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Abstract

A new formulation (including the
choice of variables, their non-
dimensionalization and the form of the

artificial viscosity) is proposed for the
numerical solution of the full Navier-

Stokes equations for compressible and
incompressible flows with heat transfer.

With the present approach, the same
code can be used for constant as well as

variable density flows. The changes of the
density due to pressure and temperature
variations are identified and it is shown

that the low Mach number approximation
is a special case. At zero Mach number, the
density changes due to the temperature
variation is accounted for, mainly
through a body force term in the
momentum equation. It is also shown that
the Boussinesq approximation of the
buoyancy effects in an incompressible
flow is a special case.

To demonstrate the new capability,
three examples are tested. Flows in driven
cavities with adiabatic and isothermal
walls are simulated with the same code as

well as incompressible and supersonic
flows over a wall with and without a

groove. Finally, viscous flow simulations of
an oblique shock reflection from a flat
plate are shown to be in good agreement
with the solutions available in literature.

Introduction

In a previous work[l], the authors

perturbation of the pressure and the
temperature relative to reference values as
the dependant variables. It is shown that
the density in terms of these new variables
approaches a constant as the reference
Mach number vanishes. The above

formulation is generalized in the present
paper to allow for incompressible flows
which are not necessarily isothermal.

To obtain a numerical solution, an

artificial dissipation is introduced by
adding to the governing equations the
Laplacians of the pressure and the velocity
components. An improved model is also
tested which is based on a partial least

square procedures. The continuity
equation is modified by a Poission's
equation for the pressure similar to that of
Harlow and Welch[2], and Harlow and

Amsden[3]. The momentum equations are
also modified by Poission's equations of the
velocity components. The first
modification is obtained by taking the
divergence of the momentum equations,
while the second modification can be
related to a vector identity relating the

Laplacian of the velocity vector to the
gradient of its divergence and the curl of
the vorticity. In both modifications, the
evaluation of the nonhomogeneous terms
of the Poissions equations are lagged as in
the deferred correction procedures.

The energy equation is augmented
with second order terms of the total

enthalpy obtained via minimizing the
squares of the convective terms. This
modification is very small in the

proposed a formulation for both neighborhood of a solid surface and can be
compressible and incompressible ViscoUs interpreted as an artificial streamline
flow simulation. First the density is diffusion as in the work of Hughes etal[4].

eliminated in terms of the pressure and the
temperature via the perfect gas equation
of state. This step by itself is not sufficient
simply because the equation of state is not
valid for incompressible flows. The
formulation is completed using the

The present numerical solutions are
obtained using a standard Glarkin

procedure. The resulting nonlinear system
of equations are solved via Newton's
method. At each iteration a direct solver
based on banded Gaussion elimination is



employed. The use of finite element p., q**L
discretizations and direct solvers are not Pe =-

necessary to obtain numerical solutions k /c** p
based on the present formulations, and-
other viable alternatives are, for example,
finite volumes and iterative procedures.

In the following, the derivation of the
governing equations and the applications
to some test problems are discussed.

Governing Equations

For steady compressible viscous flows,
the continuity, momentum and energy

equations can be written in terms of the

primitive variables (p, p, q ) including the
effects of a body force as :

V. pq=0

V. pq q =V:x+pf

V. p"_ H = V. kV T + V .(x._) + p f. q ( 1)

where H yp_. 1_ (u2 2
= 7__1p ÷2 +v )

"-¢ _qi _qj,

and xij = g(V.q )Sij+gtax j +i_xi)

For convenience it is assumed that % =-
2

p. and p = p R T. The two constants R and y

are related to the specific heat constants
C

v
c and c ; R = c -c and y= . For the

p v p v c P
derivation of the above equations, see, for
example, Liepman and Roshko [5]

A standard non-dimensional form is

obtained using the reference values of O
and q in the far field of external flow
problems. The pressure is usually

2

normalized by p** q** and the temperature

2

by q**/Cp . If L is a characteristic length,

two parameters appear in the equations
namely the Reynolds and Peclet numbers,
where

p q L

Re - (2)
oo

(3)

The Peciet number is the product of
Prandtl and Reynolds numbers, where

p
Pr = (4)

ko.lc p

Equations (1) becomes

v. p q=0

- __--+-A_ -- 1 - - l -'_
_pqq=-Vp+_e V:X-_r pK

--:#- 1 1 - ---¢ 1
v, p q H= _-_eV. kVT+ _'_eV.(x .q)-_rr q '-p'_

(5)

In equations (5), the relative effect of
gravity is identified by the Froude number,

2
q,,

Fr = -- (6)
gL

In natural convection problems, the
variation of density due to temperature
difference AT creates a buoyancy term in
the momentum equation. To first order
accuracy, the density variation would be p

= p** (1-13 AT) where I] is the thermal

expansion coefficient, hence the buoyancy
term is given by

_AT g L_ _.._'-¢2 = K (7)

q Re

where
3

Gr= 13AT $ L (8)
2
_t

The above formulation is not suitable

for incompressible flows since in the limit
of zero free stream Math number, both the

normalized pressure and temperature are
unbounded. Two new variables were
introduced in the previous study to avoid

this problem, namely p and T where

• 1

p =p_p_.p_ M2 (9)Y

and,



2i

* 1
T --T-T =T- (10)

** (_t- 1) M2
OO

Hence, the equation of state gives

¥ p +I

0-- (11)

(¥-I)M2 T* +I
OO

As the Mach number vanishes, the

normalized density 0 approaches i_0 , i.e.

the reduced incompressible flow is
isothermal. To allow for density variations

due to temperature changes in the
incompressible limit, in cases of adiabatic
walls as well as walls with specified

,

temperatures, the variable T is replaced

by

17_---_-T (12)
T

Equation (11) becomes

M 2 *y p +l
_ OO

p= (13)
=r

In the limit of zero Mach number, 07I"

approaches 1 and the proper general

dependance of the density on the
temperature is recovered. The isothermal
flow is of course a special case of the above
relation.

The continuity and the momentum

equations are unaltered, the energy
equation becomes

_eV.(x.q)- _r r q .-pK'

(14)
where

- - 2
H=T+ Ec q /2

and,
2

q** M 2
F.e = _ = (_-1) ** (Ec is the Eckert

p**

number)
The incompressible limit of Equation (14)
is

- ---->- l ....
V. p qT==- V. kVT (15)

Fe

Here, the temperature ratio T /T ,
W

where T is the average wall specified
w

temperature, enters only through the

boundary conditions.

Alternatively, one can choose
• %--

_" T To, - T**

T = T T -T--_-- (12)
oo w w

and, in this case
2 *

7M p +1
oO

p= (13)
--- Tw

T-T-

and

-V. pqH +'_-0 V.(x .q)- _ q .P_

u

(14)

where

= = 2
H =T + Ec w q/2

and

2 M 2q (7 -1 )

Ecw--_'T-- = Tw/T
p w

Thus, the present formulation is valid
for compressible and incompressible nows,
with adiabatic or specified temperature
walls. Moreover, it is clear from equation

(13) or (/'3) that the low Mach number

approximation ( see for example Rhem and
Baum[6], Majda[7] and Markle[8]) is a

special case. The Boussinesq approximation
of the buoyancy effects in an

incompressible flow is also a special case of

the present formulation.
It should be mentioned that the above

formulation is not restricted to perfect

gases. A more general equation of state can
be written in the form

c)p o_p
p -- p** + _'_ AT+ _'p Ap (16)



or in the non-dimensional form

£ a: (16)

The last term of equation (i'6) always
vanishes in the limit of zero Mach number.

Numerical Method

It is well known that centered schemes
permit,in general, odd and even
decoupiing of the dis-crete pressure
field[9]. To avoid this problem, different
interpolations are used for the velocity and
the pressure in the standard finite element

analysis of incompressible flows [I0], [I1].
Recently, Pironeau {12] addressed this issue
for compressible flows as well.

It is also well known that centered
schemes produce oscillatory solutions of

convection-diffusion equations with high
Reynolds numbers, unless impractical
excessively fine meshes are used

In the present study, artificial
dissipation is introduced explicitly in all
equations, to eliminate the wiggles and to
allow for capturing shocks and contact
discontinuities. Two forms of artificial
viscosity are considered. In the first

method, the governing equations become
2

V.p q=_l

2
--'_"-d - * 1 - - 1 -"-)

_gpqq+Vp -ReeV:X+_r PK=¢2V :_

H-1 - --- Ec- - --' 2_kvr- :.g= H
(17)

where e's are small parameters of the order
of the mesh size. A standard Galerkin finite

element method is applied to calculate the
solution of equations (17). This form has
been investigated before for both
incompressible and compressible flows
with the standard separate formulations.
With the present unified approach, the
same code is used to calculate compressible
and incompressible caseL

In the second method, the Laplacian
terms are balanced with nonlinear terms

obtained by manipulating the original

equations. For example, the momentum
equations can be written in the form

Vp=g (18)

A poission's equation is constructed by
taking the divergence of equation (18) and
allowing a variable (positive) artificial
viscosity coefficient, one arrives at

V_Vp= V._g (18)

Equation (18)can be also obtained

from minimizing the functional J'_p_- ....

g ). (V p-g ) with respect to p, assuming

g is known. The continuity equation is :

then modified by the Poission's equation

(i-8):
Similarly, the Laplacian of the velocity
components can be balanced using the
vector identity

2
V _=VS-VXto (19)

where

-.).
S=V.q

•"-3, _.)

to=VXq

TO allow for a variable viscosity
coefficients, one can minimize the

_.)

functional (assuming S and co known)

le(V.-q'-S)2 2+
with respect to q to obtain : :-:-::_

--},

+ (1-9)

In equations (i- 8 ) _ and (i-9), the
-.-) .-)

quantities g, S and co are obtained at each
node from their definitions using a
standard Galerkin finite element method

with the same interpolation used for the
other variables. The evaluation of these

terms are lagged and their contributions to
the lacobians are neglected.

For the energy equation, the
modification is obtained via minimizing

- 2
the functional J e _-q v H+rc) with respect

to H. For convenience, = ts dropped with the



justification that the artificial dissipation Numerical Results
is mostly needed in the inviscid adiabatic
part of the flow where the relatively Three test problems are solved using
coarse mesh is not capable of resolving tlie- the present formulation. The first viscosity

term. In the neighborhood of a solid
surface, a fine mesh is required anyway
and there is no need there of artificial

viscosity terms. The present modification is
very small there since it is scaled with the

velocity. The same remark is applicable for
the treatment of the momentum equations
where the viscous stress terms can be

. ...->

ignored in the evaluation of the g term.
The variational formulation of the

artificial dissipation terms provides a
natural treatment of the numerical

boundary conditions. Upon integration by
parts, the resulting line integrals are
simply ignored.

Because the modification terms, for the-
continuity, the momentum and the energy
equations are obtained separately by
adopting a partial least squares procedure
for each case the resulting algebraic
system of equations are not necessarily
symmetric.. A full least squares procedures
for all equations coupled together has been
successfully used by the first author to
introduce dissipative terms for the solution
of Euler equations simulating transonic
flows with sharp shock waves [13]. In this
case, it is possible however to construct a
symmetric positive definite system at each
Newton's iteration by a proper choice of
the coefficients of the artificial terms [
Iiang& Povinelli[14]. Unfortunately, such
choices result in smearing the
discontinuities. For viscous flows, they
write the Navier Stokes equations as a
system of first order equations in terms of
velocity, pressure and vorticity and then a
full least squares procedure is applied. The
resulting algebraic equations are
symmetric positive definite, but the
number of unknowns are increased (
almost doubled for three dimensional

problems).
Needless to say, more work is required

to determine the optimal form of the
modification terms and the associated

solution procedures for the general flow
case.

method is used for the first two problems.
Since the Re is relatively low, no artificial
viscosity in the momentum or the energy

equation is needed ( E2=_3=0). For the

modified continuity equation, a numerical

boundary condition, _ =0 at the wall is
On

enforced at the wall. The third problem is
solved by the two viscosity methods. In the
following some preliminary results are
presented.

I. Driven Cavity with Adiabatic
Isothermal Walls

and

Incompressible (M =0) and

compressible flows ( M =0.4) are simulated

for Re=100 with adiabatic walls. The

pressure contours of the converged
solutions are plotted in figures (I-a) and
(I-b) respectively. Next, the temperature at
the upper and lower walls are fixed and the
calculations are repeated. The pressure
contours are plotted in figures (I-c) and (I-
d) and the corresponding temperature
contours are shown in figures (I-e) and (I-
f).

The effects of compressibility and the
difference of wall temperatures, are
clearly depicted in these figures.

II- Incompressible and Supersonic Viscous
Flows over a Wall with and Without a
Groove

A uniform stream of Re=1000 over a

flat plate is simulated with the same code.
The pressure and velocity profiles at
different locations are plotted in figures

(II-a) and (II-b) for the case of M =0. For

supersonic flow with M = 3 , the pressure,

velocity and temperature profiles are
shown in figures (II-c), (II-d) and (II-e).
The pressure,temperature and density
contours are given in figures (II-f), (II-g)
and (II-h). As expected, an oblique shock



wave is formed due to the boundary layer
displacement effect.

Next, the calculations are repeated for
a flat plate with a groove. The pressure
profiles for the incompressible flow case is
shown in figure (II-i), while the pressure,
temperature and density contours of the
supersonic case are plotted in figures (II-
j), (II-k) and (II-1).

Ili-Inviscid and Viscous flow Simulations

of Shock Reflection from a flat plate,

First, an inviscid supersonic flow (

M =2.0) with a reflected shock is calculated.

The results are in agreement with the
exact solution. The pressure contours from
the two artificial viscosity methods are
plotted in figure (III-a) _ind (III-b). For a
viscous supersonic flow at Re= 296000 and

M -- 2.0, the results are in agreement with

those of MacCormack [15] and with
experimental data. The velocity profiles
before, within and after the separation
bubble are plotted in figure (III-c). The
skin friction distribution is shown in

obtained via a standard Galerkin finite

element procedure, using equal order
interpolations for all normalized variables.

The unified approach offers a
convenient formulation which allows,

using the same code, the simulation of
compressible and incompressible flows
where the walls are adiabatic, with

specified temperature distributions or of
mixed type. In particular, the low Mach
number approximation as well as the
Boussinesq approximation (of the
buoyancy effects) are special cases of the
present formulations.

Obviously, it is always possible to have
more efficient flow simulations for some

special cases. For example, when the speed
of sound is finite, explicit schemes can be
used to integrate the time dependent gas:
equations, in contrast to the
incompressible flow case where a
Poission's equation of the pressure has to
be solved, at each time step, t0 guarantee::
the conservation of mass during the time
evolution process. Another example is the
special case of incompressible ( constant
density) flow where the energy
(temperature) equation decouples and the=

figure (III-d). The pressure contours from solution of the continuity and the:_ _
the first and second artificial viscosity momentum equations provide the pressure
methods are compared in figure (III-e) and and the velocity components. Therefore,
(III-f).

Cartesian grids and bilinear elements
are used for all the problems tested in this
paper. Applications to transonic flows over
airfoils using unstructured finite elements

are reported in a separate paper [16].

Conclusions

A unified approach for a general flow
simulation is presented. It is shown that all
the normalized variables used in the
formulation are always bounded and the
proper variation of the density due to
changes in pressure and temperature is
recovered in the limit of zero Mach
number.

Two artificial viscosity methods are
applied to obtain numerical results for
some test eases. The governing equations
are modified by either Laplacian's or
Poission's equations for the pressure, the
velocity components and the total
enthalpy. Acceptable solutions are

the use of the present unified approach for_
the above two examples is more costly
compared to the use of two separate codes
tailored for the specifics of these two cases.
It is still necessary however to have a
general code for all speeds and all possible
boundary conditions to handle the cases of
mixed nature.
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