
A Compressible Near-Wall Turbulence Model for Boundary Layer Calculations

Abstract
=

A compressible near-wall two-equation model is derived
by relaxing the assumption of dynamical feld similarity between
compressible and incompressible flows. This requires
justifications for extending th'e incompressible models to
compressible flows and the formulation of the turbulent kinetic
energy equation in a form similar to its incompressible
counterpart. As a result, the compressible dissipation function
has to be split into a solenoidal part, which is not sensitive to
changes of compressibility indicators, and a dilatational part,
which is directly affected by these changes. This approach
isolates terms with explicit dependence on compressibility so
that they can be modeled accordingly. An equation that governs
the transport of the solenoidal dissipation rate with additional
terms that are explicitly dependent on compressibility effects is
derived similarly. A model with an explicit dependence on the
turbulent Mach number is proposed for the dilatational
dissipation rate. Thus formulated, all near-wall incompressible
flow models could be expressed in terms of the solenoidal
dissipation ram and swaight-forwardly extended to compressible
flows. Therefore, the incompressible equations are recovered
correctly in the limit of constant density. The two-equation
model and the assumption of constant turbulent Prandfl number
are used to calculate compressible boundary layers on a flat plate
with different wall thermal boundary conditions and free-stream
Mach numbers. The calculated results, including the near-wall
distributions of turbulence statistics and their limiting behavior,
are in good agreement with measurements. In particular, the
near-wall asymptotic properties are found to be consistent with
incompressible behavior, thus suggesting that turbulent flows in
the viscous sublayer are not much affected by compressibility
effects.

I. Introduction
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Th_r:efoi'e, the postulate is not valid for hypersonic boundary,j / _/
layers, where the h4ach number is five or greater, and for flowsf/
with strong pressure gradient effects, such as shock-turbulent-
boundary-layer interactions. The latter point was confirmed by
the studies of Wilcox and Alber [ 1] and Bradshaw [11] and led
to proposals to have the effects of pressure-dilatation correlation
modeled in the governing equations [12]. A more recent study
where density fluctuations are also considered has been given by
Speziale and Sarkar [13]. Besides these modifications, all
turbulent compressible flow modeling rely on incompressible
models.

Two sources of difficulties arise when incompressible
turbulence models arc extended to compressible flows. One is
due to compressibility itself and another is associated with the
turbulence phenomena. In compressible flows, the governing
equations are coupled and temperature cannot be considered as a
passive scalar. As a result, all other thermodynamic variables
adopt new roles. Therefore, mathematically, compressible
flows cannot be considered as straightforward extension of
incompressible flows. Furthermore, pressure is only a force
term in incompressible flows and all disturbances propagate at
infinite speed. On the other hand, pressure also supports finite
velocity propagation of disturbances in compressible flows.
Other complications come from the variable mean density, which
contributes to increased non-linearity of the governing
equations, and the fluctuating density, which causes the closure
problem to become more difficult.

Density variation in a turbulent flow can come from
different sources. Some of these are: (i) isothermal mixing of
gases of different density, (ii) strong temperature gradient m a
homogeneous fluid, (iii) reactive flows and (iv) compressibility
effects in high speed flows. Each of these sources gives rise to
specific aspects that require modeling if the governing equations
are to be solved. This study makes an attempt to address the last
source; that is, the modeling of high speed compressible
turbulent flows.

Most studies on compressible turbulent flow modeling
[1-9] invoke the Morkovin postulate [10] to justify the direct
extension of the incompressible models to compressible flows.
The postulate was formulated based on early experiments on
compressible boundary layers along adiabatic walls and
compressible wakes, and essentially suggested that the
dynamical field in a compressible flow behaves like an
incompressible one. This postulate was used by numerous
researchers to assure that compressibility effects can be
accounted for directly by the variable mean density in the
governing equations alone. In other words, the influences of
fluctuating density on turbulence mixing are essentially assumed
to be negligible. The validity and extent of Morkovin's postulate
were reviewed by Bradshaw [2] and he noted that the postulate
is appropriate for flows where density fluctuations are moderate.
Therefore, the postulate is not valid for hypersonic boundary

The second source of difficulties has to do with
turbulence mixing. Here, even for incompressible flows, many
problems remain to be resolved [14-17], especially when the
flow is unsteady and/or three-dimensional [18]. However,
among the many problems associated with turbulence modeling,
one stands out as most fundamental and urgently needs
attention. This is the treatment of the near-wall flow [17].
Conventional approach is to invoke the walI function
assumptions; thus implying that near-wall turbulence is in local
.equilibrium, Even for simple wall shear flows, the assumption
is not quite valid because near-wall turbulence is not in local
equilibrium. Consequently, a low-Reynolds-number treatment
is necessary in order to obtain results that agree with
measurements in the near-wall region [I7, 19-21]. The need for
near-wall treatment of flows with heat and mass transfer has also
been pointed out [22-25]. This problem is expected to be more
acute in compressible flow modeling [13] where the non-
linearity of the governing equations are further compounded by
the variable mean density.

The present objective is to model near-wall compressible
turbulent flows where the coupling between velocity and
temperature cannot be ignored. As a t-u'st attempt, only the
modeling of the turbulent kinetic energy and its dissipation-rate
equations is considered. With the assumption of gradient
transport, the two-equation model could be used to effect closure
of the mean flow equations. Since the transport equations for
the heat fluxes and the temperature dissipation rate are not
modeled and solved, a constant turbulent Prandtl number is
invoked to relate the heat fluxes to the momentum fluxes. In
view of this assumption, the present approach only addresses
the issue of compressibility effects on turbulent mixing and not
on heat transfer and its interaction with turbulence. An attempt
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on this latter problem will bc made after the present model has
been validated.

, 2- Propos_e.clModeling Approach

With the availability of near-wall models for temperature
variance and its dissipation rate [24], heat fluxes [25],
Reynolds-stresses [26] and the dissipation rate of the turbulent
kinetic energy [27], the time is now ripe for their extension to
compressible flows. In order to consider the effects of variable
mean density and its fluctuation on turbulence mixing, it is
necessary to analyse the exact equations and propose appropriate
models to effect closure. Two approaches are available. One is
to propose totally new models for the terms in the compressible
equations, while another is to attempt to extend the
incompressible models to compressible flows in a credible way.
Both approaches involve assumptions that could or could not be
verified experimentaUy. Since the present knowledge of
incompressible flow modeling is quite mature, as a fast attempt,
it is expedient to extend these models to compressible flows.
This can be accomplished by recasting the compressible
equations in forms similar to their incompressible counterparts
so that terms with explicit dependence on compressibility effects
can bc isolated separately, and the incompressible limit can be
recovered in a straight forward and correct manner.

Since the turbulent kinetic energy equation or k-equation
is obtained by contracting the Reynolds-stress equations, this
means that the recasting of the Reynolds-stress equations should
be attempted fast. In other words, the viscous diffusion and
dissipation terms in the Reynolds-stress equations have to be
similarly defined as their incompressible counterparts. This
suggests splitting the viscous dissipation function into a

-solenoidal part, which is not sensitive to changes of
compressibility indicators, and a dilatational part, which is
directly affected by these changes 28. When the Reynolds-stress
equations arc written in this form, three additional terms that
depend explicidy on compressibility effects are present. The k-
equation is then obtained by contracting the Reynolds-stress
equations and its incompressible counterpart is recovered
correctly when density becomes constant and the additional
terms vanish identically. An equation that governs the transport
of the Solenoidal dissipation rate (e) of the turbulent kinetic
energy (k) is derived and modeled along the line suggested
above. Again,additionalterms thatdepend cxplicidyon
compressibilityeffectsappearintheequation.Thlsequation
alsoreducescorrectlytoitsmodeledincompressiblecounterpart
becausetheadditionaltermsvanishforconstantdensityflows.

Allmodelsproposedforthek and eequationsarcexpressedin
termsofthissolenoidaldissipationrate.A model withexplicit
dependenceon theturbulentMuch numberproposedbySarkar
ctal.[28]forthedilatationaldissipationisadopted. Thus
formulated,thetwo-equationmodel isvalidforcompressible
flowsand approachesitsincompressiblelimitina straight
forwardandcorrectmanner.

The systematic approach described above, if proven
successful, could be used to extend incompressible near-wall
models for heat-fluxes, temperature variance and its dissipation
rate to compressible flows. A set of equations governing the
transport of incompressible heat fluxes has been proposed and
validated against simple flows with heat transfer [25], while a
similar set of equations for the temperature variance and its
dissipation rate [24] has also been validated against boundary-
layer flows. This means that near-wall heat transfer models
could also be extended to compressible flows usin 8 the approach
proposed above. However, _fore this extension ts undertaken,
the asymptotic consistency of the-se m_cls has'to _be Verified.
Until such time, the assumption of a constant turbulent Prandd
number for near-wall compressible flow is inevitable.

In the following,thecompressibleequationsare fu'st

derived,thenthenear-wallmodelingofthek andeequationsarc
discussed.In section6,thetwo-equationmodel isused to
calculatecompressibleboundarylayerson aflatplateassuminga
constant turbulentPrandtlnumber. Comparisons with
measurements[9,29-3I]and othercalculations,suchasthose
obtainedusingthek-o modelofWilcox[8],arecarriedoutto
assesstheimportanceofdensityfluctuationson thecalculated
resultsand, hence,the validityand extentof Morkovin's
hypothesis.

3. Mean Flow F__.uarions

The compressible mean flow equations are obtained by
applying Favre averaging to the instantaneous Navier-Stokes
equations which for Newtoman fluids can bc written as:

oo o
_- + b-_-x(pu0 =o , (i)

a(pui)+__i{puiuj)=.a__.._+_ ' (2)

O(P_ + _xi {p_Tu_) - _ + u--_- _" '0xi
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ui is the i th component of the velocity vector, x i is the i th

component of the coordinatesand p, T, p,]_,_c,Cp are
pressure,temperature,density,viscosity,thermalconductivity
and specificheatatconstantpressure,respectively.Favre
decompositionisappliedtoallvariablesexceptp and p where
conventionalReynolds decompositionisassumed. In other
words

R

ui = (Ui) + ui , (5)

T = (O) + e" , (6)

P=P +P' , (7)

P=6 + p' , (8)

where u.."and 0" are the Favre fluctuations and p' and p' are the
Reynolds fluctuations. If < > is used to denote Favre-averaged
quantities and the overbar the Reynolds-averaged quantities,
then the mean equations for compressible flows can be obtained
as follows. The above decompositions (5)-(8) gre substitut_
into (1)-(4) and the resultant equations are a_eraged bveftime.
If the turbulent flow is further assumed to be stationary and the
mean momentum _ual_qn and the Re,molds-stress and turbulent
kinetic energy, k = _(u; ui), equations io be derived later are used
to sin?.plify the therthaf energy equation, the turbulent mean flow
equauons become

U __"_i(_(i)) = 0 , (9)
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In these equations, p = _', _ = _" and C_ = _ have been
substituted and the mean and fluctuating stms'ses ar_ given by

(.. -[a(u._+a_.___lz::- a(uo

- :axj axi/ aXk

Theq_, _(e>+_-_k)(u_+k,isthem_nto_en_py
(H). Thus written, (9)-(11) reduce to the_ incompressible

: 00unte_artsexactlywhen densitybecomesconstant.
, . =-.. _

An order-of-magnitudeanalysisiscarriedouton (9)-
(II).The resultshows thattheunderlinedtermsareofsmaller
orderand,asa firstapproximation,couldbeneglectedcompared
tothe terms retained.Thus formulated,the compressible
equationsarcidenticaltotheincompressibleequationsand the
additionalunknowns arcthe turbulentmomentum and heat
fluxes,justasintheincompressiblecase.The presentapproach
proposestoclosetheseequationsassuminggradienttransport.

As afastattempt,a near-walltwo-equationk-Emodelisusedto
determinetheturbulentviscosityandaconstantturbulentPrandd
number isinvoked torelateturbulentmomentum and heat
fluxes.Thercforc,thepresentmodel cannotfullyaccountfor
thecffcctsofdensityfluctuationonturbulentheattransfer.

4, ModclineoftheTurbulentKinedcEnerzvEouadon

The Fax,re-averaged transportequation for theReynolds
w w

stresses_'(uiuj)could be similarlyderived as in the

incompressiblecase[16].Thatis,theithfluctuatingvelocity
equationis obtaincdby subtractingthe mean momcntum
equationfrom the instantaneousequation.Repeatthesame
proceduretoobtainthejthfluctuatingvelocityequation.The ith
fluctuatingvelocityequationisthen multipliedby thejth
fluctuationvelocityand viceversaand thetwo equationsare
addedtogetherand averagedovertime.Omittingallthealgebra,
thefinalexactequationis:

<4]+&[: <°;>] <.:.;°:>]
a -: .... au:.au'_l

+ _ [U i 'gjk + U_- 'ik ax--_ + 'jk _Xk"-L_
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(12)

r--;ap -; apl -:a(,_.,ol
L"'_ +uj:j+L.,ax,÷"j_-_2J
Symbolically,theaboveequationcanbewrittenas

Cij= DT + D'ij-P-6_j+ 4)ij+ Pij+ Oij+ Tij • (13)

With the exception of Gii and Tij, (13) is similar to its
irxeompressible counterpart l"26]. For an incompressible flow,
u i - 0, and Gij --Tij -- 0. Even under this condition, (13) fails
to reduce properly to the incompressible equation given in Ref.

6_jv The reason lies in the grouping of the terms- pe_j + _ij_ In order to achieve this incompressible limit

• • • v -- • .
correctly, a re-arranglllg of the terms t11 IDi; - pill; + _iil is

necessary.Ifviscousdiffusionand dissipationJinco_apres_ible
flows arc again definedsimilarlyto theirincompressible
counterparts,or

D',--_I"ax,I' (:4)

_au. au.
£ij -- 2V

axkax_ ' (15)

then the re'ms {DiT- Pe;_ + ¢'ij)can be=-arrangedto give

(16)

c_ +_--L
where Eij - 3 _ aXj aX k axi aXk /

o:j=L'axj

-- (
+aX i_ j aX k ]j + _ Ui_ j + Uj a_i/

3 Laxju,ax--_-+ax--,-Jax,j " (17b)

Note that (16) reduces to its incompressible counterpart exactly
when constant fluid pro ¢l_rties are assumed. For compressible
flows, an extra term P'_i appears in (16)• In addition, three
additional terms are found'in _:.. The term -ff'_, is a dilatational
term and could be interpretedJas compressibl_e or dilatarional
dissipation. This term is only important for compressible flows•

It should be pointed out that _j is given by (17b) and, as
a result of this particular partitioning, there are several extra
terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional arguments
reveal that these extra contributions are nolr important. It"
pressure diffusion is further neglected, then Di'j, p--I_ij and _)ij
would assume the same form as their mcompressible
counterparts. Therefore, the high-Reynolds-number
incompressible models proposed for these terms [16, 32] could
be straight-forwardly extended to compressible flows.
However, a model for the compressible dissipation term _'r.icj is



required to complete closure. For high-Reynolds-num0er
flows, this compressible dissipation could be assumed to be
ison_opic. As a result, [he following model is proposed:

where

Ei_= _Sij Ec

3 l_Xk/

(18)

The modelingofec has beenattemptedby Sarkaretal.
[28].They arethefirsttorealizethatthecontributionofthe
dilatationaldissipationtermisimportantforsupersonicshear
flows. A simplealgebraicmodel, which isbased on an
asymptoticanalysisand a directnumericalsimulationofthe
simplifiedgoverningequations,hasbeenproposedfor¢c.Their
proposalcouldbemodifiedto become

Ec= all_2E , (19)

2wherecq isamodelconstant,Mr2= 2k/T2,_e = _ isthe

dissipationof k and T isthe localmean speed of sound.
Therefore,Mt isthelocalturbulentMuch number. Itshouldbe

pointedoutthatSarkaretaL's[28]definitionofgcisfourtimes
larger than the definition given in (19) as a result of a different

splitting of the terms in (16). Consequently, ct ! should take on
a value equal to 1/4 of that suggested in Ref. 28. Based on an
analysis of decay of compressible iso_ropic turbulence, Sarkar et
al. [28] suggested a value of one for their constant. In other

words, ct! = 0.25. If a ! is evaluated based on compressible
shear flows, its value would be 0.15. The present study adopts

It should be cautioned that, although the velocity and
temperature expansions arc physically correct, the expansion for
density is an assumption. As pointed out by Bradshaw [11], the
fluctuating temperature and density could not go to zero
simultaneously at the wail. Otherwise, it would lead to a zero
wall p'. In general, temperature fluctuation is assumed to be
zero at the wail, while p'is not. Here, the assumption is made
that p' also goes to zero at the wall, however, its value away
from the wall is finite. Since p' is taken to be essentially zero
over the whole field in Morkovin's hypothesis [I0], the present
approach could be viewed as a partial relaxation of that
assumption. Consequently, _e proposed model would not be
valid for all free-stream Much number and wall thermal

boundary conditions. Therefore, one of the present objective is
to analyse the validity and extent of the proposed two-equation
model.

Forincompressibleflows,bI= 0 isobtainedbyimposing
theincompressibilityconditionand becomesacrucialcondition
innear-wallanalysis.Thisimportantconditionholdsthekey to
thepresentextensionofthenear-wallincompressiblemodelsto
compressibleflows.Inordertoshow thatbI indeedvanishes

undertheseconditions,thecontinuityequationforp'isfirst
derived,or

bP'' _ (--" " ")=0."_-"_'_k [p Uk + p'(Uk) + p uk
(22)

Expansions (21) are then substituted into the above equation. If

(U k) = 0 at the wall is used, it can be easily verified that, under
the assumption of (21), b I = 0 is still a valid condition for
compressible flows, irrespective of the thermal boundary

condition. Therefore, the assumed p' expansion facilitates the
modeling of compressible flows, because all terms in (20) have
similar forms as their incompressible counterparts except the

ctI = 0.15 for the analyses of boundary-layer flows, extra eiciterm which needs to be analyzed.

The k-equation is obtained by contracting (12) and Usiq,g definition (18) for _i, it is easily verified that g'_i is
making use of (16) and (18) to simplify the resulting equation of order yZ. The high-Rcynoldg-number model (19) a!so has
whichcan be v,'ritmnas:

v T I I *

1 I
+ _-Gii + _Tii . (20)

It can be scgn that the terms, DT, O_i and -P-sii, and the
coefficient, u,, appearing in Gii and Tii require _odeling.
Furthermore, _¢hen p is assumed to be constant and u i = .0, ._e
last three terms in (20) are identically zero and me

in_omi_ressible equation is recovered exactly. The modeling of
I_, q)ii and P_ii could be accomplished by drawing parallels
with their incompressible counterparts [26, 27]. However, this
requires knowledge of their behavior in the near-wall region.

The near-wall behavior of (20) can be analysed by
assuming Taylor series expansions about the wall for the
fluctuating quantities. This analysis is similar to the
incompressible case [26] except that expansions also have to be
assumedforp'and 0. The proposedexpansionsare:

u"= aIy + a2)'2+ ....

v" =b Iy + b2y2 + ....
(21)

w"=c Iy +c2y2 + ....

0"=d ly+d2y2+ ....

p'=e_ y+ e2y2+ ....

similar behavior near a wall. Therefore, it is proposed to extend
(19) to near-wall flow without modification, while the near-wail
balance provided by the, exact _iis taken into Considc_tion by
combining it with the ¢'ti term. As for Pr.ii, it could be modeled
by following the arguments presented in Rcfs. 26 and 27 for
incompressible flows. In essence, Refs. 26 and 27 argue that
the incompressible _j can be set equal to 2£ and the ned-wall
corrections proposed for 8ij have little or no effects on the
behavior of _i in the region near a wall. This means that eii can
be approximated by 2£ in the whole field. In view of this, the
model for P-_ii can be assumed to be given by 2p"e. Based on
this model, equation (15) and expansions (21), it can be easily
shown that the leading term of e in the near-wall region is a
constant equal to its wall value ew. Again, the behavior is
similar to its incompressible counterpart.

Near-wall analysis again shows that _ulentdiffus_ion is a
higher order term and its high-Reynolds-number model could be
adopted because it does not affect near-wall balance of the k-
equation. Consistent with the assumption of gradient ffansport
for two-equation models, the incompressible model for turbulerg
diffusion of k is extended to compressible flows by writing .DI_
= o3(("_'t/Ok)c3k/t}xi)/_x i, where Ok)s a constant and _-t is the
turbulent viscosity defined by gt = Cufu0"k2/8. In this
definition, Cu is a model constant while ftfis'/damping function
to be defined later. Based on (21), the l_ng order term of k in
the near-wall region is y2. Since e = ew in this region, k2/e has
tobeoforder),4.Iftheshearstressisdefinedwithrespectto
ttt,thenitcanbeshown thattheleadingordertermoftheshear
sn'csshastobeofordery3inthenear-wallregion.Therefore,it
follows that v t **_-¢r_" is also of order y3 near a wall and this,



inturn,leadstoa similarbehaviorforthemodeledD T tcrmin
thenear-wallregion.This l_haviorisconsistent-withthe

behaviorof theexacLtermD_ appearingin (20). In other
words,themodeledD_ doesnotaffectthenear-wallbalanceof
(20).

According to (18), e_i = 2e c. As such, the near-wall
behavior of the exact g_i is not properly accounted for by the
proposed model. In the above discussion, it is argued that the
near-wAll behavior of g[i could be modeled together with the
term _)ii. In order to analyse the near-wall behavior of the
combined term (4)_i + _"_), the behavior of Gii and Tii n_." a
wallhastobestudied.The appearanceofmean pressureinGii
makes the analysisslightlymore difficultHowever, the
difficultycouldbe circumventedby making use ofthemean
momentum equation(I0).The finalanalysisshows thatthe
combined(Gii+ Tii)termhasthefollowingnear-wallbehavior,
namely,

Gll + TII ---+O(y2);G33 + T33 _ O(y2);

G22 + T22 _ O(Y3) • (23)

Th_s means that, to the lowest order, the near-wall behavior of
(q)ii+ "P"_i)issimilartOitsincomprebssiblecounterpart[26].
For incompressibleflows,theterm,q)ii,can be writtenintoa
pressurediffusionpartand a pressureredistributionBart.
Pressureredistributionisidenticallyzeroand sincepressure
diffusionisrelativelysmall,itisusuallyneglected.Such isnot
thecaseforcompressibleflows.The term,Oil,can againbc
partitionintoa pressurediffusionpart,which could bc
neglected,and a term involvingpressure-velocity-gradient
correlation.Thislatterterm does not vanishbecausefluid
volume changesasaresultofdensityvariation..Therefore,an
argumentcouldbemade tomodel theterm,(q)ii+ P'--_i),to
accountfor dilatationaleffectsonly. In view of this,the
followingmodelisproposed,or

(24)

whereyisamodelconstant.

The proposed models still fail to close the k-equa_n

because of the presence of u_ in Tii and Gii. Ther_._efore,it is

necessary to shed some light on the modeling of u_, which is

identically zero for incompressible flows. Using Favre

a._veraging__.._,itcanbeshown that-p'ui= P_i...LInotherwords,
w •

ui= -p'ui /p. Previousproposalsfor-p'u_arcbasedon the

gradient transport assumption; namely,

"= vt _P (25)
"P'Ui Op_xi'

where op isa modelconstant.However, amore elaborateway
to mode/the term is to adopt the proposal,

w
__ w

(26)

where CO isa modelconstant.Alternatively,thetermcanalso
bemodeledby

m

U.0 n t _p _ (e)

ui=13..-t---,withl3=-ib(e)/p-"=-(e) p
(27)

where _ equals to unity for an ideal gas.

The near-wall behavior of the modeled k-equation can
now be analysed using expansions (21). It can be easily shown
that in the region very near a wall, the modeled k-equation is in
balance up to order y. Consequently, it does not need further
modifications to achieve a consistent asymptotic behavior near a
wall.

5, Modelling of the Dissipation-Rate Equation

The exacttransportequationforthesolenoidaldissipation
rate(-_'g)canbederivedasintheReynolds-s_ssequation(12).
Ithasbeenpointedoutthatthe_--equationisthemostdifficultto
modeleven forincompressibleflows[13,16,17,26,27,32].
The reasonbeingthatmany ofthetermsintheexactequationarc
eithernotknown orcouldnotbemcastmxlaccuratelyatpresent.
Consequently,theincompressibleg-cquanonismodeledinanad
hocmannertoresemblethek-equationinform sothattheright
handsideofthee-equationagainconsistsoffourterms;namely,
viscous diffusion,turbulentdiffusion,production and
destructionofg.The equationisfurthermodifiedfornear-wall
flowsby addinganextradestructionterm_ sothatthemodeled
equationremainsbalanceasa wallisapproached.Thereisa
lackof measurements in compressibleflows,therefore,a

rigorousmodelingofthecompressiblee-equationisnotpossiblc
atpresent.An alternativeistoextendthe high-Rcynolds-
numberincompressiblemodelstocompressibleflowsand then
seeka near-wallcorrectiontothemodelede-equationalongthe

linesuggestedinRef.27. Inview ofthis,theexacttransport
equationforthedissipationrateisnotinaconvenientform to
work with.The proposalofSpezialeand Sarkar[13]withthe
dilatationaleffectsexplicitlywrittenout will be more
appropriate.

Following Speziale and Sarkar [13], the modeled

transport equation for g with near-wall correction is written in
the simplified form; namely

IX Oxi_ Oxi/ 3xi
(28)

whereD_ istheturbulenttransportofc,Peistheproductionofe
due tod'eviatoricstrains,At isthedestructionofE and _ isa
near-wailcorrectionforcompressibleflows.The secondlast
termon therighthand sideof(28)isexactand resultsfrom the
writingoftheexacte-equationintotheformof(28).When the
dissipation-rateequationis formulatedin thisform, itis
reducibleexactlyto itsincompressiblecounterpartand,
therefore,thetermsDr,,P,and A_ canbemodeledby avariable

density extension of _eir'incomp-ressible models. Followinff the
suggestions of Refs. 13 and 27, the models proposed for D r, Pe
and A_ are:

(29a)

a_k /'
(29b)

AE = Ct2_-k , (29c)



where the model constants C_I and C_2 are the same as those
given in Ref. 27 for incompressible flows and _" = e - kw. It
should be noted that the mean dilatadonal effects are accounted
for exactly by (29b) for compressible flows and that these
models reduce exactly to their incompressible counterparts when
the flow Mach number becomes very small. In addition, the
ordering of these model terms is similar to their incompressible
counterparts. Therefore, the near-wall function _ can be
determined in a manner similar to that proposed in Ref. 27.

The incompressi]:te form of (28) with model terms given
in (29) is identical to that proposed in Reh. 26 and 27. In these
studies, the coincidence condition suggested by Shima [21] was
used to determine _. This is equivalent to requiring the modeled
8-equation to achieve balance behavior in the near-wall region at
least up to order y. The approach used to deduce _is to
assumed a functional form for _ with two undetermined model
constants. One of the constant can be determined from near-wall
analysis, while the other is evaluated using computer
optimization. The _ function thus determined has been used in
Ref. 27 to calculate flat plate boundary-layer flows and in Re£
26 to calculate fully-developed channel and pipe flows. These
calculations were carried out over a wide range of flow
Reynolds number. The results were compared with direct
simulationdataaswellasmeasurements.Very good agreement
has beenfoundforboththelimiungbehavioroftheturbulence
quantitiesand e when compared todirectsimulationdata[33-
35].Furthermore,thetwo-equationmodelcalculationsofRcf.
27 are found to givebetterresultsthan thoseobtainedby
Spezialeetal.[36].Inview ofthissuccess,thesame approach
can beusedtodetermine_ forcompressibleflows.

The functionalform assumedinRef.27 isadoptedhere,
or

IN ¢_" "¢__]_=fwaV " "_'+M , (30)

wherefw,2isa dampingfunctionthatgoestooneatthewalland
zerofaraway from thewall.ItisdefinedinRef.27 asfw2 =
c'(Rff64)2,where Rt= k2/"v'_istheturbulentReynoldsnumber.
The function_"isdefinedast"= ¢ -2v--k/y"2bygeneralizingthe

incompressibledefinitionused in Ref.27.._imilarly,8 is
definedwith ew given by Cw = 2v(b_q¢'_xj_.Once _ is
postulated,thenear-wallbehaviorof(28)andthemodeledterms
of(29)can beanalysedusingexpansions(21).Ifthemodeled
equationisagainrequiredtobeinbalanceup toordery,thenit
can be easilyshown thatN = 2 - CE2 because the mean
dilatationaltermsarcofordery. Therefore,toorderyOtheydo
notcontributeto_. InRcf.27,thepartinvolvingC¢2 inN is
groupedtogetherwithM togiveM l= (C_.e2f._/e.2+ M) and its
valueisdeterminedthroughcomputeroptimizationstudies.

Again,thesame procedureisfollowedinthepresentstudyto
determineM I.

Finally,tocompleteclosureofthegoverningequations,
gradienttransportisassumedfortheReynoldsstressesand the
relationisgivenby

f_ = (1 + 3.45/_ r') mnh (y+/l 15) (32)

wherey+ = yu_/"¢isthewallcoordinateandu_(x)isthefriction
velocity.In thisdefinition,y is takento be the normal
coordinateandx thestreamcoordinate.

6...Madr.J.._Yalida_n

A first step to validate the two-equation model for
compressible flows is to apply it to calculate flat plate boundary-
layer flows with different wall boundary conditions and free-
sue,am Mach numbers. In this initial attempt, heat flux is not
modeled separately. Instead, it is related to momentum flux via
the assumption of a constant turbulent Prandd number. The
rationale for doing this is to carefully assess the assumption
made in (21) concerning the expansion for p', whose validity
affects the near-wall analysis used to justify the direct extenmon
of the incompressible near-wall function _ to compressible
flows. By choosing the simplest type of compressible flows to
validate the nxxtel, a careful analysis of the validity and extent of
the expansion for p'can becarriedout.A secondobjectiveof
thisvalidationistodetermine,ifpossible,thevalidityand extent
of Morkovin'shypothesis.In otherwords,itishoped to
evaluatetheMach number rangeand thetypeofwallthermal
boundaryconditionsinwhichtheeffectsoffluctuatingdensity
can be neglectedinthemodelingofthegoverning_uadons,
Therefore,theexperimentaldatachosenforcomparisonsare
selected from three different groups; one with a_diabatic wall
boundary condition and varying free-stream Mach number,
another with constant wall temperature and varying free-stream
Mach number, and finally the variations of skin friction with
free-stream Mach number and wall temperature as prescribed by
the van Driest II formulae given in Ref. 9. The data for the firs:
two groups are selected from Ref. 31. Only one case with
constant wall temperature is selected. The reasons being that the
other cases reported in Ref. 31 are either not accurate as far as
the measured skin friction is concerned or the measured mean
velocity and temperature are doubtful. In the following, the
governing equations for compressible flat plate boundary-layer
flowsarefirstpresented.Then thecalculationsandcomparisons
withdataareexamined and thevalidityof thetwo-equation
model isstudiedindetail.Finally,themodelperformanceand
its proposedimprovement are discussed.

6.I GoverningEouadons
- Two-dimensional,steadycompressibleboundarylayers
on a fiatplateareconsidered.Iftheusualboundary-layer
approximationsaremade, thenequations(9)-(ll),(20)and
(28) can be substantiallysimplified. For the sake of
completeness,theboundary-layerequationsinCartesianx-y
coordinates are listed here as:

= 0 (33)

(34)

I

Inaddition,a constant turbulentPrandtlnumber isassumedso
thatheatandmomentum diffusivitycanberelatedbyPrt= _'t/-d"
)twherea'tistheturbulemthermaldiffusivity.The damping
functionfitappearinginthedefinitionof_ tcannow bedefined.
Inview Ofthesimilarityofthepresentk and _equationswith
thosefor incompressibleflows,the f_ used inRef. 27 is
adoptedhere.Itisdefinedas

Oy Oy

_'H) +_1- t +
0y lh't11- Pr)_-

. _<u) __

Prd i_yJ '

(35)



P£u__'_-x+P(,v)_" =_'[_ _'k/_"_'y]+

_ 2

- _'u)

(36)

_" + "'
(37)

In writing down these equations, (33) has been used to relate the
shear stress to the mean velocity gradient. It is also noted that
Gii is zero for fiat plate boundary-layer flows while the only
term of i,,mportance in Tii is that given by u". If (25) is used to
evaluate u', then Tii is of order yZ and is not important in the
near-wall region, which according to So et al. [27] is bounded
by 0 g y+ _; 5. The model constants are taken from Refs. 27
and 32 and are given by: Cu = 0.096, Cel = 1.5, C._2 = 1.83,
ok = 0.75, G¢ = 1.45, a I = 0.15, Go = 0.5 and y = 0.182. The
turbulent Prandtl number Pr, is specified as 0.9, while Pr is
assumed constant and taken to be 0.74. Sutherland and power
laws are used to evaluate fluid viscosity at an appropriate
reference temperature. The constants op and a 1are determined
by calibrating the calculated results against some classic
experiments such as those provided in Refs. 29 and 30. Once
determined, they are kept constant for all other calculations. In
fact, the cases to be compared in the next section are different
from the cases used to calibrate Go and Ct!. As for N and M 1,
the final choice of values adopted are 2 and 1.5, respectively,
just as in Ref. 27.

The boundary conditions are no slip at the wall for mean
velocities and k, and zero heat flux or constant wall temperature
at the wall for enthalpy. As for e, its value at the wail is given
by 2v (bCl('/'0y}2,. At the edge of the boundary layer, free-stream
conditions are specified for both mean stream velocity and
enthalpy. In principle, k and e should be zero in the free stream.
However, in practice, they are assumed to take on some very
small values, of the order of 10 .7 , in the free stream. Thus
formulated, the above equations and the appropriate boundary
conditions can be solved numerically using the boundary-layer
code developed by Anderson and Lewis [30] and modified by
So et al. [27].

All measurements used to validate the near-wall two-

equation model are drawn from Ref. 31. The calculations are
carried out over the range, 0 < Moo < 10, for adiabatic wall
boundary condition and over the range, 0 < Ow/Or < 1, for
constant wall temperature condition. Here, Ow is the wall
temperature and Or is the recovery temperature for adiabatic wall
boundary condition and is the adiabatic wall temperature for
constant wall temperature. It should be pointed out that Ow/Or =
1.0 corresponds to adiabatic wall boundary condition while
Ow/Or < 1 indicates that the wall is cooled. Since only mean
flow properties are available from Ref. 31, comparisons are
made with these measurements and another set of calculations
using the k-o) model of Wilcox [8]. All comparisons are made at
the same momentum thickness Reynolds number (R0) as the
measurements. Four setsof data are chosen and these are cases
55010504, 53011302 and 73050504 with adiabatic wall
boundary condition and case 59020105 with constant wall

temperature. The free-stream Mach number (Moo) for these
cases are 2.24-4, 4.544,10.31 and 5.29, respectively, while the
corresponding Ro's are 20,797, 5,532, 15,074 and 3,939.
Therefore, the data cover a wide range of Ro and M=,. The
variations of skin friction with Moo and Ow/Or are compared
with the van Driest II formulae reported for a fixed Ro as
specified in Ref. 9. Finally, an assessment of compresslbl'""tity
effects on near-wall flows is attempted by comparing the
calculated turbulence statistics for the different cases
investigated.

6.2 Comparisons with Data
The results are organized in the following manner for

presentation. Mean stream velocities are normalized by .._ to
give u+ and thezare plotted versus In y_ (Fig. 1), where Yw is
defined as u,ry/'Vw. A direct plot of the mean velocities is also
given in Fig. 2 where <U>/U, versus y/8 is shown. Here, 8 is
the boundary layer thickness defined as the location of y in
which <U>/U. = 1.0 as specified by the measurements and U==
is the free-suream velocity. On the other hand, mean
temperaturesarenormalizedby@_, thefree-streamtemperature,
and aleshown ve_usy/8 (Fig.3)_Plots.£c="thc..Rropertics,k"+
= k/_, e+ = eVAC, -uv+ = -uv/u_ and -ev+ = -ev/U=O.o, are
presefimdimmm_ _)fy+ and y/'&Near-wallbehaviorofk+,e+,
-_'+ and -0v+ (Figs.4 - 7) are discussedfirst,then the
distributionsofk+ and -u'v"+intheouterregionareexamined
(Figs.8 and 9). InFigs8 and 9,8 isnot interpretedfrom
measurements;ratheritisevaiuatedatthey locationwhere
<U>/U,,= 0.9974.Onlythebudgetofk inthenear-wallregion
forcase73050504 (M,,= 10.31and Ow/O r= 1.0)ispresented
(Fig.10) because the k budgetsfor the other cases are
essentiallysimilartothatshown inFig.I0.The effectsofMach
number on theasymptoticbehaviorof k are examined by

plottingak versusM,, (Fig.II),where ak isthe leading
coefficientm theexpansionofk+intermsofYw. Accordingto
Ref.27,_v = .2ak.Therefore,by examiningakversusIvi=,,the
variationof ew with Mach number isalsoevident. Other
asymptoticpropertiesarctabulatedinTablelforcom_ariso,p.
The variationsof skinfrictioncoefficient,Cf = 2'Cw/-p--U'=,,
with Mooand Ow/Or are compared wi_ van Driest II resulfs [9]
in Fig. 12. Finally, the mean vel0_fty plots in terms of the
compressible u+ defined as uc = (J(-_ p/_,)d<U>)/ux for two
different M=, are shown in Fig. 13.0 This figure is provided to
illustrate the deviation or lack thereof from the van Driest law of
the wall for compressible flows [37, 38].

Two versions of the present k-e model are used to
calculate boundary-layer flows. One designated k-e model/1
solves the k and e transport equations as given in (38) and (39).
The second designated k-e model/2 solves (38) and (39) with all
additional compressible terms neglected and the bk/by term
omitted in (37). In other words, the two-equation model for k-e
model/2 is a direct variable density extension of the two-equation
incompressible model of Ref. 27. These calculations can be
used to evaluate the validity and extent of Morkovin's
hypothesis and the importance of having an asymptotically
consistent near-wall correction for two-equation models.

Four sets of u÷ results are shown in Fig. 1. In the figure,
the calculated and measured Cf and the Cf determined from the
van Driest II formula of Ref. 9 are listed for comparison. The
log-law shown is used to demonstrate the existence of a log
region in the calculated and measured flows, while the yon
Karman constant 1¢is taken to be 0.41. It is recognized that the
intercept is a function of Mach number;, however, in this figure,
the intercept is taken to be 4.7. The actual value used is not
important because the purpose here is to illustrate the slope of
the log-law. It can be seen that a log region indeed exists for all
calculated and measured flows. The slope is fairly constant for
the three adiabatic wall eases tested and the I¢thus determined is
approximately 0.41. For the cooled wall case, the k-e model
predicted slopes are slightly different fzom that calculated by k--ca
model. None of these slopes yields a yon Karman constant of
0.41 though. C.f is predicted correcdy by all three models with a



maximumerror of less than 5%. For the cooled wall case, the
measured Cf is substantially higher than the van Driest H value
and, according to Ref. 31, is not as accurate as the measured Cf
for the other cases studied. The model calculations are in good
agreement with the van Driest II values for all cases examined.

Calculated u+ profiles correlate well with measurements.
At high Mach numbers, there seems to be substantial difference
betweenmodelpredictionsandrneasuremcntsintheouterregion
oftheboundary,layer.Such a differenceisalsonotedwhen the
plotsarcgivenintermsof<U>/U**versusy/_inFig.2. Prom
theseplots,itcanbcseenthatk-gmodelpredictionsof<U>/U**
areinbetteragreementwithdatathank-o)calculations(Fig.2).
The agreementbetweenk-Emodelpredictionsandmeasurements
isgood up to_ = I0.31.On theotherhand,thediscrepancy
between calculationsand measurementsdeterioratesas Ivl**
increasesfor thek-o)model. Therefore,the proposed k-e
models representimprovementsoverexistingmodels whose
predictionsare correctonly forM,= < 5 (seee.g.Ref.39).
Since most existingmodels do not have an as.y.mptotically
consistentnear-wallcorrectionandaredirectextensionsoftheir

incompressiblecounterparts,thediscrepanciesdisplaybythese

models forM** > 5 areunderstandable.Presentresultsshow
that,ifthenear-wallflowismodeledinanasymptoticallycorrect
and consistentmanner, the incompressiblemodels can be
straight-forwardlyextendedtocompressibleflowswitha fre_-
stream Mach number as high as 10. It should be pointed out that
the k-to model is not an asymptotically consistent near-wall
model. Therefore, its prediction of <U>/U., in paticular that
for the cooled wall ease, is not as good as k-E model
calculations. One reason could be the fairly low P,_ (3,939) for
this case. Since the results of k-e model/2 are also in good
agreement with measurements (Figs. 1 and 2), the comparisons
suggest that the additional compressible terms in (38) and (39)
are not too important. However, an examination of the mean
temperature results tends not to support this conclusion (Fig. 3).

The mean temperature profile comparisons are shown in
Fig. 3. Predictions by the k-o)model show substantial
discrepancies compared to the k-E model calculations and
measurements; particularly for the cooled wall case (Fig. 2a).
Discrepancies between measurements and k-o)predictions
increase as M,,, increases and as O_/O r decreases. On the other
hand, the agreement between k-e model/l predictions and data
improves as M**increases for adiabatic wall boundary condition.
This is not true for k-e model/2 where the disagreement with
data is quite substantial at M** = 10.31 (Fig. 2b). The
predictions of the cooled wall case (Fig. 2a) tell a different story.
It seems that k-E model/2 gives as good a prediction of the
cooled wall case as that of k-E model/1 (Figs. la and 2a). The
following three reasons could be put forward to explain this
behavior. Firstly, the p' expansion may not be totaUy valid for
constant wall temperature boundary condition. Secondly, the
proposed compressible models may be more applicable for
adiabatic wall boundary condition. Thirdly, the assumption of a
constant turbulent Prandd number may not be appropriate.

The near-wall distributions of k+ for the four cases arc
shown in Fig. 4. Only the predictions of k-e model/l and k-co
model are compared. The calculations of k-_ m...__eI/2am.not
shown; instead, the limiting behavior of k+, -uv + and -0v + is
tabulated in Table 1 for comparison. In general, the predictions
of k-o) model are substantially lowered than those of k-_
model/1. The peaks are about 40% lower than those predicted
by k-E model/1 and the locations where the peaks occur are
calculated to be further away from the wall than k-e model/1
predictions. According to k-e model/I, the peak of k+ decreases
as M**increases. The decrease is more than 20% over a Mach
number range of 10. On the other hand, a slight cooling of the
wall at M**= 5.29 causes the peak of k+ to decrease to the same
level as that for the case of adiabatic wall with M** = 10.31.
These results suggest that wall cooling has more influence on
reducing turbulent mixing compared to compressibility effcc.ts.
Overall, compressibility reduces turbulent mixing and the

reduction increases with M,.. The near-wall distributions of e+
as calculated by k-_ model/l m'_ plotted in Fig. 5. It can be seen
that the distributions arc very similar to those shown in Ref. 27
for incompressible flows. The variations of _v with M** and
ew/Or arc very similar to those of k+. Again, maximum e+
occurs at the wall and a plateau in e+ is found in the range, 7 <
y+ < 13. This means that compressibility has attic or no effects
on the near-wall behavior of c+. The exception is that increases
in compressibility and wall cooling tend to decrease E_.

In general, k-o) model gives a very accurate prediction of
-_-': near a wall. Its predictions are as good as those given by
k-e model/1 (Fig. 6). From this set of predictions, the following
observations can be made. Firstly, the peak of -_'+ decreases
with increasing M** and decreasing @w/Or. Sccondiy, as M**
increases and Ow/Or d_ses, the location of the pe...__moves
towards the wall. Thirdly, the rate of decrease of -uv + in the
range, 30 < Y+w< 100, increases as_..M**increases. Finally, the
asymptotic near-wall behavior of -uv + is listed in Table l...fnr
comparison. Much the same behavior is also true for -0v +
whose distributions in the near-wall region are shown in Fig. 7.

If the distributions of 0v + are plotted instead of -0v +, the curves
will have the same shape as..._thoseshown for-_-+_...Therefore,
the observations drawn for -uv + are also valid for 0v+.

The distributions of k+ and -uv-'-+ across the boundary

layer arc compared in Figs. 8 and 9, resp..._tively, in all cases
shown, k-o) model over-predicts k+ and -uv + in the outer part of
the boundary layer compared to the calculations of k-E model/1.
The over-prediction extends across the range, 0.2 S y/8 < 1.0.
Reduction of turbulence activities in the outer part of the
boundary layer is clearly evident when either compressibility or
wall cooling effects are presenL The reduction increases as M**
increases and Ow/Or decreases. Therefore, it is expected that
turbulence activities will be substantially reduced in a flow
where the free-stream Mach number is large and the wall is
highly cooled.

The near-wall k budget for case 73050504 is plotted in
Fig. 10. Other budget plots arc not shown because they are
essentially similar to that given in Fig. I0. It can bc seen that the
k budget bears a lot of similarity with that calculated for
incompressible flows (see e.g. Ref. 27). The additional
compressible terms have negli_ble effect on the near-wall k
budget. Therefore, the assumpttons made to derive the near-
wall function _ in the dissipation-rate equation arc justified.
Again, viscous diffusion balances dissipation at the wall. This
balance extends to about y+ = 4 where turbulent diffusion and

• . . _ .i.productaon become tmportant. In the regaon, 4 _ Yw < 15,
viscous and turbulent diffusion, production and dissipation are

+ - 15 roduction and dissipationequally important. Beyond y.. - , p
are in balance, just as in the case of incompresslble flows.
Consequently, the near-wall k behavior is very similar for both
incompressible and compressible flows.

According to Refs. 25 and 27, Taylor series cxpansions
about y+ -- 0 can be assumed for k+ -u'_ and -0v ÷. For
• _/ * . i • ÷

incompressible flows, the expansions are valld up to about Yw =
7. This range may not be applicable for compressible flows.
Nevertheless, such expansions for small Yw can still be
assumed. With the help of (21) these expansions can be written
as:

k-+= ak(y+)2+ bk(Y+w)3 + .......... (40a)

I + + 4.uv + = auv(Yw)3 + buv(Yw) + ....... (40b)

-Ov+ = ave(y+)3 + bye(y+)4 + ....... (40c)



wherethea'sandb'saretime-average coefficients that are

functions of x. A similar expansion can be deduced for e+.

Again, using (21), the definition of E and its wall boundary

condition, the expansion for E+ can be written as:

e+ = 2ak + 4bky + + ........ (4])

From these expansions, it cau be easily deduced that
k+2/r+(y+,) 2 = 0.5. Therefore, the asymptotic behavior of
k+2/e+(y_) 2 is 0.5 and is independent of M_ and wall thermal
boundar_ conditions. The accuracy in which a model can
predict this quantity is a reflection of the asymptotic consistency
of the model. Table 1 shows that k-¢ model/1 is indeed
asymptotically consistent while k-e model/2 is not as good. As

for the k-o) model, its prediction of this limiting value is poor,
therefore, it is not listed in Table 1.

The "a" coefficients can be determined from the
calculations and their values arc also listed in Table 1 for
comparison. It can be seen that ak varies with free-stream Mach
number. A plot of ak versus M,. for adiabatic wall boundary
condition is shown in Fig. 11. The value of ak for the
incompressible case is taken from Rcf. 27 and is plotted at M,,. =
0. Clearly, the trend is to approach an asymptotic value for ak at
high Moo. This decrease in ak is one of the reason why k
decreases for high Mach number flows (Figs 4 and 8). The
physical reason is that compressibility tends to hinder turbulence
mixing. As a result, both turbulent shear sn'ess and kinetic
energy decrease significantly as Ivl, increases (Figs. 4, 6, 8 and
9). Since e_v = 2a k according to (41), dissipation at the wall is
also dependent on M... There is no cleat trend for auv and ave.
However, the values of auv are consistent with those calculateJd
for incompressible flows [27] and direct simulation data [35].
The value of ave is essentially zero. Since there is no data
available, its correcmess cannot be verified.

Finally, the ability of the k-e models to predict skin
friction coefficient over a range of M,., and wall temperatures is
illustrated in Fig. 12. In Fig. 12a, the variation of Cf/(Cf)i with
M,. for the case of adiabatic wall boundary condition is shown.
Here, (Cf) i is the skin friction coefficient for an incompressible
flow evaluated at Ro = 104 and is determined to be 2.73 x 10"3.
The figure shows a comparison of the calculations of k-e
model/1 and k-E model/2 with the van Driest II distribution.
Below M.. = 5, the calculated variations of Ct/(Cf)i with IVl.. are
slightly lower than the van Driest II distribution but they are
slightly higher beyond M, = 5. Essentially, there is no
difference between the predictions of k-e model/1 and k-e
model/2. This means that both versions of the k-e model give a
correct prediction of the Cf/(Cf) i variation with Moofor adiabatic
wall boundary condition. The predictions for the cooled wall
case are not as good, especially at low temperature ratio (Fig.
12b). Three sets of calculations are presented. These are k-e
model/l, k-¢ model/'2 and a third version of k-¢ model/1 with the
bk/by term in (37) neglected. Calculations for this case are
carried out at M,. = 5, 1_ = 104 and the incompressible Cf is
again determined to be 2.73 x 10"3. It can be seen that error of
5% or larger starts to accumulate at approximately Ow/O r = 0.4
for k-e model/1. This u'end is conwaa'y to previous caiculations
[8]. An examination of the governing equations solved by other
researchers revealed that, besides differences noted in the
turbulence model equations, the mean energy equation solved by
these researchers does not include the term _k/0y in the right
hand side of (37). Indeed, when the _l¢_y term is neglected, an
overall improvement is obtained. The predicted Cf at ew/o r -.
0.2 is increased by about 6%, thus giving a better agreement
with the van Driest 1I formula. If the additional compressible
terms in the k-e equations are further neglected (k-¢ model/2),
the calculated Cf is only improved by about 3%. The remaining
disagreement could be attributed to the assumption of a constant

turbulent Prandtl number. When Pr t = 0.7 is assumed, the
calculations are in even better agreement with data. The reason
could be due to a further reduction of turbulent mixing as a result
of the wall being cooled. However, this effect has not been
appropriately accounted for in the models, particularly their near-
wall behavior. In other words, if highly cooled-wall flows are
to be predicted correctly, heat fluxes should be modeled
separately rather than linking to momentum fluxes via a constant
turbulent Prandtl number.

fi,2__,12i,_,aaim
In the past, velocity profiles in wall coordinate were

invariably plotted in terms of t_ to iUuswate the existence of the
log-law and the constancy of_ in compressible boundzay-layer
flows. The proposal was first suggested by van Driest [37] and
later confirmed by Maise and McDonald [38] when they
analysed ten sets of data in the Mach number range of 0 - 5.

Since then, the compressible law of the wall is taken to be given
by u_ rather than by u+ and I¢ is considered to be about 0.41 and
constant over the Maeh number range of 0 - 5. The calculated
and measured velocity plots given in Fig. 1 show support for the
compressible law of the wall when it is written in terms of u+
rather than u+. Furthermore, 1¢ is determined to be
approximately"0.41 and is relatively constant over the Mach
number range of 0 - 10. These results seem to conflict with the
proposal of van Driest [37]. In order to resolve this seeming
contradiction, the velocity plots of u_ versus In yt for cases
55010504 (M.. = 2.24.4, ew/O r = "1)and 53011_J02 (lVl.. =
4.544, ew/e r = 1) are shown in Fig. 13. In addition, the
compressible law of the wall as given in Ref. 38 is shown for
comparison. It can be seen that a line that is parallel to the
compressible law of the wall can be drawn through a few of the
dam points spanning over a narrow range of y.+.. On the other
hand, the calculated profiles ate in agreement _vith data over a
wider range of y_. The slopes of the calculated profiles are
roughly parallel and are slightly larger than the slope of the
compressible law of the wall shown. Therefore, irrespective of
how the velocity profiles are plotted, the calculations are in good
agreement with data. However, the slope of the log-law is given
by 1/0.41 only when the profiles are plotted in terms of u+.

7. Conclusions

The k and e equations for compressible flows are derived
by assuming that there is no dynamical similarity between the
compressible and incompressible fields. Therefore, the
influences of fluctuating density on the mean and turbulence
fields have to be accounted for in the modeled equations. This
can be accomplished by first re-casting the exact k and r
equations into forms that are similar to their incompressible
counterparts. In other words, the viscous diffusion and
dissipation functions have to be defined exactly like their
incompressible terms. This procedure gives rise to additional
terms in the k and e equations. These terms depend explicitly on
compressibility and vanish when the fluid density becomes
constant. One extra term in the k-equation is related to fluid
dilatation and can be interpreted as compressible dissipation.
The others are production terms that depend on the gradients of
the mean pressure and mean viscous shears. All additional
terms are found to be relatively unimportant in the near-wail
region, or 0 < y+ < 50. This realization, therefore, allows the
near-wail incompressible models to be extended directly to
compressible flows without modifications, while still
maintaining the balance of the modeled equations as a wall is
approached. Models are proposed for the additional terms in the
k and e equations. The constants introduced by the new models
are determined by calibrating the calculations against
measurements in compressible flows.

The near-walltwo-equationmodel isused tocalculate
compressibleflatplateboundary-layerflowswithdifferentwall
thermalboundaryconditionsand free-sn'earnMach numbers.



Comparisons are made with various mean flow measurements
and with calculations of the k-co model. Good agreement is
obtained between the present calcuiauons and measurements. In
particular, the log-law for compressible flows is recovered and
the slope of the log-law is found to be fairly independent of fr_-
stream Mach number for the range, 0 < M_ < tO, tested. Even
though k-o) model gives a correct prediction of u+ versus In y+,
their velocity comparison in terms of <U>/U.. versus y/8 shows
substantial discrepancy with data. The discrepancy/ncreascs
with increasing Much number and can be attributed to a near-
wa//behavior that is not asymptotically COnCCL

The following conclusions can also be drawn from the
above analysis. Fh'sfly, Morkovin's hypothesis is valid up to a
free-stream Much number of about 5 for flat plate boundary-
layer flows with adiabatic wall boundary condition. This means
that the effects of fluctuating density arebecoming more and
more important as M_ increasesbeyond 5. Secondly,the
assumptionof a constantturbulentPrandtlnumber isnot
appropriateforcooledwallthermalboundarycondition.The
reasonisfurtherreductioninturbulentmixingdue toa cooled
walland thiseffectisnotcorrecdyaccountedforina constant
turbulentPrandtlnumber approach.Most likelya heatflux
model is requiredif the characteristicsof cooled-wall
compressibleboundary-layerflowsarctobepredictedconc.cdy.
Thirdly,itisimportanttomodel thenear-wallflowcorrecdyif
theoverallboundary-layercharacteristicsaretobcpredictedwith
confidence.This pointissubstanuatedby the k-e model
calculationswhere alladditionalcompressibletermsin the
turbulence equations are neglected. These results are in good
agreement with measurements even though they differ slighdy
from the predictions of k-e model/l where all the additional
terms arc retained. In other words, an asymptotically consistent
near-wall model is more important to the prediction of
compressible boundary-layer flows than the inclusion of
fluctuating density effects in the modeled equations. Fourthly,
the predicted near-wall characteristics arc very similar to those
calculated for incompressible flows. In the range of free-stream
Mach number tested, the calculated near-wall characteristics arc
essentially independent of Much 'number and wall thermal
boundary condiuon. Very near the wall, viscous diffusion of k
is balanced by the dissipation ofk. Beyond y+ = 15, dissipation
is balanced by mean shear production of k.'In between these
two regions, viscous and turbulent diffusion of k, producuon of
k anddissipationofk areofimportanceinthebudgetofk. The
additionalcompressibletermsinthek-equationarcessentially
negligibleinthenear-wallregionup toy_ = 50. Thisisthe
reasonwhy themodel alsoperformswellwhen theadditional
compressibletermsareneglectedintheequations.Finally,the
term bk/by in the mean energy equation makes a significant
contribution to the calculated Cf in the highly cooled wall case.
Traditionally, this term is neglected. However, present analyses
show that even though it is relatively unimportant in flows with
adiabatic wall boundary condition, it cannot be neglected in
flows with a highly cooled wall. The inclusion of this term
degrades the prediction of Cf. It is believed that the degradation
is a result of an incorrect modeling of turbulent heat flux.
Therefore, improvements should be directed at the relaxation of
the constant turbulent Prandtl number assumption.
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Case M** O_/O r Model ak auvx 104 avc¢107
k÷/_+(y+)2

55010504 2.244 1.0 k-e model/1 0.0987 7.167 -0.465 0.50

0.50

0.50

0.50

0.50

0.51

55010504 2.244 1.0 k-e model/'2 0.0992 7.198 -0.998

53011302 4.544 1.0 k-e model/l 0.0824 6.700

53011302 4.544 1.0 k-e model/2 0.0836 6.760

73050504 10.31 1.0 k-e model/1 0.0741 6.630

73050504 10.31 1.0 k-e model/'2 0.0771 6.740

59020105 5.29 0.92 k-e model/1 0.0784 6.120

59020105 5.29 0.92 k-e model/2 0.0788 6.140

-6.44

-11.79

89.5

-131.0

11.1 0.50

-5.88 0.50

TableI.Asymptoticnear-wallbehavioroftheturbulenceproperties.
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