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Summary

A numerical method for solving the three-dimensional bound-
ary layer equations for bodies of arbitrary shape is presented.
In laminar fows, the application domain extends from incom-
pressible to hypersonic flows with the assumption of chemical
equilibrium. For turbulent boundary layers, the application
domain is limited by the validity of the mixing length model
used. In order to respect the hyperbolic nature of the equa-
tions reduced to first order partial derivative terms, the mo-
mentum equations are discretized along the local streamlines
using of the osculator tangent plane at each node of the body
fitted coordinate system. With this original approach, it is
possible to overcome the use of the generalized coordinates
and therefore it is not necessary to impose an extra hypoth-
esis about the regularity of the mesh in which the boundary
conditions are given. By doing so, it is possible to limit, and
sometimes to suppress, the pre-treatment of the data coming
from an inviscid calculation. Although the proposed scheme
is only semi-implicit, the method remains numerically very
efficient.

1 INTRODUCTION

A great number of three-dimensional boundary layer calcu-
lation methods have been developed in the last two decades.
Some of them are presented in the synthetic papers of Smith33,
Cousteix!4 and, more recently, Humphreys and Lindhout! 7.
Although the amount of work done to solve the Prandtl equa-
tions is substantial, some difficulties remain when the cross-
flow direction changes in the calculation domain. As it has
been shown by Wa.ng35 and Krause?! this problem comes
from the nature of the set of the boundary layer equations
which imposes a CFL type condition to the discretization
scheme (Cebeci et al%). To fulfil this condition, at least two
solutions may be proposed: i) to choose a simple numerical
scheme as, for example, an explicit upwind discretization of
the crosswise derivatives ; ii) to use an implicit discretization
of the crosswise derivatives at the unknown station.

With the first solution, the advancement of the in-
tegration at a given station always goes in the same cross-
wise direction and the changes of the crossflow, which appear
on bodies at incidence, cannot be completely calculated, as
shown by Cebeci® 19 55, unless a change of the discretiza-
tion scheme across the boundary layer thickness is allowed
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(Lindhout-Moekzs). In the second case, the calculation effort
is much more important, and therefore reduces the interest in
using the Prandtl equations (Patel-Baek31, Johnstonzo). In
practice, a third strategy exists to conciliate the respect of the
CFL condition with the efficiency of the numerical scheme.
Considering only the finite difference methods, Cebeci® uses
the standard "Keller Box” method everywhere it is possi-
ble and the "zig-zag” scheme where the crossflow direction
changes. In this latest scheme, the crosswise advection terms
are partly written at the calculation station, and partly at
the upstream station. To overcome some limitations of
this method, Cebeci? 10 11 proposes the “Characteristic Box
Scheme” which takes into account the existence of character-
istic directions in the boundary layer equations to limit the
streamwise integration step in the region where the crossflow
changes sign in the boundary layer thickness. This leads to
an extra iteration step at each calculation station.

The numerical scheme which is presented in this pa-
per integrates the Prandtl equations along the local stream-
lines, which are sub-characteristic lines. By doing so, the in-
tegration proceeds always in the same direction whatever the
crossflow direction, and the CFL condition is fulfilled, provid-
ing that the marching step is small enough. As the diffusion
terms are expressed at the unknown station, the proposed
method belongs to the semi-explicit type.

The main originality of the proposed method comes
from the choice of the space in which the equations are inte-
grated. Most methods use generalized coordinates in a body
fitted coordinate system. This needs the calculation of the
Christoffel coefficients which introduces an extra hypothesis
dealing with the regularity of the mesh, while the boundary
layer assumptions impose only the regularity of the body sur-
face. To avoid this extra limitation, the discretization of the
equations at a given station can be done in the tangent plane

“to the surface at this point instead of the actual surface. To

respect the metric properties of the surface and express the
covariant derivatives of the velocity, the tangent plane must
be provided with a particular metric. This is simply done
by orthogonally projecting the body fitted coordinate system
and the velocity field on the tangent planc at the considered
points.



2 Boundary layer equations

Body fitted coordinate system

To set up the boundary layer equations, it is convenient to use
2 body fitted coordinate system (see, for example, Hirschel-
Kordulla 6) Let z* be the cartesian coordinates of a surface
point. Th1s point is known by the two parameters X' and X2

With e the cartesian base vector, the vectors defined by

— _ 0z~
= oxe
are tangent to the body fitted coordinate system.

The surface base reference frame is obtained by
adding the unity vector @3 perpendicular to @; and a;. The
reference frame (&, €5, €;) in the vicinity of the surface is
built as shown in figure 1. Introducing the thin layer assump-
tion, the metric elements g; = €. ¢, become independent of
the X3 coordinate.

The boundary layer equations are obtained by ap-
plying the Prandtl hypothesis to the Navier-Stokes equations
written in the curvilinear coordinates (X*, i =1,2,3).

For an incompressible laminar flow, the boundary
layer equations read :

a=1,2 i=1,23 (1)

VU= 0 i=1,2,3 (2a)
pPUVU* = -V,P
8 ([ au*
a_(“ﬁ) a=12 (2b)

The covariant derivatives of the velocity are expressed using
the Christoffel coefficients:
o 0U®
v.U® = a
In the equations 2a and 2b, the pressure field is known. It is,
for example, the wall pressure given by an inviscid calculation.
The boundary conditions are the no-slip condition at the wall
and the velocity components U2, (with a = 1,2) at the outer
edge of the boundary layer. The latter can be obtained from
the pressure field by integrating the Euler equations at the
wall.

+ T80 (3)

Nature of the set of equations

From the theory of quasi linear differential equations, the
boundary layer equations 2a and 2b are parabolic because

of the dxﬁusxon terms. It has been shown by Wang35 and
Krause?! that the particular influence of the advection terms
could be studied from the characteristic surfaces of the sub-
set of equations made of the first order derivatives. They have
shown that the surfaces made of the straight lines perpendic-
ular to the wall and the stream surfaces are sub-characteristic
surfaces. This means that the influence domain of a particular
station is limited by the two surfaces, formed of perpendicular
lines to the wall, which are tangent to the two most deviated
streamlines.

3 Numerical method

A great number of calculation methods have been developed
to integrate the boundary layer equations in direct mode,
t.e. with a prescribed external velocity field. Some reviews
of these methods can be found in Smith33, Cousteix!4 and
Humphreys-Lindhout 17, Most of these methods are space-
marching, with an upstream discretization of the advection
terms.

Lindhout-Boer?4 made a semi-implicit method in
which the crosswise derivatives along X? are explicitly dis-
cretized in the upstream direction, the other derivatives be-
ing written implicitly. This allows a change of the crossflow
direction to be taken into account very simply. The calcu-
lation step in the streamwise direction is limited by a CFL
condition. To avoid this constraint, it is necessary to express
implicitly the X?-derivatives. This can be done simply if the
dependence domains remain in a given side of the mesh lines
X! in the whole calculation domain (fig. 2a). For such flows,

for example flows over infinite swept wings, the calculation ad- -

vances everywhere in the same direction along the X' lines.
Jelliti!® and Barberis® used this technique. For more complex
boundary layer flows, such methods do not allow accessibility
to the domains for which the crossflow does not remain in the
marchmg direction along the X! lines. e

Lindhout et al.25 have developed a techmque in
which the choice of the numerical scheme for the crosswise
derivatives in the X? direction and the marching sense along
these lines depend on the most deviated streamlines through-
out the boundary layer at the calculation station. This allows
a certain optimization of the calculation effort by choosing in
each region the most suitable discretization. -~ -

_ Other methods have been considered. An effi-

cient scheme of the “predictor-corrector” type is used by
Matsuno?7. Wa.ng36 has proposed a“zig-zag” scheme in or-
der to take into account the dependence domains for the dis-
cretization of the velocity along the X? direction. These terms
are written partly at the known upstream station and partly
at the unknown calculation station, on both sides of the corre-
spondm% X! line. The stability of this scheme is discussed bg
Krause?! . A similar scheme has been used also by Iyer et all
and Cebecig. This author prefers a modified version of the
“Keller box scheme”, called the “characteristic box scheme”
which takes into account the dependence domains by using
the direction of the local streamline in the discretization for-
mulation. This leads to an extra iteration step at each station
and a limitation of the marching step in the X" direction!!

Fully implicit techniques in which the X?-derivatives
are written in the unknown plane X' = Cste (fig. 2a) can
be considered. Patel-Baek3! and Tassa et al34 use the alter-
nated direction procedure to solve the eguations in a whole
plane X' = Cste. Johnston20 prefers to sweep only in the
X? direction, which leads to iterative inversion of tridiagonal
matrices; the unknown quantities being taken at the previous
iteration.
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Figure 1 : B ;
b fm - ody fitted coordinate system and wall reference

Equations along the local streamlines

In order to respect the physical dependence domains at each
point of the boundary layer while keeping a single marching
direction along the X?-lines, the momentum and energy equa-
tions will be discretized along the local streamlines. This also
allows the use of a unique scheme in the whole calculation
domain.

As is usually done in boundary layer calculations, a
reference length L{X', X?) is introduced to adapt the grid
perpendicular to the wall to the boundary layer thickness.
With the normal coordinate n = X3/L(X", X?), the bound-
ary layer equations along the local streamlines read

i apm _ p .aL .
VxPU +—Z—6-T]_ = —'I_/Ua_X—' 1=1,2 (4a)
—| VU= ou= = VU2 7]
Ul + pU— = —
”‘ ]d.s(r,) TP Ter T PVl Tse) T Ton
U=
(u-nw) a=1,2(4b)
with
l ﬁ:U’—nU"-‘E i=1,2 (5)
ax: ’

d.X! being the step size in the main marching direction, ds(n)
is calculated using the metric coefficients

(6)

where dX? is a function of 7 obtained from the definition of
the local streamline parallel to the wall

ds(n) = (g dX3dx3)"" i,j=1,2

dxy _ dX?

u U2 (M

VU is the total variation of the velocity component U* along
the streamline
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Figure 2 : Building of the calculation mesh and velocity field
in the tangent osculator plane.

vy = (ﬂ + r:;UJ') dXxy  ia=

3% 1,2

(8)

Osculator tangent plane

The use of generalized coordinates introduces an extra hy-
pothesis concerning the regularity of the body fitted coor-
dinate system which must be regular enough to allow the
calculation of the Christoffel coefficients. Moreover, as the
calculation method is of semi-implicit type, the respect of the
CFL condition leads to the use of a subgrid for the integra-
tion in the X!-direction. The calculations can be done more
rapidly if the equations are written in a cartesian coordinate
system. Due to the local character of the boundary layer prob-
lem, confined to the vicinity of the body surface, it is not the
global cartesian frame used to define the surface which will
be considered, but a local cartesian frame linked to a mesh
of the body fitted coordinate system in which the boundary
conditions are given.

To build the osculator tangent plane, it will be as-
sumed that the Christoffel symbols are defined, in order to
show that the new approach is identical to the classic one,
but this assumption is not necessary.

Let O be the node (X}, X?) of the mesh in which the
boundary conditions are given. The local reference frame at
this point is €, ¢ = 1,2,3. To integrate the boundary layer
equations to the next station (XL, X2), it is necessary to
represent in a cartesian space the neighbouring nodes with
respect to point O as well as the velocity vectors (fig 3). To
this end, at the point O of the surface (5) is associated a
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Figure 3 : Sub-calculation mesh with respect to the repre-
sentation of the body fitted coordinate system in the tangent
plane.

point O’ of an euclidian space (E). The reference frame (;{,

1 = 1,2) at this point is such that

q), =), 9)

This leads to the equality for the metric elements

%is)or = S;:;)o . (10)

It can be noted that if the points O and O’ are identical, the
euclidian space (E) which has been built is simply the tangent
plane to the surface at 0. In order to give to (E) the metric
properties that represent the vicinity of point O of (S), we

impose
) =Th), (11)

This allows to represent the body fitted coordinate system in
the vicinity of point O by a curvilinear coordinate system in
the tangent plane while respecting the distances to the second
order (fig. 2-b). For this reason, the tangent plane is called
osculator plane. With the condition (11), the image P’ in (E)
of a point P in (S) near the point O is given by

0P = (=), [dz" + % (T3), dz’dx"} (12)

After the construction of the mesh in the neighbour-
hood of O in the tangent plane, the representation of the
velocity field is simply done: the velocity vectors are known,
for example, by their modulus and directions with respect
to the lines X! on the surface. The directions with respect
to the curvilinear mesh in the tangent plane are assumed to
be the same (fig. 2-c). Knowing the geometry of the mesh
and the velocity at the nodes, the calculation of the covari-
ant derivatives of the velocity is straightforward. With the

Figure 4 : Discretization of the momentum and energy equa-

tions.

representatlon which has been adopted, the precision of thxs
calculation is of first order. R

The covariant derivative of a vector is an intrinsic
quantity which does not depend on the reference mesh. This
quantity exists even if discontinuities of the slope of the co-
ordinate lines are present. In this case, the Christoffel coef-
ficients are not defined and the velocity components_are dis-
continuous. Such a configuration can be dealt with if the
osculator tangent plane is built without using the Christoffel
coefficients. It can be shown that the construction which has
been described is equivalent to the orthogonal projection of
the body fitted coordinate system, and the velocity field, in

the tangent plane at a given point. This transformation re-
spects the lengths and the angles to the second order, which
allows to express the covariant derivatives to the first order.

Basic equation

It has been shown that the integration of the boundary layer
equations could be done in the tangent plane instead of using
the generalized coordinates. For this reason, the equations
can be written in cartesian coordinates. For a compressible
turbulent boundary layer, equations (2a), (4a) and the energy
equation become

apu apu _ eyt OL .
ot 1em - "Lax =bhr (%)

du.

||mm+”Lw

% (p.,,%“?") a=1,2(13b)
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and the equation of the streamline parallel to the wall

(14)

. (15)

dz! is given by the marching step along the z'-lines, roughly
in the general direction of the flow. du® is the variation of
the u®-component of the velocity over the distance ds along a
streamline. The energy equation (13c) is written for the total

enthalpy h,
2
7
CpT +

hy =
2

(16a)
and the effective viscosity coefficient is expressed as follows

Pesf = B+ Vhe (17a)

where u is the dynamic viscosity coefficient given by the law
of Sutherland, u; the eddy viscosity coefficient and « the in-
termittency function which is equal to 0 for laminar flow and
1 in turbulent boundary layer. In the transition region, ¥
depends on the thickening of the boundary layer represented
by the ratio of the momentum thickness to the momcntum
thickness at the beginning of the transition region, 0/07-
Since the first objective of this study is the valida-
tion of the numerical technique, including the discretization
scheme and the use of the osculator tangent plane, a sim-
ple turbulence model is used. The model is a direct exten-
sion of the mixing length formulation commonly used in two-
dimensional ﬁowle, with the damping function proposed by

Cebeci 8
! Su!
o= pam = (ut ) g (189)
au ou?
T = pmm = putlu WS = (s + )5 (18b)
ut)? our\’
e = l’F’J (aza) + (a—s) (18¢)
{ 0,41 z
L= 18d
3 0,085 tan h<00856) (18d)
with
v +=¥ 19
F = l—exp(——j-) ¥y == (19a)
A= By e w, = Jre/p  (19b)
Nu,\pu

l Bu [ Pe ) [ vele du.

N = J1-1188e {2
Q ’8F¢ (PW) ( u} d5=) (19¢)
In these relations, only applicable in a cartesian reference

frame, u, is the modulus of the external velocity and the fric-
tion velocity .

Laminar-turbulent transition
Longitudinal instability mode

Two criteria are used to predict the onset of transition. Both
are based on stability calculations for the self-similar Falkner-
Skan velocity profiles and on the relation proposed by Mack?6
to link the total amplification coefficient n of the most unsta-
ble instability waves, at the point of transition, to the turbu-
lence level of the external flow

r=-24InT, — 8.43 (20)

In a first criterion proposed by Arnal et all, the ve-
locity profile is characterized by the mean value of the Pohl-
hausen parameter A;, and n is represented as a function of

(Rau - Rouer) and r’
Rau - Rsu:r = —2066)(}) (2577\—27)
(168 T7) - 277 Kpr]  (21a)
_ 1 = 42, du,
No= oo [ RE e e

To determine the critical value of the momentum thickness

011 corresponding to the point z, , the calculated value

of 8, is compared to the corresponding value of 63, given

by the stability diagrams and represented by the correlation
512

H = ——
6

11

52

O11crs = exp (-—— - 14.8)

7 (22)

As soon as Ry, becomes equal to Ry,
become amplified and z, is reached.
The second longitudinal criterion,
Arna.l4, is a parametric type method. For a given velocity
profile, characterized by the shape parameter H;, the local
amplification coefficient o, corresponding to the frequency F,
is represented as a function of Rs in the form of two half--
parabols. This allows a simplified representation of the stabil-
ity diagrams with a minimum number of parameters. Know-
ing the evolution of the shape parameter H along an external
streamline, the total amplification coefficient is calculated and
equation (20) is used to determine the onset of transition.

the instability waves

crs?

proposed by

Streamwise instability mode

To predict this mode of transition particular to three-dimen-
sional flows, two criteria can be used. The first one is an
extension made by Coustols!® of a criterion originally pro-
posed by Beasley’. The transition occurs when the Reynolds
number based on the streamwise displacement thickness &
becomes larger than a critical value which is a function of the



longitudinal incompressible shape parameter. More precisely,
this criterion reads

0.106
RG:T = 95.5arctan ((E_—wm_i)
23 < H; <27 (23a)
Rer = 150 H <23 (23b)

With this criterion, the influence of the turbulence level of the
external flow is not taken into account.

The second criterion, also developed by Coustols and
Arnal4 3 requires a more important numerical effort and can--
not be detailed here. At each calculation station, the most
unstable direction € of the velocity profiles in the vicinity of
the crossflow direction must be determined. The transition
occurs when the Reynolds number defined with the displace-:
ment thickness in the ¢ direction becomes larger than a given
value which is a function of the turbulence level of the external
flow. The number and location of the inflection points of the
velocity profile in the € direction are also taken into account
in order to represent the results of stability calculations for
three-dimensional boundary layers.

Numerical scheme.

The momentum and energy equations (13b) (13c) are discreti-
zed in the tangent plane according to the scheme presented
in figure 4. At the unknown station @, the diffusion terms
are written at 3 points and the advection term is taken be-
tween the points R and 7. Ry is the origin at the upstream
station of the streamline going through the point 7. At this
stage, all the quantities are known. R, is calculated according’
equation (15) assuming a linear variation of the velocity com-
ponents at the upstream stations. This discretization scheme
leads, after linearization, to three tridiagonal matrices which
can be inverted independently to give the two velocity com-
ponents u' and u? and the total enthalpy A. The scheme is
stable whatever the location of points R; may be. In prac-
tice, the marching step along X' is limited in order that R,
remains between the two adjacent stations K and M of the
calculation point (fig.4). This constraint is identical to the
CFL condition of a semi-explicit scheme.

To complete the integration, the normal velocity com-
ponent u? is calculated using the continuity equation (13a).

The z'-derivatives are taken between the points L and Q and
the z?-derivatives are deduced from the relation

(‘mz)u' (P'“’)x = (%)L(IM—EK)+_

(-%—”:T’)Lm —w) (24)

with z! and z? the cartesian coordinates in the tan-
gent plane defined in figure 3.

At each station X!, the boundary layer parameters
are calculated for all the points in the X? direction. This is
always done in the direction of the increasing values of X2,

whatever the crossflow direction may be, because the calcula-
tion at a particular station is independent of the neighbouring
points. The process is repeated in the subgrid calculation in
the X' direction up to the station X}, of the body fitted co-
ordinate system in which the boundary conditions are given.
At this point, the change of direction a of the coordinate sys-
tem must be taken into account. Since it is imposed that the
calculation subgrid coincides with the station X ,, a does
not have to be necessarily small. This means that slope dis-
continuities of the reference mesh can be correctly treated. A
new osculator tangent plane is calculated at each node X? of
the station X, and the calculation process continues.

4 APPLICATION TO A PRO-
LATE SPHEROID

To illustrate some capabilities of the method to predict com-
plex three-dimensional boundary layers, we will consider the
prolate spheroid with an aspect ratio equal to 6 at a 10° inci-
dence. A number of experimental studies have been devoted
to this case, in particular at the DLR 28 29 30, At the cho-
sen incidence, the experimental pressure field remains close
to the analytical inviscid pressure field. Moreover, the stag-
nation point is sufficiently close to the nose of the body to
use the simple body fitted coordinate system made of ellipses
passing through the two poles and circles included in planes
perpendicular to the symmetry axis of the body.

In figure 5-c, the light lines show the inviscid stream-
lines at the wall and the thickest lines represent the friction
lines for a fully laminar boundary layer. The friction lines
converge to form the separatrice line2® 32, Along it, a strong

thickening of the boundary layer occurs, leading to the aban-
don of the corresponding calculation line after X/L = 0.8.
Figure 5-a shows the wall friction lines obtained by taking
into account the transition phenomenon. With Ry = 1.6 108
and a turbulence level equal to 1.5 1073, the boundary layer
remains laminar in the windward side up to the separation
line, and turbulent in the leeward side. In the latter side, the
accumulation of the friction lines for X/L > 0.7 can be inter-
preted as a secondary separation. In figure 5-b are plotted the
friction lines calculated by Meier et 4129 30 from measure-
ments of the skin friction. At a 10° incidence, the influence of
the flow separation on the pressure field remains small which
explains the good agreement concerning the location of the
separation line in figures 5-b and 5-a. The comparison of fig-
ures 5-a and 5-c shows the great influence of the transition
phenomenon. )

The same results are presented in figure 6 at a higher
Reynolds number of 7.2 10®. The transition to turbulence oc-
curs sooner, which leads to the displacement of the separation
line towards the leeward region and suppresses the secondary
separation.

In figure 7 are plotted the longitudinal and stream-
wise displacemnent thicknesses § and §; as well as the shape
parameter. They are compared to experimental results ob-
tained by Meier et al at X/L = 0.64 and 0.71. The develop-
ment of separation is characterized by a thickening of & and
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Figure 5 : Ellipsoide at 10° incidence.
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b) wall friction lines.
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Figure 6 : Ellipsoide at 10° incidence.
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§,, particularly important at X/L = 0.71. The evolution of
the longitudinal shape parameter H is mainly sensitive to the
nature of the boundary layer. To perform the calculation with
the present method, the analytical inviscid flow field has been
used as well as the experimental pressure field. The influence
on the results remains small. The most critical point concerns
the prediction of the transition. The external turbulence level
is equal to 1.5 1073, as in the experiments. With the present
calculation methods all the transition criteria have been set
active and the first one to predict transition is retained. As it
can be seen in the evolution of H in figure 7, the location of
the onset of the transition near the windward plane of symme-
try is not correctly predicted. This is difficult to explain be-
cause the transition occurs along this line by amplification of
the longitudinal instability waves which are calculated by the
second criterion®. Maybe the use of the linear instability the-
ory along a symmetry line with a divergent flow from this line
must be questioned. Figure 7, showing the skin friction evo-
lution along the windward and leeward lines in the symmetry

plane, indicates that the calculated transition point is located
at X/L = 0.85 with a turbulence level equal to 1.5 107*. This
turbulence level gives the correct location of the transition line
in the lee side region of the body. Its experimental value is
estimated between | and 2 1073, By taking the largest value
of turbulence level, the transition occurs at X/L = 0.73 on
the windward symmetry line, instead of 0.65 experimentally,
but it reaches 0.17 on the upper symmetry line.

Calculation time

In the present method, the marching step in the X! direction
is limited by the most deviated streamline at a given section.
This step is also limited with respect to the boundary layer
thickness . For the prolate spheroid, the marching step was
limited to be in the range 0.66mm and 26maz, the minimum
and maximum values being taken in every section X'. With
this condition, roughly 1000 calculation steps are needed in
the X! direction. With 26 lines in the azimutal direction (for
a half-body), this corresponds on a CRAY XMP to 10 s for a
fully laminar boundary layer and 30 s with all the transition
rriteria.

5 CONCLUSION

The three-dimensional boundary layer calculation method
which has been presented is of semi-implicit type. The ad-
vection terms are discretized along the local streamlines. The
dependence domains are thereby satisfied with a simple nu-
merical scheme. The counterpart is a limitation on the size
of the marching integration step. Despite this limitation, the
efficiency of the method remains good due to the reduced
amount of calculation at each step. This is partly a conse-
quence of the use of local cartesian coordinates. The dis-
cretization of the equations in the osculator tangent plane
allows the existence of slope discontinuities in the body fit-
ted coordinate system in which the boundary conditions are
given. It also often reduces or suppresses the pre-treatment
phase of the data for a calculation.

Although the application cases which have been pre-
sented only deal with the prolate spheroid at incidence in
incompressible flow, the application range of the code is very
large. It extends from subsonic to hypersonic flows.

For turbulent boundary. layers, the mixing length
model which is used up to now is restrictive. The introduction
of transport equation model is being done. It has also been
tested that the present method can run in the inverse mode
with only minor modifications.
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