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Abstract

As the result of global, non-parallel flow stability analysis

the singlevalue of the disturbancegrowth-rate and respective

frequency isobtained. This complex value characterizesthe

stabilityof the whole flow configurationand is not referred

to any particularflow pattern. The globalanalysis assures

that allthe flowelements (wake, boundary and shear layer)

are taken intoaccount. The physical phenomena connected

with the wake instabilityare properely reproduced by the

globalanalysis.This enhance the investigationsof instability

of any 2-D flows,includingones in which the boundary layer

instabilityeffectsare known to be of dominating importance.

Assuming fully2-D disturbance form, the globallinearstabi-

lityproblem isformulated. The system of partialdifferential

equations issolved for the eigenvaluesand elgenvectors.The

equations,written in the pure stream function formulation,

are discretizedvia FDM using a curvilinearcoordinate sy-

stem. The complex eigenvaiuesand corresponding eigenvec-

torsareevaluated by an iterativemethod. The investigations

performed for various Reynolds numbers emphasise that the

wake instabilitydevelops intothe Karman vortex street.This

phenomenon is shown to be connected with the firstmode

obtained from the non-parallelflow stabilityanalysis.The

higher modes are reflectingdifferentphysicalphenomena as

for example Tollmien-Schlichting waves, originatingin the

boundary layerand having the tendency to emerge as insta-

bilitiesforthe growing Reynolds number. The investigations

are carriedout fora circularcylinder,oblong ellipsisand air-

foil.It is shown that the onset of the wake instability,the

waves in the boundary layer,the shear layerinstabilityare

differentsolutionsof the same eigenvalueproblem, formula-

ted using the non-paralleltheory. The analysisofferslarge

potentialpossibilitiesas the generalizationof methods used

tillnow for the stabilityanalysis.

Introduction

The boundary layer stabilityanalysisbased on the so-

lution of the Orr-Sommerfeld equation is a usefultool for

practicalanalysis of the laminar-turbulent transition.The

only competing method isbased on purely empiricalformu-

las,characterizedmost often by the shape parameter.

It isWidely accepted that infinitelysmall disturbances,

although amplified according to linearstabilitytheory are

not ableto onset the laminar-turbulenttransitionunlessthe

amplificationreaches some value so a factorhas to be intro-

duced to correctthe resultsof the analysis.The e# method

has been develop to match the resultsof the empirical an

theoreticalinvestigations.

The laminar-turbulent transitionisusually preceded by

the Tollmien-Schllchtingwaves. Several receptivityexperi-

ments (Morkovin [4])were provided to understand the phe-

nomena of the Tollmien-Schlichtingwaves generation. It is

commonly accepted that Tollmien-Schlichtingwaves are ge-

nerated by an externalsource ofdisturbance (as forexample

acoustic excitation)and that the non-parallelor non-uniform

effectsenhance the feedback between the wave and the ex-

citation.These non-paralleland non-uniform effectsare the

viscous boundary layer growth, the change of the surface

curvature and variationof the surfacestaticpressure. The

growth of the boundary layerisevident near the leading edge

of the blunt body, change of the surface curvature causes

the non-parallelityof the flow,surface staticpressure chan-

ges significantlyin the separationregion.Itis characteristic

that these threeproblems were studied separately.Goldstein

[I]solved analyticallythe problem of evolutionof Tollmien-

Schlichting waves near the leading edge. The influenceof

sudden change of the geometry was investigatedby Gold-

stein [2]and Ruban [3].

These investigationshave one common feature - the as-

sumption of slow variationofthe flowin the streamwise direc-

tion as necessary conditionforweakly non-parallelanalysis.

Ellipticnature of the Navier-Stokes equation describing

the flow suggest that the phenomena in allthese regions are

not independent and influenceeach other. The question ari-

sen if interactionsof the leading edge geometry, boundary

layer and wake can be described by a single theory. The

natural choice is to drop the parallelflow assumption and

to treat the flow in allthese regions as a whole. The con-

sequence is the attempt to use the non-parallelflow,global

stabilityanalysis. The non-paralleltheory was succesfuly

used to study the wake instability[10,9, 8, 7, 12]. There

are no theoreticallimitationsto apply thisanalysis also to

various geometries, as for example the airfoil.Because the

assumptions of the non-paralleltheory isa generalizationof

the classicalparallelflow analysis,one can expect that this

method isadequate not only for determination of the wake

instability.The instabilityof the boundary and shear layer

must be reflectedin the eigenvaluesolutionsof the problem.

Governin_ equations

.........Linear stabilitytheoryisconcerned with the development

in time and space of infinitesimalperturbationsaround a gi-

ven basic flow. If thisbasic flow is assumed to be paral-

lel,the classicaltheory of parallelshear flow stabilitycan

be applied. This method has been alsosuccessfullyused for

nearly parallelflowsforwhich the multiple-scalemethod, ad-

opting the concept of "slow_ variationof flow parameters in

one direction,isvalid.In general,non-parallelcase only the

two-dimensional theory taking intoaccount the non-parallel

effectsis adequate. The equations of thistheory are briefly

presented here.

The problem was solvedin the pure (Lagrangian) stream

function finitedifferenceformulation. This formulation, not



verycommon in the Navier-Stokes equations solvers,offers

certainadvantages for the eigenvalueanalysis.The primitive

variablesformulation ([9])resultsin much largermatrices.

Although the eigenvaluesare equal forvelocitiesand pressure

. _ _ _ione has to deal with the fullsystem. This differencein size

iseven more evident because the matrix entriesare complex

forthe eigenvalueanalysis.

The unsteady incompressibleNavier-Stokesequations writ-

ten in the stream function formulation take the form:

[_ + (v x ¢).v - a]av;= o (I)

= ¢_ (2)

We assume that the stream function q_(z,y,( ) is a sum of a

steady part _(x, V) and the unsteady disturbance ¢'(x,y,t):

The disturbance value isassumed to be small compared to

the stream function value.Introducing equation (3) into(i)

we obtain the nonlinear equation:

a - I - -

[_-_+(V x ¢).V-_--_eA ] A¢,+(V x ¢,).V(A6+A_,) = 0 (4)

Assuming a small disturbance allowsthe linearizati0nof the

equation (4) i.e.we ignore the terms containing (_)2 . In

the disturbance equation we Separate the time and space de-

pendence:

_'(_, v, _)= ¢(_, v)_-'_' (5)

where

= r(st+ i_) (6)

Introducing the above relationshipinto (4) resultsin the li-

near partialdifferentialequation:

i_a¢- (v x _). va¢- (v x ¢). va_ + _a _ = o (7)

The fundamental differencebetween thisequation and the

Orr-Sommerfeld one, which is derived in similarmanner as-

suming the disturbance form as:

_'(_,v, t)= ¢(v)¢"°'-_o (8)

isthat,while Orr-Somrnerfeld equation isan ordinary diffe-

rentialequation, equation (5) is a partialdifferentialequa-

tion.This means differentmethods ofsolutionand numerical

problems encountered for the two cases.

To solve the problem foran arbitraryflowgeometry the

curvilinearbody fittedcoordinate system should be used for

the solution of the equation (I) and (7). For orthogonal

metric the followingrelations axe valid:

g#=0 , gU=0 , i#j (9)

hence equations (i) and (7) can be Written as:

iir (_ IW'I,,+ ,,..- ,,.]=o (lo)
" iA e ='_ 1 .j

The symbol ]denotes the covariantderivativeof the function.

For further specializedmetric tensor coefficients

g22 = fl_(q)g(G,) (12)

only g(_, r/) and its first order derivatives 9.t and g,, have to

be calculated for any transformation.

Reynolds number Re and Strouhal number St are expres-
sed as:

dV® d/ 03)Re :--_ ; St :=
v U®

Discretized,equation (11) can be written as:

(A - AB)_o -- 0 (14)

and representsthe generalizedeigenvalue problem.

For the eigenvaluecalculationscomplex numbers can be split

intorealand imaginary partsso that only the realarithmetic

has to be applied. Then the two parts ofequation (2.10)may
be written:

A_, - A,B_, + A,B_ = 0

A_ : A_B_, + A,B_ = 0 (15)

Solution

Numerical discretizationand mes]l¢_ .

The discretizationof the Navier-Stokes equations (ii)

and disturbance equation (12) isaccomplished using the fi-

nitedifferencemethod. In both casesthe thirteen-pointsten-

cilwas used. The accuracy ofthe derivativesforsuch a stencil

is maximum 0(hx) for the fourth order terms.The unsteady

version contains implicitstepping in time. :....

For allthe calculationsthe 0rthogonal O-type mesh ob-

tained by the conformal mapping is applied. The Karman-

Trefftztransformation was used for the airfoilcalculations.

The metric coefficients(13) are expressed analyticallyby

means of symbolic manipulation program to assure the ma-

ximum accuracy.

Boundary Conditions

For the steady Navier-Stokes equation solution the folio-

wing boundary conditionsare used:

_=0 , ¢,.=0 onthebody (16)

Do)

= 0 , ¢. = tp_,. in the far/ield (17)
.... : _ _i:: '::7:=::_:±?47

The collocation of the vorticity transport equation is made

only for the outflow. For the inflow the Dirichiet boundary

condition with the value of the potential flow solution is ta-

ken. The boundary conditions for the d_sturb_ce equation

(12) arei

_=0 , _,.=0 on the body (18)

Dw D_

D'_ = 0 , D'--'t= 0 in the farfield. (19)



The Dirichlet boundary condition (zero disturbance) is in-
troduced for the inflow. The introduction of the convective

boundary conditions appears to be an important factor of
improving the numerical accuracy, especially for the steady
and unsteady flow calculations.

Solution of the eieenwalue problem
In any eigenvalue problem the question arises whether all

the eigenvalues are sought or whether determination of only
one or few is satisfactory. Solving similar problem Zebib and
Kim et al. [10,11] applied the QZ type decomposition from
the standard libraries. The advantage of finding all of the
eigenvalues is that no guess values have to be made. For rela-
tively small matrix size, resulting from the use of the spectral
method or crude FDM meshes this procedure is acceptable
and was used in our earlier investigations [7]. Jackson ap-
plied for the unsymmetrical, complex generalized eigenvalue
problem, appearing in the non-paralhl flow stability theory
the inverse iteration method [9I. This concept is also adopted
in our present investigations. The eigenvalue, closest to the
guess value and the related eigenvector are both determined
at the same time. Till now it is the only realistic method for
very large equation systems.

The following equations explain the principle steps of this
method. Applying the Newton-Raphson method to equation
(14) we obtain

(A - A(")B)(_(")+ d_("))- dA(")B_(")= 0 (20)

Re = 30

Re = 40

Re ffi50

Re = 60

which can be written as:

(A - A("IB)_ ("+*) = B_(")

where the normalization is performed as follows:

_;(-+,)= _(-)+ d%o(") (22)

and

(_'), = _,, (23)
denotesa unitvector.The correctionofdA(")iscalculated

from:

dA(.+1 } = I (24)
(¢r)TT](n+l)

The iterationprocessinvolvesthe repeatedsolutionof the

equation(21),normalizationof the eigenvectorand correc-

tionofthe eigenvalue.This processcontinuesuntilconver-

genceoftheeigenvectorand eigenvalueisachieved.The pro-

cedure,whichconsistsofLU decompositionateachstepwith

a quadraticrateofconvergence,was replacedby a method

usingonlyone LU decomposition.The convergenceisthen

onlylinearbut theback-substitutiontime issignificantlyre-
duced compared tothedecompositiontime,justifyingmany

iterationsteps:

(A - ,koB)-I B,_ (") = r/"+I) (25)

The schemeisfoundtobe convergenttotheeigenvalueclo-

sesttoAoand toproducetheappropriateeigenvector.

Numericalresults

The linearstabiLityanalysisconsistof two steps.First

the steadysolutionoftheNavier-Stokesequationshas tobe

found.Inpracticeboth,thesteadyand unsteadysolutionof

(21)

i F_gure h Steady flow solutions for the circular cylinder flow

the Navier-Stokesequationswas performed. The unsteady
one servedasthereferencedataforthecomparisontothere-

sultsofeigenvalueanalysis.Itischaracteristicthatobtaining

ofthe unsteadysolutionnear the criticalReynoldsnumber

isdifficult.For symmetricalflowsome externalforcinghas
tobe introduced.The responseoftheflowfieldisdependent

on theway thedisturbanceisintroduced.The nearlyneutral
stabilityoftheflowcausedthatthe influenceofthe distur-

bance dominatesthe floweven aftera long time. In this

casethe purelynumericalaspectsofthe computationareof

much greatersignificance.Alsounsymmetricalflowsnearthe

criticalReynoldsnumber requiresa lotofCPU time tobe-

come fullyunstable.The flowpatternsofinitialperiodsare

differentfrom the "fullydeveloped"unsteadyones (Fig.12).

Near thecriticalReynoldsnumber such patternscan persist

overa longtime requiringsignificantamount of CPU time

toobtainthe realperiodicstate.Some codesfailtocarry

out thecalculationslongenough intime and due tounphysi-
calboundary conditionsthe solutionbreaksdown when the

vorticityreachestheoutflowboundary.The unsteadysimu-

lationfortheReynoldsnumber higherthan thecriticalone

iseasier.For thisreasonalwaysthehigherReynoldsnumber

unsteadysolutionswere takenforthe compaxisonwith the

stability analysis.

In the linear stability theory the Navier-Stokes equati-
ous are linearized about a steady flow, The quality of the
steady solution has then the direct influence on the eigen-
value analysis. The accuracy of the solution is the best for

the circular cylinder flow and is decreasing for the ellipsis



,15

.lO

• 05,

0 |0

RQ

Figure 2: The growth-rate and the Strouhal number for the
circular cylinder flow.

and airfoil flow where leading and trailing edge can cause
numerical problems even for meshes generated by the con-
formal mapping. In case of limited computer resources it is
satisfactory for the numerical simulation of the flow to use

relatively crude mesh spacing on central, upper and lower
parts of the airfoil. In this case the gradients of the quan-
tities along the boundary layer are not very large. For the
eigenvalue analysis however, also the fine discretization in
this direction is very important. The attempt to detect the
Tollmien-Scl_c_t_ng Wav_necessRles at least severaJ tenth
of points for 'one period preserving also the fine discretiza-
tion in the radial direction. The compromise for these two
contradictory requirements was partly obtained by calcula-
tion of the steady solution on one mesh and interpolation of
the result on another mesh, more suitable for the stability
calculations.

J_e= _ C0

a) b)

Fig_e 3: Real (a) and imaginary (b) part of the eigenvector.

theoretically, possible to obtain a stea_dy-state solution, even

The eigenvMue_solutlonw_ c_cul_tedfortheexternal above t_e criticalReynoldsnumber.__The strearnlinespat-

flowaroundthe circularcylinder,ellipsisand an airfoil.The ternsobtainedforthesteadyfiowaround a circularcylinder

circularcylinderservedas the sourceofreferencedata,for areshown inFig.l.These resultsservedas theinputdata

thevalidationoftheprogrambecausea lotofnumericaland

experimentalr_ultsis avaiable.The onlyexistingresults

fornon-parMlelanalysisaxe thecircularcylinderresults[10,

9].The flowaround theellipsiswas investigatedtoanalyze

differentelgenmodes. The modes characterizedby higher

frequencyareclearlyappearingforhigh Reynoldsnumbers.

Becauseofthe extremelylong wake forRe > 200,causing
severalnumericaldifficultiessuch an analysiscouldnot be

carriedoutforthecircularcylinder.Finallythe NACA 4412

airfoilflowfora = 0° and a =15°was shown toexaminethe

potentialpossibilitiesconnectedwith theeigenvalueanalysis

ofthisgeometry.

Circular cylinder results

fortheeigenvalueanalysis.The guessvaluefortheStrouhal

number is0.12andthe growth-rate0. The resultofthecal-

culationconsistofthecomplexeigenvalueforeachReynolds

number togetherwith a complex eigenvector.The growth-

rateand the correspondingfrequencyasthe functionofthe

Reynoldsnumber isshown inFig.2.Some resultsofour pre-
viousinvestigationsusingthe QZ method are alsoplotted.

The resultsofthesecalculationsare compared with those

obtainedby Zebib[10],which usesthe non-parallelanalysis

inthespectralstreamfunctionformulationtogetherwith a

full-matrixeigenvaluesolverofa QZ-type. For the inverse

iterationmethod,used inour computations,the criticalva-

luesare Re_ = 46.23 and St_ = 0.1345.

The real-_m_i imagina_ part of an eigenvector f0r the in-
For the symmetricalflowaround cylindersitisalways, creasingReynoldsnumber isdepictedinFig.3.Over a wide
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Figure 4: Eigenvector velocities (imaginary part): (a) below

Rec (Re = 40) (b) above Rec (Re = 50).

range ofReynolds numbers the eigenvector(disturbance)pat-

terns axe very similar,showing the physicalaspects o£ the

phenomena to be already present in flows of fairlysmall

Reynolds number. The increase in Reynolds number allows

these modes to crossthe zero-growth-ratelineand emerge as

instabilities.The problem arisesifthere isany differencein

eigenvector patterns bellow and above the criticalReynolds

number. It is known from the parallelflow stabilityanaly_

sisthat the wake stabilityisgoverned by itscharacteristics

in the vicinityof the rear stagnation point. Careful study

of the eigenvector valuesnear the cylindershows (FigA) the

differencein the dlsturbance patterns above the Rc_. This

enhance the onset o£ the Karman vortex street.

To evaluate how realisticare the obtained eigenvalueso-

lutionsthe disturbanceissummed with the steady-statesolu-

tionfor Re = 90. As the referencethe unsteady flowsimula-

tionfor Re=f00 istaken (Fig.5).The same periodicpatterns

are presentin both pictures.This proves thatforthe cylinder

flow instabilitythe non-lineareffectsare not significant.

Ellipsisflow
Following the approach for the circularcylinderflow the

ellipticcylinder was analyzed. Itisknown from experiments

and non-parallelflowstabilityanalysisof Jackson, performed

for the bodies with differentcross-sectionsthat the proper

scalingof Strouhal number isbased on the dimension per-

pendicular to the main flow direction.For such a scalingits

value isnot much differentfor variousshape of the Cylinder' "

The criticalReynolds number :effectsalsothe overallshape

of the body. The relationbetween the axisratioof the el-

lipsisand the criticalReynolds number was studied earlier

[8].For the oblong ellipsissituated parallelto the flow di-

rectionthe criticalReynolds number isincreasingwhile the

slope of the growth-rate curve becomes smaller,comparing

to the circularcylinderresults.As can be expected the Kar-

man vortex streetmode resultsdil_eronly slightlyfrom ones

obtained for the circularcylinder.The eigenvcctorpatterns,

growth.rate and frequency relationsfor increasingReynolds

numbers are similarto the circularcylinderones. The in-

terestingresultsaxe obtained alsofor the Reynolds number

higher than the criticalone. We assume thatthe steady ffow

solutioncoincideswith the realone in the boundary layerand

T=2.4 --'----

Tt_ 4.0 _-------_

_
=2o,o  i:i!il; ..

a) b)

Figure 5: Karman vortex street (a) superposition of the di-
sturbance •nd stea£1ysolution,Re = 90 (b) unsteady simu-

lation,Rc = 100



Figure 6: Higher mode eigenvector (reM part) for the 1:5

ellipsis flow, Re = 200 ....

the shear layernear the body, even for t._el-g_ynoldsnumber

higher than the criticalone. The justificationfor such an

.is"
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Figure 7: The growth-rate and the Strouhal number for the

assumption are the experimental investigationsof Kourta et for 1:5 ellipsisflow

al. [13]and Una_ and Rockwell [14]in the higher Reynolds

number range the Karman vorticesare formed not directly

behind the cylinder. Between the cylinder and the vortex

street a dead fluidzone is found, bounded by two nearly

parallelshear layers.As the Reynolds number increasesthe

length of the dead-fluldzone decreases and the location of

the firstinsta.bTh_t.vwa_,esin the shear layermoves upstream.

According to the resultsof the parallelflowstabilityanalysis

the unsteady behavior of the fluidisgoverned by the flow in

directneighborhood of the body. This conclusion allows us

to cut the steady,solution and limit the computational do-

main. The factthat the length of the wake, obtained as the

steady-statesolutionof the Navier-Stokes equations exceeds

the assumed "infinity"distance (the wake end isoutside the

computational domain) is in context of the eigenvalue ana-

lysisnot relevant.

This steady flowsolutioniswas used as the base for the

eigenvalueanalysis.The assumed guess frequency is higher

than for the Kaxman vortex mode. The resultof the higher

mode analysisisdepicted in Fig.7 and 8. The growth-rate

is a function of both Reynolds number-and mo_e, so that

differentmodes axe preferentiallyamplified as the Reynolds

number increases.In Fig. 7 the growth-rate and the Strouhal

number for higher mode is depicted together with the first

one forthe ellipsishaving the axis ratio 1:5.The temporal

evolutionof the waves is shown in Fig. 8. The amplitude of

the wave is raisingin the directionof the separation. The

waves on the upper and lower surfaceof the ellipsisare shif-

ted in phase as the resultof superpositionof the symmetric

pattern of disturbancesand antisymmetric stream function.

The characteristicpatterns forallhigher modes investigated

are the family of branches of disturbance streamlineshaving

sequentiallypositiveand negative values. Each branch is

ended with a celllocated in the vicinityof the maximum

velocitygradientsinthe boundary or shear layer.The eigen-

vector patterns should be analyzed in connection with the

steady flow solution.The disturbance isadded to it to ob-

tain the unsteady flow. In the steady solution two regions

can be distinguished-"soft" part where the stream function

values axe small, containing the boundary layer,separation

and wake region and the "stiff"part where the stream func-

tion values axe large in comparison to the disturbance. It is

obvious that when adding the disturbance and steady state

solutiononly the "soft" part is"modulated" whilethe "stiff_

one_-si)r_tl-cal_lynot influenced(Fig.8).For thisreason the

considerations concerning the eigenvector patterns outside

the "soft" region have very limited practicalmeaning. This

conclusion is confirmed by numerical calculations,showing

that the "soft" regions of the eigenvectorare related to the

growth-rate and frequency value. The restof the fieldismore

likelyinfluencedby numerical aspects of the computations.

For the Blasiusprofileinstabilitythe Tolimien-Schlichting

wave length isapproximately sixtimes largerthan the boun-

dary layerthickness.Since the boundary layeron the ellipsis

isrelativelythickfor the range of the Reynolds numbers ap-

plied in the calculationsthe detected Tollmien-Schlichting

waves are also long. The shorter ones, for higher Reynolds

numbers requiremuch finermeshes, especiallyinthe circum-

ferentlal direction. The e_genvec(or cells, located on the dlip-

sis surface near the leading edge are shorter (in the circumfe-

rential direction) than the ones in the separation region. For

a given constant frequency which is the same for the whole

field it can mean only that the wave propagates slower near

the leading edge and faster in the separation region. The

propagation along the shear layer of the wake has approxi-

mately constant velocity. All the found eigenvalues for the

To]Imlen-_Jc'nlichtingrn_oZffewere _-nped ones. Tfh_equestion

arisesifthe Tollmien-Schlichtingwave, considered globally,

in the bounciary layer and propagating furtheralong shear

layer can become amplifiedwithout externalexcitation.The

growth-rate is raisingwith the increasingReynolds number

and one can expect that the higher mode wave willbecome

only slightlydamped or even amplifiedforthe high enough

Reynolds number.

For any flow around the cylinder exist many eigenmo-

des. In practicenear any given frequencyexistan eigenvalue,

mostly with such an low growth-rate that itisunlikelythat



T--0

Figure 8: Tollmien-Schlichting waves - temporal evolution
for the 1:5 ellipsis flow, Re -- 200

100

Figure 9: Steady flow solutions - NACA 4412, a = 150

itcan emerge as the instability.Similarconclusionscan be

drawn on baseofthe Kim [11]results.
Differenteigenvectorscan be classifiedintoatleasttwo

groups.One characteristiceigenvectorpatternisconnected

withtheonsetofthe Karman vortexstreet.Fig.3showsthis

mode forthe circularcylinder.Jackson[9]has shown the

same patterns.Similarmode was detectedby Karniadakiset

al.[5]who investigatedtheflowaroundthecircularcylinder

placedinthechannelbounded withtwo parallelplates.This

mode iscalledtherethe centralmode and dominatesforthe

cylinderplacednearthesymmetry axis.Moving thecylinder
towardthewallcausesswitchingtothe"wallmode" whichis

relatedto the Tollmien-Schlichtingwaves. For the external
flowaroundthecylinderthe "wall"mode formssimilarcells

locatedhoweveron the body and intheshearlayer.

The airfoilflow

The anothercylinderflowwhich was consideredisthe

airfoilflow.As the examplegeometry theNACA4412 airfoil

istaken. Two differentanglesof attackwere considered.

For c_= 150 the stallisevidentand the regularKarman

vortexstreetappearsforhighenough Reynoldsnumber. The

numericalsimulationofsuch a flowwas performedby Shfitz
[6].For a = 00 dominatingphenomena takeplacein the

boundary and shearlayer.

Firstthesteadyflowsolutionhasbeenfound(Fig.9).The
characterofthesteadyflowsolutionfora ffi150isdifferent

from the circularcylinderone. (Fig.l,Fig.9).While forthe

circularcylinderthe wake consistottwo bubles,thereisonly
one forthe airfoilflow.

The eigenvaiueanalysisgave the fastestgrowingmode

(Fig.10).
Fora = 150the flowbecomesunstableatRe --335.The

eigenvectorpatternsareinthiscasealsoverysimilartoones

forthe circularcylinder(Fig.t1).In Fig.13thecomparison



T=3.6

T = 12.6

T = 28.8

T = 34.0

Figure12: Earlytime steps,NACA 4412 flow,Re = I000,

unsteadysimulation

Figure13:Realpartof theeigenvector-airfoilflow,a = 150

a)Rc = i00,b) Re = 600

a) b)

Figure14: NACA 4412 airfoilflow:(a)superpositionofthe

steadysolutionand disturbancefields,Re = 600, (b) un-
steadysimulation,Re = i000
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Figure 10: The growth-rate and the Strouhal number for the
airfoil flow

between the read part of the eigenvector for Re = 100 and

Re = 500 is shown. The wlue of the disturbance is growing

with the flow direction for both _es. It is normalized, so

the disturbance reaches the same maximum, located in the

vicinity of the outflow boundary. Because for Re = 100

(Fig.13) the growth-rate is negative the disturbance will be

damped after a long enough time. The flow for Re -- 500

is unstable. The disturbance is growing both in time and in

the flow direction. The characteristic feature for the higher
Reynolds numbers flows is the much larger amplitudes of the
disturbance in the wake close to the airfoil.

To compare the obtained eigenvalue analysis results with

the real flow patterns the unsteady simulation was used. The

simulation was performed for Re = 1000. The early stages

of unsteady simulation exhibit patterns significantly different

from the "fully developed" ones (Fig.12). This discrepancy

is even greater in the neighborhood of the critical value. For

this reason to compare with the eigenvalue analysis one pe-

riod was taken after long enough time (t = 56.8 to t = 64.0).

Earlier periods are "spoiled" by the initial flow development.

The comparison of the flow patterns for Re ffi 600 (eigen-

value analysis) and Re -- 1000 (unsteady simulation) show

very good qualitative agreement. All the mechanisms of the

vortex shedding are properly reproduced. This fact is one

more proof that the Karman vortex street, especially near

the body has the linear character.

For the angle of attack equal 0° till Re = 800 exists no

separation on the airfoil. The higher mode solution forms two

row of cells (Fig.15) which are close to the airfoil only near the

leading edge. When added to the steady flow solution only

the shear layer behind the airfoil is effected (Fig.16). The
flow is stable because the growth-rate is negative, but if it

becomes unstable it is the Kelvin-Helmholz type of instability

of the shear layer. For increasing Reynolds numbers the cells

Re = 600

\

a) b)

Figure 11: Real (a) and imaginary (b) part of the eigenvector

- airfoil flow, a = 15 o

are moving closer to the airfoil. The disturbances form now

ceils attaching the airfoil and forming the 'wall" mode. The

boundary layer is now "modulated" in the way simlar to the

eUipsis flow. For a ffi 0° the Karman vortex street mode also

exists, although it is strongly damped for the small Reynolds
numbers.

Conclusions

It was shown that non-parallel flow stability analysis is a
method most suitable for determination of the wake flow in-

stal_ility. Several examples, calculated for different Reynolds

numbers and geometries ranging from circular cylinder to the
airfoil with the angle of attack, show that the method is a

general tool for prediction of the wake instability. It is of

advantage of this method, comparing to other numerical ap-



a)

b)

Figure 15: Higher mode solution for the NACA 4412 airfoil
a = 0°, a) Re = 390, b) Re = 900

Figurei6: Superposition of the steadysolution and higher

mode disturbanceforthe NACA 4412 airfoil,Re = 300

proaches,thatthecriticalReynoldsnumbers and respective

frequenciesare determinedmore precisely.The method is
abletohandletheunsymmetricalwake flow.Inthiscalcula-

tionsthesuperiorityofthe streamfunctionformulationand

iterativedeterminationoftheeigenvaluehas been proved.

Usingthe same method highermodes were investigated

forthe ellipsisand airfoilflow.Although the investigations
had a preliminarycharacteritcan be concluded,thatthe

resultsobtaineddiffersignificantlyfrom the firstmode so-

lution.The highermode disturbancepatterns,obtainedfor

the eliipsiS flow:  to the 8 e ly s0iutio  b;
the To llmien-Schlichting wave originating in the boundary
layer. The wave propagates further along the mixing layer.
For the airfoil flow these types of modes were found but also

another instability phenomena axe present in the eigenvalue
solutions. The investigation of large spectrum of eigenmodes
is even more difllcult because some instability phenomena
are smoothly "switching" to another ones. The result of the
higher-mode analysis gives the qualitative insight into the

stability problem. The limitation of the method on present
state of its development is not the formulation but the num.

merical approach. These difllculties we hope to overcome in
our future investigations.

We belivethat the method presentedhere willenable

the stabilityanalysisofany flowas a whole,withoutbrea-

kingitintopiecesorrestrictingconsiderationstosingletype

and that allinstabilityphenomena arereflectedinthe non-

parMlelfloweigenvalueso[utions.
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