by evaluating the
integral
X
n=- | rdx (16)
*o

Figure 14 shows the zarfs for run 42 for an
adiabatic wall and measured wall temperature dis-
tributions. As can be seen, the frequencies orig-
inate at nearly the same location {on a vertical
1ine) and vary drastically one from another. Their
calculation requires care and patience. A paper in
preparation will discuss our procedure for generat-
ing them. :

Figure 15 shows the computed n factors for the
zarfs of Fig. 14. The results show that for adi-
abatic wall conditions, the maximum value of n for
experimental transition location is around 6.3; the
corresponding value for the measured wall temper-
ature Vs 7.3. What is more important, however, is
the fact that 1n the latter case, the computed
transition location agrees very well with the
observed location considering that the n-valuve for
transition in this tunnel lies between 7 and 8.

m—— e Al
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Figure 16 shows the zarfs for run 79 with wall
conditions corresponding to adiabatic temperature
and fig. 17 shows a comparison between the zarfs
obtained under adiabatic and measured wall temper-
ature conditions. Again the steep rise in frequen-
cles at almost one x/c-location is noted. The zarf
calculations were performed for a very fine x/c-
grid, since most of the frequencies 3}art their
amplification in an interval of 171000tP  of chord
around 0.015. Figure 16 also shows zarfs away from
the leading ed%f. These zarfs have low values of
By around 10°¢, occur in an almost zero pressure

gradient region and do not lead to amplification

rates that grow significantly.

Figure 18 shows the computed n factors for run
79 with stabli1ity calculations performed for zarfs
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Zarfs for run 42 for (a) adiabatic and (b) measured wall temperature distributions.

3

0 0.10 0.20 0.30 0.40 0.50

x/c

(b)

Computed n-factors for run 42 for (a) adiabatic and (b) measured wall temperature distributions.

in Fig. 17 under adiabatic and measured wall temp-
erature conditions. For this flow, the n-value is
much higher than those in run 42. For an adia-
batic wall, it reaches a maximum value of around 8
and a value of around 9 for the measured wall temp-
erature case. 1If we take the n value to be 7.5, a
mid-n value of the expected n-value range for this
wind tunnel, then transition occurs at x/c = 0.46
for adiabatic wall conditions and x/c = 0.47 for
measured wall temperature conditions. This com-
pares well with inferred transition location of
x/¢ = 0.47,

~~ Figures 19 and 20 show a comparison between the
calculated n-factors obtained with both methods,
with results of CSC corresponding only to the
disturbance that leads to transition. As can be
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distribut
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for x/c around 0.45,

seen, the ca1cﬁlations with
the CSC method 1indicate higher values of the
n-factor. The calculations with the ONERA/CERT

method correlate the data with n between 6.5 and 7
while those of CSC with n between 7 and 8.

10

1ons in run 42.

4.0 Concluding Regg §

Based on the studies reported here and in Refs.
9 and 10, the following two comments can be made.
First, rather crude assumptions have been made in

1]
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the computations (infinite swept wing assumption
with a mean sweep angle and a mean chord). Second,
it is possible that cryogenic conditions (tempera-
ture fluctuations) degrade the flow quality. This
could explain the reason why the ONERA/CERT method
calculates n-factors somewhat lower than those com-
puted for ambient temperature with the same stabtil-
ity code. For stagnation temperatures lower than
those considered in the paper, ice crystals appear
on the model and trigger transition.
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