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SUMMARY

Characterization of the behavior of atomic oxygen interaction with materials on the Long

Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus

the reliability of predicting in-space durability of materials based on ground laboratory testing

should be improved. A computational model which simulates atomic oxygen interaction with

protected polymers has been developed using Monte Carlo techniques. Through the use of an

assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen

erosion of unprotected polymers and ground laboratory atomic oxygen interaction with

protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF

has been accomplished. However, the results of these predictions are not consistent with the

observed LDEF results at defect sites in protected polymers. Improved agreement between

observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of

the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen

undercutting results, modeling assumptions, and implications are presented.

INTRODUCTION

Low-Earth-orbital (LEO) atomic oxygen interaction with unprotected and protected

polymers has been investigated at low atomic oxygen fluences (approximately 1020 atoms/cm 2)

in space. Results of these in-space tests have provided useful information concerning the

erosion yield of unprotected polymers, and the benefits of atomic oxygen protective coatings for

low fluence exposures (refs. 1-5). However, no high fluence data exists for protected polymers

in LEO other than that generated from a few specimens on LDEF. Although the atomic

oxygen protection can be evaluated and erosion yield measurements can be obtained from low
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fluence LEO results, this information does not allow confident projection of protected material

performance at high fluences, which is needed for long-term LEO missions such as Space

Station Freedom (SSF). The inability to project long-term performance of protected polymers

based on short-term data is due to the lack of understanding of how scattered atomic oxygen

interacts in undercut cavities at defect sites in protective coatings. The data obtained from

protected polymers on LDEF provided a unique opportunity to quantify effects of scattered

atomic oxygen in undercut cavities at defect sites in protective coatings. Knowledge of the

degree of thermal accommodation and erosion yield of thermally accommodated atomic oxygen

can potentially be derived by comparing actual LDEF undercut cavity profiles with the Monte

Carlo space model and the results of ground-based laboratory testing.

MATERIALS, METHODS, AND PROCEDURE

The procedure used in this investigation consists of an assessment of the validity of

mechanistic assumptions used for Monte Carlo modeling of atomic oxygen interaction based on

ground laboratory and in-space atomic oxygen exposure of both protected and unprotected
polymers.

Ground Laboratory Atomic Oxygen Exposure

Characterization of atomic oxygen interaction with polymers at defect sites in protective

coatings has been accomplished using 1300/_-thick SiOx (1.9 <X<2.0) protective coatings,

sputter-deposited on Kapton HN polyimide. Samples were exposed to atomic oxygen in RF

plasma ashers (SPI plasma prep II) with air as the working gas. Effects of atomic oxygen

undercutting at defect sites in protective coatings were then characterized by scanning electron

microscopy before and after removal of the SiO x thin films over the undercut cavities.

Removal of the SiO x films was accomplished by adhesive tape peelings, which successfully

removed the protected SiO x coating where it was free-standing over undercut defect sites (ref.
6).

In-Space LDEF Atomic Oxygen Exposure

Three types of atomic oxygen protected materials, exposed on the leading edge (row 9)

of LDEF, were evaluated by scanning electron microscopy in an effort to obtain atomic oxygen

undercutting profiles at defect sites in the protective coatings. Table I describes the protected

materials. The aluminized Kapton sample was part of the second layer of a multilayer

insulation blanket. The top layer consisted of a sheet of 0.127 mm thick Kapton H, aluminized

on the unexposed side only (ref. 7). As a result of atomic oxygen removal of Kapton from the

sheet lying above this sample, it was exposed to less than the full leading edge LDEF atomic

oxygen fluence. Removal of the aluminum film was accomplished using dilute HC1 to enable

scanning electron microscopy examination.
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Two carbon fiber epoxy composite samples with protective coatings were analyzed after

LDEF exposure on row 9. The protective coating from one carbon fiber epoxy composite

sample consisted of < 1000/_ of A1203. The second carbon fiber epoxy composite sample had a

protective coating of 400,_ of aluminum on top of 800,_ of chromium.

Monte Carlo Computational Model

A Monte Carlo computational model was developed to predict atomic oxygen

undercutting of polymers at the sites of defects in their protective coatings under a variety of

environments including LEO and ashers. The model was based on a combination of known and

estimated atomic oxygen interaction mechanisms resulting from ground laboratory tests of

atomic oxygen undercutting at defect sites in protective coatings and in-space erosion of

unprotected polymeric materials (refs. 8-11). The computational model is intended to replicate

the effects of atomic oxygen interaction with SiOx-protected polyimide Kapton at defect sites in

the protected Kapton. The Kapton is modeled as an array of square cells for which the

behavior of simulated atomic oxygen atoms impinging on each cell is prescribed by a series of

assumptions listed below:

.

o

.

.

5.

6.

7.

8.

The model is two-dimensional with atomic oxygen trajectories confined to a plane
which simulates the cross-sectional view of a crack or scratch defect in the

protective coating.

Reaction probability of atomic oxygen with Kapton is proportional to:

a. (energy) °68.

b. the square root of the cosine of the angle between the surface normal and
the arrival direction.

Reaction probability at normal incidence is equal to:

a. 0.1380 for space (first impact).

b. 0.0098 for space (-> second impact).

c. 0.0392 for plasma ashers (first impact).

d. 0.0098 for plasma ashers (_> second impact).

e. 0.0490 for plasma ashers and space at Kapton/protective coating interface.

Atomic oxygen thermally accommodates upon first impact with surfaces, resulting

in reduced reaction probability.

Atomic oxygen does not react with protective coatings, nor combines and remains

atomic after impacting protective coatings.

Unreacted atomic oxygen leaves surfaces in a cosine ejection distribution.

Arrival direction of space atomic oxygen is angularly distributed because of the

high temperature Maxwellian distribution.

Arrival direction of ground laboratory plasma asher atomic oxygen is is.tropically
distributed.

Several of the above assumptions concerning probability of atomic oxygen reaction after

the first impact, energy of the scattered atomic oxygen, and ejection distribution of unreacted

atomic oxygen, were optimized to produce good agreement with RF plasma asher results of
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atomic oxygen undercutting, without having knowledge of in-space undercutting results. In this

paper, atomic oxygen undercutting results from LDEF were used to examine the validity of

these assumptions and were used to propose improved assumptions by comparison of predicted

LDEF results (based on the previously described assumptions) with the actual LDEF results.

RESULTS AND DISCUSSION

Atomic oxygen undercutting of the LDEF aluminized Kapton multilayer insulation was

found to produce undercut cavities which were up to a factor of 2.5-16.6 wider than the width of

the aluminized film crack defects (ref. 7). The shape of the undercut cavities shown in figure 1

is rather broad, and would be expected, with isotropic arrival of atomic oxygen, but hardly

expected for directed arrival of atomic oxygen. It is probable that the remains of the

aluminization of the bottom side of the outermost multilayer insulation blanket contributed to

scattering of arriving atomic oxygen which produced arrival trajectories atypical of most

unobstructed surfaces on LDEF (ref. 7). As a result, no effort was made to compare the results

from this sample with Monte Carlo model undercutting predictions.

Figure 2 is a scanning electron micrograph showing LDEF results of exposure of a T-300

carbon fiber - 934 epoxy composite with a < 1000A-thick A120 3 protective coating. As can be

seen by the micrograph, the atomic oxygen protective coating is extremely thin, poorly attached

to the substrate, and proliferated with defects, resulting in lack of clear definition of the

undercut region for any specific defect site. As a result, no effort was made to compare the

results of this sample with Monte Carlo predictions.

Figure 3 is a photograph of the T-300 carbon fiber - 934 epoxy composite sample with an

aluminum and chromium protective coating after LDEF exposure. As can be seen in figure 3,

the exposed area is a circular region with a slightly darker appearance. In addition, a

micrometeoroid or debris impact crater can be seen as a black spot in the upper right section of

the photo. The surface texture of the composite sample is highly-quilted as a result of the

carbon fiber fabric. This highly irregular surface contributed greatly to the occurrence of

defects in the protective coating (ref. 12). Figure 4 is a scanning electron micrograph of a

typical defect site prior to and after adhesive tape removal of the aluminum and chromium

protective coatings. As can be seen in figure 4, the undercut cavity diameter or width is

significantly larger than the respective protective coating defect. Figure 5a and 5b are scanning

electron micrographs of a similar defect whose geometry allowed a sufficiently inclined picture

to be taken to examine the profile of the crack undercut cavity. Based on similar scanning

electron micrographs, a representative undercut cavity profile for crack defects was identified,

and is shown in figure 6. Measurement of the area of the undercut cavity shown in figure 6,

given the row 9 LDEF atomic oxygen fluence of 8.72 x 1021 atoms/cm 2, results in an effective

erosion yield under the defect site of 2.46 x 10 -24 cma/atom. This erosion yield is approximately

twice that of unprotected graphite epoxy based on previous LEO evaluation of carbon fiber

epoxy composites (ref. 5). The higher effective erosion yield for atomic oxygen entering defects,

compared to atomic oxygen impinging upon unprotected material, is thought to be due to the

partial trapping of atomic oxygen within the undercut cavity, which results in multiple

opportunities for it to react with the underlying organic material.
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Many cracks developed at a 45 ° angle to the weave pattern. These cracks were more

frequently observed in the area exposed to the LEO environment. This implies that some of

the cracks may not have been present at the beginning of the in-space exposure, and may

therefore have a lower fluence exposure to the underlying composite than others.

A comparison between the observed undercut cavity shown in figure 6, and the Monte

Carlo model predicted undercut cavity, required proportioning the undercut-width-to-undercut-

cavity-depth ratio so that it would be the same for both the LDEF observed profile and the

Monte Carlo predicted profile. This was possible because the Monte Carlo predicted profile

was found to vary only in size, but not in shape, once the undercut cavity depth became several

times the undercut width. Figure 7 shows an overlay of the observed LDEF undercut profile

previously shown in figure 6 and the Monte Carlo model predicted profile based on the

previously described Monte Carlo assumptions. As can be seen in figure 7, the width of the

Monte Carlo predicted undercut profile is much wider than that experimentally observed. Thus,

one must question which assumptions are incorrect in the Monte Carlo model, and how they

should be changed to more correctly predict what has been experimentally observed.

Although the Monte Carlo model assumes Kapton as the eroded material, and the actual

LDEF material was carbon fiber-epoxy, which has been reported to have a lower erosion yield,
the differences in erosion yield are not expected to be sufficient to resolve the differences

between observed and predicted results. Reducing the Monte Carlo erosion yield would

predominantly only slow down the rate of the development of the undercut cavity and not

necessarily the depth-to-width ratio. This is partially based on reference 4, where the reaction

probability of carbon is reported to be quite similar to that of Kapton, even though carbon's

erosion yield is lower (ref. 4). Perhaps the weakest assumption for the Monte Carlo model is

the five times higher reaction probability at the protective coating interface. This assumption

was used successfully to predict chamfered undercut cavities for ground laboratory plasma asher

results, but it lacks strong mechanistic justification. If one assumes that the Kapton at the

interface has the same reaction probability as the bulk, then the chamfer is eliminated, thus

producing an undercut cavity closer to the observed space results, but still too wide. The width

of the undercut cavity is caused by erosion from scattered atomic oxygen. If one assumes a

lower reaction probability for scattered atomic oxygen, then the undercut cavity width predicted

by the Monte Carlo model should be smaller. If one assumes that the atomic oxygen

thermally accommodates upon impact resulting in 0.04 eV (300 Kelvin) energy atoms, the

reaction probability is proportional to the 0.68 power of the oxygen atom energy, and the reaction

probability is 0.138 at 4.5 eV (ref. 13), then a reaction probability of 0.006 is predicted for

thermally accommodated atomic oxygen. If one assumes that the reaction probability has an

Arrhenius relationship, where the activation energy is 0.38 eV as postulated in reference 14,

then a reaction probability of 7.7 x 10 -6 is predicted for thermally accommodated atomic oxygen.

Because a reaction probability of thermally accommodated atomic oxygen of 0.006 was thought

to be insufficient to reduce the predicted width of the undercut cavity to match the observed

results, atomic oxygen reaction probabilities of 0.0031 and 7.77 x 10-6 were evaluated as shown

in figures 8a and 8b. As can be seen by comparison of figures 8a and 8b, the reaction

probability of 0.0031 for atomic oxygen reacting with the composite after the first impact

produces an undercut cavity profile much closer to that which is experimentally observed than

the much lower reaction probability shown in figure 8b. Thus, based on figure 8, one can
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conclude that the reaction probability of thermally accommodated atomic oxygen should be less

than or equal to 0.003.

There may be other Monte Carlo assumptions which produce undercut profiles which

approximate the observed LDEF results such as the degree to which energetic atomic oxygen

arriving at 4.5 eV thermally accommodates upon its first impact. If one assumes that only a

portion of the atomic oxygen thermally accommodates upon first impact, then higher reaction

probabilities of more energetic scattered atomic oxygen will result, thus widening the undercut

cavity in comparison to figure 8b. Figure 9 compares the observed LDEF undercut cavity

profile and the Monte Carlo predicted profile for atomic oxygen, which is assumed to have only

a 50% probability of accommodation upon each impact and the same low reaction probability

as figure 8b for thermally accommodated atomic oxygen. The fraction of atoms which did not

accommodate, and also did not react, were assumed to specularly scatter, retaining their initial

energy. The fraction of atoms which did accommodate were assumed to scatter in a cosine

distribution with thermally accommodated energies. As can be seen in figure 9, energetic

scattering of atomic oxygen significantly widens the undercut cavity profile, even if the thermally

accommodated reaction probability is negligible. Thus, it is quite possible that partial

accommodation of atomic oxygen could occur upon first impact, provided that the fully

accommodated atomic oxygen has a very low reaction probability.

CONCLUSION

A comparison was made between a Monte Carlo predicted undercut cavity profile for

cracks in protected carbon fiber epoxy composite materials with experimentally observed results

from an LDEF row 9 exposure to an atomic oxygen fluence of 8.72 x 1021 atoms/cm 2. These

results indicate that the atomic oxygen erosion yield under defect sites in protective coatings on

carbon fiber epoxy composites is 2.5 x 10-u cma/atom, which is approximately twice that which

is observed for unprotected carbon fiber epoxy composites. Monte Carlo modeling assumptions

which result in predictions that replicate ground laboratory plasma asher results do not

accurately predict LDEF results. Based on the LDEF results, several mechanistic assumptions

used in the Monte Carlo modeling should be altered to produce in-space predictions which

more accurately reflect experimentally observed results. The reaction probability of atomic

oxygen with polymeric material at the interface between the protective coating and the polymer

appears to be the same as for the bulk materials. The atomic oxygen reaction probability for

thermally accommodated atomic oxygen is probably not greater than 0.003. The atomic oxygen

may not fully accommodate upon first impact with organic materials, thus scattering with

sufficient energy to significantly contribute to undercutting.
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Table I. LDEF Samples Evaluated Having Atomic Oxygen Protective Coating

SUBSTRATE ATOMIC OXYGEN PROTECTIVE COATING

0.0076 mm thick Kapton H 1000/_ thick aluminum on both surfaces

0.41 mm thick T300 carbon fiber - < 1000A thick ml203

934 epoxy composite

0.64 mm thick T300 carbon fiber - 400/_ thick aluminum over 800/_ of chromium

934 epoxy composite
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la. With aluminum.

lb. Aluminum chemically removed.

Figure 1. Atomic oxygen undercutting of LDEF aluminized Kapton multilayer insulation at
cracks in the aluminum film.
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Figure 2. Scanning electron micrograph of < 1000/_,-thick SiO x T-300 carbon fiber - 934 epoxy

composite after LDEF exposure to an atomic oxygen fluence of 8.72 x 1021 atoms/cm 2.

Figure 3. Photograph of 400,_, AI/800A Cr coated T-300 carbon fiber - 934 epoxy composite

after LDEF exposure to an atomic oxygen fluence of 8.72 x 1021 atoms/cm 2.
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4a. Prior to removal of aluminum/chromium protective coating.

4b. After removal of aluminum/chromium protective coating.

Figure 4. Scanning electron micrograph of aluminum/chromium coated T-300 carbon fiber - 934

epoxy composite after LDEF exposure.
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5a. Low magnification

5b. High magnification

Figure 5. Scanning electron micrograph of aluminum/chromium coated T-300 carbon fiber - 934

epoxy composite after LDEF exposure showing crack undercut cavity profile.
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Figure 6. Crack defect undercut cavity profile based on scanning electron micrographs similar to

figure 5.
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LDEF Monte Carlo Model

Figure 7. Comparison of LDEF undercut cavity profile and Monte Carlo predicted profile based

on atomic oxygen: 100% accommodation, reaction probability of 0.0098 for greater than or

equal to second impact, and reaction probability of 0.0490 at the protective coating interface.
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8a. Reaction probability of 0.0031 for

___second impact.

8b. Reaction probability of 7.77 x 10 -6

for >_ second impact.

Figure 8. Comparison of LDEF undercut cavity profiles and Monte Carlo predicted profiles

based on atomic oxygen: 100% accommodation and reaction probability at the protective

coating interface equal to the bulk.
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LDEF Monte Carlo
Model

Figure 9. Comparison of LDEF undercut cavity profile and Monte Carlo predicted profile based

on atomic oxygen: 50% accommodation, reaction probability of 7.77 x 10-6 for _> second impact,

and reaction probability at the protective coating interface equal to the bulk.
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