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Summary

A numericalmethod forsolvingthe three-dimensionalbound-

arylayerequationsforbodiesofarbitraryshape ispresented.

Inlaminarflows,the applicationdomain extendsfrom incom-

pressibletohypersonicflowswith theassumptionofchemical

equilibrium.For turbulentboundary layers,the application

domain islimitedby the validityofthe mixing lengthmodel

used.In orderto respectthe hyperbolicnatureofthe equa-

tionsreducedtofirstorderpartialderivativeterms,the mo-

mentum equationsaxe discretizedalongthe localstreamlines

usingoftheosculatortangentplaneateach node ofthebody

fittedcoordinatesystem. With thisoriginalapproach,itis

possibleto overcome the use of the generalizedcoordinates

and thereforeitisnot necessarytoimpose an extrahypoth-

esisabout the regularityofthe mesh inwhich the boundary

conditionsaregiven.By doingso,itispossibletolimit,and

sometimesto suppress,thepre-treatmentofthe data coming

from an inviscidcalculation.Although the proposedscheme

isonly semi-implicit,the method remains numericallyvery

efficient.

1 INTRODUCTION

A great number ofthree-dimensionalboundary layercalcu-

lationmethods have been developedin the lasttwo decades.

Some ofthem arepresentedinthesyntheticpapersofSmith33,

Cousteix14 and, more recently,Humphreys and Lindhout17.

Although theamount ofwork done tosolvethe Prandtlequa-

tionsissubstantial,some difficultiesremain when the cross-

flowdirectionchangesin the calculationdomain. As ithas

been shown by Wang 35 and Krause21 thisproblem comes

from the natureofthe setof the boundary layerequations

which imposes a CFL type conditionto the discretization

scheme (Cebecietal9).To fulfilthiscondition,at leasttwo

solutionsmay be proposed:i)to choose a simplenumerical

scheme as,forexample,an explicitupwind discretizationof

the crosswisederivatives;ii)touse an implicitdiscretization

ofthe crosswisederivativesatthe unknown station.

With the firstsolution,the advancement of the in-

tegrationat a givenstationalwaysgoes in the same cross-

wisedirectionand the changesofthe crossflow,which appear

on bodiesat incidence_cannot be completelycalculated,as
shown by Cebeci9 19 ,5 unlessa change of the discretiza-

tionscheme acrossthe boundary layerthicknessisallowed

(Lindhout-Moek25).Inthesecondcase,the calculationeffort

ismuch more important,attdthereforereducestheinterestin

usingthe Prandtlequations(Patel-Baek31, Johnston20).In

practice,a thirdstrategyexiststoconciliatetherespectofthe

CFL conditionwith the efficiencyof the numericalscheme.

Consideringonly thefinitedifferencemethods, Cebeci9 uses

the standard "KellerBox" method everywhere itispossi-

ble and the "zig-zag"scheme where the crossflowdirection

changes.Inthislatestscheme,the crosswiseadvectionterms

are partlywrittenat the calculationstation,and partlyat

the upstream station. To overcome some limitations of

this method, Cebeci 9 10 11 proposes the "Characteristic Box
Scheme" which takes into account the existence of character-

istic directions in the boundary layer equations to limit the

streamwise integration step in the region where the crossflow

changes sign in the boundary layer thickness. This leads to

an extra iteration step at each calculation station.

The numerical scheme which is presented in this pa-

per integrates the Prandtl equations along the local stream-

lines, which are sub-characteristic lines. By doing so, the in-

tegration proceeds always in the same direction whatever the
crossflow direction, and the CFL condition is fulfilled, prodd-

ing that the marching step is small enough. As the diffusion

terms are expressed at the unknown station, the proposed

method belongs to the semi-explicit type.

The main originality of the proposed method comes

from the choice of the space in which the equations are inte-

grated. Most methods use generalized coordinates in a body
fitted coordinate system. This needs the calculation of the

Christoffel coef_cients which introduces an extra hypothesis

dealing with the regularity of the mesh, while the boundary

layer assumptions impose only the regularity of the body sur-
face. To avoid this extra limitation, the discretization of the

equations at a given station can be done in the tangent plane
to the surface at this point instead of the actual surface. To

respect the metric properties of the surface and express the

covariant derivatives of the velocity, the tangent plane must

be provided with a particular metric. This is simply done

by orthogonaUy projecting the body fitted coordinate system

and the velocity field on the tangent plane at the considered

points.



2 Boundary layer equations

Body fitted coordinate system

To set up the boundary layer equations, it is convenient to use

a body fitted coordinate system (see, for example, Hirschel-
Kordullal6). Let z _ be the cartesian coordinates of a surface

point. This point is known by the two parameters X t and X :.

' the cartesian base vector, the vectors defined byWith e+

0z+ -7
_ = y2-_ e, _=1,2 _= 1,2,3 (1)

are tangent to the body fitted coordinate system.

The surface base reference frame is obtained by

adding the unity vector a_ perpendicular to _ and a--_.The

reference frame (_'_1,_'_2,e'_3) in the vicinity of the surface is

built as shown in figure 1. Introducing the thin layer assump-
----4

tion, the metric elements _ = e,. e_ become independent of
the X s coordinate.

The boundary layer equations are obtained by ap-

plying the Prandtl hypothesis to the Navier-Stokes equations

written in the curvilinear coordinates (X', i = 1,2, 3).

For an incompressible laminar flow, the boundary
layer equations read :

V,U * =

pU'V,U ° =

0 i = 1,2,3

-V_P

0 /0w_

(2a)

= 1,2 (2b)

The covariant derivatives of the velocity are expressed using
the Christoffel coefficients:

OU_
v,u°= Ox---r+ r_uJ (3)

In theequations2a and 2b,the pressurefieldisknown. Itis,

forexample,thewallpressuregivenby an inviscidcalculation.

The boundary conditionsaretheno-slipconditionatthe wall

and the velocitycomponents U_, (witha = I,2)at theouter

edge ofthe boundary layer.The lattercan be obtainedfrom

the pressure field by integrating the Euler equations at the
wall.

Nature of the set of equations

From the theory of quasi lineardifferentialequations,the

boundary layerequations2a and 2b are parabolicbecause

of the diffusionterms. Ithas been shown by Wang 35 and

Krause21 thattheparticularinfluenceofthe advectionterms

couldbe studiedfrom the characteristicsurfacesof the sub-

setofequationsmade ofthefirstorderderivatives.They have

shown thatthe surfacesmade ofthe straightlinesperpendic-
ulartothe walland the streamsurfacesaresub-characteristic

surfaces.Thismeans thattheinfluencedomain ofa particular

stationislimitedby thetwo surfaces,formed ofperpendicular

linestothe wall,which aretangentto thetwo most deviated

streamlines.

3 Numerical method

A great number of calculation methods have been developed

to integrate the boundary layer equations in direct mode,
i.e. with a prescribed external velocity field. Some reviews

of these methods can be found in Smith 33, Cousteix I4 and

Humphreys-Lindhout 17. Most of these methods are space-

marching, with an upstream discretization of the advection
terms.

Lindhout-Boer 24 made a semi-implicit method in

which the crosswise derivatives along X 2 are explicitly dis-
cretized in the upstream direction, the other derivatives be-

ing written implicitly. This allows a change of the crossflow
direction to be taken into account very simply. The calcu-

lation step in the streamwise direction is limited by a CFL

condition. To avoid this constraint, it is necessary to express

implicitly the X2-derivatives. This can be done simply if the
dependence domains remain in a given side of the mesh lines

X 1 in the whole calculation domain (fig. 2a). For such flows,

for example flows over infinite swept wings, the calculation ad-

vances everywhere in the same direction along the X t lines.
Jelliti 19 and Barberis 6 used this technique. For more complex

boundary layer flows, such methods do not allow accessibility
to the domains for which the crossflow does not remain in the

marching direction alon the X i lines
Lindhout et aLlf25 have developed a technique in

which the choice of the numerical scheme for the crosswise

derivatives in the X 2 direction and the marching sense along

these lines depend on the most deviated streamlines through-
out the boundary layer at the calculation station. This allows

a certain optimization of the calculation effort by choosing in
each region the most suitable discretizati0n.

Other methods have been considered. An effi-

cient scheme of the "predictor-corrector" type is used by
Matsuno 27. Wang 36 has proposed a"zig-zag" scheme in or-

der to take into account the dependence domains for the dis-

cretization of the velocity along the X _ direction. These terms

are written partly at the known upstream station and partly
at the unknown calculation station, on both sides of the corre-

spondin_ X 1 line. The stability of this scheme is discussed b_
Krause 21 . A similar scheme has been used also by Iyer et al. 1°

and Cebeci 9. This author prefers a modified version of the

"Keller box scheme", called the "characteristic box scheme"

which takes into account the dependence domains by using
the direction of the local streamline in the discretization for-

mulation. This leads to an extra iteration step at each station

and a limitation of the marching step in the X _ direction 11 .

Fully implicit techniques in which the X2-derivatives

axe written in the unknown plane X t = Cste (fig. 2a) can
be considered. Patel-Baek 31 and Tassa et al.34 use the alter-

nated direction procedure to solve the equations in a whole
plane X 1 = Cste. Johnston 20 prefers to sweep only in the

X _ direction, which leads to iterative inversion of tridiagonal

matrices; the unknown quantities being taken at the previous
iteration.

z

m_
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Figure 1 : Body fitted coordinate system and wall reference
frame.

Equations along the local streamlines

In orderto respectthe physicaldependence domains ateach

pointof the boundary layerwhilekeepinga singlemarching

directionalongtheXLlines,themomentum and energyequa-

tionswillbe discretizedalongthelocalstreamlines.Thisalso

allowsthe use of a unique scheme in the whole calculation
domain.

As isusuallydone inboundary layercalculations,a

referencelengthL(X I,X 2) isintroducedto adapt the grid

perpendicularto the wallto the boundary layerthickness.

With the normal coordinate _7= XS/L(XI,X2), the bound-
ary layer equations along the local streamlines read

OP_?'_ PU' OL
v,pu' + L'--_"= -Z _ i=1,2(4a)

/,i-_ vu_ --ou- _. vu: o+ - """ +

..//"_") a = 1,2(4b)

with

Us ., OL
= -wT2: _ =1'2 (5)

dX 1 being the step size in the main marching direction, ds(rl)
is calculated using the metric coefficients

ds( )= dX'.,dX')'",,j:1,2 i6)

where dX_ isa functionof_7obtainedfrom the definitionof

the loca2 streamline parallel to the wall

dX:, dX_
U--v= u--T (z)

VU iis the total variation of the velocity component U_ along
the streamline

a) body fitted coordinate system

X 2 x._ ..V

:,_'_7 _

!
1

O* -°

b)_'cferenceframein
me tangentplane

C_hVelocityfield in
e tangent ptane

Figure 2 : Building of the calculation mesh and velocity field
in the tangentosculatorplane.

[OU° )VU_ = \OX' ÷ P_U# dX:, i,a = 1,2 (8)

Osculator tangent plane

The use of generalized coordinates introduces an extra hy-

pothesis concerning the regularity of the body fitted coor-

dinate system which must be regular enough to allow the
calculation of the Christoffel coefficients. Moreover, as the

calculation method is of semi-implicit type, the respect of the

CFL condition leads to the use of a subgrid for the integra-
tion in the Xl-direction. The calculations can be done more

rapidly if the equations are written in a cartesian coordinate

system. Due to the local character of the boundary layer prob-

lem, confined to the vicinity of the body surface, it is not the

global cartesian frame used to define the surface which will
be considered, but a local cartesian frame linked to a mesh

of the body fitted coordinate system in which the boundary

conditions are given.

To build the osculator tangent plane, it will be as-
sumed that the Christoffel symbols are defined, in order to

show that the new approach is identical to the classic one,
but this assumption is not necessary.

Let O be the node (X_, X_) of the mesh in which the
boundary conditions are given. The local reference frame at

this point is eT, i -- 1,2,3. To integrate the boundary layer
equations to the next station 1 2(X_+1, X_ ), it is necessary to

represent in a cartesian space the neighbouring nodes with
respect to point O as well as the velocity vectors (fig 3). To

this end, at the point O of the surface (S) is associated a
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Figure 3 : Sub-calculationmesh with respectto the repre-

sentationofthe body fittedcoordinatesystem inthe tangent

plane.
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point O' of an euclidian space (E). The reference frame (e,,
i= 1,2)at thispointissuch that

This leadsto theequalityforthe metricelements

go)o,= g,J)o (1o)

It can be noted that if the points O and O' are identical, the

euclidian space (E) which has been built is simply the tangent

plane to the surface at O. In order to give to (E) the metric

properties that represent the vicinity of point O of (S), we
impose

r,_,)o, = r,_,)° (II)

This allowstorepresentthebody fittedcoordinatesystemin

the vicinityofpointO by a curvilinearcoordinatesystem in

thetangentplanewhilerespectingthe distancestothesecond

order(fig.2-b).For thisreason,the tangentplaneiscalled

osculatorplane.With the condition(11),the image P'in(E)

ofa pointP in(S)near thepointO isgivenby

__. 1 r' dzJdz t'] (12)

After the construction of the mesh in the neighbour-

hood of O in the tangent plane, the representation of the
velocity field is simply done: the velocity vectors are known,

for example, by their modulus and directions with respect

to the lines X 1 on the surface. The directions with respect

to the curvillnear mesh in the tangent plane are assumed to

be the same (fig. 2-c). Knowing the geometry of the mesh

and the velodty at the nodes, the calculation of the covari-

ant derivatives of the velocity is straightforward. With the

rl k+l X 2

Figure 4 : Discretization of the momentum and energy equa-
tions.

representation which has been adopted, the precision of this
calculation is of first order.

The c0varimat derlvative of a vector is an intrinsic

quantity which does not depend on the reference mesh; This
quantity exists even if discontinuities of the slope of the co-

ordinate lines are present• In this case, the Christoffel coef-

fi_ci_ts are not defined _and the ve!0_city com_p0nen3s:are_dis-
continuous. Such a configuration can be dealt with if the

osculator tangent plane is built without using the Christoffel
coeilicients. It can be shown that the construction which has

been described is equivalent to the orthogonal projection of

the body fitted coordinate system, and the velocity field, in

the tangent plane at a given point. This transformation re-

spects the lengths and the angles to the second order, which
allows to express the covariant derivatives to the first order.

Basic equation

Ithas been shown thatthe integrationofthe boundary layer

equationscouldbe done inthe tangentplaneinsteadofusing

the generalizedcoordinates.For thisreason,the equations

can be writtenincartesiancoordinates.For a compressible

turbulentboundary layer,equations(2a),(4a)and theenergy

equation become

O_' o_ "f _' OL
LOz i + LO_7 = L OX i i = 1,2 (13a)

,1 1 d.-

(L_
a = 1,2(13b)



dh, _ ah,

L_O_ Lcp 0,7 + \g'u- C'p/

(13c)

with
-- [ ,eL 2 OL "_

_s=_3__ _+_ ___=_) (14)

and the equation of the streamline parallel to the wall

dz' dz 2
(15)

ul _2

dz x is given by the marching step along the zLlines, roughly

in the general direction of the flow. du ° is the variation of

the u°-component of the velocity over the distance ds along a

streamline. The energy equation (13c) is written for the total

enthalpy h,

h, = C,T + _ (16a)

and the effective viscosity coefficient is expressed as follows

g,tl = /_+_/_, (17a)

where/_ is the dynamic viscosity coefficient given by the law

of Sutherland,/a the eddy viscosity coefficient and 3' the in-

termittency function which is equal to 0 for laminar flow and

1 in turbulent boundary layer. In the transition region, 3'

depends on the thickening of the boundary layer represented

by the ratio of the momentum thickness to the momentum

thickness at the beginning of the transition region, 6/0r 4.

Since the first objective of this study is the valida-

tion of the numerical technique, including the discretization

scheme and the use of the osculator tangent plane, a sim-

ple turbulence model is used. The model is a direct exten-

sion of the mixing length formulation commonly used in two-

dimensional flows 12, with the damping function proposed by

Cebeci 8

&" _ _ = 0%__,, _- %-_-j (_ + _,) _ (18a)

0_' _ _ = O_=

/gt =

l

_= ro,,1 )0,085 tanh \_,0_'5

(18c)

(18d)

with

N_Vp=

V+ = V...___
/2

(19a)

(19b)

N = _1-11'8_--_ (P') (v'u*du*_p._ \ u_ ds¢] (19c)

In these relations, only applicable in a cartesian reference

frame, u, is the modulus of the external velocity and the fric-

tion velocity.

Laminar-turbulent transition

Longitudinal instability mode

Two criteria are used to predict the onset of transition. Both

axe based on stability calculations for the self-similar Falkner-

$kan velocity profiles and on the relation proposed by Mack "26

to link the total amplification coefficient rt of the most unsta-

ble instability waves, at the point of transition, to the turbu-

lence level of the external flow

nr = -2.4 In T. - 8.43 (20)

In a first criterion proposed by Arnal et aL l, the ve-

locity profile is characterized by the mean value of the Pohl-

hausen parameter :_-_2,and n is represented as a function of

(P_,, - R_u,,) and

- = -206exp

[In(16.8 T_,) - 2.77 _'_T] (21a)

i: d_.1 0_ dz (21b)= =-=---_ .'-;- d=

To determine the critical value of the momentum thickness

_u_,, corresponding to the point z_ , the calculated value

of 0xx is compared to the corresponding value of 0u_,, given

by the stability diagrams and represented by the correlation

#u=,, = exp 52 - 14.8 H, "_" _II/

As soon as Rsu becomes equal to R_x_ .... the instability waves

become amplified and z_ is reached.

The second longitudinal criterion, proposed by

Arnal 4, is a parametric type method. For a given velocity

profile, characterized by the shape parameter H,, the local

amplification coefficient a, corresponding to the frequency F,

is represented as a function of P_, in the form of two half--

parabols. This allows a simplified representation of the stabil-

ity diagrams with a minimum number of parameters. Know-

ing the evolution of the shape parameter H along an external

streamline, the total amplification coefficient is calculated and

equation (20) is used to determine the onset of transition.

Streamwise instability mode

To predict this mode of transition particular to three-dimen-

sional flows, two criteria can be used. The first one is an

extension made by Coustols 15 of a criterion originally pro-

posed by Beasley _. The transition occurs when the Reynolds

number based on the strearnwise displacement thickness

becomes larger than a critical value which is a function of the



longitudinalincompressibleshapeparameter.Moreprecisely,
thiscriterionreads

( 0100/_,T = 95.5arctan (g,_2.3)2.0s2)

2.3 < Hi < 2.7 (23a)

P_,T = 150 H, < 2.3 (23b)

With this criterion, the influence of the turbulence level of the

external flow is not taken into account.

whatever the crossflow direction may be, because the calcula-

tion at a particular station is independent of the neighbouring

points. The process is repeated in the subgrid calculation in

the X 1 direction up to the station X,I+, of the body fitted co-

ordinate system in which the boundary conditions are given.

At this point, the change of direction a of the coordinate sys-

tem must be taken into account. Since it is imposed that the

calculation subgrid coincides with the station X,_I, a does

not have to be necessarily small. This means that slope dis-

continuities of the reference mesh can be correctly treated. A

new osculator tangent plane is calculated at each node )(] of

The second criterion, also developed by Coustols and the station X:+ l and the calculation process continues.

Arnal 4 3 requires a more important numerical effort and can-

not be detailed here. At each calculation station, the most

unstable direction e of the velocity profiles in the vicinity of

the crossflow direction must be determined. The transition

occurs when the Reynolds number defined with the displace-:

ment thickness in the e direction becomes larger than a given

value which is a function of the turbulence level of the external

flow. The number and location of the inflection points of the

velocity profile in the e direction are also taken into account

in order to represent the results of stability calculations for

three-dimensional boundary layers.

Numerical scheme

The momentum and energy equations (I3b) (I3c) are discreti-

zed in the tangent plane according to the scheme presented

in figure 4. At the unknown station Q, the diffusionterms

axe written at 3 points and the advection term is taken be-

tween the points R, and _?t.R_ isthe origin at the upstream

station of the streamline going through the point yk. At this

stage,allthe quantitiesare known. R_ iscalculated according_

equation (15) assuming a linearvariationof the velocitycom-

ponents at the upstream stations.This discretizatlonscheme

leads,afterlinearization,to three tridiagonalmatrices which

can be inverted independently to give the two velocitycom-

ponents uI and u s and the total enthalpy h,. The scheme is

stable whatever the location of points Pe may be. In prac-

tice,the marching step along X x islimited in order that P_

remains between the two adjacent stations K and M of the

calculationpoint (fig.4).This constraint is identicalto the

CFL condition of a semi-explicitscheme.

To complete the integration,the normal velocitycom-

ponent u3 is calculated using the continuity equation (13a).

The zLderivatives are taken between the points L and Q and

the z2-derivativesare deduced from the relation

) L -- ,K) (24a)

with z I and z: the cartesian coordinates in the tan-

gent plane defined in figure 3.

At each station X *, the boundary layer parameters

are calculated for all the points in the X a direction. This is

always done in the direction of the increasing values of Am ,

4 APPLICATION TO A PRO-

LATE SPHEROID

To illustrate some capabilities of the method to predict com-

plex three-dimensional boundary layers, we will consider the

prolate spheroid with an aspect ratio equal to 6 at a 10 ° inci-

dence. A number of experimental studies have been devoted

to this case, in particular at the DLR 28 29 30. At the cho-

sen incidence, the experimental pressure field remains close

to the analytical inviscid pressure field. Moreover, the stag-

nation point is sufficiently close to the nose of the body to

use the simple body fitted coordinate system made of ellipses

passing through the two poles and circles included in planes

perpendicular to the symmetry axis of the body.

In figure 5-c, the light lines show the inviscid stream-

lines at the wall and the thickest lines represent the friction

lines for a fully laminar boundary laoyer. The friction lines
converge to form the separatrice line 2°32. Along it, a strong

thickening of the boundary layer occurs, leading to the aban-

don of the corresponding calculation line after X/L = 0.8.

Figure 5-a shows the wall friction lines obtained by taking

into account the transition phenomenon. With RL = 1.6 106

and a turbulence level equal to 1.5 10 -s, the boundary layer

remains laminar in the windward side up to the separation

line, and turbulent in the leeward side. In the latter side, the

accumulation of the friction lines for X/L > 0.7 can be inter-

preted as a secondary separation. In figure 5-b are plotted the

friction lines calculated by Meier et ad.29 30 from measure-

ments of the skin friction. At a 10" incidence, the influence of

the flow separation on the pressure field remains small which

explains the good agreement concerning the location of the

separation line in figures 5-b and 5-a. The comparison of fig-

ures 5-a and 5-c shows the great influence of the transition

phenomenon.

The same results are presented in figure 6 at a higher

Reynolds number of 7.2 10 n. The transition to turbulence oc-

curs sooner, which leads to the displacement of the separation

line towards the leeward region and suppresses the secondary

separation.

In figure 7 are plotted the longitudinal and stream-

wise displacement thicknesses 51 and 52 as well as the shape

parameter. They are compared to experimental results ob-

tained by Meier et al at X/L = 0.64 and 0.71. The develop-

ment of separation is characterized by a thickening of 51 and

m
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Figure 5 : Ellipsoide at 10° incidence.
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Figure 6 : Ellipsoide at I(P incidence.
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plane, indicates that the calculated transition point is located

at X/L = 0.85 with a turbulence level equal to 1.5 10 -3. This

turbulence level gives the correct location of the transition line

in the lee side region of the body. Its experimental value is

estimated between 1 and 2 10 -3, By taking the largest value

of turbulence level, the transition occurs at X/L = 0.73 on

the windward symmetry line, instead of 0.65 experimentally,

but it reaches 0.17 on the upper symmetry line.

Calculation time

In the present method, the marching step in the X _ direction
.... I .... I''''1 .... I .... I''''l''''l''''l .... i''''

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 is limited by the most deviated streamline at a given section.

This step is also limited with respect to the boundary layer
a) windward symmetry line

thickness 6. For the prolate spheroid, the marching step was

6 [ .... i .... I .... I .... I .... i .... ! .... i .... i .... I .... [ limited to be in the range 0.6E_,,,,, and 2_,_,=, the minimum

[ and maximum values being taken in every section X 1. With

this condition, roughly 1000 calculation steps are needed in

the X I direction. With 26 lines in the azimutal direction (for

4- - a half-body), this corresponds on a CRAY XMP to 10 s for a

o The three-dlmensional boundary layer calculation method

.... I .... t .... t .... t .... t .... t .... t .... t .... t .... t which has been presented is 0f semi-implicit type. The ad-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 vectien terms are discretized along the local streamlines. The

X/L dependence domains axe thereby satisfied with a simple nu-

b) leeside smmetry line merical scheme. The counterpart is a limitation on the size

of the marching integration step. Despite this limitation, the

efticiency of the method remains good due to the reduced

present method amount of calculation at each step. This is partly a conse-

Barberis 6 (fixed transition) quence of the use of local cartesian coordinates. The dis-

o experiment 22 cretization of the equations in the osculator tangent plane

P_ = 7,2 106 Tu = 1.5 10 -s allows the existence of slope discontinuities in the body fit-
ted coordinate system in which the boundary conditions are

given. It also often reduces or suppresses the pre-treatment

Figure 8 : Ellipsoide at I0 ° incidence, phase of the data for a calculation.

62, particularly important at X/L = 0.71. The evolution of

the longitudinal shape parameter H is mainly sensitive to the

nature of the boundary layer. To perform the calculation with

the present method, the analytical inviscid flow field has been

used as well as the experimental pressure field. The influence

on the results remains small. The most critical point concerns

the prediction of the transition. The external turbulence level

is equal to 1.5 10 -3, as in the experiments. With the present

calculation methods all the transition criteria have been set

active and the first one to predict transition is retained. As it

can be seen in the evolution of H in figure 7, the location of

the onset of the transition near the windward plane of symme-

try is not correctly predicted. This is di_cult to explain be-

cause the transition occurs along this line by amplification of

the longitudinal instability waves which are calculated by the

second criterion 5. Maybe the use of the linear instability the-

ory along a symmetry line with a divergent flow from this line

must be questioned. Figure 7, showing the skin friction evo-

lution along the windward and leeward lines in the symmetry

Although the application cases which have been pre-

sented only deal with the prolate spheroid at incidence in

incompressible flow, the application range of the code is very

large. It extends from subsonic to hypersonic flows.

For turbulent boundary, layers, the mixing length

model which is used up to now is restrictive. The introduction

of transport equation model is being done. It has also been

tested that the present method can run in the inverse mode

with only minor modifications.
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