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ABSTRACT

In the effort described here, the elliptic grid generation proce-
dure in the EAGLE grid code has been separated from the main
code into a subroutine, and a new subroutine which evaluates sev-
eral grid quality measures at each grid point has been added. The
elliptic grid routine can now be called, eitherbya CFD code to gen-
erate a new adaptive grid based on flow variables and quality mea-
sures through multiple adaptation, or by the EAGLE main code
to generate a grid based on quality measure variables through stat-
ic adaptation. Arrays of flow variables can be read into the
EAGLE grid code for use in static adaptation as well. These major
changes in the EAGLE adaptive grid system make it easier to con-
vert any CFD code that operates on a block—structured grid (or
single—block grid) into a multiple adaptive code.

INTRODUCTION

The requirements of accuracy and efficency for obtaining
solutions to PDE’s have always been a conflict in numerical meth-
ods for solving field problems. On the one hand, it is well known
thatincreasing the number of grid pointsimplies decreasing the lo-
cal truncation error. This, however, results in long computation
time due to large numbers of grid points. On the other hand, short-
er computation time can be achieved by decreasing the number of
grid points, but the result is a less accurate solution.

Adaptive grid generation techniques are a means for resolving
this conflict. For many practical problems, the initial grid may not
be the best suited for a particular physical problem. For example,
the location of flow features, such as shocks, boundary and shear
layers, and wake regions, are not known before the grid is gener-
ated. In multiple adaptive grid generation, grid points are moved
continually to respond to these features in the flow field as they de-
velop. This adaptation can reduce the oscillations associated with
inadequate resolution of large gradients, allowing sharper shocks
and better representation of boundary layers. Thus it is possible
to achieve both efficiency and high accuracy for numerical solu-
tions of PDE's. Several basic techniques involved in adaptive grid
generation are discussed in Ref. (1).

In the earlier form of the adaptive EAGLE system (2, 3), the
coupling of the adaptive grid system with a CFD code required the
encapsulation of both the entire grid code and the CFD flow code
into separate subroutines, and the construction of a driver to call
each. This was inefficient that it included some unnecessary parts
of the grid code and required significant modification, and per-
haps restructuring, of the CFD code. In particular, the flow code
arrays and/or the grid code arrays had to be modified to be compat-
ible in structure.

The conversion procedure is accomplished by adding the el-
liptic grid generation subroutine, and certain other subroutines
from the EAGLE grid system that are involved in the elliptic grid
generation process, to the flow code. The CFD code may then call
the elliptic grid generation routine at each time step when a new

grid is desired. The CFD code passes its current solution to this
EAGLE routine via a scratch file. This structure eliminates the
need for compatibility between CFD and grid arrays. One restric-
tions is that the initial grid must be generated by the EAGLE sys-
tem, or be processed through that system. This provides the neces-
sary parameters and structural information to be read from files by
the adaptive EAGLE routine.

In the present work, the control function approach is used as
the basic mechanism for the adaptive grid generation, The static
and multiple adaptive grid generation techniques are investigated
by formulating the control functions in terms of cither grid quality
measures, the flow solution, or both.

Previouswork (2, 3) with the adaptive EAGLE system allowed
the grid to only adapt to the gradient of a variable. The work de-
scribed here has extended this adaptive mechanism to also allow
adaptation to the curvature of a variable or to the variable itself.
The system provides for different weight functions in each coordi-
nate direction. In addition, the mechanism now includes the abil-
ity to calculate the weight functions asweighted averages of weight
functions from several flow variables and/or quality measures.
This allows the adaptation to take into account the effect of many
of the flow variables instead of just one. The construction of the
weighted average of flow variables and quality measures, and the
choice of adaptation to gradient, curvature, orvariable, are allcon-
trolled in each coordinate directions through input parameters.
The quality measures now available in the EAGLE grid system are
skewness, aspect ratio, arc length, and smoothness of the grid.
These grid quality measures,and the resulting control and weight
function values, can be output for graphical contouring.

ADAFTIVE MECHANISM

Control Function Approach

The control function approach to adaptation is developed by
noting the correspondence between the 1D form of the system,

Iy + Py =0 1)

and the differential form of the equidistribution principle,
Wx; = constant,

Wiy + W, = 0 (2)

where P is the function to control the coordinate line spacing, and
W is the weight function.



From (1) and (2) the control function can be defined in terms
of the weight function and its derivative as

This equation can be extended in a general 3D form as

W,
P'.W" ) (4)

Thompwn (Ref. 6) and for 3D oonﬂgurnnom by Kim and Thomp-
son (Ref. 2) and by Th and Thompson (Ref. 3).

The complete generalization of (4) was proposed by Eiseman
(Ref.7yas
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where W, is the wexght function chosen for the &' direction. This
definition of the control functions provides a convenient means to
specify three separate control functions, with one in each coordi-
nate direction.

In order to preserve the geometrical characteristics of the ex-
isting grid, it is practical to construct the control functions in such
amanner that the control functions defined by (5) are added to the
initial set of control functions obtained from the geometry, i.c.,

P, = (P), + CPI. i =123 (6)

where

(P), : control function based on geometry

Pde contml funcnon based on weight function

In these equations the weight function W can be computed by
different formulas for different adaptive mechanisms:

Adaptation to
Variagble : W =1+ W
Gradient : W =1 + |W

Curvature : W =(1+BKI)V1 + a VWP
)]

where Vcan be either a flow solution variable or a grid quality mea-
sure. Here a and § are on the range (-1, and

3

K = v ®

is the curvature of the variable ¥/

Using these definitions of the control functions, the elliptic
generation system becomes an adaptive grid generation system.
This system is then solved iteratively in adaptive EAGLE by the
point SOR method to generate the adaptive grid.

Grid Ouality M.

The objective of this part of the investigation was to develop
a means of evaluating grids through the computation of certain
grid properties that are related to grid quality and to develop tech-
niques for estimating the truncation error. Following Kerlick and
Klopfer (Ref. 8), and Gatlin, et. al. (Ref. 9), the grid quality mea-
sures are taken as skew angle, aspect ratio, grid Laplacian, and arc
length. Techniques for estimating the truncation error due to the
work of Mastin (Ref. 10) are also included. At each grid point in
a general 3D grid, each property can have three values associated
with the three directions. The approach taken in this investigation
isto treat each surface of constant §' separately for ease in graphi-
cal interpretation,

skew angle

The minimum skew angle between intersecting grid lines is

one of the most important measurable grid properties. This angle
can be expressed in terms of the covariant metric elements as

- 84

6, = cos {EL )
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Since 81, = ga, 21y = guandgx = gy, thethreeskew angles

associated with each grid point in a 3D grid are 8,,, 65 and 6y,

Since aspect ratio is the ratio of the length of the sides of a grid
cell, it can be defined in two different ways. For example, onasur-
face of constant £*, this ratio can be expressed in terms of metric
elements g, and g, as

AR, = g—: (10a)
or
AR, = gg (10b)

Large changes in aspect ratio of grids from one part of the field to
another may inhibit the convergence of viscous flow solutions to
a steady state,

Laplaci

A useful measure of the smoothness of a grid is the Laplacian
of the curvilinear system, V', i = 1,2,3, which is simply the
rate of change of grid point density in the grid. For a perfectly uni-
form grid, the grid Laplacian would vanish everywhere, but ex-
ceedingly large values may arise in highly stretched grids. The
mathematical representation of the grid Laplacian is defined in
terms of the contravariant metric clements g¢, the contravariant

base vectors a and the position vector r as
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¢ =123 (11)

arclength

Another important measure of the grid quality is the local rate
atwhich grid spacing changes. On a coordinate surface of constant
4%, and along a coordinate line of constant £2, the grid spacing can
be defined as

o w0 wo @l

Ul

e

fll



d = [y = 2* + Giey = 20* + (200y — 1()2]i (122)
The normalized rate atwhich grid spacing changes (ARCL) is then

di i dl-l

ARCLY = T (12b)

The objective of this section is to present heuristic error esti-
mates which give order of magnitude approximations for the
truncation error and the solution error in the numerical solution
of the Euler equations for compressible flow and other systems of
conservationlaws. Anyconservation law can be written in a gener-
al form as

o+ fot gy k=0 (13a)

The transformation of this system to an arbitrary curvilinear coor-
dinate system is

U+Fy+Ga+Hy=0 (13b)

where /g is the Jacobian of the transformation and

F =3 @Y+8g+En
G =g GF+&g+&m

Let 4 be the spacing of the fine grid, and nk be the spacing of the
coarse grid. Let L,be the difference approximation operator on
the fine grid, and L, be the difference approximation operator on
the coarse grid. Then the finite difference approximation of the
PDE can be represented on the fine grid as

u +f + g +h = LIF.GH) + Thy (13c)
and on the coarse grid as
o+ fo+ g + b o= LyF.G.H) + Ty (13d)

where 2 is an integer.

From (13c) and (13d), the estimate of the truncation error on
the fine grid can be computed as

Thy = {'fé;’“g (14)

A similar procedure can be used to compute the error in the
numerical solution. Such a procedure has long been used in the
numerical solution of ordinary differential equations and is re-
ferred to as Richardson extrapolation. Even though numerical
solutions must be computed on both fine and coarse grids, the er-
ror estimates which result do not have the large peaks at solution
singularities which can be encountered with the truncation error
computed from difference approximation of higher derivatives.
Thus the solution error estimates may sometimes be more useful
in the construction of adaptive grids.

Assume that there are two numerical solutions of order p ac-
curacy for (13b) that have been computed on a fine grid andon a
coarse grid, with grid spacing h and nh, respectively, in each coor-
dinate direction. Assuming that the samepth ordermethodisused
in both cases, then the relation between the two numerical solu-
tions and the actual solution u of the PDE can be established as

u = U, + Ry (15a)
and
u = Uy + R(ahY (15b)

From these equations, an extrapolated value of u can be computed
as

U= ———M(z' _- ll)j (ISC)

Thus the estimate of the error in the numerical solution computed
on the h grid is:

- =t (15d)
RESULTS AND DISCUSSION

The adaptive grid generation system based on the control
function approach as described in the previous chapters has been
used to generate static and multiple adaptive grids for several ge-
ometries (Ref. 11). Some of these results are presented in this sec-
tion. The staticadaptive gridswere obtained by adapting the initial
grids to either grid quality measure variables or to existing flow
solution variables. The multiple adaptive procedure was tested on
several different configurations with the adaptive MISSE Euler
flow code (Ref. 12) for transonic and supersonic flow cases, and
with the adaptive INS3D flow code (Ref. 13) for incompressible
flow.

Adaptation to Quality Measures

Some examples of the grid quality adaptation are shown in
Figure 1 for adaptation to various quality measures. (In Ref. 11,
color contour plots of the quality measures and the other adaptive
features are given.) Figures 2a—d shows the difference of the av-
erage skew angle between the initial and adaptive grids. The same
number of total adaptive iterations were run in each case. The
control functions were updated based on the geometry of the pre-
vious grid, rather than the initial grid, at each adaptation.

Comparison of Figure 1b with Figure 1a shows that adapta-
tion to the skewness is effective in reducing the skewnessin one re-
gion, while increasing the skewness in other regions of the grid. A
small improvement in aspect ratio occurs, but the smoothness of
the grid is decreased.

Comparison of Figure 1c with Figure 1a indicates that adapta-
tion to aspect ratio does improve both aspect ratio and smoothness
of the grid; the skewness is increased, however. Comparison of
Figure 1d with Figure 1a shows that adaptation to smoothness im-
proves the skewness and aspect ratio of the grid effectively, but the
adaptive grid is not as smooth as the initial elliptic grid.

_ Figure 1e shows the beneficial effect of including adaptation
to aspect ratio, arc length, and smoothness, with adaptation to
skewness: the skewness is reduced more by the combination than
with skewness adaptation alone. A little improvement occurs in
aspect ratio; the smoothness of the grid does, however, decrease.



Results from these examples show that the adaptation to the
combination of all grid quality measures, or to each individually,
can improve some grid properties while damaging others. For ex-
ample the adaptation to the Laplacian of this particular grid can
reduce the skewness, but the resulting adaptive grid is not as
smooth as the initial grid. The choice of the adaptive variable for
the adaptation very much depends on what property of the grid
needs to be improved and the configurations of the grids.

Multiple Adaptation

Results of multiple adaptation performed with the adaptive
MISSE Euler flow code are shown in Figures 3—8. In all these
plots, NIT is the total number of time steps, INT indicates the
number of time steps at which the first adaptation is performed,
NCL is the number of time steps between each adaptation, and
MAXINT indicates the number of time steps at which the last
adaptation is performed.  Values of weight functions
(AWT,, AWT,), weight coefficients (C,, C,), adaptive variables
density (RHO,, RHO,), pressure (PRES,, PRES,) afe given for
the & and the &* directions, respectively. For example,
AWT = GRAD, CURV,C, = 0.5, C, = 0.3, RHO = 1,0,
PRES = 0,1anda = 1, 8 = 1, canbe interpreted as adapta-
tion to the density gradient in the &' direction with C, = 0.5,
and to the curvature of the pressure in the £? direction with
C, = 0.3 with coefficients of gradient and curvature

a = 1, f = 1, respectively.

double wedge (supersonic Euler)

Results obtained from asupersonic flow at Mach = 2 over fine
(121 x 41) and coarse (81 x 31) double—wedge grids are shown in
Figures 3—7. Figure 3 shows the pressure contours obtained from
300 time steps on the initial and adaptive grids (121x41). The grid
was adapted to the density gradient in the flow direction (RHO =
1,0) with C, = 0.7 and to the pressure gradient in the normal
direction with €, = 0.5. A total of 4 adaptations was used for
this case, with control functions updated from the previous grid.

Figure 4 shows the pressure coefficients on the lowerwall, and
convergence histories of the two solutions are shown in Figure 5.
In Figure 5, the high peaks at each adaptation are due to the use
of the previous solution on the new adapted grid without integra-
tion onto the new grid. From these figures, clearly the adaptive
grid gives amuchbetter representation of the shock regions as well
asthe expansion regions. Shocksare much sharper for the solution
obtained on the adaptive grid. A record of the CPU time on an
IRIS 4D/440VGX machine shows that the total CPU time for the
initial grid (121 x41) without adaptation was 1481.51 CPU seconds
and for the adaptive grid (121 x 41) was 1599.02 CPU seconds, an
8% increase.

Contour plots on the pressure of the initial fine grid (121x41),
the initial coarse grid (81 x 31), and the adaptive grid (81x 31) are
shown in Figure 6. The coarse grid was adapted to the combina-
tion of density and pressure in &' direction, with weight coefficient
C, = 0.5, andto the gradient of this combination in £3 direction
with weight coefficient C; = 0.5, (AWT = VAR, GRAD, RHO =
1,1, PRES = 1,1).

Different adaptive mechanisms applied to the coarse grid in
the multiple adaptation process are shown in Figure 7. Figure 7b
shows the pressure contours obtained on the adaptive grid of Fig-
ure 7a. The initial grid was adapted to the curvature of the com-
bination of density and pressure in both directions (4WT = CURY,
CURY RHO = 1,1, PRES = 1,1). The total number of adaptations
wasdwithC, = 0.7, C; = 0.7 Thecoefficients of the gradi-
entand curvaturewerea = 1and § = 0.5, respectively, and
the updates were from the original control functions.

Figure 7d shows the pressure contours obtained on the adap-
tive grid of Figure 7c. The adaptative mechanism for this case was
preme;radientinbothdirecdonswith C, =0.7,C;, =0.7
and total number of adaptations was 4, (AWT = GRAD, GRAD,
RHO = 00, PRES = 1,1). )

The initial grid, adapted to the gradient of the combination of
density and pressure in the £* direction only is shown in Figure 7e.
Total numberof adaptationswasSwithC, = 0, C; = 0.9,and
updates were applied to the previous control functions. Pressure
contours obtained from this adaptive grid are shown in Figure 7.

From these figures, the representation of the shocks on the
adapted coarse grid is much sharpér and closer to the fine grid
solution than the nonadaptive coarse grid. The total CPU time for
obtaining 300 time steps solution for the adaptive grid was approx-
imately 800 seconds for each adaptive mechanism, nearly 50% sav-
ing time compared to that of the fine grid.

The adaptation to the combination of density and pressure in
¢! direction and to the gradient of this combination in 4% direction
of Figure 6 gives a smoother behavior of the pressure coefficient
behind the shock than the adaptation to the gradient of pressure
alone of Figures 7c and 7d. The adaptation to the curvature of Fig-
ures 7a and 7b gives a better result, however with a little over pre-
diction of the pressure coefficient right behind the shock. The
adaptation to the gradient of the combination of the density and
pressure in &2 direction only in Figures 7¢ and 71 gives the closest
solution to the fine grid solution.

From these results, clearly multiple adaptive grids produce a
better representation of the shock regions, aswell as the expansion
regions, than that of the same nonadaptive grid. Among these
adaptive mechanisms, the use of the better results than the use of
single variable. Another advantage that should be mentioned here
is the controlling of the direction in which adaptation is applied.
As shown above, the adaptation in only one direction (§ ) givesthe
closest solution to the fine grid solution. Moreaver, the gridin this
adaptive mechanism is not being disturbed as much as by the
adaptation in both directions. The minimum skew angle for this
case is higher compared to those of adaptation in both directions.
Of course, this is true only for a certain number of adaptations and
a particular value of weight coefficients.

wind tunpel (supersonic Euler)

Results from the supersonic flow at Mach = 2 in awind tunnel
are shown in Figure 8. These resultswere also obtained in 300 time
steps. Figure 8a is the initial grid, Figure 8b is the adaptive grid
adapted to the error estimation in both directions, and Figure 8¢
is the adaptive grid adapted to gradient of the combination of r.:lgp- )
sity and pressure in both directions. The number of adaptauons
was § for both cases, with C, = 0.6, C, = 0.55 for the
adaptation to gradient of the combination. Shocks are much
sharper for solutions obtained on the adaptive grids than on the
nonadaptive grids for this configuration in supersonic flow as well.

Results from these examples show that multiple adaptive grids

captured very well major features of the flow field in supersonic
flow for these particular configurations. The adaptations to the
combination of the grid quality measures, such as skewness of the
grid and the flow solution, for these particular grids not only make
the grid more skewed but also resulted in poor resolution of the
major features of the flow field. On the other hand the adaptation
to the error estimation and the use of the weighted average in
weight functions computed from several flow variables does, in
fact, improve the solutions.

The computation of the weight functions and the choice of the
adaptive solution variable are independent from one direction to
another thus enabling the users to have more freedom inchoosing
suitable adaptive mechanism for each kind of flow. For example,
in the case of boundary layers and shocks occurring in the same
flow field, the users may choose to adapt the grid to the velocity
magnitude gradient in the normal direction to capture the bound-
ary layer regions and to the pressure gradient in the flow direction
to capture the shocks.

backward facing step

(incompressible Navier-Stokes)

Results of multiple adaptation performed with the adaptive
INS3D incompressible flow code are shown in Figures 9-12.
These results are obtained for incompressible laminar flow for a
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2—block backward facing step, (grid size for the first block is (21
x 35) and (81 x 41) for the second block). The Reynolds number
used in this investigation for the backward facing step was 183 32
for comparison with experimental data.

The grid constructed for the backward facing step considered
in this case is the same as the geometry of the experiment. Howev-
er, the step length downstream of the grid is only 30 times the
length of the step height, while the step Iength for the experiment
was much larger. Figure 9c shows the velocity magnitude contours
obtained from 5000 time steps on the initial grid of Figure 9a. Ve-
locity vectors are shown in Figure 9b.. Figure 10 shows the velocity
magnitude, vorticity contours and velocity vectors obtained from
5000 time steps on the adaptive grid. The initial grid was adapted
at 500 and 1000 time steps to the vorticity magnitude in the direc-
tion normal to the walls with C, = 0, C; = 1, (AWT = VAR,
VAR, VORR ='0,1). Total number of adaptations was 2 for this
case, and updates were applied to the initial control functions.

Skin friction coefficients on the lower and upper walls (begin-
ning at the step) obtained from initial and adaptive grids are
plotted in Figure 11. Velocity profiles at the step and several loca-
tions downstream (nearest to the experimental data) along with
digitized experimental data are shown in Figure 12,

Results from these figures show that the velocity profiles ob-
tained from the adaptive grid are closer to the experimental data
than for the nonadaptive grid. However, there are some wiggles
of the skin friction coefficient obtained from the adaptive grid oc-
curring at the separation region of the lower wall. This maybe due
to the redistribution of grid spacings in this region. Digitized val-
ues of the reattachment length from Figure 11 are approximately
7.67 for both solutions, while the experimental value was 7.9 for
this particular Reynolds number. The difference of these values
may be due to the difference of the step length of the experiment
and the grid downstream.

A record of the CPU time on a Cray 2 machine shows that the
total CPU time for the initial grid without adaptation was 25956.26
CPU seconds and for the adaptive grid was 26363.74 CPU seconds.
Since there isonly 2 adaptive iterations the increase in time for this
case is 1.2%.

180 degree turn around duct

(incompressible Navier-Stokes)

Most flow solvers for incompressible flow require grid lines
which are packed closely to the walls in order to resolve the bound-
ary layer regions. This results in a large number of grid points and
hence long computer times. The multiple adaptation can be used
to reduce the cost of computer time by allowing the use of a coarser
grid. In the presentinvestigation, afine grid (111 x51)with spacing
off the walls 0f 0.002 and a coarse grid (111x31) with spacing 0.004
off the walls are considered for the turn around duct. The result
of the adaptation on the coarse grid is compared with the nonadap-
tive fine grid solution, while the Reynolds number for the turn
around duct was 500. Results obtained from 6000 time steps on
fine, coarse and adaptive grids for turn around duct are shown in
Figures 9—-18.

Figure 13 shows the velocity magnitude contours obtained on
the initial and adaptive grids. The initial coarse grid was adapted
to the velocity magnitude gradient at 1000, 1500, 2000 and 2500
time steps, in the direction normal to the flow direction, AWT =
GRAD, GRAD, VOMA = 0,1). Total number of adaptations was
4withC, = 0.1, C; = 0.5, and the updates were applicd to
the initial control functions. Figures 14 and 15 show the skin fric-
tion and pressure coefficients of the inner and outerwallsobtained
from coarse, fine and adaptive coarse grids.

Figure 14 shows that the behavior of the skin friction coeffi-
cients for the adaptive grid are much closer to the fine grid solution
than the nonadaptive coarse grid. Figure 15shows that the adapta-
tion for this case did not help significantly in the improvement of
the pressure coefficients, however.

Figure 16 shows the velocity magnitude contours obtained on
the initial and another adaptive grid. The initial coarse grid was
adapted tothe combination of vorticity and quality measure aspect
ratio of the gridin the direction normal to the flow direction, (AWT
= VAR, VAR, VORR = 01, ASPE = 1). Here
C, = 0.3, C; = 0.5. Figures 17and 18 show the skin friction
and pressure coefficients of the inner and outer walls obtained
from coarse, fine and adaptive coarse grids.

Figure 17 shows that the behavior of the skin friction coeffi-
cient of the outer wall is almost identical to that of the fine grid.
The representation of the skin friction of the inner wall is smoother
than that of the nonadaptive grid but with a large change after the
separation region toward the outlet of the duct. Figure 18, again
indicates that the adaptation did not help in the improvement of
the pressure coefficients for this case either.

A record of the CPU time on an IRIS 4D/440VGX machine
shows that the total CPU time for the initial grid (111 x 51) was
23870.61 CPU seconds and for the adaptive grid (111 x 31) was
approximately 13800 CPU seconds for each adaptive mechanism.
From Figures 13 and 16, it can be seen thatinboth adaptations the
gridsget finerat theturn. Correspondingly the skin friction coeffi-
cients obtained from adaptive grids have higher pick at the turn
and capture separation region well, as shown in Figures 14 and 17.
Moreover, the reattachment point obtained from adaptive grid of
Figure 14 is closer to that of the fine grid than the adaptation of
Figure 17 and the non—adaptive grid.

CONCLUSIONS

The widely—used EAGLE grid generation system (Ref. 14)
has been extended and enhanced so that it can be readily coupled
withexisting PDE solvers which operate on structured grids to pro-
vide a flexible adaptive grid capability. The adaptive EAGLE grid
code can be used for generating not only algebraic grids and ellip-
tic grids but static adaptive grids as well. In the static adaptation,
the grid can be adapted to an existing PDE solution or to grid qual-
ity measures or to a combination of both. The test cases show that
some grid properties can be improved by the static adaptation to
grid quality measures. - S )

In this study, the weight functions can be formulated as
weighted average of weight functions from several flow variables
or several quality measures or the combination of both. Different
weight functions and adaptive variables can be applied in each
direction. These operations are controlled through the input pa-
rameters in static as well as multiple adaptation mode.

There are several successful incorporations of the adaptive
EAGLE packed subroutines into flow codes, including INS3D
from NASA Ames and the MISSE Euler solver developed at Mis-
sissippi State University. Several configurations are considered
for each of these adaptive flow codes for the investigation of the
new weight functions formulations and grid quality measures in
the multiple adaptation.

Results obtained from the adaptive MISSE Euler flow code
show considerable success as measured by improvements in shock
resolution on coarse grids in the compressible flows. Some success
has been made in capturing separation regions on coarse grids of
the adaptive INSID flow code in incompressible flows. For further
study, the interpolation of the previous solutions to the new
adapted grids would be recommended, especially for the adaptive
INS3D flow code and the implementation of arbitrary block
adaptation in multi-block configurations.
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Figure 2d. Average skew angle in the adaptation to all grid
quality measures.
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Figure 14, Skin friction coefficients of the inner and outer walls
obtained from initial fine, coarse and adaptive grids with awr =
grad, grad, VOMA = 0,1, cw = 0.1, 0.5.
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obtained from initial fine, coarse and adaptive coarse grids with
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