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Abstract

Studies are made of the turbulent separation bubble in

a two-dimensional semi-infinite blunt plate aligned to a

uniform free stream when the oncoming free stream

contains a pulsating component. The discrete-vortex

method is appliedto simulate this flow situations because

this approach is effective to represent the unsteady

motions of turbulent shear layer and the effect of viscosity

near the solid surface. The numerical simulation has fairly

reasonable predictions with the experimental results which

have already performed. A particular frequency given a

minimum reattachment which is related to the drag

reduction and the most effective frequency is dependent

on the most amplified shedding frequency. The turbulent

flow structure is scrutinized, which includes the time-mean

and fluctuations of the velocity and the surface pressure,

together with correlations between the fluctuating

components. A comparison between the pulsating flow

and the non-pulsating flow at the particular frequency of

the minimum re.attachment length of the separation bubble
suggests that the large-scale vortical structure is associated

with the shedding frequency and the flow instabilities.

Introduction

An improved understanding of pulsating flow

characteristics on the turbulent separation bubble is useful

inthedesignofaerodynamichigh-speedvehiclesand of

pulsating turbomachineries. In this study, the separation

bubble is generated by flow separation from a sharp

leading-edge of a blunt circular cylinder whose axis is

aligned parellel to the approaching main flow. Relevant

experimental studies have been carried out by Kiya et al. t

with a view toward the control of a turbulent leading-edge

separation bubble.

Control of the separation bubbles by sinusoidal

perturbations has been reported by many researchers 2"3.

Roos and Kegelrnan 2 obtained the reattachment length in a

backward-facing step flow as a function of the level and

frequency of the perturbation. Sigurdson and Roshko 3

analyzed the structure and control of a turbulent

reattaching flow; the reduction of the pressure drag,

bubble height and reattachment length were found to

depend critically on the forcing frequency.

In order to numerically simulate Pulsating flow on a

turbulent leading-edge separation bubble, the discrete-

vortex model is applied. This approach has been

demonstrated to be effective in representing the unsteady

motions of turbulent separation bubble 4. The finite-

difference simulation of the averaged Navier-Stokes

equation with turbulence models has the advantage in

computational accuracy and applicability. However, it is

currently limited to the ranges of low Reynolds numbers

for separated unsteady flows.
The discrete-vortex model is known to be a powerful

tool for simulating unsteady separated flows of high

Reynolds numbers 4_. The separating flow at the leading

edge is represented by a combination of an inviscid

potential flow and discrete vorticies. The effect of

viscosity near the solid surface is incorporated in the

model. The reduction in the circulation of elemental

vortices is also introduced as a function of their ages in

order to represent the three-dimensional deformation of

vortex filaments. Details regarding the numerical

procedures can be found in Ref. 5. The ability of the

discrete vortices to adequately represent pulsating



U," = U, (l+Asin27ff0

U_"/ U,

1 _t

' lff '

(a) Pulsating flow

u,"-U, _ _

•_ zH

Acous_s_R_

(b) Experimental apparatus with acoustic speaker

Fig. 1 Experimental apparatus and numerical analogy

continuous vortex sheetes in the separating bubbles has
been tested in Re/', 6-7.

In this paper, we consider the specific example of the

flow past a two-dimensional flat plate with finite thickness

and a blunt leading-edge, which is aligned parallel to a

unif?rrn approaching sueam, The pulsation was _vided

by a sinusoidally oscillating jet issued from a thin-slit

along the separation edge. Therefore, in the numerical

simulation, the oncoming free su'eatn was assumed to

contain a sinusoidally-varying pulsating component. The

entire flow field in the separation bubble is affected

mainly by the dynamics neat the leading-edge where

separation occurs (Fig. 1).

The purpose of this study is to examine the details of

the turbulent leading-edge separation bubble by discrete-

vortex model. The two key parameters characterizing the

free stream are the amplitude of pulsation A, and the

frequency parameter St (=t'H/U_. The effects of the

separation bubble on the forebody drag, the reattachment

length and the lock-on effect between the pulsating

frequency and the shedding frequency are investigated.

The turbulent flow structure is also scritlnized, which

includes the time-mean and fluctuations of the velocity

and the surface pressure, together with the correlations

between the fluctuating components. The effect of

pulsation on the minimum reattachment length of the

separation bubble is examined in detail. This will show

that the large scale vortical structure is closely linked with

the issues of the shedding frequency and the flow

instabilities.

Discrete-vortex model

The leading-edge separation bubble of a blunt two-

dimensional body is considered. This flow geometry is

basically the same as the flow configuration of Kiya s.

Specifics regarding the utilization of discrete-v0rtex

method can be found in their studies. The separation

bubble is generated by flow separation from a sharp

leading-edge of a blunt two-dimensional body. The

dimension of the flat plate is of f'mite thickness(H') and

semi-infinite length. The interactions between the two

separation bubbles at the corners are assumed to be

minimal. Thus, the symmetry condition is applied in this

problem. The geometry of the body is given in Fig.2.
The Schwarlz-Christoffel transformation is used t_

project the exterior region of the body ( the physical

plane, z-plane) into an upper half plane ( the transformed

The upstream free stream velocity Ui contains a

pulsating component, therefore,

U,'=U,(l+Asin2,m) (2)

where f is the pulsating frequency and A is the ampfitude

of pulsation. If the flow has no pulsation, i.e., A=0, U_"

reverts directly to the constant velocity at upstream

infinity U t. The complex potential w_ induced by the

discrete vortices is given by

(3)

where N is the total number of vortices in the flow field,

and j is the position of thejill vortex in the transformed

plane with its complex conjugate and K_ denotes its

circulation. The complex potential w for the entire flow

field is the sum of w_ and w, by superposition, i.e.,

w=w,+w_, where w_ is the complex potential for the
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irromtional flow around the body.

- The velocity field in the physical plane is given by

dw dw dA
u- _v= --_"-dA dz

where u and v are the velocity components in the x- and

y-directions, respectively. The velocity at a vortex point,

the kth vortex, has to be obtained by differentiating with

Taylor expansion and the complex invariant,

U, _w iKt L [Kj iXt

Ut - _¥t = |*t

where dwJdz is deduced from taking the appropriate limit

as z-) z k.

The convection of vortices was advanced by a second

order scheme with a small time interval, the nascent
vortices have to be calculated at a much smaller time

interval. Since the velocity at the leading-edge should be

finite, the complex potential should satisfy the Kutta

condition at the edge

(dw/dZk.t=0. (6)

The vortices are shed from the leading-edge into the

separation bubble as a result of the separation. The rate of

vorticity shedding was determined through the

relationship, which was inferred from the experimental
results s

Kn l(dw_ 2
= _\"_")_=_(l-14d (7)

where Kn istheinitialstrengthand thepositionof the

nascentvort.exisassumed tobe i(H+0.5_),and At,isthe

time intervalbetween the introductionof the nascent

vortices.The positionofthenascentvortexisassumedto

be i(H+¢),where e isan approximateinitialvalue.The

strengthand locationof the nascentvorticescan be

adjustedby an appropriateiterationschemesatisfyingthe

Kuttacondition5.

The reduction of the circulation of every vortex is

modelled by 5.

-_--- 1 -e..r_, 4Uit/H j .

where K(t)is thecirculationattime k a is an adjustable

constant,and Re denotestheReynoldsnumber Ui(H/v)
(4)

and v thekinematicviscosityofthefluid.The destruction

andcoalescenceofvorticesareassumedtobeproportional

totheviscouscoreradiusofeachvortex.Physically,the

removal of potentialvortex may be regarded as

correspondingtothedestructionofvorticityintheshear

layerby interactionwiththeboundarylayersalongthe

surface.The decaylaw (8)was deducedfromthe exact

solutionof Navier-Stokesequations for a single

rectilinearviscousvortexif r isreplacedby theradial

(5) distancefrom thecenterofthevortex.Afterearringouta

number of preliminarycalculation,the value of the

producta2Re= 60 was employed,andthiswas foundto

achieve satisfactory agreement with experimental result 5.

It may be noted that an optimum value of a2Re depends

on the particular type of flow considered.

The pressure coefficient Cp can be calculated from

the Bernoulli equation,

p - Pj
Cp --'-- 1 .2

_pU i

2

2

- -_-_S_-- )

(9)

where Pt is the pressure of the free stream, p the density

of fluid and _ the velocity potential.

In the course of computations, some vortices approach



veryclosely the wal/ of the blunt body. Consequently,

due to the presence of image vortices, these vortices

would have unreasonably large velocities. In order to

rectify this computational problem, vortices that

approched the wall nearer than the depth of 0.02H

were removed from the flow field. Since the transport of

momentum and vorticity were negligible in the far field

downstream, vortices and their images that were located

further than the region 25H were also removed from the

computation. _:

Since a large number of voRices exist with random

locations in the flow field, it is probable that some vortices

attain small separation and, therefore, produce velocity

jumps at each other's positions due to the absence of

viscosity. In order to alleviate this difficulty, theconcept

of the cut-off vortex, which was originally suggested by

Chorin 9,is also employed, i.e.,

v°= K]°gr (r>o)
2_

= g(r/o__.._)(rSo)
27t

(lO)

where _u° is the stream function of the vortex and o the

cut-off radius. The numerical value o = 0.O5H was

adopted in this simulation. The concept of the cut-off

vortices was justified in that the vortex blob in discrete-

vortex simulation is basically different from that of

potential flow theory, say, the point vortex.

It is noted again that the viscosity of fluid is

instrumental in enforcing the no-s!i p flow go_ndJtion.
Since the discrete-vortex simulation is started from the

inviscid flow, an appropriate procedure should be devised

to include the viscous eff_t for the turbulent separation

bubble and the shear layer. The viscosity of fluid gives

rise to the displacement thickness in the boundary layer

and, thereby, transfers momentum to the direction of

transverse velocity. For this purpose, an artificial

transverse velocity V_(=0.0125UI) was added uniformly

to the edge of the shear layer.
It seems that the vortex distributions and wave forms

of flow field evolve to be statistically stationary at times

U,t/H > 80. In this sense, the mean values and

fluctuating components were calculated between the

interval of 80 < U_t/H < 280. The non-dimensional

time step t for t_ movement of the vortices was 0.16H /

Ui and the time interval At, between the introduction of

the nascent vortices was 0.32H / Ui ( = 2_).
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Resultsand discussion

It is importantto verify the aforementioned analogy

between the sinusoidal oscillating jet at the separation

edge and the pulsating freestream flows by the present

discrete-vortex method. Toward this end, the reattachrnent

length normalized in the form X,/X_ is plotted in Fig.3

against the non-dimensional frequency, i.e., the SIiouhal

number St for three different levels of the perturbation. It

is noteworthy that the comparision gives a fairly

consistent prediction, and this supports the assertion that

this analogy seems to be reasonable. The most interesting

feature of Fig.3 is that the reattachment length attains a

minimum at about St=l.4 for both cases, while the

amplitude affects only on the total size of reattachment.

This implies that the separation bubble is affected mainly

by the frequency of perturbation.

In the present study, the turbulent structures are

scrutinized with the comparisons for the non-pulsating

flow, natural flow(A=0) and for the perturbed flow at
A=0.3 and St=0.1. It should be noted that the condition of

flow pulsation was selected such that a maximum

reduction of reattachment length for this two-dimensional

flow configuration can be realized not for the circular

blunt body (Fig. 4). For this two cases, the reverse-flow

intermittency is displayed in Fig. 5. The reattachment

position is defined as the point where the intermittency, I_

has the value of 0.5. In this figure, it is noticed that the

reattachment position(X/H=6.5) of perturbed flow is much

reduced in comparision to that of non-pulsating

flow(X/H--9.1). This agrees with the experimental result'.

Fig. 6 shows the distribution of surface velocity under

the same condition. In a perturbed flow, the position ot

zero surface velocity is located slightly upstream of the

reattachment position while the same position is
maintained in natural flow. This means that the reverse

flow intensity of perturbed flow is much stronger than thal
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of natural flow, and the feed back of fluid toward

upstream of perturbed flow is active.

The distributions of pressure and its fluctuating

pressure along the plate surface are shown in Fig. 7. This

points to the relation with the flow reattachment for both

perturbed and natural flows. It is known that the flow

reattachment occurs at near the mean pressure recovery

region. It is found that the mean pressure coefficient oi

perturbed flow at separation fine is smaller than that ot

natural flow (Fig. 7(a)). This implies that the pressure drag

is reduced when the flow is perturbed. In the pressure

fluctuations of Fig.7(b), this feature of reattachmem

position can be elucidated more clearly. The r.m.s, of

pressure fluctuation is relatively small near the separation

region and then it increases along with the downstream

and reaches maximum just in front of reattachment

position. This region is also the same position of the

maximum mean pressure recovery rate. In turbulent shear
layer, it is believed that the flow has its own natural



instability and unsteadiness and the flow disturbance can

be amplified most effectively at the appropriate pulsation.

This is called the most effective frequency, Sty,. This

effect of amplification is maximized at the flow

reattachment region, so the motion of large-scale vortices

in this region are the most important elements that can

decide the characteristics of the entire flow field.

In passing, it can be found in Fig. 7(a) that the

pressure coefficient at separation point(C,,,) for the
pulsating flow is reduced considerably about 30% than

that of non-pulsating flow. Reduction of Cp, reproduces

the reduction of pressure drag of the body. The maximum

reduction of C.v.is also observed at St,,m. This agrees well
with the experimental result of Sigurdson and Roshko 3.

Koenig t° studied the relation between Cp, and the drag

coefficient (C_.) of fluid bodies, and it gives

C.=0.8+0.2Cp.. (11)

From this relation, it can be noticed that the drag of the

body (Cp,) is decreased approximately 6.25% when

perturbed, i.e., C_=0.68 for non-pulsating flow while

C_.-_.64 for pulsating flow.

The main reason of drag reduction can be explained

in two ways. Fast, the pulsating perturbation invokes

vortex coalescence in the separation bubble and then it

causes the enhancement of flow spreading rate. Since the
downstream flow rate is increased due to these

phenomena, it gives the drag reduction. It means that the

enhancement of vortex merging and flow spreading rate is

strongly dependent upon the pulsating fi_luency. This can

be analyzed as a preferred mode in ReL 10. Next, the

perturbation increases the entrainment from the outer

irrotational flow. This causes the reduction of curvature of

the time-mean streamlines near separation line and it

deduced the large pressure gradient. Thus it decreases C._

and Ca. It is also found that the maximum of entrainment

rate is observed at Stw.

Many experimental results reveal that the effect of

pulsation on flow structures is observed mostly at the

comparatively lower frequency region z_'''n. At a

particular frequency, the vortex coalescence is

surprisingly enhanced. It causes that the reduction of

re.circulating separation bubble and flow drag of the body.

The distributions of the time-meaa velocities U and

V are displayed in Fig. g. The difference between non-

pulsating flow and pulsating flow is seen to be negligible

near the separation line where vortices are just formed out.

However, the effect of perturbation is evident in the
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Fig. 9 Distribution of r.m.s, u/U, and r.m.s, v/U, along

the downstream distance

re.attachment region. The relatively large value of V at the

separation line is due to the abrupt decrease of the

curvatures of streamlines. Fig. 9 shows the r.m.s of

velocity fluctuations. The turbulence level of perturbed

flow is found to be considerably higher than that of natural

flOW.
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The disuibutions of the Reynolds stress are shown in

Fig. 10. In perturbed flow, it is noteworthy that Reynolds

stresses have negative values at x/H-0A and 8. I-Iussain 13,

in his study on the coherent structure of turbulent shear

layer, proposed that Reynolds shear stress can have

negative values of vortical structure in a certain

configuration where vortex coalescence process is

dominant. Furthermore, since perturbation strengthens the

fluctuating components in shear layer, so the mean

velocity may be affected by these fluctuating velocities.

The characteristic wave length of vortices can be given as

foilowsl2;

1. Uc -i (12)

where Ui is the convection velocity of vortices and St_ is

the most amplified shedding frequency, which will be

referred later. Suppose the value of Uoq3i was 0.5 n4,then

L has the value of about 5H. This agrees that the locations

of negative Reynolds stress are found to be nearly

identical to the multiples of L. This relation reduces that

negative Reynolds shear stress are brought about by the

enhancement of vortex coalescence by pulsation and the

positions are closely related with the characteristic wave

length. From this, it can be predicted that the vortex

merging is observed at every characteristicwave length in

separation bubble.

The patterns discrete-vortices in the separation

bubble at a certain time(t=288HRJt) for both cases are

plotted in Fig. 11. It may be noted that large-scale vortices

are more evident in perturbed flow. In addition, the rolling-

up behavior of large-scale vortices, the merging of
vortices and the vortex-shedding from separation bubble

to downstream are also observed. It is noteworthy that the

concentration of discrete-vortices occurs at each multiples

of L. It gives a numerical validation for negative Reynolds

shear stresses in separation bubble.
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Fig.12representsthe width of shear at separation as a

function of time. Approximately, this width may be

regarded as a distance between the core vortex and the

wall of body. In non-pulsating flow, as time advances, this

width becomes constanL However, in perturbed flow, at

Sty,, it oscillates with the period of 10Ht/U i, which

corresponds to the forcing frequency St,,_-0.1. In

perturbed flow, the nascent vortices interact with the

surface from the start of the rolling-up motion, so this is

related to the resultant amplification of disturbances.

The power spectra, which as defined as eqn.(13), was

obtained at the edge of the shear layer where u'/U,=0.02

and is shown in Fig.13. As pointed out previously, the

power spectra of u near reattachment region also discloses

the broad peak value around St=0.1. Thus, this

2t
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Fig. 14 Power spectrum of p' (=E r) near reattachment

position at the edge Of the shear layer (r,m.s. u/Ur-0.02)

frequency(St=O.l)can be consideredasthe mostamplified

sheddingfrequencyoflarge-scalevortices,which isalso

verified from the power spectra of pressure at the same

position(Fig.l4).

fo_.,g.)d(fS_) (_,2_ :,2.] 2_= ,

In passing, it is notable that the present result tends to

have appreciably the same value as the results of Mabey _s.

It gives the relation of St.X_-0.7 with almost the same

value of the present result. This trend has also been

noticed in other exper__ental results _. It is stressed here

that the most amplified shedding frequency gives sl_bng

effects on the reduction of reattachment length, drag and

enhancement of vortex coalescence in the separation

bubble.

The power spectra near Separation line shows the

broad peak at relatively low frequency(Fig. 13(a)). This is

regarded as an evidence of the flapping motion of
- :: :_ : . __ .

separation bubble, which seems tO be attributed-to

unsteadiness_'sJ_.Near reattachmentregion,the low-

frequencypeak isgraduallydiminishedand thebroad

peak is centeredupon aroundSti_.l. Roshko_called

thisfrequencyas theshedding-typeinstability,which is

thedominantfrequencyinseparationbubble.

In this study, we assumed that St,t_ is identical to

St,,_. This is attributed to the analogy as follows; If the

pulsating frequency is higher than the initial Kelvin-

Helmholtz frequency St_a, there is no instability region. In

this sense, the slow disturbance can not be amplified. Thus

Sh_ becomes dominant around the value of Star
The way to estimate St,_ has been tried through a lot



ofexperiments.Roshko3obtained the relation fh/U,-0.08,

where h is the asymptotic height, U, is the velocity at

separation line and f is the shedding frequency

corresponding to Ste_. In the present case, we obtained

the value of fh/U,=0.078, which is nearly identical to that

of Roshko. U, can be obtained from the two-dimensional

Bemoulli's equation.

__(1_._,,) x/2 (14)

It should be noted that the flow geometry of Roshko

is different from the present experimental configuration,

however, the result gives nearly same trends. Roshko's

result was obtained from the frequency of yon Karman

vortex sheet in a blunt circular cylinder. Levi _ also

suggested the Slzouhul Law, which defined as fd/U,_0.16.

In this case, ff d=2h substituted, his law gives the exactly
same value of our result. From the aforementioned

comparison, the tentative summary can be suggested that

St_ has its origin in the large-scale structures of

turbulence, regardless of flow geometries. In this

connection, it is believed that St.., is approximated by

Sty. Thus, this forcing frequency enhances the spreading
rate of flow and vortex coalescence and minimizes the

drag effectively.
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