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Abstract

As the result of global, non-parallel flow stability analysis
the single value of the disturbance growth-rate and respective
frequency is obtained. This complex value characterizes the
stability of the whole flow configuration and is not referred
to any particular flow pattern. The global analysis assures
that all the flow elements (wake, boundary and shear layer)
are taken into account. The physical phenomena connected
with the wake instability are properely reproduced by the
global analysis. This enhance the investigations of instability
of any 2-D flows, including ones in which the boundary layer
instability effects are known to be of dominating importance.
Assuming fully 2-D disturbance form, the global linear stabi-
lity problem is formulated. The system of partial differential
equations is solved for the eigenvalues and eigenvectors. The
equations, written in the pure stream function formulation,
are discretized via FDM using a curvilinear coordinate sy-
stem. The complex eigenvalues and corresponding eigenvec-
tors are evaluated by an iterative method. The investigations
performed for various Reynolds numbers emphasise that the
wake instability develops into the Karman voriex street. This
phenomenon is shown to be connected with the first mode
obtained from the non-parallel flow stability analysis. The
higher modes are reflecting different physical phenomena as
for example Tollmien-Schlichting waves, originating in the
boundary layer and having the tendency to emerge as insta-
bilities for the growing Reynolds number. The investigations
are carried out for a circular cylinder, oblong ellipsis and air-
foil. 1t is shown that the onset of the wake instability, the
waves in the boundary layer, the shear layer instability are
different solutions of the same eigenvalue problem, formula-
ted using the non-parallel theory. The analysis offers large
potential possibilities as the generalization of methods used
till now for the stability analysis.

oducti

The boundary layer stability analysis based on the so-
lution of the Orr-Sommerfeld equation is a useful tool for

practical analysis of the laminar-turbulent transition. The

only competing method is based on purely empirical formu-
las, characterized most often by the shape parameter.

It is widely accepted that infinitely small disturbances,
although amplified according to linear stability theory are
not able to onset the laminar-turbulent transition unless the
amplification reaches some value so a factor has to be intro-
duced to correct the results of the analysis. The e¥ method
bas been develop to match the results of the empirical an
theoretical investigations.

The laminar-turbulent transition is usually preceded by
the Tollmien-Schlichting waves. Several receptivity experi-
ments (Morkovin {4]) were provided to understand the phe-
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nomena of the Tolimien-Schlichting waves generation. It is
commonly accepted that Tollmien-Schlichting waves are ge-
nerated by an external source of disturbance (as for example
acoustic excitation) and that the non-parallel or non-uniform
effects enhance the feedback between the wave and the ex-
citation. These non-parallel and non-uniform effects are the
viscous boundary layer growth, the change of the surface
curvature and variation of the surface static pressure. The
growth of the boundary layer is evident near the leading edge
of the blunt body, change of the surface curvature causes

~ the non-parallelity of the flow, surface static pressure chan-

ges significantly in the separation region. It is characteristic
that these three problems were studied separately. Goldstein
(1] solved analytically the problem of evolution of Tollmien-
Schlichting waves near the leading edge. The influence of
sudden change of the geometry was investigated by Gold-
stein [2] and Ruban {3] .

These investigations have one common feature - the as-
sumption of slow variation of the flow in the streamwise direc-
tion as necessary condition for weakly non-parallel analysis.

Elliptic nature of the Navier-Stokes equation describing
the flow suggest that the phenomena in all these regions are
not independent and influence each other. The question ari-
ses if interactions of the leading edge geometry, boundary
layer and wake can be described by a single theory. The
natural choice is to drop the parallel flow assumption and
to treat the flow in all these regions as a whole. The con-
sequence is the attempt to use the non-parallel flow, global
stability analysis. The non-paralle] theory was succesfuly
used to study the wake instability [10, 9, 8, 7, 12]. There
are no theoretical limitations to apply this analysis also to
various geometries, as for example the airfoil. Because the
assumptions of the non-parallel theory is a generalization of
the classical paralle] flow analysis, one can expect that this
method is adequate pot only for determination of the wake
instability. The instability of the boundary and shear layer
must be refiected in the eigenvalue solutions of the problem.

Governing equations

" Linear stability theory is concerned with the development
in time and space of infinitesimal perturbations around a gi-
ven basic flow. If this basic flow is assumed to be paral-
lel, the classical theory of parallel shear flow stability can
be applied. This method has been also successfully used for
nearly parallel flows for which the multiple-scale method, ad-
opting the concept of "slow” variation of flow parameters in
one direction, is valid. In general, non-paralle] case only the
two-dimensional theory taking into account the non-paralle]
effects is adequate. The equations of this theory are briefly
presented here. '

The problem was solved in the pure (Lagrangian) stream
function finite difference formulation. This formulation, not
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very common in the Navier-Stokes equations solvers, offers
certain advantages for the eigenvalue analysis. The primitive
variables formulation ([9]) results in much larger matrices.
Although the eigenvalues are equal for velocities and pressure

" one has to deal with the full system. This difference in size

is even more evident because the matrix entries are complex
for the eigenvalue analysis.

The unsteady incompressible Navier-Stokes equations writ-
ten in the stream function formulation take the form:

8 - 1 .
[§+(Vx¢).v—EA]Aw=o (1)

¥ =v& 2
We assume that the stream function t/;(z,y, t)is asumof a
steady part ¥(z,y) and the unsteady disturbance ¥/(z,y,¢) :

‘F(xyyvt) =¢(3»y)+$l(xayvt) 3)

The disturbance value is assumed to be small compared to
the stream function value. Introducing equatlon (3) into ( 1)
we obtain the nonlinear equation:

i}
[ +(Vx0) T A] AJ4(Vx )V (Ag+A5) = 0 (4)
Assuming a small disturbance allows the linearization of the
equation (4) i.e. we ignore the terms containing (1,{:’) In
the disturbance equation we separate the time and space de-
pendence:

¥(z,,1) = @(z,y)e™™ (8)

where
A=n(St+ic) (6)

Introducing the above relationship into (4) results in the li-

near partial differential equation:

IMAG - (V x9) - VAG = (V x &) -VA:L+E};A’¢= 0 (7)

The fundamental difference between this equation and the
Orr-Sommerfeld one, which is derived in similar manner as-
suming the disturbance form as:
¥(z,y,t) = @ly)ei®=-A (8)
is that, while Orr-Sommerfeld equation is an ordinary diffe-
rential equation, equation (5) is a partial differential equa-
tion. This means different methods of solution and numerical
problems encountered for the two cases.
To solve the problem for an arbitrary flow geometry the
curvilinear body fitted coordinate system should be used for
the solution of the equation (1) and (7). For orthogonal

metric the following relations are valid:
§9=0 , i#j (9)

hence equations (1) and (7) can be written as:

g;=0

0 (10)
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y”¢ 0 (11)
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The symbol | denotes the covariant derivative of the function.
For further specialized metric tensor coefficients

a®(€)g(é,n)
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only g(¢,n) and its first order derivatives g¢ and g, have to
be calculated for any transformation.
Reynolds number Re and Strouhal number St are expres-

sed as: dU. a
- Re := - St 1= T (13)

stcretlzed equa.txon (11) can be wntten as:
(A-AB)p =0 (14)

and represents the generalized eigenvalue problem.

For the eigenvalue calculations complex numbers can be split
into real and imaginary parts so that only the real arithmetic
has to be applied. Then the two parts of equation (2.10) may
be written:

Ap, — A By, + A\iBy; =0

~ Api— AByp, + A Bp;i=0  (18)
Solutioz;
Num iscretizati eshe

~ The discretization of the Navier-Stokes equatlons (ll)
and disturbance equation (12) is accomplished using the fi-
nite difference method. In both cases the thirteen-point sten-
cil was used. The accuracy of the derjvatives for such a stencil
is maximum 0(A?) for the fourth order terms.The unsteady
version contains implicit stepping in time, - -~

For all the calculations the orthogonal O-type mesh ob-
tained by the conformal mapping is applied. The Karman-
Trefftz transformation was used for the airfoil calculations.
The metric coefficients (13) are expressed analytically by

“means of symbolic manipulation program to assure the ma-

Ximum accuracy.

Boundary Conditions
For the steady Navier-Stokes equation solutxon the follo-
wing boundary conditions are used:

v=0 , $,=0 on thebody (16)

De g

Dt 0.

t/),, = v,‘,m in the farfield 1

The collocation of the vorticity transport equation is made
only for the outflow. For the inflow the Dirichlet boundary
condition with the value of the potential flow solution is ta-
ken. The boundary condxtxons for the dxsturbance equatlon
(12) are:

¢=0 , @a=0 on the body (18)

Dé _ 0 inthe forfield  (19)

Dw
=Y

B (n)g(&,m) (12)
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The Dirichlet boundary condition (zero disturbance) is in-
troduced for the inflow. The introduction of the convective
boundary conditions appears to be an important factor of
improving the numerical accuracy, especially for the steady
and unsteady flow calculations.

Solution of the eigenvalue probiem

In any eigenvalue problem the question arises whether all
the eigenvalues are sought or whether determination of only
one or few is satisfactory. Solving similar problem Zebib and
Kim et al. {10,11] applied the QZ type decomposition from
the standard libraries. The advantage of finding all of the
eigenvalues is that no guess values have to be made. For rela-
tively small matrix size, resulting from the use of the spectral
method or crude FDM meshes this procedure is acceptable
and was used in our earlier investigations {7). Jackson ap-
plied for the unsymmetrical, complex generalized eigenvalue
problem, appearing in the non-parallel flow stability theory
the inverse iteration method [9]. This concept is also adopted
in our present investigations. The eigenvalue, closest to the
guess value and the related eigenvector are both determined
at the same time. Till now it is the only realistic method for
very large equation systems.

The following equations explain the principle steps of this
method. Applying the Newton-Raphson method to equation
(14) we obtain

(A= 2AMB)(p™ 4 dp™) —dAM B =0 (20)

which can be written as:

(A= AW B)yin+1) = Bolo (21) o
. Figure 1: Steady flow solutions for the circular cylinder flow

where the normalization is performed as follows:
Pt = ) 4 d¢(n) (22)

and
(cf).' =&, (23)

denotes a unit vector. The correction of A" is calculated

from: 1

() o
X - (er)Tr’(n-H)

(24)
The iteration process involves the repeated solution of the
equation (21), normalization of the eigenvector and correc-
tion of the eigenvalue. This process continues until conver-
gence of the eigenvector and eigenvalue is achieved. The pro-
cedure, which consists of LU decompeosition at each step with
a quadratic rate of convergence, was replaced by a method
using only one LU decomposition. The convergence is then
only linear but the back-substitution time is significantly re-
duced compared to the decomposition time, justifying many
iteration steps:

(A= AB)7 Bpl™) = gln+1) (25)

The scheme is found to be convergent to the eigenvalue clo-
sest to A, and to produce the appropriate eigenvector.

Numerical resul

The linear stability analysis consist of two steps. First
the steady solution of the Navier-Stokes equations has to be
found. In practice both, the steady and unsteady solution of

the Navier-Stokes equations was performed. The unsteady
one served as the reference data for the comparison to the re-
sults of eigenvalue analysis. It is characteristic that obtaining
of the unsteady solution near the critical Reynolds number
is difficult. For symmetrical flow some external forcing has
to be introduced. The response of the flow field is dependent
on the way the disturbance is introduced. The nearly neutral
stability of the flow caused that the influence of the distur-
bance dominates the flow even after a long time. In this
case the purely numerical aspects of the computation are of
much greater significance. Also unsymmetrical flows near the
critical Reynolds number requires a lot of CPU time to be-
come fully unstable. The flow patterns of initial periods are
different from the "fully developed” unsteady ones (Fig.12).
Near the critical Reynolds number such patterns can persist
over a long time requiring significant amount of CPU time
to obtain the real periodic state. Some codes fail to carry
out the calculations long enough in time and due to unphysi-
cal boundary conditions the solution breaks down when the
vorticity reaches the outflow boundary. The unsteady simu-
lation for the Reynolds number higher than the critical one
is easier. For this reason always the higher Reynolds number
unsteady solutions were taken for the comparison with the
stability analysis.

In the linear stability theory the Navier-Stokes equati-
ons are linearized about a steady flow. The quality of the
steady solution has then the direct influence on the eigen-
value analysis. The accuracy of the solution is the best for
the circular cylinder flow and is decreasing for the ellipsis
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Figure 2: The growth-rate and the Strouhal number for the
circular cylinder flow.

and airfoil flow where leading and trailing edge can cause
numerical problems even for meshes generated by the con-
formal mapping. In case of limited computer resources it is
satisfactory for the numerical simulation of the flow to use
relatively crude mesh spacing on central, upper and lower
parts of the airfoil. In this case the gradients of the quan-
tities along the boundary layer are not very large. For the
eigenvalue analysis however, also the fine discretization in
this direction is very important. The attempt to detect the

Tollmien-Schlichting waves necessities at least several tenth
of points for ‘one period preserving also the fine discretiza-
tion in the radial direction. The compromise for these two
contradictory requirements was partly obtained by calcula-

tion of the steady solution on one mesh and interpolation of

the result on another mesh, more suitable for the stability
__calculations.

The eigenvalue solution was calculated for the external

* flow around the circular cylinder, ellipsis and an airfoil. The
circular cylinder served as the source of reference data, for

the validation of the program because a lot of pumerical and

experimental results is avaiable. The only existing results
for non-parallel analysis are the circular cylinder results(10,
9]. The flow around the ellipsis was investigated to analyze
different eigenmodes. The modes characterized by higher
frequency are clearly appearing for high Reynolds numbers.
Because of the extremely long wake for Re > 200, causing
several numerical diffculties such an analysis could not be
carried out for the circular cylinder. Finally the NACA 4412
airfoil flow for a = 0° and a = 15° was shown to examine the

potential possibilities connected with the eigenvalue analysis
of this geometry.

Circular cylinder results T
For the symmetrical low around cylinders it is always,

Figure 3: Real (a) and imaginary (b) part of the eigenvector.

) }hgor'e'tigér.lrlj;igqssjble to obtain a stea.dyfgtégg jglggion, éven

above the “eritical Reynolds number. The streamlines pat-
terns obtained for the steady flow around a circular cylinder
are shown in Fig.l. These results served as the input data
for the eigenvalue analysis. The guess value for the Stroubal

" number is 0.12 and the growth-rate 0. The result of the cal-

culation consist of the complex eigenvalue for each Reynolds
number together with a complex eigenvector. The growth-
rate and the corresponding frequency as the function of the
Reynolds number is shown in Fig.2. Some results of our pre-
vious investigations using the QZ method are also plotted.
The results of these calculations are compared with those
obtained by Zebib [10], which uses the non-parallel analysis

in the spectral stream function formulation together with a

full-matrix eigenvalue solver of a QZ-type. For the inverse
iteration method, used in our computations, the critical va-
lues are Re. = 46.23 and St. = 0.1345. N

__The real and imaginary part of an eigenvector for the in-
creasing Reynolds number is depicted in Fig.3. Over a wide
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Figure 4: Eigenvector velocities (imaginary part): (a) below
Re. (Re = 40} (b) above Re. (Re = 50).

range of Reynolds numbers the eigenvector (disturbance) pat-
terns are very similar, showing the physical aspects of the
phenomena to be already present in flows of fairly small
Reynolds number. The increase in Reynolds number allows
these modes to cross the zero-growth-rate line and emerge as
instabilities. The problem arises if there is any difference in
eigenvector patterns bellow and above the critical Reynolds
number. It is known from the parallel flow stability analy-
sis that the wake stability is governed by its characteristics
in the vicinity of the rear stagnation point. Careful study
of the eigenvector values near the cylinder shows (Fig.4) the
difference in the disturbance patterns above the Re.. This
enhance the onset of the Karman vortex street.

To evaluate how realistic are the obtained eigenvalue so-
lutions the disturbance is summed with the steady-state solu-
tion for Re = 90. As the reference the unsteady flow simula-
tion for Re=100 is taken (Fig.5). The same periodic patterns
are present in both pictures. This proves that for the cylinder
flow instability the non-linear effects are not significant.

Ellipsis flow

Foliowing the approach for the circular cylinder flow the
elliptic cylinder was analyzed. It is known from experiments
and non-parallel flow stability analysis of Jackson, performed
for the bodies with different cross-sections that the proper
scaling of Strouhal number is based on the dimension per-
pendicular to the main flow direction. For such a scaling its
value is not much different for various shape of the cylinder.
The critical Reynolds number reflects also the overall shape
of the body. The relation between the axis ratio of the el-
lipsis and the critical Reynolds number was studied earlier
{8]. For the oblong ellipsis situated parallel to the flow di-
rection the critical Reynolds number is increasing while the
slope of the growth-rate curve becomes smaller, comparing
to the circular cylinder results. As can be expected the Kar-
man vortex street mode results differ only slightly from ones
obtained for the circular cylinder. The eigenvector patterns,
growth-rate and frequency relations for increasing Reynolds
numbers are similar to the circular cylinder ones. The in-
teresting results are obtained also for the Reynolds number
higher than the critical one. We assume that the steady flow
solution coincides with the real one in the boundary layer and

g e

N

Figure 5: Karman vortex street (a) superposition of th'e di-
sturbance and steady solution, Re = 90 (b) unsteady simu-
lation, Ae = 100



Flgure 6: ngher mode exgenvector (real part) for the 1:5

the shear layer near the body, even for tHe Reynolds number

higher than the critical one. The justification for such an

assumption are the experimental investigations of Kourta et
al. [13] and Unal and Rockwell {14] in the higher Reynolds
number range the Karman vortices are formed not directly
behind the cylinder. Between the cylinder and the vortex
street a dead fluid zone is found, bounded by two nearly
parallel shear layers. As the Reynolds number increases the
length of the dead-fluid zone decreases and the location of
the first instability waves in the shear layer moves upstream.
According to the results of the parallel flow stability analysis
the unsteady behavior of the fluid is governed by the flow in
direct neighborbood of the body. This conclusion allows us
to cut the steady solution and limit the computational do-
main. The fact that the length of the wake, obtained as the
steady-state solution of the Navier-Stokes equations exceeds
the assumed "infinity” distance (the wake end is outside the
computational domain) is in context of the eigenvalue ana-
lysis not relevant.

This steady fiow solution is was used as the base for the
eigenvalue analysis. The assumed guess frequency is higher
than for the Karman vortex mode. The result of the higher
mode analysis is depicted in Fig.7 and 8. The growth-rate
is a function of both Reynolds number and mode, so that
different modes are preferentially amplified as the Reynolds
number increases. In Fig. 7 the growth-rate and the Strouhal
number for higher mode is depicted together with the first
one for the ellipsis having the axis ratio 1:5. The temporal
evolution of the waves is shown in Fig. 8. The amplitude of
the wave is raising in the direction of the separation. The
waves on the upper and lower surface of the ellipsis are shif-
ted in phase as the result of superposition of the symmetric
pattern of disturpances and antisymmetric stream function.
The characteristic patterns for all higher modes investigated
are the family of branches of disturbance streamlines having
sequentially positive and negative values. Each branch is
ended with a cell located in the vicinity of the maximum
velocity gradients in the boundary or shear layer. The eigen-
vector patterns should be analyzed in connection with the
steady flow solution. The disturbance is added to it to ob-
tain the unsteady flow. In the steady solution two regions
can be distinguished - "soft” part where the stream function
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Fxgure (B The growth-rate and the Strouhal number for the

~for 1 5 elhpsls flow

values are small, containing the boundary layer, separation
and wake region and the "stiff” part where the stream func-
tion values are large in comparison to the disturbance. It is
obvious that when adding the disturbance and steady state
solutlon only the "soft” part is modulated” whlle the stxﬁ"‘

considerations concerning the exgenvector pattems ‘outside
the "soft” reglon have very limited practical meaning. This
conclusion is confirmed by numerical calculations, showing
that the "soft” regions of the eigenvector are related to the
growth-rate and frequency value. The rest of the field is more
likely influenced by numerical aspects of the computations.
For the Blasius profile instability the Tollmien-Schlichting
wave length is approximately six times larger than the boun-
dary layer thickness. Since the boundary layer on the ellipsis
is relatively thick for the range of the Revnolds numbers ap-
plied in the calculations the detected Tollmien-Schlichting
waves are also long. The shorter ones, for higher Reynolds
numbers require much finer meshes, especially in the circum-
ferential direction. The eigenvector cells. located on the ellip-
sis surface near the leading edge are shorter (in the circumfe-
rential direction) than the ones in the separation region. For
a given constant frequency which is the same for the whole
field it can mean only that the wave propagates slower near
the leading edge and faster in the separation region. The
propagation along the shear layer of the wake has approxi-
mately constant velocity. All the found eigenvalues for the
Tollmien-Schlichting mode were damped ones. The question
arises if the Tollmien-Schlichting wave, considered globally,
in the boundary layer and propagating further along shear

layer can become amplified without external excitation. The

growth-rate is raising with the increasing Reynolds number
and one can expect that the higher mode wave will become
only slightly damped or even amplified for the high enough
Reynolds number.

For any flow around the cylinder exist many eigenmo-
des. In practice near any given frequency exist an eigenvalue,
mostly with such an low growth-rate that it is unlikely that

al
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Figure 8: Tollmien-Schlichting waves - temporal evolution
for the 1:5 ellipsis flow, Re = 200

Figure 9: Steady flow solutions - NACA 4412, a = 15°

it can emerge as the instability. Similar conclusions can be
drawn on base of the Kim [11] results.

Different eigenvectors can be classified into at least two
groups. One characteristic eigenvector pattern is connected
with the onset of the Karman vortex street. Fig.3 shows this
mode for the circular cylinder. Jackson [9] has shown the
same patterns. Similar mode was detected by Karniadakis et
al. [5] who investigated the flow around the circular cylinder
placed in the channel bounded with two paralle] plates. This
mode is called there the central mode and dominates for the
cylinder placed near the symmetry axis. Moving the cylinder
toward the wall causes switching to the "wall mode” which is
related to the Tollmien-Schlichting waves. For the external
fiow around the cylinder the "wall” mode forms similar cells
located however on the body and in the shear layer.

The airfoi] flow

The another cylinder low which was considered is the
airfoil flow. As the example geometry the NACA4412 airfoil
is taken. Two different angles of attack were considered.
For a = 15% the stall is evident and the regular Karman
vortex street appears for high enough Reynolds number. The
numerical simulation of such a flow was performed by Shiitz
[6]. For @ = 0° dominating phenomena take place in the
boundary and shear layer. o

First the steady flow solution has been found (Fig.9). The
character of the steady flow solution for a = 159 is different
from the circular cylinder one. (Fig.1, Fig.9). While for the
circular cylinder the wake consist ot two bubles, there is only
one for the airfoil flow.

The eigenvalue analysis gave the fastest growing mode
(Fig.10).

For a = 15° the flow becomes unstable at Re = 335. The
eigenvector patterns are in this case also very similar to ones
for the circular cylinder (Fig.11). In Fig.13 the comparison



Figure 12: Early time steps, NACA 4412 flow, Re = 1000,
unsteady simulation
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Figure 14: NACA 4412 airfoil flow: (a) superposition of the
steady solution and disturbance fields, Re = 600, (b) un-
steady simulation, Re = 1000

Figure 13: Real part of the eigenvector - airfoil flow, a = 15°
a) Re = 100, b) Re = 600
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Figure 10: The growth-rate and the Strouhal number for the
airfoil flow

between the real part of the eigenvector for Re = 100 and
Re = 500 is shown. The value of the disturbance is growing
with the flow direction for both cases. It is normalized, so
the disturbance reaches the same maximum, located in the
vicinity of the outflow boundary. Because for Re = 100
(Fig.13) the growth-rate is negative the disturbance will be
damped after a long enough time. The flow for Re = 500
is unstable. The disturbance is growing both in time and in
the flow direction. The characteristic feature for the higher
Reynolds numbers flows is the much larger amplitudes of the
disturbance in the wake close to the airfoil.

To compare the obtained eigenvalue analysis results with
the real flow patterns the unsteady simulation was used. The
simulation was performed for Re = 1000. The early stages

of unsteady simulation exhibit patterns significantly different B

from the "fully developed” ones (Fig.12). This discrepancy
is even greater in the neighborhood of the critical value. For
this reason to compare with the eigenvalue analysis one pe-
riod was taken after long enough time (¢ = 56.8 to t = 64.0).
Earlier periods are "spoiled” by the initial flow development.
The comparison of the flow patterns for Re = 600 (eigen-
value analysis) and Re = 1000 (unsteady simulation) show
very good qualitative agreement. All the mechanisms of the
vortex shedding are properly reproduced. This fact is one
more proof that the Karman vortex street, especially near
the body has the linear character.

For the angle of attack equal 0° till Re = 800 exists no
separation on the airfoil. The higher mode solution forms two
row of cells (Fig.15) which are close to the airfoil only near the
leading edge. When added to the steady flow solution only
the shear layer behind the airfoil is effected (Fig.16). The
flow is stable because the growth-rate is negative, but if it
becomes unstable it is the Kelvin- Helmholz type of instability
of the shear layer. For increasing Reynolds numbers the cells
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“Figure 11: Real (a) and imaginary (b) part of the eigenvector

- airfoil flow, a = 159

are moving closer to the airfoil. The disturbances form now
cells attaching the airfoil and forming the "wall” mode. The
boundary layer is now "meodulated” in the way simlar to the
ellipsis flow. For a = 0° the Karman vortex street mode also
exists, although it is strongly damped for the small Reynolds
numbers.

—Conclusions
It was shown that non-paralle]l flow stability analysis is a
method most suitable for determination of the wake flow in-
stability. Several examples , calculated for different Reynolds
numbers and geometries ranging from circular cylinder to the
airfoil with the angie of attack, show that the method is a

general tool for prediction of the wake instability. It is of
advantage of this method, comparing to other numerical ap-



Figure 15: Higher mode solution for the NACA 4412 airfoil
a = 0% a) Re = 300, b) Re = 900
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Frigtru'eﬁlG: Superposition of the steady solution and higher
mode disturbance for the NACA 4412 airfoil, Re = 300

proaches, that the critical Reynolds numbers and respective
frequencies are determined more precisely. The method is
able to handle the unsymmetrical wake flow. In this calcula-
tions the superiority of the stream function formulation and
iterative determination of the eigenvalue has been proved.
Using the same method higher modes were investigated
for the ellipsis and airfoil flow. Although the investigations
had a preliminary character it can be concluded, that the
results obtained differ significantly from the first mode so-
lution. The higher mode disturbance patterns, obtained for

the ellipsis flow, added to the steady solution appear to be
the Tollmien-Schlichting wave originating in the boundary
layer. The wave propagates further along the mixing layer.
For the airfoil flow these types of modes were found but also
another instability phenomena are present in the eigenvalue
solutions. The investigation of large spectrum of eigenmodes
is even more difficult because some instability phenomena
are smoothly "switching” to another ones. The result of the
higher-mode analysis gives the qualitative insight into the
stability problem. The limitation of the method on present
state of its development is not the formulation but the num-
merical approach. These difficuities we hope to overcome in

our future investigations.

We belive that the method presented here will enable
the stability analysis of any flow as a whole, without brea-
king it into pieces or restricting considerations to single type
and that all instability phenomena are reflected in the non-
parallel flow eigenvalue solutions.
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