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Abstract

A compressible near-wall two-equation model is derived
by relaxing the assumption of dynamical field similarity berween
compressible and incompressible flows. This requires
justifications for extending the incompressible models to
compressible flows and the formulation of the turbulent kinetic
energy equation in a form similar to its incompressible
counterpart. As a result, the compressible dissipation function
has to be split into a solenoidal part, which is not sensive to
changes of compressibility indicators, and a dilatational pan,
which is directly affected by these changes. This approach
isolates terms with explicit dependence on compressibility so
that they can be modeled accordingly. An equation that governs
the transport of the solenoidal dissipation rate with additonal
terms that are explicitly dependent on compressibility effects is
derived similarly. A model with an explicit dependence on the
turbulent Mach number is proposed for the dilatational
dissipation rate. Thus formulated, all near-wall incompressible
flow models could be expressed in terms of the solenoidal
dissipation rate and straight-forwardly extended to compressible
flows. Therefore, the incompressible equations are recovered
correctly in the limit of constant density. The two-equation
model and the assumption of constant wrbuient Prandtl number
are used to calculate compressible boundary layers on a flat plate
with different wall thermal boundary conditions and free-stream
Mach numbers. The calculated results, including the near-wall
distributions of turbulence statistics and their limiting behavior,
are in good agreement with measurements. In particular, the
near-wall asymptotic properties are found to be consistent with
incompressible behavior; thus suggesting that urbulent flows in
the viscous sublayer are not much affected by compressibility
effects.

1._Introduction

Density variation in a turbulent flow can come from
different sources. Some of these are: (i) isothermal mixing of
gases of different density, (ii) strong temperature gradient in a
homogeneous fluid, (iii) reactive flows and (iv) compressibility
effects in high speed flows. Each of these sources gives rise to
specific aspects that require modeling if the governing equations
are 10 be solved. This study makes an attempt 1o address the last
source; that is, the modeling of high speed compressible
turbulent flows.

Most studies on compressible turbulent flow modeling
[1-9] invoke the Morkovin postulate [10] to justify the direct
extension of the incompressible models to compressible flows.
The postulate was formulated based on early experiments on
compressible boundary layers along adiabatic walls and
compressible wakes, and essentially suggested that the
dynamical field in a compressible flow behaves like an
incompressible one. This postulate was used by numerous
rescarchers to assure that compressibility effects can be
accounted for directly by the variable mean density in the
governing equations alone. In other words, the influences of
fluctuating density on turbulence mixing are essentially assumed
to be negligible. The validity and extent of Morkovin's postulate
were reviewed by Bradshaw [2] and he noted that the postulate
is appropriate for flows where density fluctuations are moderate,
Therefore, the postulate is not valid for hypersonic boundary
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Therefore, the postulate is not valid for hypersonic boundary

layers, where the Mach number is five or greater, and for flows/

with strong pressure gradient effects, such as shock-turbulent-
boundary-layer interactions. The latter point was confirmed by
the studies of Wilcox and Alber [1] and Bradshaw [11] and led
to proposals to have the effects of pressure-dilatation correlation
modeled in the governing equations [12]. A more recent study
where density fluctuations are also considered has been given by
Speziale and Sarkar [13]. Besides these modifications, all
turbulent compressible flow modeling rely on incompressible
models.

Two sources of difficulties arise when incompressible
turbulence models are extended to compressible flows. One is
due to compressibility itself and another is associated with the
turbulence phenomena. In compressible flows, the governing
equations are coupled and temperature cannot be considered as a
passive scalar. As a result, all other thermodynamic variables
adopt new roles. Therefore, mathematically, compressible
flows cannot be considered as straightforward extension of
incompressible flows. Furthermore, pressure is only a force
term in incompressible flows and all disturbances propagate at
infinite speed. On the other hand, pressure also supports finite
velocity propagation of disturbances in compressible flows.
Other complications come from the variable mean density, which
contributes to increased non-linearity of the governing
equations, and the fluctuating density, which causes the closure
problem to become more difficult.

The second source of difficulties has to do with
turbulence mixing. Here, even for incompressible flows, many
problems remain to be resolved [14-17), especially when the
flow is unstcady and/or three-dimensional [18]). However,
among the many problems associated with turbulence modeling,
one stands out as most fundamental and urgently needs
attention. This is the treatment of the near-wall flow [17].
Conventional approach is to invoke the wall function
assumptions; thus implying that near-wall turbulence is in local
equilibrium. Even for simple wall shear flows, the assumption
is not quite valid because near-wall turbulence is not in local
equilibrium. Consequently, a low-Reynolds-number treatment
is necessary in order to obtain results that agree with
measurements in the near-wall region [17, 19-21]. The need for
near-wall treatment of flows with heat and mass transfer has also
been pointed out [22-25]. This problem is expected to be more
acute in compressible flow modeling [13] where the non-
linearity of the governing equations are further compounded by
the variable mean density.

The present objective is to model near-wall compressible
turbulent flows where the coupling between velocity and
temperature cannot be ignored. As a first attempt, only the
modeling of the turbulent kinetic energy and its dissipation-rate
equations is considered. With the assumption of gradient
transport, the two-equation model could be used to effect closure
of the mean flow equations. Since the transport equations for
the heat fluxes and the temperature dissipation rate are not
modeled and solved, a constant turbulent Prandtl number is
invoked to relate the heat fluxes to the momentum fluxes. In
view of this assumption, the present approach only addresses
the issue of compressibility effects on turbulent mixing and not
on heat transfer and its interaction with turbulence. An attempt
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on this latter problem will be made after the present model has
been validated.

~ With the availability of near-wall models for temperature
variance and its dissipation rate [24], heat fluxes [25],
Reynolds-stresses [26] and the dissipation rate of the wrbulent
kinetic energy [27], the time is now ripe for their extension to
compressible flows. In order to consider the effects of variable
mean density and its fluctuation on turbulence mixing, it is
necessary to analyse the exact equations and propose appropriate
models to effect closure. Two approaches are available. One is
to propose totally new models for the terms in the compressible
equations, while another is to attempt to extend the
incompressible models to compressible flows in a credible way.
Both approaches involve assumptions that could or could not be
verified experimentally. Since the present knowledge of
incompressible flow modeling is quite marure, as a first attempt,
it is expedient to extend these models to compressible flows.
This can be accomplished by recasting the compressible
equations in forms similar to their incompressible counterparts
so that terms with explicit dependence on compressibility effects
can be isolated separately, and the incompressible limit can be
recovered in a straight forward and correct manner.

Since the mrbulent kinetic energy equation or k-equation
is obtained by contracting the Reynolds-stress equations, this
means that the recasting of the Reynolds-stess equations should
be attempted first. In other words, the viscous diffusion and
dissipation terms in the Reynolds-stress equations have to be
similarly defined as their incompressible counterparts. This
suggests splitting the viscous dissipation function into a

- solenoidal part, which is not sensitive to changes of
compressibility indicators, and a dilaational part, which is
directly affected by these changes28. When the Reynolds-stress
equations are written in this form, three additional terms that
depend explicitly on compressibility effects are present. The k-
equation is then obtained by contracting the Reynolds-stress
equations and its incompressible counterpart is recovered
correctly when density becomes constant and the additional
terms vanish identically. An equation that governs the transport

of the solenoidal dissipation rate (€) of the turbulent kinetic
energy (k) is derived and modeled along the line suggested
above. Again, additional terms that depend explicitly on
compressibility effects appear in the equation. This equation
also reduces correctly to its modeled incompressible counterpart
because the additional terms vanish for constant density flows.

All models proposed for the k and € equations are expressed in
terms of this solenoidal dissipation rate. A model with explicit
dependence on the turbulent Mach number proposed by Sarkar
et al. [28] for the dilatational dissipation is adopted. Thus
formulated, the two-equation model is valid for compressibic
flows and approaches its incompressible limit in a straight

forward and correct manner.

The systematic approach described above, if proven
successful, could be used to extend incompressible near-wall
models for heat-fluxes, temperature variance and its dissipation
rate to compressible flows. A set of equations governing the
transport of incompressible heat fluxes has been proposed and
validated against simple flows with heat ransfer [25], while a
similar set of equations for the temperature variance and its
dissipation rate [24] has also been validated against boundary-
layer flows. This means that near-wall heat transfer models
could also be extended to compressible flows using the approach
proposed above. However, before this extension is undertaken,
the asymptotic consistency of these models has to be verified.
Until such time, the assumption of a constant turbulent Prandtl
number for near-wall compressible flow is inevitable.

In the following, the compressible equations are first

derived, then the near-wall modeling of the k and € equations are
discussed. In section 6, the two-equation model is used to
calculate compressible boundary layers on a flat plate assuming a
constant turbulent Prandtl number. Comparisons with
measurements [9, 29-31] and other calculations, such as those
obtained using the k- model of Wilcox [8], are carried out to
assess the importance of density fluctuadons on the calculated
results and, hence, the validity and extent of Morkovin's
hypothesis.

3. Mean Flow Equations
The compressible mean flow equations are obtained by

applying Favre averaging to the instantaneous Navier-Stokes
equations which for Newtonian fluids can be written as:
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u; is the ith component of the velocity vector, x; is the ith
component of the coordinates and p, T, p, W, X, C,, are
pressure, temperature, density, viscosity, thermal conductivity
and specific heat at constant pressure, respectively. Favre
decomposition is applied to all variables except p and p where
con\éentional Reynolds decomposition is assumed. In other
words

= (U +u (5)
T=(8)+6" , (6)
p=P+p . ¥
p=T 0, ®)

where u, and 6" are the Favre fluctuations and p” and p” are the
Rcynolds fluctuations. If <> is used to denote Favre-averaged
quantities and the overbar the Reynolds-averaged quantities,
then the mean equations for compressible flows can be obtained

as follows. The above decompositions (5)-(8) are substituted
into (1)-(4) and the resultant equations are averaged over time.
If the wurbulent flow is further assumed to be stationary and the
mean momentum equafiqn and the Reynolds-stress and turbulent
kinetic energy, k = >(u;u, ), equations to be derived later are used
to simplify the therfhal energy equation, the turbulent mean flow

equations become
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In these equations, p =T, X =X and C, = Cp have been
substituted and the mean and fluctuating stresses are given by
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The quantity, C, O+ —(Uk)(Uk) + k, is the mean total enthalpy
(H). Thus wnncn (3) (11) reduce to their incompressible

coumerpans exactly when density becomes constant.

An order-of-magnitude analysis is carried out on (9) -
(11). The result shows that the underlined terms are of smaller
order and, as a first approximation, could be neglected compared
to the terms retained. Thus formulated, the compressible
equations are identical to the incompressible equations and the
additional unknowns are the turbulent momentum and heat
fluxes, just as in the incompressible case. The present approach
proposes to close these equations assuming gradient transport.

As a first attempt, a near-wall two-equation k-€ model is used to
determine the turbulent viscosity and a constant turbulent Prandtl
number is invoked to relate turbulent momentum and heat
fluxes. Therefore, the present model cannot fully account for
the effects of density fluctuation on turbulent heat ransfer.

4 ling of

The Favre-averaged transport equation for the Reynolds

stresses p(uu)could be similarly derived as in the

incompressible case [16]. That is, the ith fluctuating velocity
equation is obtained by subtracting the mean momentum
equation from the instantaneous equation. Repeat the same
procedure to obtain the jth fluctuating velocity equation. The ith
fluctuating velocity equation is then multiplied by the jth
fluctuation velocity and vice versa and the two equations are
added together and averaged over time. Omitting all the algebra,
the final exact equation is:
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Symbolically, the above equarion can be written as
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Cij=Dij+D;‘P%j*‘bij‘*Pij*’Gij*Tij . (13)

With the exception of Gj; and T,, (13) is similar to its
compressible counterpart &6] For an incompressible flow,
u, =0,and G;j=Tj; = 0. Even under this condition, (13) fails
16 reduce pmpcrly lo the incompressible equation given in Ref.

; _The reason lies in the grouping of the terms
f pelJ + (b:) In order 10 achieve this incompressible limit

correctly, a re-arranging of the terms in (D - e + QP ) is
necessary. If viscous diffusion and dzssxpauon in cor’hprcsmblc

flows are again defined similarly to their incompressible
counterparts, or
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then the terms( ps‘J + d),J) can be re-arranged to give
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Note that (16) reduces to its incompressible counterpart exactly
when constant fluid propemes are assumed. For compressible
flows, an extra term P& j appears in (16). In addition, three
additional terms are found'in @". The term P &;; is a dilatational
term and could be mtcrprctccf as compressible or dilatational
dissipation. This term is only important for compressible flows.

It should be pointed out that d> is given by (17b) and, as
a result of this particular pamuomng. there are several extra
terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional arguments
reveal that these exwra contributions are not. important. If
pressure diffusion is further neglected, then Dj;, p g and Q;;
would assume the same form as their mcomprcssxblc
counterparts.  Therefore, the high-Reynolds-number
incompressible models proposed for these terms [16, 32] could
be straight-forwardly extended to compressible flows
However, a model for the compressible dissipation term P &;; j is



required to complete closure. For high-Reynolds-number
flows, this compressible dissipation could be assumed to be
isotropic. As a result, the following model is proposed:

€ =48 €
ij 3 1) (18)
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where ¢° 3 5%,

The modeling of €° has been attempted by Sarkar et al.
[28]. They are the first to realize that the contribution of the
dilatational dissipation term is important for supersonic shear
flows. A simple algebraic model, which is based on an
asymptotic analysis and a direct numerical simuladon of the
simplified govemning equations, has been proposed for €°. Their
proposal could be modified to become

e =oM%k | (19)
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where o is a model constam.M12=2k/? 2 pe=p a—x: is the

dissipation of k and T is the local mean speed of sound.
Therefore, M, is the local turbulent Mach number. It should be
pointed out that Sarkar et al.'s (28] definition of €° is four times
larger than the definition given in (19) as a result of a different
splitting of the terms in (16). Consequently, should take on
a value equal to 1/4 of that suggested in Ref. 28. Based on an
analysis of decay of compressible isotropic turbulence, Sarkar et
al. [28] suggested a value of one for their constant. In other
words, o) = 0.25. If o is evaluated based on compressible
shear flows, its value would be 0.15. The present study adop

@y =0.15 for the analyses of boundary-layer flows.
The k-equation is obtéincd by contracting (12) and

making use of (16) and (18) to simplify the resulting equation
which can be written as:

DK I, l.e 1— 1
£ =Dy + Dj +7Pi + 3®ii- 7P &ii - 3P i

+ %G + ‘_l)"Tii - (20)

It can be segn that the terms, D}, @ j; and P €;;, and the
coefficient, u., appearing in Gj; and Tj; require modeling.
Furthermore, When p is assumed to be constant andu, = 0, the
last three terms in (20) are identically zero and the
in%omprcssiblc equation is recovered exactly. The 'modclmg of
, ;; and P &;; could be accomplished by drawing parallels
with their incompressible counterparts (26, 27]. However, this
requires knowledge of their behavior in the near-wall region.

The near-wall behavior of (20) can be analysed by
assuming Taylor series expansions about the wall for the
fluctuating quantities.  This analysis is similar to the
incompressible case {26] except that expansions also have to be
assumed for p’ and 6 . The proposed expansions are:

u"=aly+a2y2+...,
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It should be cautioned that, although the velocity and
temperature expansions are physically correct, the expansion for
density is an assumption. As pointed out by Bradshaw [11], the
fluctuating temperature and density could not go to zero
simultaneously at the wall. Otherwise, it would lead to a zero
wall p’. In general, temperature fluctuation is assumed to be
zero at the wall, while p’ is not. Here, the assumption is made
that p’ also goes 10 zero at the wall, however, its value away
from the wall is finite. Since p’ is taken to be essentially zero
over the whole field in Morkovin's hypothesis [10], the present
approach could be viewed as a partial relaxation of that
assumption. Consequently, :he proposed model would not be
valid for all free-stream Mach number and wall thermal
boundary conditions. Therefore, one of the present objective is
to :émlysc the validity and extent of the proposed two-cquation
model.

For incompressible flows, b; = 0 is obtained by imposing
the incompressibility condition and becomes a crucial condidon
in near-wall analysis. This important condition holds the key to
the present extension of the near-wall incompressible models to
compressible flows. In order to show that by indeed vanishes

under these conditions, the continuity equation for p' is first
derived, or
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Expansions (21) are then substituted into the above equarion. If

{Uy) =0 at the wall is used, it can be easily verified that, under
the assumption of (21), by = 0 is still a valid condidon for
compressible flows, irrespective of the thermal boundary

condition. Therefore, the assumed p’ expansion facilitates the
modeling of compressible flows, because all terms in (20) have
similar forms as their incompressible counterparts except the

extra €; term which needs to be analyzed.

Using definition (18) for €}, it is easily verified that € is
of order y*. The high-Reynolds-number model (19) also has
similar behavior near a wall. Therefore, it is proposed to extend
(19) 1o near-wall flow without modification, while the near-wall
balance provided by thg exact €}; is taken into consideration by
combining it with the &; term. As for P €, it could be modeled
by following the arguments presented in Refs. 26 and 27 for
incompressible flows. In essence, Refs. 26 and 27 argue that
the incompressible &;; can be set equal to 2€ and the near-wall
corrections proposed for g;; have little or no effects on the
behavior of g; in the region near a wall. This means that g;; can
be approximated by 2¢ in the whole field. In view of this, the
model for Pe;; can be assumed to be given by 2pe. Based on
this model, equation (15) and expansions (21), it can be easily
shown that the leading term of € in the near-wall region isa
constant equal to its wall value €,,. Again, the behavior is
similar to its incompressible counterpart. o

Near-wall analysis again shows that turbulent diffusion is a
higher order term and its high-Reynolds-number model could be
adopted because it does not affect near-wall balance of the k-
equation. Consistent with the assumption of gradient transport
for two-equation models, the incompressible model for turbule
diffusion of k is extended to compressible flows by writing D,
= 3( (T /0y )0k/ax;)/0x;, where O is a constant and ji, is the
turbulent viscosity defined by j; = C,f, P k2/e. In this
definition, C,, is a model constant while f,, is a damping functon
10 be defined later. Based on (21), the leading order term ofkin
the near-wall region is y2. Since € = g, in this region, k%/e has
10 be of order y*. If the shear stress is defined with respect to
H. then it can be shown that the leading order term of the shear
stress has to be of order y3 in the near-wall region. Therefore, it
follows that V, = L/ is also of order y3 near a wall and this,
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in tum, leads 10 a similar behavior for the modeled D] term in
the near-wall region. This behavior is consistent with the
behavior of the exact term Dk appearing in (20). In other
z\é%r)ds, the modeled D, does not affect the near-wall balance of

According to (18), &§; = 2e°. As such, the near-wall
behavior of the exact € is not properly accounted for by the
proposed model. In the above discussion, it is argued that the
near-w3ll behavior of €; could be modeled together with the
term ;5. In ordc.r to analyse the near-wall behavior of the
combined term (®;; + PE;), the behavior of Gy; and Tj; nez"a
wall has to be studied. The appearance of mean pressure in Gj;
makes the analysis slightly more difficult. However, the
difficulty could be circumvented by making use of the mean
momentum equation (10). The final analysis shows that the
comblincd (Gy; + Tj;) term has the following near-wall behavior;
namely,

Gyp + Ty =2 O(y2); G33 + T33 = OG2);
Gp+ Ty - 06 . 23

This means that, to the lowest order, the near-wall behavior of
(®;; + Pe;) is similar to its incompregssible counterpart [26].
For incompressible flows, the term, &;;, can be written into a
pressure diffusion part and a pressure redistribution part.
Pressure redistribution is identically zero and since pressure
diffusion is relatvely small, it is usually neglected. Such is not
the case for compressible flows. The term, ®;;, can again be
partition into a pressure diffusion part, which could be
negiected, and a term involving pressure-velocity-gradient
correlation. This lanter term does not vanish because fluid
volume changes as a result of density variation. ,Therefore, an
argument could be made to model the term, (®;; + PE;), to
account for dilatational effects only. In view of this, the
following model is proposed, or

a<uo)
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where v is a model constant.

The proposed models still fail to close the k-equation

because of the presence of u, in Tj; and G;;. Therefore, it is

necessary to shed some light on the modeling of u;, which is
identically zero for incompressible flows. Using Favre
averaging, it can be shown that -p’u: = B‘l:_ In other words,

u =- p'u: /p. Previous proposals for -p'u: are based on the
gradient transport assumption; namely,

o =0 (25)

where G, is a model constant. However, a more elaborate way
0] modcfthc term is to adopt the proposal,
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where C, is a model constant. Alternatively, the term can also
be modcfed by
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where P equals to unity for an ideal gas.

The near-wall behavior of the modeled k-equation can
now be analysed using expansions (21). It can be easily shown
that in the region very near a wall, the modeled k-equation is in
balance up 1o order y. Consequently, it does not need further
modifications to achieve a consistent asymptotic behavior near a
wall,

The exact transport equation for the solenoidal dissipation
rate (P €) can be derived as in the Reynolds-stress equation (12).
Tt has been pointed out that the e-equation is the most difficult to
model even for incompressible flows (13, 16, 17, 26, 27, 32].
The reason being that many of the terms in the exact equation are
¢ither not known or could not be measured accurately at present.
Consequently, the incompressible e-equation is modeled in an ad
hoc manner to resemble the k-equation in form so that the right
hand side of the e-equation again consists of four terms; namely,
viscous diffusion, turbulent diffusion, production and
destruction of . The equation is further modified for near-wall
flows by adding an extra destruction term § so that the modeled
cquation remains balance as a wall is approached. There is a
lack of measurements in compressible flows, therefore, a
rigorous modeling of the compressible e-equarion is not possible
at present. An alternative is to extend the high-Reynolds-
number incompressible models to compressible flows and then
seek a near-wall correction to the modeled €-equation along the
line suggested in Ref. 27. In view of this, the exact ransport
equation for the dissipation rate is not in a convenient form to
work with. The proposal of Speziale and Sarkar [13] with the
dilatational effects explicitly written out will be more

appropriate.
Following Speziale and Sarkar {13], the modeled

transport equation for £ with near-wall correction is written in
the simplified form; namely

Dpe_ 0z
D ax;\ ox;
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where D! is the wrbulent transport of , P, is the production of €
due to deviatoric strains, A, is the destruction of € and § is a
near-wall correction for compressible flows. The second last
term on the right hand side of (28) is exact and results from the
writing of the exact €-equation into the form of (28). When the
dissipation-rate equation is formulated in this form, it is
reducible exactly to its incompressible counierpart and,
therefore, the terms D!, P, and A, can be modeled by a variable

 density extension of their incompressible models. Following the
P

suggestions of Refs. 13 and 27, the models proposed for Dg, P
and A; are:

Di= i(&) ,
ox; °tax;

(29a)
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where the model constants C¢q and C¢ are the same as those
given in Ref. 27 for incompressible flows and € =€ - €. It
should be noted that the mean dilatational effects are accounted
for exactly by (29b) for compressible flows and that these
models reduce exactly to their incompressible counterparts when
the flow Mach number becomes very small. In addition, the
ordering of these model terms is similar to their incompressible
counterparts. Therefore, the near-wall function & can be
determined in a manner similar to that proposed in Ref. 27.

The incompressit le form of (28) with mode! terms given
in (29) is identical to that proposed in Refs. 26 and 27. In these
studies, the coincidence condition suggested by Shima [21] was
used to determine &. This is equivalent to requiring the modeled
£-equation to achieve balance behavior in the near-wall region at
least up to order y. The approach used to deduce & is to
assumed a functional form for £ with two undetermined model
constants. One of the constant can be determined from near-wali
analysis, while the other is evaluated using computer
optimization. The & function thus determined has been used in
Ref. 27 1o calculate flat plate boundary-layer flows and in Ref.
26 to calculate fully-developed channel and pipe flows. These
calculations were carried out over a wide range of flow
Reynolds number. The results were compared with direct
simulation data as well as measurements. Very good agreement
has been found for both the limiting behavior of the turbulence
quantities and € when compared to direct simuladon data (33-
35). Furthermore, the two-equation mode! calculations of Ref.
27 arc found to give better results than those obtained by
Speziale et al. [36]. In view of this success, the same approach
can be used to determine £ for compressible flows.

The functional form assumed in Ref. 27 is adopted here,
or

| e _ g2
§=fw_2p|:-Nr+M—k—], (30)

where f,, 5 is a damping function that goes to one at the wall and
zero far away from the wall. It is defined in Ref. 27 as f, 2 =
¢"(RUS4R where R, = k?/VE is the turbulent Reynolds number.
The function € is defined as € = € - 2Vk/y* by generalizing the
incompressible definition used in Ref. 27. Similarly, € is
defined with €, given by &, = 2v(k/ox;},. Once & is
postulated, the near-wall behavior of (28) and the modeled terms
of (29) can be analysed using expansions (21). If the modeled
equation is again required to be in balance up to order y, then it
can be easily shown that N = 2 - C;p because the mean
dilatational terms are of order y. Therefore, to order y© they do
not contribute to &. In Ref. 27, the part involving C¢y in N is
grouped together with M to give M = (Cgze€/e*% + M) and its
value is determined through computer optimization studies.
Again, the same procedure is followed in the present study to
determine M;.

Finally, to complete closure of the governing equations,
gradient transport is assumed for the Reynolds stresses and the
relation is given by

A —[AU) AU 5. AUm] g6 =
=5 [317%%2'73‘5“?{ -8k -

In addition, a constant turbulent Prandd number is assumed so
that heat and momentum diffusivity can be related by Pr, = V/&
), where @ is the turbulent thermal diffusivity. The damping
function f,, appearing in the definition of I, can now be defined.
In view o% the similarity of the present k and € equations with
those for incompressible flows, the f, used in Ref. 27 is
adopted here. Itis defined as .

fu=(1+3.45/R) anh (y*/115) . (32)

where y* = yu,/V is the wall coordinate and u,(x) is the friction
velocity. In this definition, y is taken to be the normal
coordinate and x the stream coordinate.

¢, Model Validasi

A first step to validate the two-equation model for
compressible flows is to apply it to calculate flat plate boundary-
layer flows with different wall boundary conditions and free-
stream Mach numbers. In this initial atempt, heat flux is not
modeled separately. Instead, it is related to momentum flux via
the assumption of a constant turbulent Prandtl number. The
rationale for doing this is to carefully assess the assumption
made in (21) concerning the expansion for p', whose validity
affects the near-wall analysis used to justify the direct extension
of the incompressible near-wail function § to compressible
flows. By choosing the simplest type of compressible flows to
validate the model, a careful analysis of the validity and extent of
the expansion for p' can be carried out. A second objective of
this validation is to determine, if possible, the validity and extent
of Morkovin's hypothesis. In other words, it is hoped to
evaluate the Mach number range and the type of wall thermal
boundary conditions in which the effects of fluctuating density
can be neglected in the modeling of the governing equatons.
Therefore, the experimental data chosen for comparisons arc
selected from three different groups; one with adiabatic wall
boundary condition and varying free-stream Mach number,
another with constant wall temperature and varying free-stream
Mach number, and finally the variations of skin friction with
free-stream Mach number and wall temperature as prescribed by
the van Driest II formulae given in Ref. 9. The data for the first
two groups are selected from Ref. 31. Only one case with
constant wall temperature is selected. The reasons being that the
other cases reported in Ref, 31 are cither not accurate as far as
the measured skin friction is concerned or the measured mean
velocity and temperature are doubtful. In the following, the
goveming equations for compressible flat plate boundary-layer
flows are first presented. Then the calculations and comparisons
with data are examined and the validity of the two-equation
model is studied in detail. Finally, the model performance and
its proposed improvement are discussed.

Two-dimensional, steady compressible boundary layers
on a flat plate are considered. If the usual boundary-layer
approximations are made, then equations (9) - (11), (20) and
(28) can be substantially simplified. For the sake of
completeness, the boundary-layer equations in Cartesian x-y
coordinates are listed here as:
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In writing down these equations, (33) has been used to relate the
shear stress to the mean velocity gradient. It is also noted that
G;; is zero for flat plate boundary-layer_flows while the only
term of importance in T;; is that given by u". If (25) is used to
evaluate u”, then Tj; is of order y2 and is not important in the
near-wall region, which according to So et al. [27] is bounded
by 0 € y+ <5. The model constants are taken from Refs. 27
and 32 and are given by: C; = 0.096, C,y = 1.5, Cgp = 1.83,
oy = 0.75, 6¢ = 1.45, ) = 0.15, 6, = 0.5 and y = 0.182. The
turbulent Prandtl number Pry is specified as 0.9, while Pr is
assumed constant and taken to be 0.74. Sutherland and power
laws are used to evaluate fluid viscosity at an appropriate
reference temperature. The constants 0, and @; are determined
by calibrating the calculated results against some classic
experiments such as those provided in Refs. 29 and 30. Once
determined, they are kept constant for all other calculations. In
fact, the cases to be compared in the next section are different
from the cases nsed to calibrate 6, and ©). As for N and M,
the final choice of values adopted are 2 and 1.5, respectively,
just as in Ref. 27.

The boundary conditions are no slip at the wall for mean
velocides and k, and zero heat flux or constant wall temperature
at the wall for enthalpy. As for g, its value at the wall is given
by 2v (Mf&y)z. At the edge of the boundary layer, free-stream
conditions are” specified for both mean stream velocity and
enthaipy. In principle, k and € should be zero in the free stream.
However, in practice, they are assumed to take on some very
small values, of the order of 10-7, in the free stream. Thus
formulated, the above equations and the appropriate boundary
conditions can be solved numerically using the boundary-layer
code developed by Anderson and Lewis [30] and modified by
So etal. [27].

All measurements used to validate the near-wall two-
equation model are drawn from Ref. 31. The calculations are
carried out over the range, 0 < M_, < 10, for adiabatic wall
boundary condition and over the range, 0 < 8,,/6, < 1, for
constant wall temperature condition. Here, 8, is the wall
temperature and 6, is the recovery temperature for adiabatic wall
boundary condition and is the adiabatic wall iemperature for
constant wall temperature. It should be pointed out that 6,,/68, =
1.0 corresponds to adiabatic wall boundary condition while
©,./8, < 1 indicates that the wall is cooled. Since only mean
flow properties are available from Ref. 31, comparisons are
made with these measurements and another set of calculations
using the k-0 model of Wilcox [8]. All comparisons are made at
the same momentum thickness Reynolds number (Ry) as the
measurements. Four sets of data are chosen and these are cases
55010504, 53011302 and 73050504 with adiabatic wall
boundary condition and case 59020105 with constant wall

temperature. The free-stream Mach number (M,,) for these
cases are 2.244, 4.544, 10.31 and 5.29, respectively, while the
corresponding Rg's are 20,797, 5,532, 15,074 and 3,939.
Therefore, the data cover a wide range of R, and M,,. The
variations of skin friction with M, and 6,,/6, are compared
with the van Driest II formulae reported for a fixed Ry as
specified in Ref. 9. Finally, an assessment of compressibility
effects on near-wall flows is attempted by comparing the
calculated turbulence statistics for the different cases
investigated.

The results are organized in the following manner for
presentation. Mean swream velocities are normalized by ug to
give u* and they are plotted versus In y§, (Fig. 1), where y_ is
defined as u,y/v . A direct plot of the mean velocities is also
given in Fig. 2 where <U>/U,, versus y/3 is shown. Here, 8 is
the boundary layer thickness defined as the locaton of y in
which <U>/U,, = 1.0 as specified by the measurements and U,
is the free-stream velocity. On the other hand, mean
témperatures are normalized by 6., the free-stream temperarture,
and age shown versus /8 (Fig. 3), Plotsfar the properties, k*
= k/ug, €* = eVAL, -uv* = -uv/ur and -Bv* = -Bv/U.O,,, are
presented in_terms of y;, and y/3. Near-wall behavior of k*, €*,
-uv* and -Ov* (Figs. 4_- 7) are discussed first, then the
distributions of k* and -uv* in the outer region are examined
(Figs. 8 and 9). In Figs 8 and 9, & is not interpreted from
measurements; rather it is evaluated at the y location where
<U>/U,, = 0.9974. Only the budget of k in the ncar-wall region
for case 73050504 (M., = 10.31 and 6,,/8, = 1.0) is presented
(Fig. 10) because the k budgets for the other cases are
essentially similar to that shown in Fig. 10. The effects of Mach
number on the asymptotic behavior of k are examined by
plotting a, versus M, (Fig. 11), where 2y is the leading
cocefficient in the expansion of k* in terms of y,,. According to
Ref. 27, €, = 2a,. Therefore, by examining a versus M., the
variation of €}, with Mach number is also evident. Other
asymptotic properties are tabulated in Table 1 for com arisof.
The variations of skin friction coefficient, C¢ = thl% u.,
with M,, and 8,,/8, are compared wijth van Dniest I results [9)
in Fig. 12. Finally, the mean vel lots in terms of the
compressible u* defined as ul = ( J(p/Py)d<U>)/u, for two
different M,, are shown in Fig. 130 This figure is provided to
illustrate the deviation or lack thereof from the van Driest law of
the wall for compressible flows {37, 38].

Two versions of the present k- model are used to
calculate boundary-layer flows. One designated k-€ model/1
solves the k and € ransport equations as given in (38) and (39).
The second designated k-€ model/2 solves (38) and (39) with all
additional compressible terms neglected and the dk/dy term
omitted in (37). In other words, the two-equation model for k-€
model/2 is a direct variable density extension of the two-equation
incompressible model of Ref. 27. These calculations can be
used to evaluate the validity and extent of Morkovin's
hypothesis and the importance of having an asymptotically
consistent near-wall correction for two-equation models.

Four sets of u* results are shown in Fig. 1. In the figure,
the calculated and measured Cy and the Cy determined from the
van Driest II formuia of Ref. ‘5 are listed for comparison. The
log-law shown is used to demonstrate the existence of a log
region in the calculated and measured flows, while the von
Karman constant X is taken to be 0.41. It is recognized that the
intercept is a functon of Mach number; however, in this figure,
the intercept is taken to be 4.7. The actual value used is not
important because the purpose here is to illustrate the slope of
the log-law. It can be seen that a log region indeed exists for all
calculated and measured flows. The siope is fairly constant for
the three adiabaric wall cases tested and the x thus determined is
approximately 0.41. For the cooled wall case, the k- model
predicted slopes are slightly different from that calculated by k-
model. None of these slopes yields a von Karman constant of
0.41 though. Cgis predicted correctly by all three models with a



maximum error of less than 5%. For the cooled wall case, the
measured Cy is substantially higher than the van Driest II value
and, according to Ref. 31, is not as accurate as the measured
for the other cases studied. The model calculations are in g
agreement with the van Driest II values for all cases examined.

Calculated u* profiles correlate well with measurements.
At high Mach numbers, there seems to be substantial difference
between model predictions and measurements in the outer region
of the boundary layer. Such a difference is also noted when the
plots are given in terms of <U>/U,, versus y/d in Fig. 2. From
these plots, it can be seen that k-g model predictions of <U>/U,,
are in better agreement with data than k- calculations (Fig. 2).
The agreement between k- model predictions and measurements
is good up to M,, = 10.31. On the other hand, the discrepancy
between calculations and measurements deteriorates as M,
increases for the k- model. Therefore, the proposed k-€
models represent improvements over existing models whose
predictions are correct only for M, < 5 (sce e.g. Ref. 39).
Since most existing models do not have an asymptotically
consistent near-wall correction and are direct extensions of their
incompressible counterparts, the discrepancies display by these

models for M., > 5 are understandable. Present results show
that, if the near-wall flow is modeled in an asymptotically correct
and consistent manner, the incompressible models can be
straight-forwardly extended to compressible flows with a free-
stream Mach number as high as 10. It should be pointed out that
the k-t model is not an asymptotically consistent near-wall
model. Therefore, its prediction of <U>/U,, in paticular that
for the cooled wall case, is not as good as k-¢ model
calculations. One reason could be the fairly low Rg (3,939) for
this case. Since the results of k-£2 model/2 are also in good
agreement with measurements (Figs. 1 and 2), the comparisons
suggest that the additional compressible terms in (38) and (39)
are not 100 important. However, an examination of the mean
temperature results tends not to support this conclusion (Fig. 3).

The mean temperature profile comparisons are shown in
Fig. 3. Predictions by the k- model show substantial
discrepancies compared to the k-e model calculations and
measurements; particularly for the cooled wall case (Fig. 2a).
Discrepancies between measurements and k-o predictions
increase as M,, increases and as ©,,/8, decreases. On the other
hand, the agreement between k-€ model/1 predictions and data
improves as M., increases for adiabatic wall boundary condition.
This is not true for k-€ model/2 where the disagreement with
data is quite substantial at M., = 10.31 (Fig. 2b). The
predictions of the cooled wall case (Fig. 2a) tell a different story.
It seems that k-g model/2 gives as good a prediction of the
cooled wall case as that of k-& model/1 (Figs. 1a and 2a). The
following three reasons could be put forward to explain this
behavior. Firstly, the p' expansion may not be totally valid for
constant wall temperature boundary condition. Secondly, the
proposed compressible models may be more applicable for
adiabatic wall boundary condition. Thirdly, the assumption of a
constant turbulent Prandtl number may not be appropriate.

The near-wall distributions of k* for the four cases are
shown in Fig. 4. Only the predictions of k-€ model/1 and k-®
model are compared. The calculations of k-€ model/2 are.not
shown; instead, the limiting behavior of k*, -uv* and -8v* is
tabulated in Table 1 for comparison. In general, the predictions
of k- model are substantially lowered than those of k-€
model/1. The peaks are about 40% lower than those predicted
by k-€ model/1 and the locations where the peaks occur are
calculated to be further away from the wall than k-€ model/!
predictions. According to k-g modeV/1, the peak of k* decreases
as M., increases. The decrease is more than 20% over a Mach
number range of 10. On the other hand, a slight cooling of the
wall at M, = 5.29 causes the peak of k* to decrease to the same
level as that for the case of adiabaric wall with M, = 10.31.
These results suggest that wall cooling has more influence on
reducing turbuient mixing compared to compressibility effects.
Overall, compressibility reduces turbulent mixing and the

reduction increases with M,,. The near-wall distributions of €+
as calculated by k-£ model/1 are ploued in Fig. 5. It can be seen
that the distributions are very similar to those shown in Ref. 27
for incompressible flows. The variations of €, with M., and
6,/6, are very similar to those of k*. Again, maximum €*
occurs at the wall and a plateau in €* is found in the range, 7 <
y% < 13. This means that compressibility has little or no effects
on the near-wall behavior of €*. The exception is that increases
in compressibility and wall cooling tend to decrease €.

__In general, k-0 model gives a very accurate prediction of
-Gv* near a wall. Its predictions are as good as those given by
k-e model/1 (Fig. 6). From this set of predictions, the following
observations can be made, Firstly, the peak of -uv* decreases
with increasing M,, and decreasing ©,,/6,. Secondly, as M.,
increases and €,,/8, decreases, the location of the peak moves
towards the wall. Thirdly, the rate of decrease of -uv* in the
range, 30 < y;, < 100, increases as M., increases. Finally, the
asymptotic near-wall behavior of -uv* is listed in Table Lfor
comparison. Much the same behavior is also true for -Bv*
whose distributions in the near-wall region are shown in Fig. 7.

If the distributions of Bv* are plotted instead of Iv“ the curves
will have the same shape as those shown for -uv2._Therefore,
the observations drawn for -uv* are also valid for 6v*.

The distributions of k* and -uv* across the boundary
layer are compared in Figs. 8 and 9, respectively. In all cases
shown, k-w model over-predicts k* and -uv* in the outer part of
the boundary layer compared to the calculations of k-€ model/1.
The over-prediction extends across the range, 0.2 < y/8 < 1.0.
Reduction of turbulence activities in the outer part of the
boundary layer is clearly evident when either compressibility or
wall cooling effects are present. The reduction increases as M.,
increases and ©,,/0, decreases. Therefore, it is expected that
turbulence activities will be substantially reduced in a flow
where the free-stream Mach number is large and the wall is
highly cooled.

The near-wall k budget for case 73050504 is plotted in
Fig. 10. Other budget plots are not shown because they are
essentially similar to that given in Fig. 10. Itcan be seen that the
k budget bears a lot of similarity with that calculated for
incompressible flows (see e.g. Ref. 27). The additional
compressible terms have negligible effect on the near-wail k
budget. Therefore, the assumptions made to derive the near-
wall function & in the dissipation-rate equation are justified.
Again, viscous diffusion balances dissipation at the wall. This
balance extends to about y;, = 4 where turbulent diffusion and
production become important. In the region, 4 < y;, < 15,
viscous and murbulent diffusion, production and dissipation are
equally important. Beyond y;, = 15, production and dissipation
are in balance, just as in the case of incompressible flows.
Consequently, the near-wall k behavior is very similar for both
incompressible and compressible flows. .

According to Refs, 25 and 27, Taylor series expansions
about yi, = 0 can be assumed for k*, -uv* and -Ov*. For
incompressible flows, the expansions are valid up to about Yo =
7. This range may not be applicable for comgrcssiblc flows.
Nevertheless, such expansions for small yy, can still be
assumed. With the help of (21) these expansions can be written
as:

Kt = a (Y2 + bpys)3 + s , (40a)
UVt = 2y (ya 3 + by (a)d + e , (40b)
BV = aygyt + gy + s (40c)
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where the a's and b's are time-average coefficients that are
functons of x. A similar expansion can be deduced for €*.
Again, using (21), the definidon of € and its wall boundary
condition, the expansion for €* can be written as:

£ =22y + dbyt + e (41)

From these expansions, it can be easily deduced that
k*2/e*(yt)2 = 0.5. Therefore, the asymptotic behavior of
k“'zlt‘i"(y:)2 is 0.5 and is independent of M, and wall thermal
boundary conditions. The accuracy in which a model can
predict this quantity is a reflection of the asymptotic consistency
of the model. Table 1 shows that k-€ model/l is indeed
asymptotically consistent while k- model/2 is not as good. As

for the k- model, its prediction of this limiting value is poor,
therefore, it is not listed in Table 1.

The "a" coefficients can be determined from the
calculations and their values are also listed in Table 1 for
comparison. It can be seen that ay varies with free-stream Mach
number. A plot of ay versus M,, for adiabatic wall boundary
condition is shown in Fig. 11. The value of ay for the
incompressible case is taken from Ref. 27 and is plotted at M, =
0. Clearly, the trend is to approach an asymptotic value for ay at
high M.,. This decrease in ay is one of the reason why k
decreases for high Mach number flows (Figs 4 and 8). The
physical reason is that compressibility tends to hinder turbulence
mixing. As a result, both turbulent shear stress and kinetic
energy decrease significantly as M,, increases (Figs. 4, 6, 8 and
9). Since g, = 2a; according to (41), dissipation at the wall is
also dependent on M. There is no clear trend for a,y and ayg.
However, the values of a,, are consistent with those calculated
for incompressible flows [27] and direct simulation data [35].
The value of ayg is essentially zero. Since there is no data
available, its correctness cannot be verified.

Finally, the ability of the k-e models to predict skin
friction coefficient over a range of M., and wall temperatures is
illustrated in Fig. 12. In Fig. 12a, the variation of C¢/(Cy); with
M.. for the case of adiabatic wall boundary condition is shown.
Here, (Cy); is the skin friction coefficient for an incompressible
flow evaluated at Ry = 104 and is determined to be 2.73 x 10-3.
The figure shows a comparison of the calculations of k-g
model/1 and k-€ model/2 with the van Driest IT distribution.
Below M, = 5, the calculated variations of Cg/(Cy); with M, are
slightly lower than the van Driest IT distribution but they are
slightly higher beyond M, = 5. Essentially, there is no
difference between the predictions of k- model/l and k-¢
model/2. This means that both versions of the k-g model give a
correct prediction of the Cy/(Cy); variation with M., for adiabatic
wall boundary condition. The predictions for the cooled wall
case are not as good, especially at low temperature ratio (Fig.
12b). Three sets of calculatons are presented. These are k-€
modeV/1, k-€ model/2 and a third version of k-€ model/1 with the
dk/dy term in (37) neglected. Calculations for this case are
carried out at M, = 5, Ry = 104 and the incompressible Cy is
again determined to be 2.73 x 10-3. It can be seen that error of
3% or larger stants to accumulate at approximately ©,,/8, = 0.4
for k-€ model/1. This trend is contrary to previous calculations

{8]. An examination of the governing equations solved by other

researchers revealed that, besides differences noted in the
turbulence model equations, the mean energy equation solved by
these researchers does not include the term Jk/dy in the right
hand side of (37). Indeed, when the dk/dy term is neglected, an
overall improvement is obtained. The predicted Cy at ©,,/8, =
0.2 is increased by about 6%, thus giving a better agreement
with the van Driest I formula. If the additional compressible
terms in the k-& equations are further neglected (k-€ model/2),
the calculated Cs is only improved by about 3%. The remaining
disagreement could be attributed to the assumption of a constant

turbulent Prandt number. When Pry = 0.7 is assumed, the

calculations are in even better agreement with data. The reason
could be due to a further reduction of turbulent mixing as a result
of the wall being cooled. However, this effect has not been
appropriately accounted for in the models, particularly their near-
wall behavior. In other words, if highly cooled-wall flows are
to be predicted correctly, heat fluxes should be modeled
separately rather than linking to momentum fluxes via a constant
turbulent Prandtl number.

€3 Discussion

In the past, velocity profiles in wall coordinate were
invariably plotted in terms of u;' to illustrate the existence of the
log-law and the constancy of X in compressible boundary-layer
flows. The proposal was first suggested by van Driest [37] and
later confirmed by Maise and McDonald [38] when they
analysed ten sets of data in the Mach number range of O - 5.

Since then, the compressible law of the wall is taken 10 be given
by uZ rather than by u* and x is considered to be about 0.41 and
constant over the Mach number range of 0 - 5. The calculated
and measured velocity plots given in Fig. 1 show support for the
compressible law of the wall when it is written in terms of u*
rather than u}. Furthermore, x is determined to be
approximately .41 and is relatively constant over the Mach
number range of 0 - 10. These results seem to conflict with the
proposal of van Driest [37]. In order 10 resolve this seeming
contradiction, the velocity plots of u® versus In y!, for cases
55010504 (M.. = 2.244, 8,,/8, = 1) and 53011302 (M, =
4.544, 8,/8, = 1) are shown in Fig. 13. In addition, the
compressible law of the wall as given in Ref. 38 is shown for
comparison. It can be seen that a line that is parallel to the
compressible law of the wall can be drawn through a few of the
data points spanning over a narrow range of y;,. On the other
hand, the calculated profiles are in agreement with data over a
wider range of y3,. The slopes of the calculated profiles are
roughly parallel and are slightly larger than the slope of the
compressible law of the wall shown. Therefore, irrespective of
how the velocity profiles are plotted, the calculations are in good
agreement with data. However, the slope of the log-law is given
by 1/0.41 only when the profiles are plotted in terms of u*.

Z_Conclusions

The k and € equations for compressible flows are derived
by assuming that there is no dynamical similarity between the
compressible and incompressible fields. Therefore, the
influences of fluctuating density on the mean and turbulence
fields have to be accounted for in the modeled equations. This
can be accomplished by first re-casting the exact k and €
equations into forms that are similar to their incompressible
counterparts. In other words, the viscous diffusion and
dissipation functions have to be defined exactly like their
incompressible terms. This procedure gives rise to additional
terms in the k and € equations. These terms depend explicitly on
compressibility and vanish when the fluid density becomes
constant. One extra term in the k-equation is related to fluid
dilatation and can be interpreted as compressible dissipation.
The others are production terms that depend on the gradients of
the mean pressure and mean viscous shears. All additional
terms are found to be relatively unimportant in the near-wall
region, or 0 < y}, < 50. This realization, therefore, allows the
near-wall incompressible models to be extended directly to
compressible flows without modifications, while still
maintaining the balance of the modeled equations as a wall is
approached. Models are proposed for the additional terms in the
k and € equations. The constants introduced by the new models
are determined by calibrating the caiculations against
measurements in compressible flows.

The near-wall two-equation model is used to calculate
compressible flat plate boundary-layer flows with different wall
thermal boundary conditions and free-sream Mach numbers.



Comparisons are made with various mean flow measurements
and with calculations of the k- model. Good agreement is
obtained between the present calculatons and measurements. In
particular, the log-law for compressible flows is recovered and
the slope of the log-law is found to be fairly independent of free-
stream Mach number for the range, 0 £ M, < 10, tested. Even
though k-w model gives a correct prediction of u* versus In Yo
their velocity comparison in terms of <U>/U,, versus y/d shows
substantial discrepancy with data. The discrepancy increases
with increasing Mach number and can be attributed to a near-
wall behavior that is not asymptotically correct.

The following conclusions can also be drawn from the
above analysis. Firstly, Morkovin's hypothesis is valid up to a
free-stream Mach number of about 5 for flat plate boundary-
layer flows with adiabatic wall boundary condinon. This means
that the effects of fluctuating density are becoming more and

more important as M., increases beyond 3. Secondly, the
assumption of a constant turbulent Prandil number is not
appropriate for cooled wall thermal boundary condition. The
reason is further reduction in turbulent mixing due to a cooled
wall and this effect is not correctly accounted for in a constant
turbulent Prandtl number approach. Most likely a heat flux
model is required if the characteristics of cooled-wall
compressible boundary-layer flows are to be predicted correctly.
Thirdly, it is important to model the near-wall flow correctly if
the overall boundary-layer characteristics are to be predicted with
confidence. This point is substantiated by the k-€ model
calculations where all additional compressible terms in the
turbulence equations are neglected. These results are in good
agreement with measurements even though they differ slightly
from the predictions of k-€ model/1 where all the additional
terms are retained. In other words, an asymptotically consistent
near-wall model is more important to the prediction of
compressible boundary-layer flows than the inclusion of
fluctuating density effects in the modeled equations. Fourthly,
the predicted near-wall characteristics are very similar to those
calculated for incompressible flows. In the range of free-stream
Mach number tested, the calculated near-wall characteristics are
essentially independent of Mach ‘number and wall thermal
poundary condition. Very near the wall, viscous diffusion of k
is balanced by the dissipation of k. Beyond vy, = 15, dissipation
is balanced by mean shear production of k. In berween these
two regions, viscous and turbulent diffusion of k, production of
k and dissipation of k are of importance in the budget of k. The
additional compressible terms in the k-equation are essentially
negligible in the near-wall region up to yy, = 50. This is the
reason why the model also performs well when the additional
compressible terms are neglected in the equations. Finally, the
term Jk/dy in the mean energy equation makes a significant
contribution to the calculated Cy in the highly cooled wall case.
Traditionally, this term is neglected. However, present analyses
show that even though it is relatively unimportant in flows with
adiabaric wall boundary condition, it cannot be neglected in
flows with a highly cooled wall. The inclusion of this term
degrades the prediction of Cy. It is believed that the degradation
is a result of an incorrect modeling of turbulent heat flux.
Therefore, improvements should be directed at the relaxation of
the constant turbulent Prandd number assumption.
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Case M., e,/8, Model a au,,xl()“ a,gx10 K+ /ety 3)2
55010504 | 2.244 1.0 | k-g modely1 | 0-0987 | 7.167 | -0.465 0.50
55010504 | 2.244 1.0 | x-emodel2| 00992 | 7.198 | -0.998 0.50
53011302 | 4.544 1.0 | x-emodels1 ]| 0.0824 | 6.700 -6.44 0.50
53011302 | 4.544 1.0 | k-e model2 | 0.0836 | 6.760 | -11.79 0.50
73050504 | 10.31 1.0 | k-emodel/1 | 0.0741 | 6.630 89.5 0.50
73050504 | 10.31 1.0 | k-emodel2| 0.0771 | 6.740 | -131.0 0.51
59020105 | 5.29 | 0.92 |k-gmodel/1| 00784 | 6.120 11.1 0.50
59020105 | 5.29 | 0.92 |k.emodel2| 00788 | 6.140 -5.88 0.50

Table 1. Asymptotic near-wall behavior of the turbulence properties.
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Figure 1. Comparison of calculated u* with measurements.
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boundary layer.
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boundary layer. and adiabatic wall boundary condition.
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