Advanced Transportation System Studies

Technical Area 3

Alternate Propulsion Subsystem Concepts NAS8－39210 DCN 1－1－PP－02147

Propulsion Database Task Interim Report DR－4

April 1993

（NASA－CR－192545）ADVANCED		N93－28325
TRANSPORTATION SYSTEM STUDIES．		
ALTERNATE PROPULSION SUPSYSTEM		
CONCEPTS：PROPULSIUN DATABASE		Unclas
Interim Report（Rockwell		
Internstional Corp．） 293 p		016633

Advanced Transportation System Studies

Technical Area 3

Alternate Propulsion Subsystem Concepts NAS8-39210
 DCN 1-1-PP-02147

Propulsion Database Task Interim Report DR-4

April 1993

Table of Contents

Introduction 2
Parametric Propulsion Database 5
Propulsion System Database 17
References 20
Parametric Propulsion Database Figures 21
Propulsion System Database Figures 112
Appendix 265

Introduction

The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced.

It is desirable that the database be usable for both the preliminary analysis of whole classes of propulsion systems (e.g., a booster engine using LOX/RP for a wide range of thrust levels) and for the analysis of existing propulsion systems (e.g., SSME, RD170 , etc.). Since it would be very difficult to fulfill both these uses with only one database structure, it was decided to develop two separate tools, one for each type of usage.

The first usage (analysis of classes of propulsion systems) is normally implemented by a series of unrelated tools written as spreadsheet models, or as dedicated code (most commonly written in Fortran) and running on mainframes, workstations, or PCs. These tools normally can not communicate with each other and are written without common structure - they calculate weight breakdowns to different sets of components even for similar engine types and calculate performance in different manners. This usage requires large amounts of calculations, methods of data presentation unique to each propulsion type (and sometimes to different engine classes within a type), and benefits from automated parametric data generation and automated preparation of graphs (e.g., weight versus mixture ratio).

The commercial tool type which comes closest to meeting these needs is a spreadsheet, particularly one with good graphing capabilities, an extensive scripting or macro language, and the ability to access external code written in different computer languages (especially Fortran). Both Resolve and Excel were
considered and Resolve was chosen because its scripting language is extensive and very easy to use even by casual users, and because its charting capabilities (including the scripting of all elements of each chart) were more extensive than Excel (at least until Excel 4 which was not available to the author at the time). It subsequently became known that Resolve also puts fewer limits on the use of Fortran externals than Excel. This second usage type will be referred to throughout the rest of the report as a "parametric propulsion database".

The second usage can be implemented with a classic database structure where a large number of pieces of information (as numbers, text blocks, and pictures/graphics) about each of a number of specific existing or conceptual propulsion systems is stored. The information describes the single design point engine with some information about operation at off-design conditions. Each propulsion system can be stored as a record with the individual pieces of information stored as fields within the record. Minimal calculation is needed, but the ability to sort, group, and aggregate (i.e., all engines using RP with vacuum thrust above a specified number) is needed. Consequently, for this usage, referred to throughout the rest of the report as a "propulsion system database" a commercial database was chosen. Both 4th Dimension and FileMaker Pro were considered. FileMaker Pro was chosen because it is much easier to change, both in structure and output, even by casual users. It is also much more readily available because of its much lower cost, cross platform capability (Macintosh and PC with Windows), and lack of need of dedicated, experienced users.

Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described in the rest of the report. The descriptions include a user's guide to each code, write-ups for models used, and sample output. Because of the large number of pages of figures in relation to the length of text, this report is structured with the text all at the front and then followed by the 90 pages of figures relating to the parametric propulsion database, which is in turn followed by the 151 pages of figures relating to the propulsion system database.

An appendix includes three technical notes describing how to attach external code written in Fortran to both Resolve and to Excel. These procedures were developed during this year's effort with the Excel work done on Rocketdyne resources and the

Resolve work done on a combination of contract and Rocketdyne resources. Interactions with tech support at Claris (the publisher of Resolve), Microsoft (the publisher of Excel), and at the publisher of the Macintosh Fortran compiler used, indicate that the use of Fortran externals with either Resolve or Excel breaks new ground. This capability will be extremely useful for the parametric propulsion database throughout the rest of this effort and should be very useful in general to anyone within the aerospace community using Macintosh computers.

Parametric Propulsion Database

The parametric propulsion database was developed using the Macintosh spreadsheet Resolve, version 1.1v1 (published by Claris). It was developed on a Macintosh II fx running system 7 with the tuneup kit. It was developed using an Apple 13 inch color monitor. It has been checked in black and white mode, on a limited number of other Macintosh computer types, and with system 6.0.5. Two problems were encountered during these checks: some color choices were changed to work in black and white mode, and the Fortran externals were recompiled in two forms so they would work on Macintoshs without math coprocessors, but would also take advantage of the coprocessors when present.

The parametric propulsion database consists of two files and one folder (which in turn contains three files):

Parametric Database
Library
Externals
OHSCC
ORPGG
NuclearRkt
The file "Library" and the folder "Externals" must be in the same folder as the application "Claris Resolve". The file "Parametric Database" can be placed anywhere. None of these file or folder names can be changed because they are used explicitly by name in calls by scripts in the database. The file "Parametric Database" is a Resolve spreadsheet which is double-clicked to run the parametric propulsion database. It uses the file "Library" to update its worksheet script. "Library" contains a number of functions which are called by other scripts. The file "Library" is actually only needed when changes are made to the worksheet script. The program will run without "Library" (although two error messages will occur) but changes cannot be made, even temporarily, to the worksheet script. The folder "Externals" contains the three compiled Fortran codes (with embedded hooks written in C - see Appendix) currently used by the database.

The model requires the fonts "Bookman", "New Century Schoolbook", and "Helvetica" be installed (Postscript or True Type). If they are not available then most screens and output will be difficult to read and many words will not be fully visible in their defined columns. All three of these fonts came with the various Apple LaserWriters (and many other printers) and are readily available. The use of Adobe Type Manager (ATM) or True Type (with the True Type versions of the fonts) is highly recommended to improve the readability of the screen.

To run the database simply double-click on the file "Parametric Database". The current version (version 1.4, 5 April 1993) contains the following models:

Solid Fuel Boosters
Large Motors (328K-8.9M lbf) using ASRM (ANB3652) propellant
Large Motors ($328 \mathrm{~K}-8.9 \mathrm{M} \mathrm{lbf}$) using neutralized Mg (DL-H435) propellant
Medium Motors ($62 \mathrm{~K}-328 \mathrm{~K}$ lbf) using neutralized Mg (DL-H435) propellant
Large Motors (328K-8.9M lbf) using non-chlorine (PGN/AN/AL) propellant

Hybrid Boosters

Large Motor ($380 \mathrm{~K}-21 \mathrm{M}$ lbf) using O_{2} as oxidizer and HTPB and escorez as fuel - pressure fed

Cryogenic Engines

Large ($100 \mathrm{k}-2 \mathrm{M} \mathrm{lbf}$) $\mathrm{LOX} / \mathrm{H}_{2}$ engines using staged combustion cycles

Hydrocarbon Engines

Large ($500 \mathrm{~K}-3 \mathrm{M}$ lbf) LOX/RP engines using gas generator cycles
Nuclear Thermal Propulsion
NERVA derived prismatic fuel solid core rocket.
The solid fuel rocket booster and hybrid booster models are implemented as spreadsheet models, while the liquid engines and the nuclear engine are implemented as Fortran external functions.

The basic philosophy of the model is to navigate a large spreadsheet by means of buttons that the user "clicks". The buttons invoke scripts which change what portion of the spreadsheet is displayed (i.e., moves to the next "screen"), change the screen scaling to make the display fit, write spreadsheet formulas and data, or call external code. The buttons are where most of the "action" occurs and where most of
the calculation is done. The model is structurally dependent on scripting and the use of Fortran externals. About 50 pages of scripts are used and over 130 K of compiled Fortran external code is used.

CodeOverview

Figure 1 shows the result of double-clicking the file "Parametric Database". Pressing the continue button takes the user to Figure 2 which is the main navigation screen. Only the Cryogenic, Hydrocarbon Fuels, Solid Fuels, Hybrid RB, and the Nuclear Thermal buttons are currently active. The Return button, which is present on all screens, always returns to the previous screen.

Tracing the models under the Chemical label, pressing the Cryogenic button brings up Figure 3 and pressing the Hydrocarbon Fuels button brings up Figure 4. Pressing either of the Large LOX/H2 or Large LOX/RP buttons brings up Figure 5. The figure will be slightly different depending on which button was pressed. Since the $\mathrm{LOX} / \mathrm{H}_{2}$ and LOX/RP models are implemented as external Fortran code, there are no equations under the numbers in the cells as would be expected in a spreadsheet. Because the same piece of spreadsheet "real estate" (i.e., the same cells) are used for both the LOX/ $/ \mathrm{H}_{2}$ and the LOX/RP models, the Calculate button in the upper left side of the screen must be pressed to produce numbers for the weights, lengths and performance. The independent variables, and the ranges through which each can be varied and remain within the validity of the model, are shown in the upper part of the screen on the yellow background. To examine a new case, change any or all of these independent variables and then press the calculate button. New values for the results will appear in the cells.

Pressing the "English Units" button changes the button name to "Metric Units" and changes the results (only) to metric units. Pressing the button a second time reverses the process. The Print (Report) button sets up for printing the page (without buttons) in portrait mode and stripped of color. The Print (Briefing) button sets up for printing the page in landscape mode and stripped of color. These buttons work the same on other screens. The page setup dialog box will always come up because Resolve script does not have a means to specify landscape versus portrait mode, so the user must click the appropriate icon.

The model can be used to generate parametric data and produce a table and selected graphs of that data. To do so, press the Graphs button and the parametric generation screen of Figure 6 will appear. This screen shows the variables which can be used for parametrics as titles within yellow buttons. The parametrics possible are one dimensional, only one variable can be varied at a time. To make a parametric run using one of the independent variables that are shown on the yellow buttons, choose a range of the variable to vary. Input its starting value and its ending value in the column "Variable to Change" (within the limits that are shown under each yellow button), along with the number of discrete points (11 maximum) to calculate (the variable values must be evenly spaced throughout the range which is why only the number of points, as opposed to the actual values, is input).

The column "Other Independent Variables" shows the values that will be used during the parametric run for the variables other than the one being varied. Use this column to change these values to those desired for the parametric run. These values start as the values from the previous screen, but they will change as parametrics are generated taking on the last value of the range used if they have been used in a previous parametric run. They should always be checked. When satisfied that the input is as desired, then press the yellow button that has the name of the variable that was chosen to vary. Pressing that button actually replaces the chosen independent variable in the screen of Figure 5 , reads out the results, places them into a table and graphs, changes the variable again, reads out the results again, etc.

After the yellow button is pressed to generate the parametric run, a portion of Figure 7 appears. This table can be printed (Figure 8) and graphs can be individually accessed by pressing the yellow Weight, Lengths, and Performance buttons. Examples of the graphs are shown as Figure 9-11 and an overview of the table and graphs is shown in Figure 12.

The route for the Solid Fuels goes back to Figure 2 and when the Solid Fuels button is pressed, Figure 13 is seen. These four buttons invoke the different models used for the different solid rocket boosters. They actually use a script and rewrite the
equations in the cells shown in Figure 14. The same piece of spreadsheet "real estate" is used for each model (except the Medium Motor model) but with new equations, titles and words for each different model. Because the solids use spreadsheet models, when an input is changed in Figure 14 the result changes immediately and there is no "Calculate" button. The "English Units" button changes to "Metric Units" when pressed and changes the output (only) to metric. It reverts to "English Units" when pressed again.

If the Graphs button is pressed, Figure 15 appears. This screen allows the user to generate parametric tables and graphs by varying any of the independent variables as was described for the $\mathrm{LOX} / \mathrm{H}_{2}$ and the LOX/RP models. The results of the parametric run appear after pressing the yellow button with the title of the variables chosen and are seen as a portion of Figure 16. The table can be printed as shown in Figure 17, and the graphs are accessed, individually, by pressing the Weights, Lengths, Mass Fraction, or Performance buttons. They can be printed when accessed as shown in Figures 18-21. Figure 22 shows an overview of the table and graphs.

The route of the hybrid rocket booster model goes back through Figure 2 where pressing the Hybrid RB button brings up Figure 23. The buttons on Figure 23 work the same as those described for the other models. Pressing the Graphs button brings up Figure 24 where parametric runs can be made as described for the other models. After generating a parametric run a portion of Figure 25 appears. The table can be printed or the graphs of Figure 26 accessed and printed as shown in Figures 27-31.

Tracing the Nuclear Thermal button, pressing it brings up Figure 32 where only the Solid Core button is currently active. Pressing Solid Core goes to Figure 33 where only the Prismatic Fuel button is active. Pressing it goes to the model for the NERVA derived nuclear thermal rocket (Figure 34). This model uses an external Fortran code and thus there are no equations under the numbers in the cells. Instead the user changes the inputs as desired and then presses the "Calculate" button to produce changes in the output.

Individual Models

Solid Fuel Models

The design equations are the result of a multivariate regression of a matrix of designs produced by Thiokol's Solid Rocket Motor Automated Design Program (ADP). The results of these equations produce solid rocket motor preliminary design data within the ranges over which the regression was performed. There are a number of assumptions underlying the motor equations. These are factors which were held fixed during the creation of the database upon which the design equations are based.

These equations assume T650 graphite epoxy filament wound cases. The web fraction, or proportion of the case diameter filled with propellant, was held constant at 0.75 . Also held constant were the burn rate exponents, propellant densities, and the ratio of throat to port diameters for the respective propellant types. Nozzle submergence (defined as the nose to boss distance divided by the nose to nozzle exit distance) varied from 5 percent to 30 percent. The nozzle length reported in the design equations is from the aft case boss interface to the end of the nozzle, i.e., external nozzle length. A finocyl grain design was used for all propellant types. The finocyl design has a finned grain (typical of the Shuttle Solid Rocket Motor) for part of the port length and a simple cylindrical port for the remainder of the port length. Silica filled EPDM internal case insulation was used. The booster elements were divided into six categories: nose cone, external insulation, forward skirt and attachment, aft skirt and attachment, separation system, and miscellaneous which includes electronics, instrumentation, raceway, thrust vector control system, etc.

The motors were all designed to a thrust trace similar to that of Figure 35 (which is that of the current space shuttle solid rocket boosters).

The parametric design equations were formulated as follows:

- A proprietary Thiokol design program called ADP (Automated Design Program) was used to generate a matrix of designs based on a set of input data spanning predetermined parameter ranges.
- The ADP determined a design for each set of the input parameters by using the in-house design codes for the case, insulation, nozzle and ballistics and the NASA-LEWIS thermochemical program.
- Once the matrix of designs was created the Number Cruncher statistics package was used to do a multivariate regression on the independent and dependent variables.

The generation of the parametric equations followed two steps. First, the logarithms of each independent variable and the dependent variables were taken. A regression was performed on the logarithms resulting in a factor with terms to various powers. This factor was used in a linear regression along with other terms to give an expression for the dependent variable in terms of the independent variables. Regression variables were based upon the physics of the problems plus input from Number Cruncher as to what the most meaningful variables would be.

ASRM Propellant. The ASRM (ANB3652) type propellant utilizes aluminum as the primary fuel with an ammonium perchlorate (AP) oxidizer. The normal formulation for ASRM propellant is shown in Figure 36. The predominant exhaust species produced by this propellant at the nozzle exit plane are shown in Figure 37. This propellant is non-neutralizing with an exhaust containing approximately 21% hydrogen chloride. Figures 38 and 39 show sample model outputs, Figure 40 shows the equations used, and Figure 41 shows the script used to implement the model.

Neutralized Mg Propellant. The DL-H435 propellant is a clean propellant utilizing magnesium instead of aluminum as the primary fuel in order to reduce or eliminate the hydrogen chloride (HCl). Reference 1 contains a full discussion of this propellant. Reference 1 also shows, by means of small motor test results, that this propellant will fully neutralize the HCl byproduct (see Reference 1, Table IV) in the exhaust plume. The nominal formulation for DL-H435 magnesium clean propellant is shown in Figure 42. The predominant exhaust species produced by the DL-H435 propellant at the nozzle exit plane are shown in Figure 43. Most of the neutralizing reaction occurs in the plume. The amount of the neutralization is a function of ambient conditions and mission parameters. The species at the nozzle exit plane, however, represents a minimum estimate of total neutralization of HCl . Figures 44 and 45 show sample model outputs, Figure 46 shows the equations used, and Figure 47 shows the script used to implement the model.

Earlier in the contract a preliminary set of equations was generated using a different set of data and different input ranges. Although the new equations replace the old ones and the new model breaks the weights into different sets of components, the old model went to a lower thrust level. Consequently, the lower thrust results are also included in the parametric database as the "Medium Motor" button for the neutralized Mg propellent which is the one case where they are available. Figures 48 and 49 show sample outputs and Figure 50 shows the script used to implement the equations.

Non-Chlorine Propellant. The non-chlorine (PGN/AN/AL) propellant substitutes ammonium nitrate for ammonium perchlorate as the primary oxidizer in order to eliminate the halogen byproducts of combustion associated with the use of ammonium perchlorate (AP) oxidizer and uses PGN (PolyGlycidalNitrate), an energetic binder, to achieve performance close to the current RSRM propellant. This propellant is in the development stage. Thiokol has overcome the major impediment to using PGN binder in large motors, but this type of clean propellant is still developmental. The nominal formulation for non-chlorine propellant is shown in Figure 51. The predominant species produced by the non-chlorine propellant at the nozzle exit plane are shown in Figure 52. Figures 53 and 54 show sample model outputs, Figure 55 shows the equations used, and Figure 56 shows the script used to implement the equations.

Hybrid Rocket Booster Model

The hybrid model used included a T650 graphite epoxy filament wound case for the fuel grain and an aluminum 2219 oxidizer tank with a pressure feed system. The fuel is a combination of HTPB polymer and escorez. The escorez is used to increase the fuel's density. The propellants are shown in Figure 57. Figure 58 shows the mass fractions of the exhaust species at the nozzle exit for both a mixture ratio ($0 / \mathrm{F}$) of 1.8 and 2.8. One major advantage of a hybrid system can be seen from the figure: there are no chlorine or chlorine compounds in the exhaust. This alleviates many of the environmental concerns normally associated with solid rocket motors. The hybrid system can also be readily shut down and restarted.

The regression process described for the solid models was also used by Thiokol for the hybrid designs, although the variables in some cases were different. One notable difference was that case diameter was a dependent variable in the hybrid model, whereas it was an independent variable in the solid models. A special grain design must be used in the hybrid designs. This grain was driven by the performance requirements and required a specific diameter just to fit the grain geometry. Two new independent variables were added: the maximum oxidizer flux and the mixture ratio (oxidizer to fuel ratio). In a solid rocket motor there is no oxidizer flux and the oxidizer/fuel ratio is invariant, fixed by the propellant formulation.

The hybrid model was simpler than the solid models in that all of the subcomponent weights and lengths were not calculated. However, the nozzle, total tank/case, motor, and stage lengths, as well as O_{2} and fuel used weights were calculated. The motor mass fraction was also calculated empirically, allowing the calculation of total motor weight. The same stage component weight relations were used for both the solid and hybrid models. Figures 59 and 60 show sample model outputs, Figure 61 shows the equations used, and Figure 62 shows the script used to implement the equations.

Liquid and Nuclear Models

Performance. The LOX/H2, LOX/RP, and Nuclear Thermal models all use the same approach for performance prediction. These models employ the JANNAF Simplified Performance Prediction Methodology detailed in CPIA Publication 246. Starting from ODE (one-dimensional equilibrium) thermochemical codes, tables of theoretical specific impulse and C-star are prepared versus chamber pressure, mixture ratio, area ratio and inlet propellant enthalpy. When the system is modeled, a table-look-up is used to obtain the theoretical I_{sp} and C -star values. The chamber temperature is used in place of mixture ratio for cases where there is no mixture ratio (e.g., H_{2} in the nuclear model).

Performance efficiency terms are then used to represent the various loss mechanisms present within the engine system. The method uses the following efficiency terms:

C-star: A measure of the combustion and mixing efficiency in the combustor. How much of the propellant's chemical energy is actually available for heat.
Divergence: A measure of the geometric losses associated with a finite nozzle having a finite turning angle. How much of the exhaust momentum is lost by not being turned parallel to the nozzle axis.

Boundary Layer: A measure of the drag momentum loss caused by the viscous boundary layer within the thrust chamber.

Kinetic: A measure of kinetic losses during the expansion process.

Rocketdyne uses a table-look-up to compute kinetic losses based on chamber pressure $\left(P_{c}\right)$, mixture ratio, throat area, and area ratio. The tables used are the results of detailed ODK (one-dimensional kinetic) code runs for the particular propellant combination (or heated H_{2}) being studied. For divergence losses, a curvefit correlation is used which relates divergence efficiency to P_{c}, nozzle percent length, thrust, and area ratio. The boundary layer losses are estimated by curve fits of the results of rigorous boundary-layer codes (such as BLIMP or TBL). The C-star losses are input based on the results of detailed cycle balances.

The other effects of the thermodynamic cycle is input by using detailed cycle balances and then using the resulting thrust chamber mixture ratio instead of the engine mixture ratio.

For the specific LOX/H2, LOX/RP, and Nuclear Thermal performance models used here, the further effect effects of the thermodynamic cycle throughout the range of variables was accounted for by forcing the result at a single design point through a known value (e.g., SSME, F-1A), then using a factor on the delivered specific impulse at other conditions.

Weight. The weight for the $\mathrm{LOX} / \mathrm{H}_{2}$ model is based on the reference SSME design point. The individual component weights are then scaled with flows, thrust, P_{c}, area ratio, etc. The scaling methodology is based on engineering parameters and physical quantities. It employes neither point designs nor curve fits.

The weight for the LOX/RP model is based on the reference F-1A design point. The individual component weights are then scaled with flows, thrust, P_{c}, area ratio, etc. The scaling methodology is based on engineering parameters and physical quantities. It employes neither point designs nor curve fits.

The weights for the nuclear thermal model are based on four design points (at 25 K , $50 \mathrm{~K}, 75 \mathrm{~K}$, and 100 K) for the reactor and additional components. These points were then incorporated into a table lookup and interpolation routine.

Liquid_Models. A model of a $\mathrm{LOX} / \mathrm{H}_{2}$ engine using a staged combustion cycle was made based on SSME experience, and scaling a set of weights based on a SSME baseline. Figures 63 and 64 show examples of model output.

A model of a LOX/RP engine using a gas generator cycle was made based on F-1 and F-1A experience, and scaling a set of weights based on F-1/F-1A weights. Figures 65 and 66 show examples of the model output.

Nuclear Thermal Rocket Model. The design work done at Rocketdyne and Westinghouse over the past few years, including work for NASALeRC during the last year, has produced a series of detailed conceptual designs for nuclear thermal rockets based on the NERVA experience base. Those design results were included in a table and combined with performance data to produce a model for a NERVA derived nuclear thermal rocket. The model is based on using a prismatic fuel form. Because this is a concept derived from a specific reactor design and using one fuel type (graphite matrix with UC_{2} beads with ZrC protective fuel element coating), temperature is fixed. Only thrust, chamber pressure, and nozzle area ratio are variable. Also the thrust range is limited from 25,000 to 100,000 lbf. Figure 67 shows a sample output of the model.

Chancing the Worksheet Scrint

The worksheet script is a collection of functions which are called by other scripts. It is essentially a library. To make changes to the worksheet script, even temporarily, requires that the file "Library" be modified. The procedure is:

1. Select any spreadsheet cell
2. Go to the "Script" item in the menu bar and select "Unload Script" and "Library"
If "Unload Script" is grayed in the menu bar then skip this step
3. Go to the "Script" item in the menu bar and select "Open Script...
4. Use the resulting dialog box to find and open the file "Library"
5. Make the desired changes
6. Go to the "File" item in the menu bar and select "Save"
7. Go to the "File" item in the menu bar and select "Close"
8. Go to the "Script" item in the menu bar and select "Worksheet Script"
9. Highlight the following four lines with the cursor:

On Activate
Attach Script "Library"
Get Script "Library"
End Activate
10. Go to the "Edit" item in the menu bar and select "Copy"
11. Go to the "Edit" item in the menu bar and select "Select All"
12. Press "Delete" key
13. Go to the "Edit" item in the menu bar and select "Paste"
14. Go to the "File" item in the menu bar and select "Close"
15. Press any active button which forces the program to attach the file "Library" and make it the current "Worksheet Script".

Propulsion System Database

The propulsion system database was developed using the Macintosh database FileMaker Pro, version 2.0v1 (published by Claris). It was developed on a Macintosh II fx running system 7 with the tuneup kit and using an Apple 13 inch color monitor.

The propulsion system database consists of two files: "Prop System DB" and "Prop System DB-Pictures". They can be placed anywhere. The names of the two files must not be changed since the first is used as a look-up file by the second, and the second is referenced by name in scripts in the first. "Prop System DB" is the main file which contains all the data except two picture fields for each record. The two picture fields were separated because they are often scanned images using significant amounts of memory, and also by having two files, even when many more propulsion systems are included in the database, the FileMaker limit of 32 Meg per individual file should be avoidable.

The engine systems currently included in the propulsion system database are:
Space Transportation Main Engine (STME)
F-1
F-1A
J-2
J-2S
SSME
RD-170
Integrated Modular Engine (IME)
Space Shuttle Redesigned Solid Rocket Motor (RSRM)
NERVA Derived NTR
To run the propulsion system database double-click on the file "Prop System DB". The opening screen of Figure 68 will appear. Press Continue and Figure 69 will appear. Pressing on any button will find all propulsion systems of the type represented by the button. For example, pressing "Cryogenic" will find only the cryogenic engines, pressing "Chemical" will find the cryogenics plus the solids, plus the hybrids, etc. Pressing "Propulsion Systems" will find all the records in the database. If the user presses a button for which there are no records of that type, a
dialog box will appear and if Continue or Cancel is pressed, all records will be found instead of the null set of zero records expected. This is a quirk of FileMaker Pro.

Code Structure and Output

The code is broken into five general classes of propulsion systems based on needing different reports for each kind of propulsion system: Liquids, Solids, Hybrids, Nuclear, and Exotic. The layouts for Liquids must be different from those for Solids since many parameters of one have no meaning for the other (e.g., mixture ratio, grain design). This structure is transparent to the user if the buttons supplied on every screen for navigation are used. In other words, when a liquid engine is selected and the Data Entry button is pressed, the user will go to the liquid data entry screen, not the ones available for solids, hybrids, etc. (which are different). Nonetheless, the actual internal structure is fairly complex and extensive because of the need for different report and entry formats. There are 160 layouts and 71 scripts used.

The result of pressing "Propulsion Systems" in the Main Menu (Figure 69) is shown in Figure 70 which is also the list of all currently available propulsion systems. An example of using the code is to select one of the propulsion systems from the figure (i.e., click on the engine name) and then press one of the five buttons across the top of the screen. The Print button simply prints the page (and works the same on all other layouts where it is present), the More Data button shows two additional lines of information for each propulsion system (thrust, specific impulse, weight, length, width, etc.) and is intended as a short technical summary of the systems in the database. The button with the "org chart" icon returns to the Main Menu (Figure 69). The Data Entry button goes to a set of layouts specifically designed to make data entry easy by gathering all the fields of data for one system in one place and eliminating any that are calculated from other data.

The Reports button goes to a screen like Figure 71. This screen shows the individual reports (layouts) available for each propulsion system. The reports are arranged into two sets - each containing the same information, but with some differences in arrangement - with one set structured for portrait mode presentation and called
"Reports", and the other structured for landscape mode presentation and called "Briefing Charts".

Typical use of the code would be to go to the Main Menu screen (Figure 69), press "Propulsion Systems", choose an engine from the resulting Summary screen (Figure 70), press the Reports button and then use Figure 71 to look at the data (and print any of interest) by pressing individual reports. For example, pressing "Engine Performance $1^{\prime \prime}$ brings up the layout in Figure 72 (for a STME as an example). From this (or any other) report the user can print the report, return to the Reports screen, or return to the Main Menu.

After examining the various reports, the user might return to the Summary screen (Figure 70) and select another propulsion system and then look at its reports, and so on.

Figures 73-82 present the output for each of the currently available systems.
Figure 83 shows the field definitions for all fields in the file "Prop System DB". Figure 84 shows the field definitions for all fields in "Prop System DB-Pictures". Note that all of the fields in "Prop System DB-Pictures" except "Engine Name" and two picture fields are look-up fields using the data from "Prop System DB" through the field "Engine Name". It is important to remember to force a relook-up in "Prop System DB-Pictures" if changes are made to the file "Prop System DB" since relookups are not automatic in FileMaker Pro.

References

1. AIAA-91-2560 "Magnesium Neutralized Clean Propellant", Daniel Doll and Gary Lund, Thiokol Corporation, 24 June 1991.

Parametric Propulsion

Database Figures

Alcrnate Picppulsion subeysiem Database

Paramoctric Designe

TBrssiou I. 4
[5 April 1293

NASA
Marshall Space Flight Center
Program Development
Huntsville, Alabama 35812
Rocketdyne Division
Rockwell International
6633 Canoga Averuce
Canoga Park, Calif. 91303

Figure 1. Parametric Database Opening Screen

Figure 2. Main Navigation Screen

Figure 3. Current Cryogenic Models

Return

Figure 4. Current Hydrocarbon Models

Print (Briefing)

Figure 5. Input/Output Table for Liquid Models

Rerwita PaGraphs

Figure 6. Parametric Data Generation Screen - Liquid Engines

12.516404

P= $\%$ Up

Figure 7. Parametric Results Table - Liquid Engines

Figure 9. Printed Version of Weight Chart - Liquid Models

80.0
60.0
40.0
20.0
0.0

0
Figure 10. Printed Version of Lengths Chart - Liquid Models

Figure 11. Printed Version of Performance Chart - Liquid Models

Figure 12. Parametric Data Available - Liquid Engines

Medium Motors (62 k - 328 k Ibn)
Neutrallzed Mg (DL-H435) Propellant

Large Motors (320k - 8.9 M lbf)
Non-Chlorine (PGN/AN/AL) Propellant

Return

Figure 13. Solid Fuel Models Available

Graphs

Ragaup $=x$

Figure 14. Solid Motor Model

Figure 15. Parametric Generation Screen - Solid Boosters

Figure 16. Parametric Results Table - Solid Boosters

Figure 18. Printed Version of Weights Chart - Solid Rocket Boosters

Figure 19. Printed Version of Lengths Chart - Solid Rocket Boosters

Figure 20. Printed Version of Mass Fraction Chart - Solid Rocket Boosters

Figure 22. Parametric Results Avallable - Solld Rocket Boosters

Print (Report)
Print (Briefing)

Bhatis

Page up

Figure 23. Input/Output Table for Hybrid Rocket Booster Model

Figure 24. Parametric Data Generation Screen - Hybrid Motors

Condan
FWeaUR PageLent

Figure 25. Parametric Results Table - Hybrid Rocket Boosters

Figure 26. Parametric Data Avallable - Hybrid Rocket Boosters

Hybrid Rocket Motors

Figure 28. Printed Version of Weights Chart -

Figure 29. Printed Version of Lengths Chart - Hybrid Rocket Motors

Figure 30. Printed Version of Mass Fraction Chart - Hybrid Rocket Motors

[^0]

Figure 32. Reactor Choices

Figure 33. Fuel Form Choices

Figure 34. Nuclear Thermal Rocket Model

Characteristic Thrust Trace for Solid Rocket Booster Models
Figure 35.

Ingredient	Weight Percent
A	19.0
AP	68.86
HP** *	12.0
Fe2O3**	0.14

* varied for mechanical property control
** varied for burn rate control
Figure 36. Nominal Composition of ASRM Propellant

Exhaust Product	Mass Fraction
$\mathrm{CO}(\mathrm{g})$	0.2081
$\mathrm{CO} 2(\mathrm{~g})$	0.02786
$\mathrm{CL}(\mathrm{g})$	0.00285
$\mathrm{HCl}(\mathrm{g})$	0.2093
$\mathrm{FeCl} 2(\mathrm{~g})$	0.0021
$\mathrm{H}(\mathrm{g})$	0.00019
$\mathrm{H} 2(\mathrm{~g})$	0.01972
$\mathrm{H} 2 \mathrm{O}(\mathrm{g})$	0.08455
$\mathrm{Al2O3}(\mathrm{~s} \mathrm{\&} \mathrm{I)}$	0.3587
$\mathrm{~N} 2(\mathrm{~g})$	0.08582

Figure 37. Theoretical Exhaust Products at 1,000 psi Chamber Pressure Expanded to 14.7 psi ASRM Propellant

Figure 38. Printed Output- "Report". - English Units

Figure 40. Equations for ASRM Propellant Model

Equations for Stage Components

Variable to be

Calculated

Equation

Nose Cone Weight, lbm

$$
W_{\text {Nose Cone }}=3395-2098 N_{l / d}-0.4705\left(D_{c} / 2\right)^{2}+2.533 \times 10^{-5}\left\{\left(D_{c} / 2\right) \sqrt{\left(D_{c} / 2\right)^{2}+\left(N_{l / d} D_{c}\right)^{2}}\right\}^{2}
$$

External Insulation Weight, lbm

$$
W_{E x t / n s u l a t i o n}=87+0.7243 D_{c}+0.1071\left(D_{c} / 2\right)^{2}
$$

Fwd Skirt and Attach Weight, lbm

$$
W_{F w d S k i n}=e^{\left(2.095+0.05276 D_{c}-0.0000846 D_{c}^{2}\right)}
$$

Aft Skirt and Attach Weight, lbm

$$
W_{A f t S k i n}=e^{\left(2.89+0.06343 D_{c}-0.00012 D_{f}^{2}\right)}
$$

Separation System Weight, lbm

$$
W_{\text {Separation }}=0.0011208 W_{\text {smm }}
$$

Misc Weight, lbm

$$
W_{m i s c}=-1039-0.00204 W_{s r m}+2.854 L_{\text {case \& nozzle }}+0.07885\left(D_{c} / 2\right)^{2}
$$

Figure 41. Script for ASRM Propellant Model

Invalldate On

Manual Recalc

Select Range A116
Window Scale 65\%
\{Titles and dates\}
Put" Large Motors" Into A1 23
Put "ASRM (ANB3652) Propellant" Into C123
Put " 14 January 1993" Into A1 24
\{Initial Independent Variable Setup\}
Put 1000 Into C126 \{Meop, psia\}
Put 7 Into C127
Put 2590000 Into C128
Put 111 Into C129
Put 146 Into C130
Put 1000000 Into C131
Put 1.3 Into C132
\{nitial Area Ratio, Ei\}
\{Burn Time, Tb, seconds\}
\{Dcase, in\}
\{Push Weight, lbm\}
\{Nose Cone Length/Dlameter\}

\{Load Range Information\}

Put "200 To 2000" Into D126
Put "5 To 19" Into D127
Put "320 K To 8.9 M" Into D 128
Put "60 To $178^{\prime \prime}$ Into D129
Put "80 To 255" Into D 130
\{Load Range Limit Checks\}
Put " $=$ If (C126<200, 1,0)" Into K126
Put " $=$ If $(\text { C } 126>2000,1.0)^{n}$ Into K 127
Put " $=$ If (C127<5, 1,0)" Into K128
Put " $=$ If (C127>19, 1.0)" Into K1 29
Put " $=$ If (C128<320000, 1,0)" Into K1 30
Put " $=$ If (C128>8900000, 1,0)" Into K131
Put " $=$ If (C $129<60,1.0$)" Into K 132
Put " $=$ If (C129>178, 1.0)" Into K1 33
Put " $=$ If ($\mathrm{C} 130<80,1,0$)" Into K1 34
Put ${ }^{n}=$ If (C $130>255,1,0$) ${ }^{\text {n }}$ Into K 135
\{Load Results Formulas, RMSE and correlation limits, and percent error\}
\{Rbo\}

Put "" Into I 126
\{(Isp)sl\}
Put ${ }^{n}=\mathrm{G} 128^{*} \mathrm{G} 131 /\left(\mathrm{C} 128^{*} \mathrm{~L} 126\right)^{\text {" }}$ Into G127
Put "N/A" Into H127
Put " ${ }^{\text {I }}$ Into 1127

27 March 1993 05:48:55 PM Parametric Database/Object 39 script

\{(Isp)vac\}

Put " $=\left(\mathrm{C} 128^{*} \mathrm{C} 129 /(\mathrm{G} 138 / \mathrm{L} 123)^{*} \mathrm{~L}\right.$ 125" Into G128
Put "N/A" Into H1 28
Put " ${ }^{\text {I Into } 1128}$
((A throat)avg)
Put " $=\left(-14.5+172.8^{*}\left((\mathrm{G} 138 / \mathrm{L} 123)^{\wedge} 0.9902\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.9551)\right)^{*}\left(\mathrm{Cl} 129^{\wedge}(-0.9776)\right)\right.$
$\left.+(1.039 \mathrm{E}-5)^{*} \mathrm{C} 128+0.3131^{*} \mathrm{C} 129\right)^{*} \mathrm{~L} 122^{*} \mathrm{~L} 122^{\prime \prime}$ Into G129

Put " Into 1129
\{(R throat)avg\}
Put " $=$ SqRt(G129/3.141593)" Into G130
Put "N/A" Into H130
Put " ${ }^{\prime \prime}$ Into 1130
(Favg) sl $\}$
Put ${ }^{n}=\left(\mathrm{C} 128-11.54535^{*} \mathrm{G} 136^{*} \mathrm{G} 136 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{*} \mathrm{~L} 126^{n}\right.$ Into G131
Put "N/A" Into H131
Put ${ }^{n n}$ Into I131
\{(Favg)vac\}
Put "=C $128^{*} \mathrm{~L} 126^{\prime \prime}$ Into G132
Put "N/A" Into H132
Put " Into I1 32
\{L case\}
Put " $=\left(26.26^{*}\left((\mathrm{O} 138 / \mathrm{L} 123)^{\wedge} 0.9665\right)^{*}\left(\mathrm{C} 130^{\wedge}(-1.914)\right)^{*}\left(\mathrm{C} 129^{\wedge}(-0.01366)\right)\right)^{*} \mathrm{~L} 122^{n}$ Into G133

Put " Into I 133
\{L/D case\}
Put " $=\mathrm{G} 133 /\left(\mathrm{C} 130^{*} \mathrm{~L} 122\right)^{\prime \prime}$ Into G134
Put "=If(G134>5.6,"nNote 1"n.""N/A"n)"Into H134
Put " Into 1134
\{L nozzle\}
Put " $=\left(1.096^{*}\left(\mathrm{C} 127^{\wedge} 0.3385\right)^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{\wedge} 0.5665\right)\right)^{*} \mathrm{~L} 122^{\text {" }}\right.$ Into G 135

Put "" Into I 135
\{Nozzle Exit Dia\}
Put " $=\left(2^{*}\right.$ SqRt(((G130/L122-0.005*C129)^2)*C127))*L122" Into G136
Put "N/A" Into H136
Put " ${ }^{\text {n }}$ Into 1136
(Total Length
Put " $=$ G133 + G $135+\left(\mathrm{C} 132^{*} \mathrm{C} 130\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G137
Put "N/A" Into H137
Put " ${ }^{\text {" }}$ Into 1137
\{W propellant\}
Put " $=\left(\left(0.004530^{*} \mathrm{C} 128^{\wedge} 0.9953\right)^{*}\left(\mathrm{C} 129^{\wedge} 1.0024\right)^{*}\left(\mathrm{C} 127^{\wedge}(-0.07282)\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 138

Put " Into 1138

\{W nozzle\}

Put " $=\left(400.6+0.02310^{*} \text { SqRt(G129/(L122* L122) }\right)^{*}(1+$ C127)*(G135/L122)
$+0.1004^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{\wedge} 0.6699\right)^{*}\left((\mathrm{G} 138 / \mathrm{L} 123)^{\wedge} 0.4374\right)^{*}\left(\mathrm{C} 127^{\wedge} 0.1699\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G139
 Put "" Into I139
\{W case insulation\}
Put " $=\left(-18.3+0.2467^{*}\left((G 138 / L 123)^{\wedge} 0.7199\right)^{*}\left(C 129^{\wedge} 0.3134\right)^{*}\left((G 133 / L 122)^{\wedge}(-0.1737)\right)\right.$
$-0.07211^{*}\left(G 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 140
 Put " ${ }^{\text {" }}$ Into 1140
(W case)
Put " $=\left(-183.1+(4.795 \mathrm{E}-4)^{*} \mathrm{C} 128+\right.$
$\left.(6.142 \mathrm{E}-6)^{*}\left((\mathrm{G} 133 / \mathrm{L} 122)^{\wedge} 0.8219\right)^{*}\left(\mathrm{C} 126^{\wedge} 0.7691\right)^{*}\left(\mathrm{C} 128^{\wedge} 0.1140\right)^{*}\left(\mathrm{C} 130^{\wedge} 1.869\right)\right)^{*} \mathrm{~L} 123^{\wedge}$ Into G 141
Put " $=$ If(G141<2650*L123,""Note $3^{n n}, I f\left(G 141>107000^{*}\right.$ L123,"note 4"n.933*L123))" Into H141
Put " ${ }^{\text {Into }} 1141$
\{W igniter\}

$\left.-0.07182^{*}\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 0.5124\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G142

Put "n Into I 142
\{W nose cone\}
Put " $=\left(3395-2098^{*} \mathrm{C} 132-0.4705^{*}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)\right.$
$\left.+(2.533 \mathrm{E}-5)^{*}\left(\left((\mathrm{C} 130 / 2)^{*} \mathrm{SqRt}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)+\left(\left(\mathrm{C} 132^{*} \mathrm{C} 130\right)^{\wedge} 2\right)\right)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G 143
Put "N/A" Into H143
Put "" Into I143
\{W external Insulation\}
Put " $=\left(87+0.7243^{*} \mathrm{C} 130+0.1071^{*}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G144
Put "N/A" Into H144
Put "" Into I 144
\{W fwd skirt \& attach\}
Put " $=\left(\operatorname{Exp}\left(2.095+0.05276^{*} \mathrm{C} 130-0.0000846^{*} \mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G 145
Put "N/A" Into H145
Put " " Into II 45
(W aft skirt \& attach\}
Put ${ }^{n}=\left(\operatorname{Exp}\left(2.89+0.06343^{\circ} \mathrm{C} 130-0.00012^{*} \mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G146
Put "N/A" Into H146
Put " ${ }^{\text {I }}$ Into 1146
(W separation system\}
Put " $=0.0011208^{*}$ G $149^{\text {" }}$ Into G147
Put "N/A" Into H147
Put " " Into 1147
\{W misc $\}$
Put " $=\left(-1039-0.00204^{*}(G 149 / L 123)+2.854^{*}((G 133+G 135) / \mathrm{L} 122)+0.07885^{*}\left((\mathrm{Cl} 130 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G14
Put "N/A" Into H148
Put " ${ }^{\text {" }}$ Into 1148
\{W SRM\}

Put " $=$ Sum(G138..G142)" Into G149
Put " " Into H149
Put " Into 1149
\{W stage\}
Put "=Sum(G143..G148)" Into G150

Put " ${ }^{\text {" }}$ Into 1150
\{W SRB\}
Put " $=$ G149+G150" Into G151
Put "n Into H151
Put " ${ }^{\text {I }}$ Into 1151
\{V Ideal\}
Put " $=\left(32.18^{*}(\mathrm{G} 128 / \mathrm{L} 125)^{*} \mathrm{Ln}((\mathrm{C} 131+(\mathrm{G} 151 / \mathrm{L} 123)) /(\mathrm{C} 131+(\mathrm{G} 151 / \mathrm{L} 123)-(\mathrm{G} 138 / \mathrm{L} 123)))\right)^{*} \mathrm{~L} 124^{n}$ Into G 15 !
Put "N/A" Into H152
Put "" Into I 152
\{Mass Fraction\}
Put " $=$ G138/G151" Into G153
Put "N/A" Into H 153
Put "" Into Il53
((Impulse)sl\}
Put " $=$ G131* C129" Into G154

Put " ${ }^{\text {" }}$ Into 1154
\{(Impulse)vac\}
Put " $=\mathrm{C} 128^{\circ} \mathrm{C} 129^{\circ} \mathrm{L} 126^{\prime \prime}$ Into G155

Put "n Into I155
\{Load Notes\}
Put "Note 1:" Into A135
Put "Cases with L/D greater than 5.6" Into C135
Put "are difficult to wind w/o joints." Into C136
Put "Note 2:" Into A138
Put "MG propellant burn rates" Into C138
Put "(Rbo) are tallorable between" Into C139
Put "0.334 and 0.806 tps." Into C140
Put "Note 3:" Into A142
Put "Data is being extrapolated" Into C142
Put "below range of regression." Into Cl43
Put "Note 4:" Into A145
Put "Data is being extrapolated" Into C145
Put "above range of regression." Into Cl 146
Automatic Recalc
Invalidate Off

Ingredient	Weight Percent
R-45M (1\% A02246)*	13.83
IPDI* *	0.86
HX-752	0.30
TPB	0.01
Mg	22.0
AP**	62.80
Fe2O3**	0.20

* varied for mechanical property control ** varied for burn rate control

Figure 42. Nominal Composition of Magnesium Clean Propellant

Exhaust Product	Mass Fraction
$\mathrm{CO}(\mathrm{g})$	0.2860
$\mathrm{CO}(\mathrm{g})$	0.0162
$\mathrm{CL}(\mathrm{g})$	0.0002
$\mathrm{HCl}(\mathrm{g})$	0.1505
$\mathrm{FeCl} 2(\mathrm{~g})$	0.0032
$\mathrm{MgCl} 2(\mathrm{~g})$	0.052
$\mathrm{H}(\mathrm{g})$	Insignificant
$\mathrm{H} 2(\mathrm{~g})$	0.0289
$\mathrm{H} 2 \mathrm{O}(\mathrm{g})$	0.0415
$\mathrm{MgO}(\mathrm{s})$	0.3412
$\mathrm{~N} 2(\mathrm{~g})$	0.0766
Other	0.0005

Figure 43. Theoretical Exhaust Products at $1,000 \mathrm{psi}$ Chamber Pressure Expanded to 14.7 psi Magnesium Clean Propellant

Figure 44. Printed Output - "Report" - English Units

Figure 46. Equations for Mg Clean Propellant Model

Equations for Stage Components

Variable to be

Calculated

Equation

Nose Cone Weight, lbm

$$
W_{\text {Nose Cone }}=3395-2098 N_{l / d}-0.4705\left(D_{c} / 2\right)^{2}+2.533 \times 10^{-5}\left\{\left(D_{c} / 2\right) \sqrt{\left(D_{c} / 2\right)^{2}+\left(N_{l / d} D_{c}\right)^{2}}\right\}^{2}
$$

External Insulation Weight, lbm

$$
W_{\text {Extinsulation }}=87+0.7243 D_{c}+0.1071\left(D_{c} / 2\right)^{2}
$$

Fwd Skirt and Attach Weight, lbm

$$
W_{F w d S k i r t}=e^{\left(2.095+0.05276 D_{\mathrm{c}}-0.0000846 D_{c}^{2}\right)}
$$

Aft Skirt and Attach Weight, lbm

$$
W_{\text {AftSkire }}=e^{\left(2.89+0.06343 D_{c}-0.00012 D_{c}^{2}\right)}
$$

Separation System Weight, lbm

$$
W_{\text {Separation }}=0.0011208 W_{\text {srm }}
$$

Misc Weight, lbm

$$
W_{m i s c}=-1039-0.00204 W_{s m}+2.854 L_{\text {case \& nozzie }}+0.07885\left(D_{c} / 2\right)^{2}
$$

Figure 47. Script for Mg Clean Propellant Model
(Large Motors)

Invalidate On
Manual Recalc
Select Range A116
Window Scale 65\%
\{Titles and dates\}
Put " Large Motors" Into A1 23
Put "Neutralizing Mg (DL-H435) Propellant" Into C123
Put " 14 January 1993" Into A124
\{Initial Independent Variable Setup\}
Put 1000 Into C126 \{Meop, psia\}
Put 7 Into C127
Put 2590000 Into C128
Put 111 Into C129 \{Initial Area Ratio, Ei\} ((Favg)vac, lbf\}

Put 146 Into C130
Put 1000000 Into C131
Put 1.3 Into C132
Burn Time, Tb, seconds\}
(Dcase, in)
\{Push Weight, lbm\}
\{Nose Cone Length / Diameter\}
\{Load Range Information\}
Put "200 To 2000" Into D126
Put "5 To 19" Into D127
Put "320 K To 8.9 M" Into D128
Put "60 To 178" Into D129
Put "80 To 255" Into D130
\{Load Range Limit Checks\}
Put " $=$ If (C126<200, 1,0)" Into K1 26
Put " $=$ If (C126>2000, 1,0)" Into K1 27
Put " $=$ If (C $127<5,1,0$)" Into K 128
Put " $=$ If (C127>19, 1,0)" Into K129
Put " $=$ If (C128<320000, 1,0)" Into K1 30
Put " $=$ If (C128>8900000, 1,0)" Into K131
Put " $=$ If (C129<60, 1,0)" Into K1 32
Put " $=$ If (C129>178, 1,0)" Into K1 33
Put " $=$ If (C $130<80,1.0)^{\prime \prime}$ Into K 134
Put " $=$ If (C130>255, 1,0)" Into K135
\{Load Results Formulas, RMSE and correlation limits, and percent error\}
\{Rbo\}
Put " $=\left(4.957^{*}\left((\mathrm{C} 130 / \mathrm{C} 129)^{\wedge} 0.9788\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.3614)\right)\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G126
Put "=If(G126<0.34*L122,"nNote 3"n.If(G126>0.81*L122, "Note 4"n,0.002*L122))" Into H1 26
Put "" Into Il 26
\{(Isp)sl\}
Put " $=$ G128*G131/(C128*L126)" Into G127
Put "N/A" Into H127
Put ${ }^{n n}$ Into I 127
\{(Isp)vac\}
Put " $=\left(\mathrm{C} 128^{*} \mathrm{C} 129 /(\mathrm{G} 138 / \mathrm{L} 123)\right)^{*} \mathrm{~L} 125^{n}$ Into G128

Put "N/A" Into H128

Put " ${ }^{\text {" }}$ Into 1128
\{(A throat)avg \}
Put ${ }^{n}=\left(-15.2+157.4^{*}\left((G 138 / \text { L123 })^{\wedge} 0.9899\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.9404)\right)^{\wedge}\left(\mathrm{C} 129^{\wedge}(-0.9776)\right)\right.$
+(1.027E-5)* $\left.\mathrm{C} 128+0.3134^{*} \mathrm{C} 129\right)^{*} \mathrm{~L} 122^{*} \mathrm{~L} 122^{\prime \prime}$ Into G129

Put " ${ }^{n}$ Into 1129
\{(R throat)avg
Put " $=$ SqRt(G129/3.141593)" Into G130
Put "N/A" Into H130
Put " Into I 130
\{(Favg)sl\}
Put " $=\left(\mathrm{C} 128-11.54535^{*} \mathrm{G} 136^{*} \mathrm{G} 136 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{*} \mathrm{~L} 126^{\prime \prime}$ Into G131
Put "N/A" Into H131
Put " Into I131
(Favg)vac\}
Put " $=\mathrm{C} 128^{*} \mathrm{~L} 126^{n}$ Into G132
Put "N/A" Into H132
Put "" Into I 132
\{L case\}
Put " $=\left(-0.3+28.23^{*}\left((\text { G } 138 / \text { L1 23 }) /\left(\mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{\wedge} 0.9794+(8.696 \mathrm{E}-4)\right.$
$\left.{ }^{*}(\mathrm{Gl} 138 / \mathrm{L} 123) / \mathrm{C} 129+0.009766^{\circ} \mathrm{C} 126\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G133
Put " $=$ If(G133<492*L122,"nNote $3^{n "}$, If(G133>1825*L122,"Note 4"n.5*L122))"Into H133
Put " ${ }^{\text {Into }} 1133$
\{L/D case\}
Put " $=$ G133/(C130*L122)" Into G134
Put "=If(G134>5.6,"nNote 1 "n","N/A")" Into H134
Put " ${ }^{\text {I }}$ Into 1134
\{L nozzle\}
Put " $=\left(-14.87+1.8468^{*}\left(\mathrm{C} 127^{\wedge} 0.2966\right)^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 0.5225\right)\right.$
$\left.-0.002486^{*} \mathrm{C} 126+0.4242^{*} \mathrm{C} 127-0.02445^{\circ} \mathrm{C} 129\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G135

Put " Into I1 35
\{Nozzle Exdt Dia\}
Put " $\left.\left.\left.=\left(2^{*} \text { SqRt((G } 130 / \mathrm{L} 122-0.005^{*} \mathrm{C} 129\right)^{\wedge} 2\right)^{*} \mathrm{C} 127\right)\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G136
Put "N/A" Into H136
Put " " Into 1136
\{Total Length\}
Put "=G133+G135+(C132*C130)*L122" Into G137
Put "N/A" Into H137
Put "n Into I 137
\{W propellant\}
\{W propellant $\}$
Put $"=\left(\left(0.005028^{*} \mathrm{C} 128^{\wedge} 0.9953\right)^{*}\left(\mathrm{C} 129^{\wedge} 1.0027\right)^{*}\left(\mathrm{C} 127^{\wedge}(-0.06843)\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.01470)\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G138
Put " $=$ If(G138>198000*L123,"note $4^{n " n}$, If(G138<3010000*L123, "nNote $3^{n n}, 3466^{*} \mathrm{~L} 123$))" Into H138
Put " ${ }^{\text {" }}$ Into 1138

\{W nozzle\}

Put " $=\left(588.7+0.02444^{*} \text { SqRt(G129/(L122*L122) }\right)^{*}(1+\mathrm{C} 127)^{*}(\mathrm{G} 135 / \mathrm{L} 122)$
$\left.+0.06048^{*}\left(\left(G 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 0.6750\right)^{*}\left((\mathrm{G} 138 / \mathrm{L} 123)^{\wedge} 0.4703\right)^{*}\left(\mathrm{C} 127^{\wedge} 0.1592\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 139
Put " $=$ If(G139<1944*L123,"nNote $3^{n "}$.If(G139>47600*L123, "Note 4"n, 1184*L123))" Into H139
Put " ${ }^{\text {I }}$ Into I 139
\{W case insulation\}
Put " $=\left(-19.5+0.2395^{*}\left((G 138 / L 123)^{\wedge} 0.7022\right)^{*}\left(C 129^{\wedge} 0.3056\right)^{\star}\left((G 133 / L 122)^{\wedge}(-0.1211)\right)\right.$
$-0.06024^{*}\left(\text { G } 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122 \mathrm{~J}\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G140

Put " ${ }^{\text {I }}$ Into I 140
\{W case\}
Put " $=\left(-277.8+(5.822 \mathrm{E}-4)^{*} \mathrm{C} 128+\right.$
$\left.(6.142 \mathrm{E}-6)^{*}\left((\mathrm{G} 133 / \mathrm{L} 122)^{\wedge} 0.8298\right)^{*}\left(\mathrm{C} 126^{\wedge} 0.7754\right)^{*}\left(\mathrm{C} 128^{\wedge} 0.1110\right)^{*}\left(\mathrm{C} 130^{\wedge} 1.8575\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G141

Put "n Into 1141
\{W igniter\}
Put $"=\left(21.0+0.2218^{*}\left(\mathrm{C} 126^{\wedge} 0.1277\right)^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 1.3314\right)^{*}\left(\mathrm{C} 130^{\wedge}(-0.6535)\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G142
Put " $=$ If(G142<76*L123,"nNote $3^{n "}$.If(G142>1754*L123,"nNote 4"n,28*L123))" Into H142
Put " ${ }^{\text {Into } 1142}$
\{W nose cone\}
Put ${ }^{n}=\left(3395-2098^{*} \mathrm{C} 132-0.4705^{*}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)\right.$
$\left.+(2.533 \mathrm{E}-5)^{*}\left(\left((\mathrm{Cl} 30 / 2)^{*} \mathrm{SqRt}\left((\mathrm{Cl} 30 / 2)^{\wedge} 2\right)+\left(\left(\mathrm{Cl} 32^{*} \mathrm{C} 130\right)^{\wedge} 2\right)\right)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G143
Put "N/A" Into H143
Put " ${ }^{\text {I }}$ Into I 143
(W external Insulation\}
Put " $=\left(87+0.7243^{*} \mathrm{C} 130+0.1071^{*}\left((\mathrm{Cl} 130 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G144
Put "N/A" Into H144
Put " " Into I 144
\{W fwd skirt \& attach \}
Put $"=\left(\operatorname{Exp}\left(2.095+0.05276^{\circ} \mathrm{C} 130-0.0000846^{*} \mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G 145
Put "N/A" Into H145
Put " ${ }^{\text {Into } 1145}$
\{W aft skirt \& attach \}
Put " $=\left(\operatorname{Exp}\left(2.89+0.06343^{*} \mathrm{C} 130-0.00012^{*} \mathrm{C} 130^{\circ} \mathrm{C} 130\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 146
Put "N/A" Into H1 46
Put " ${ }^{\text {I }}$ Into 1146
(W separation system)
Put " $=0.0011208^{\circ}$ G149" Into G147
Put "N/A" Into H147
Put "" Into Il 47
\{W misc \}
Put " $=\left(-1039-0.00204^{*}(\text { G } 149 / L 123)+2.854^{*}((G 133+G 135) / L 122)+0.07885^{*}\left((C 130 / 2)^{\wedge} 2\right)\right)^{*} L 123^{\prime \prime}$ Into G14
Put "N/A" Into H148
Put " ${ }^{\prime \prime}$ Into I 148
\{W SRM\}
Put "=Sum(G138..G142)" Into G149

Put " " Into H149
Put " ${ }^{\text {I Into } 1149}$
\{W stage\}
Put "=Sum(G143..G148)" Into G150

Put "n Into I 150
[W SRB
Put ${ }^{\prime \prime}=$ G149+G150" Into G151
Put "" Into H151
Put " ${ }^{\text {IntoII }} 151$
\{V ideal\}

Put "N/A" Into H152
Put " ${ }^{\prime}$ Into 1152
\{Mass Fraction\}
Put " $=$ G138/G151" Into G153
Put "N/A" Into H153
Put " ${ }^{\text {Into }} 153$
\{(Impulse)sl\}
Put " $=\mathrm{G} 131^{*} \mathrm{C} 129^{n}$ Into G154

Put "" Into I 154
\{(Impulse)vac\}
Put " $=\mathrm{C} 128^{*} \mathrm{C} 129^{*} \mathrm{~L} 126^{\prime \prime}$ Into G155

$$
\text { Put "" Into I } 155
$$

\{Load Notes\}
Put "Note 1:" Into A135
Put "Cases with L/D greater than 5.6" Into C135
Put "are difficult to wind w/o joints." Into C136
Put "Note 2:" Into A138
Put "MG propellant burn rates" Into C138
Put "(Rbo) are tailorable between" Into C139
Put "0.34 and 0.81 ips." Into Cl 40
Put "Note 3:" Into A142
Put "Data is being extrapolated" Into C142
Put "below range of regression." Into Cl 43
Put "Note 4:" Into A145
Put "Data is being extrapolated" Into C145
Put "above range of regression." Into C146
Automatic Recalc
Invalidate Off

Figure 48. Printed Output - "Report" - English Units
Figure 49. Printed Output - "Briefing" - Metric Units

Figure 50. Script for Mg Clean Propellant Model (Medium Motors)

Invalidate On
Manual Recalc
Select Range A57
Window Scale 65\%
\{Titles and dates\}
Put " Medium Motors" Into A64
Put "Neutralizing Mg (DL-H435) Propellant" Into C64
Put " 18 August 1992 " Into A65
\{Initial Independent Variable Setup\}
Put 2000 Into C67
Put 10 Into C68
Put 250000 Into C69
Put 40 Into C70
Put 70 Into C71
Put 200000 Into C72
\{Meop, psia\}
\{Intial Area Ratio, Ei\}
\{(Favg)vac. lbf\}
(Burn Time, Tb, seconds)
(Dcase, In\}
\{Push Weight, lbm\}
\{Load Range Information\}
Put "900 To 2000" Into D67
Put "7 To 19 " Into D68
Put " 62 K to 328 K " Into D69
Put "30 To 105" Into D70
Put "30 To 105" Into D71
\{Load Range Limit Checks\}
Put "=If (C67<900, 1.0)" Into K67
Put " $=$ If (C67>2000, 1,0)" Into K68
Put ${ }^{n}=$ If ($\mathrm{C} 68<7,1,0$) ${ }^{\text {I }}$ Into K69
Put " $=$ If (C68>19, 1.0)" Into K70
Put " $=$ If (C69<62000, 1,0)" Into K71
Put "=If (C69>328000, 1,0)" Into K72
Put " $=$ If (C70 $<30,1,0$) ${ }^{\text {n }}$ Into K73
Put " $=$ If ($\mathrm{C} 70>105,1.0$)" Into K74
Put " $=$ If (C71 $<30,1,0$)" Into K75
Put ${ }^{\prime \prime}=$ If (C71>105, 1,0)" Into K76
\{Load Dependent Terms and Intermediate Results\}
Put "=C71/C70" Into M76
Put "=C67*M76" Into M78
Put " $=(\mathrm{C} 67 / 1000)^{\wedge} 0.39^{n}$ Into M80
Put ${ }^{n}=\mathrm{C} 69^{\circ} \mathrm{C} 70^{\text {" }}$ Into M82
Put " $=$ C69/C67" Into M84
Put "=M84/C68" Into M86
Put " $=($ G79/L3)/C70" Into M88
Put $"=($ G79/L3)/(C71*C71)" Into M90
Put ${ }^{n}=(\mathrm{G} 71 / \mathrm{L} 2)^{\circ} \mathrm{C} 68^{\prime \prime}$ Into M92
Put " $=\left(\left(\right.\right.$ SqRt(G70) + SqRt(G70*C68) $/ 2^{*}$ G76) $/\left(\text { L2 } 2^{*} \text { L2 }\right)^{\prime \prime}$ Into M94

27 March 1993 05:58:50 PM Parametric Database/Object 240 script
Put " $=(\mathrm{G79} / \mathrm{L3}) / \mathrm{C} 70^{*}\left(26.0314^{*} \mathrm{C} 70 /\left(\mathrm{C} 71^{*} \mathrm{C} 71\right)+0.000046398\right)^{\text {n }}$ Into M97
Put " $=\mathrm{LN}((\mathrm{C} 72+(\mathrm{G86} / \mathrm{L} 3)) /(\mathrm{C72+(G86-G79)/L3))"} \mathrm{Into} \mathrm{M100}$
\{Load Results Formulas, RMSE and correlation limits, and percent error\}
\{Rbo\}
Put " $=\left(0.45361+0.31293^{*} \mathrm{M} 76+0.00001733331^{*} \mathrm{M} 78-0.37345^{*} \mathrm{M} 80\right)^{*} \mathrm{~L} 2^{n}$ Into G 67
Put " $=$ If(G67<0.306*L2, "Note $3^{n ",}$ If(G67>0.532*L2,"nNote $4^{n n}, 0.0125^{*}$ L2))" Into H67
Put 2.995 Into 167
\{(Isp)sl\}
Put " $=$ G72*C70/G79" Into G68
Put "N/A" Into H68
Put "N/A" Into I68
\{(Isp)vac\}
Put " $=\left(243.468+3.47093^{*} \mathrm{C} 68-0.079374^{*} \mathrm{C} 68^{*} \mathrm{C} 68+0.000010827^{*} \mathrm{C} 69-0.026726{ }^{*} \mathrm{C} 70\right)^{*} \mathrm{~L} 5^{\text {n }}$ Into G 69
 Put 0.217 Into 169

\{(A throat)avg

Put " $=\left(8.2551+0.0000009095^{*} \mathrm{M} 82+0.72572^{*} \mathrm{M} 84+0.58737^{*} \mathrm{M} 86\right)^{*} \mathrm{~L} 2^{*} \mathrm{~L} 2^{n}$ Into G70

Put 0.872 Into 170
($(R$ throat)avg \}
Put " $=$ SqRt(070/3.141593)" Into G71
Put "N/A" Into H71
Put "N/A" Into 171
\{(Favg)sl\}
Put " $=\left(\mathrm{C} 69-14.7^{*} \mathrm{C} 68^{*} \mathrm{G} 70 /\left(\mathrm{L} 2^{*} \mathrm{~L} 2\right)\right)^{*} \mathrm{~L}^{n}{ }^{n}$ Into G72
Put "N/A" Into H72
Put "N/A" Into 172
\{(Favg)vac $\}$
Put " $=$ C69* ${ }^{\text {L6" }}$ Into G73
Put "N/A" Into H73
Put "N/A" Into 173
\{L case\}
Put " $=\left(6.918+26.0782^{*} \mathrm{M} 90+10.5873^{*} \mathrm{M} 80-0.049018^{*} \mathrm{C} 70+0.000008449^{*} \mathrm{C} 71^{*} \mathrm{C} 71^{*} \mathrm{C} 71\right)^{*} \mathrm{~L} 2^{\prime \prime}$ Into G74

Put 0.466 Into 174
\{L/D case\}
Put " $=$ G74/(C71*L2)" Into G75

Put "N/A" Into 175
\{L nozzle\}
Put " $=\left(-26.0584+6.33835^{*}(\mathrm{G71} / \mathrm{L} 2)+0.16796^{*} \mathrm{M} 92-0.001205^{*} \mathrm{C} 67+0.46015^{*} \mathrm{C} 68\right)^{*} \mathrm{~L} 2^{\prime \prime}$ Into G76

Put 2.282 Into 176

\{Nozzle Exit Dia\}

Put " $=2^{*}$ G71 ${ }^{*}$ SqRt(C68)" Into G77
Put "N/A" Into H77
Put "N/A" Into 177

```
{Total Length}
Put "=G74+G76+(1.5*C71)*L2" Into G78
Put "N/A" Into H78
Put "N/A" Into I78
```

\{W propellant
Put " $=\left(\mathrm{C} 69^{*} \mathrm{~L} 6\right)^{*} \mathrm{C} 70 / \mathrm{G69}{ }^{\prime \prime}$ Into $\mathbf{G 7 9}$

Put "N/A" Into 179
\{W nozzle\}
Put " $=\left(36.9679+0.000011857^{*} \mathrm{M} 82+0.1818^{*} \mathrm{M} 94+1.41166^{*} \mathrm{C} 70+9.22776^{*} \mathrm{G} 76 / \mathrm{L} 2\right)^{*} \mathrm{~L} 3^{n}$ Into G 80
Put "=If(G80<221"L3,"note $\left.3^{n " . I f(G 80>1819 * L 3, " n N o t e ~} 4^{n ", 21 * L 3)}\right)^{n}$ Into H8O
Put 2.358 Into 180
\{W insulation $\}$
Put " $=\left(-170.912+0.09922^{*} \mathrm{C} 71^{*} \mathrm{C} 71+\mathrm{M} 97+1.41144^{*} \mathrm{C} 70\right)^{*} \mathrm{~L} 3^{n}$ Into G 81

Put 1.33 Into 181
\{W case\}
Put " $=\left(-143.337+0.03013^{*} \mathrm{C} 71^{*} \mathrm{C} 71+3.5389^{*} \mathrm{C} 71+0.0006026^{*} \mathrm{C} 69+0.0000222242^{*} \mathrm{G} 79 / \mathrm{L} 3\right)^{*} \mathrm{~L} 3^{\prime \prime}$ Into G82
Put " $=$ If(G82<394*L3,""Note $3^{n "}$. If(G82>5676*L3, ""Note $4^{n "}, 66.95^{*} \mathrm{~L} 3$))" Into H82
Put 2.64 Into 182
(W igniter)
Put " $=\left(15.6963+0.00014004^{*}\left(\mathrm{G70} /\left(\mathrm{L} 2^{*} \mathrm{~L} 2\right)\right) /\left(\mathrm{C} 71^{*} \mathrm{C} 71\right)+51.1973^{*} \mathrm{M} 88 / \mathrm{C} 67-0.0074883^{*} \mathrm{C} 67\right)^{*} \mathrm{~L} 3^{\prime \prime}$ Into G83

Put 5.74 Into 183
(W SRM)
Put " $=$ Sum(G79..G83)" Into G84
Put " $=71.7^{*} \mathrm{~L} 3^{n}$ Into H84
Put " " Into 184
[W stage\}
Put " $=\left(-502.96+0.16858^{*} \mathrm{C} 71^{*} \mathrm{C} 71+0.001425^{*} \mathrm{C} 71^{*} \mathrm{C} 71^{*} \mathrm{C} 71+3.07233^{*}(\mathrm{G74}+\mathrm{G76}) / \mathrm{L} 2\right)^{*} \mathrm{~L} 3^{n}$ Into G 85

Put 4.3 Into 185
\{W SRB\}
Put " $=\mathbf{G 8 4}+$ G85" Into G86
Put " $=121.5^{*} \mathrm{L3}^{\prime \prime}$ Into H86
Put " " Into 186
\{V ideal\}
Put " $=\left((\mathrm{G} 69 / \mathrm{L} 5)^{*} 32.18^{*} \mathrm{M} 100\right)^{*} \mathrm{~L} 4^{\prime \prime}$ Into G87
Put "N/A" Into H87
Put "N/A" Into I87

[Mass Fraction)

Put "=G79/G86" Into G88
Put "N/A" Into H88
Put "N/A" Into 188
\{(Impulse)sl\}
Put "=G72*C70" Into G89
Put "N/A" Into H89
Put "N/A" Into 189
\{(Impulse)vac\}
Put ${ }^{\prime \prime}=\mathrm{G73} 3^{\circ} \mathrm{C} 70^{n}$ Into G90
Put "N/A" Into H90
Put "N/A" Into 190
\{Load Notes \}
Put "Note 1:" Into A76
Put "Cases with L/D greater than 5.6" Into C76
Put "are difficult to wind w/o joints." Into C77
Put "Note 2:" Into A79
Put "MG propellant burn rates" Into C79
Put "(Rbo) are tailorable between" Into C80
Put "0.34 and 0.81 ips." Into C81
Put "Note 3:" Into A83
Put "Data is being extrapolated" Into C83
Put "below range of regression." Into C84
Put "Note 4:" Into A86
Put "Data is being extrapolated" Into C86
Put "above range of regression." Into C87
Automatic Recalc
Invalidate Off

Ingredient	Weight Percent
PGN	35.0
Al	25.0
AN $^{\star *}$	40.0

* varied for mechanical property control
** varied for burn rate control

Figure 51. Nominal Composition of Non-Chlorine Clean Propellant

Exhaust Product	Mass Fraction
$\mathrm{CO}(\mathrm{g})$	0.236
$\mathrm{CO} 2(\mathrm{~g})$	0.0175
AlOH	0.00001
$\mathrm{AlO2H}$	0.00001
$\mathrm{~A} 2 \mathrm{O} 3(1) \mathrm{s})$	0.472
$\mathrm{OH}(\mathrm{g})$	0.00017
$\mathrm{H}(\mathrm{g})$	0.00023
$\mathrm{H} 2(\mathrm{~g})$	0.0274
$\mathrm{H} 2 \mathrm{O}(\mathrm{g})$	0.0653
$\mathrm{NO}(\mathrm{g})$	0.00001
$\mathrm{~N} 2(\mathrm{~g})$	0.1811

Figure 52. Theoretical Exhaust Products at $1,000 \mathrm{psi}$ Chamber Pressure Expanded to 14.7 psi

Non-Chlorine Clean Propellant

arge Motors Non-Chlorine (PGN/AN/AL) Clean Propellant					
Independent Terms			Resultsw	ME	RMSE
		200 T0 2000	Rbo, in/sec	0.540	0.002
Meop, psia Initial Area Ratio, Ei	7.0	$\begin{array}{rlll}200 & \text { To } 2000 \\ 5 & \text { To } 19\end{array}$	(Isp)sl, sec-lbf/lbm	- 244.10	N/A
(Favg)vac, lbf	2,590.000	320 K To 8.9 M	(lsp)vac. sec-lbf/lbm	- 267.69	N/A
Burn Time. Tb, seconds -	- 111	60 To 178	(A throat)avg, in ${ }^{\wedge} 2$	2.312.2	11
Dcase, in	- 146	80 To 255	(R throat)avg, in	27.1	N/A
Push Weight. lbm	1,000,000		(Favg)sl, lbf	- 2,361.706	N/A
Nose Cone L/D \quad -	1.30		(Favg)vac. lbf	- 2,590.000	N/A
Dependent Terms ${ }^{\text {a }}$			L case. in	1.230.4	5
Note 1:	Cases with L/D greater than 5.6 are difficult to wind $w / 0$ joints.		L nozzle, in	171.1	3
			Nozzle Exit O.D., in	140.6	N/A
			Total Length, in	- 1.591.3	N/A
Note 2:	MG propellant burn rates (Rbo) are tallorable between 0.33 and 0.818 ips .		W propellant. lbm	- 1,073,951	3.048
			W nozzle, lbm	- 13,442.8	567
			W insulation. lbm	7.003 .6	241
			W case. lbm	- 26.915.1	909
Note 3:	Data is being extrapolated below range of regression.		W igniter, lbm	639.2	22
			W nose cone, lbm	3.742.3	N/A
			W ext insul, lbm	763.5	N/A
Note 4: $\begin{array}{r}\text { Data is being extrapolated } \\ \text { above range of regression. }\end{array}$			W fwd skirt. lbm	2.965 .0	N/A
			W aft skirt. lbm	- 14.659.7	N/A
	above range of regression.		W separation. lbm	1.257 .5	N/A
			W misc, lbm	1.634 .1	N/A
			W SRM, lbm	- 1.122E+06	
			W stage, lbm	- 2.502E+04	
			W SRB. lbm	- $1.147 \mathrm{E}+06$	
			V ideal, ft/sec	- $5.975 \mathrm{E}+03$	N/A
			Mass Fraction	- 9.363E-01	N/A
			(Impulse)sl. lbf-sec	- $2.621 \mathrm{E}+08$	
			(Impulse)vac, lbf-sec	- $2.875 \mathrm{E}+08$	

Figure 53. Printed Output - "Report" - English Units
Figure 54. Printed Output - "Briefing" - Metric Units

Figure 55. Equations for Non-Chlorine
Clean Propellant Model

Equations for Stage Components

Variable to be
 Calculated
 Equation

Nose Cone Weight, lbm

$$
W_{\text {Nose Cone }}=3395-2098 N_{l / d}-0.4705\left(D_{c} / 2\right)^{2}+2.533 \times 10^{-5}\left\{\left(D_{c} / 2\right) \sqrt{\left(D_{c} / 2\right)^{2}+\left(N_{l / d} D_{c}\right)^{2}}\right\}^{2}
$$

External Insulation Weight, lbm

$$
W_{\text {Extinsulation }}=87+0.7243 D_{c}+0.1071\left(D_{c} / 2\right)^{2}
$$

Fwd Skirt and Attach Weight, lbm

$$
W_{F w d S k i n}=e^{\left(2.095+0.05276 D_{c}-0.0000846 D_{c}^{2}\right)}
$$

Aft Skirt and Attach Weight, lbm

$$
W_{\text {Afiskin }}=e^{\left(2.99+0.06343 D_{c}-0.00012 D_{c}^{2}\right)}
$$

Separation System Weight, lbm

$$
W_{\text {Separation }}=0.0011208 W_{\mathrm{smm}}
$$

Misc Weight, lbm

$$
W_{m i s c}=-1039-0.00204 W_{s r m}+2.854 L_{\text {case \& nozzle }}+0.07885\left(D_{c} / 2\right)^{2}
$$

Large Motors Equations For Non-Chlorine Propellant

Vmanksmon Salained Emation	Wertiot 243ase
Burning Rate @ 1000 psia, ips $R b o=5.362\left(\frac{D_{c}}{T_{0}}\right)^{0.9793}$ Meop ${ }^{-0.3713}$	$\begin{aligned} & \text { RMSE }=0.002 \\ & (0.33-0.818) \\ & \hline \end{aligned}$
$\overline{\text { Propellant Weight, 1bm }} \quad W_{p}=642.4+0.004462 \bar{F}_{v}^{+0.9995} T_{b}^{1.0027} E_{1}^{-0.07409}$ Meop ${ }^{0.002841}$	$\begin{aligned} & \text { RMSE }=3,048 \\ & (200 \mathrm{k}-3 \mathrm{M}) \end{aligned}$
Vacuum specific Impulse, $\quad I s p_{v}=\frac{\bar{F}_{v} T_{b}}{W_{p}}$ lbf-secilbm	Analytical Equation
Average Nozzle Throat Area, $\bar{A}_{t}=-11.5+187.8 W_{p}^{0.9949}$ Meop $^{-0.9708} T_{b} T^{-0.9838}+1.923 E-5 \bar{F}_{v}+0.3461 T_{b}$	$\begin{aligned} & \text { RMSE }=11 \\ & (334-9,760) \end{aligned}$
in^{2} Average Nozzle Throat $\bar{R}_{t}=\sqrt{\frac{\bar{A}_{1}}{n}}$	Analytical Equation
$\frac{\text { Radius, in }}{\text { Diameter of Nozzle @ Exit, in } D_{n}=2 \sqrt{\left(\bar{R}_{t}-0.005 T_{b}\right)^{2} E_{i}}}$	Analytical Equation
Average Sea Level Thrust, lbf $\bar{F}_{s l}=\bar{F}_{v}-3.675 E_{i} \pi D_{n}^{2}$	Analytical Equation
Sea Level Specific Impulse, $\quad I s p_{v a l}=\frac{I p_{v} \bar{F}_{t}}{\bar{F}_{v}}$ lbf-sec/lbm	Analytical Equation
Boss-Boss Case Length, in $\quad L_{c}=-3.0+26.79\left[\frac{W_{p}}{D_{c}^{2}}\right]^{0.9735}+0.0008531 \dot{M}+0.008615 \mathrm{Meop}$	$\begin{aligned} & \text { RMSE }=5 \\ & (457-1,688) \end{aligned}$
Nozzle Length (Aft Case Boss $L_{n}=-16.3+1.892 E_{i}^{0.2937} \bar{A}_{i}^{+0.5206}-0.002267 \mathrm{Meop}+0.4660 E_{i}-0.02340 T_{b}$ to Nozzle Exit), in	$\begin{aligned} & \text { RMSE }=3 \\ & (50-380) \\ & \hline \end{aligned}$
Case length to Diameter Ratio, $L I D_{c}=\frac{L_{c}}{D_{c}}$ dim	Analytical Equation
Booster Total Length, in $\quad L_{\text {total }}=L_{c}+L_{n}+N_{\nu d} D_{c}$	Analytical Equation
Igniter Weight, lbm $\quad W_{i g r t}=16.6+0.2810 \mathrm{Meop}^{0.1167} \bar{A}_{t}^{+1.287} D_{c}^{-0.6164}$	$\begin{aligned} & \text { RMSE }=22 \\ & (77-2,922) \end{aligned}$
Nozzle Weight Ibm $\quad W_{n}=327.3+0.02671 \sqrt{\bar{A}_{t}}\left(1+E_{i}\right) L_{n}+0.1664 \bar{A}_{t}^{0.6079} W_{p}^{0.4469} E_{i}^{0.1111}$	$\begin{aligned} & \text { RMSE }=567 \\ & (2.6 \mathrm{k}-49.8 \mathrm{k}) \end{aligned}$
Internal Case Insulation, $\mathrm{lbm} \quad W_{i}=-19.4+0.2425 W_{p}^{0.7148} T_{b}^{0.3103} L_{c}^{-0.1566}+\bar{A}_{t}^{0.06699}$	$\begin{aligned} & \text { RMSE }=241 \\ & (1,700-16,800) \end{aligned}$
Empty Case Weight, lbm $\quad W_{c}=-122.9+5.155 E-4 \bar{F}_{v}+6.142 E-6 L_{c}^{0.8250}$ Meop $^{0.7722} \bar{F}_{v}^{+0.1108} D_{c}^{1.869}$	$\begin{aligned} & \text { RMSE }=909 \\ & (2,720-110 \mathrm{k}) \end{aligned}$
Total Rocket Motor Weight, $\quad W_{s m m}=W_{p}+W_{n}+W_{1}+W_{c}+W_{i g n}$ lbm	Analytical Equation
	Analytical Eq. (4,300-193K)
Total Booster weight, lbm $W_{s r b}=W_{s m}+W_{s l g}$	Analytical Equation
	Analytical Equation
Booster Mass Fraction, dim $\quad M f_{\text {rrb }}=\frac{W_{p}}{W_{r a t}}$	Analytical Equation
Total Impulse Sea Level, $I_{s l}=\bar{F}_{s} T_{b}$ lbf-sec	Analytical Eq. ($45 \mathrm{M}-720 \mathrm{M}$)
Total Impulse vacuum, $I_{v}=\bar{F}_{v} T_{b}$ $\mathrm{lbm-sec}$	$\begin{aligned} & \text { Analytical Eq. } \\ & (52 \mathrm{M}-861 \mathrm{M}) \end{aligned}$

Figure 56. Script for Non-Chlorine Clean Propellant Model

Invalidate On

Manual Recalc
Select Range A1 16
Window Scale 65\%
\{Titles and dates\}
Put " Large Motors" Into A123
Put "Non-Chlorine (PGN/AN/AL) Clean Propellant" Into C123
Put " 14 January 1993" Into A124
\{Initial Independent Variable Setup\}
Put 1000 Into C126 \{Meop, psia\}
Put 7 Into C127 \{Initial Area Ratio, Ei\}
Put 2590000 Into C128
Put 111 Into C129
Put 146 Into C130
Put 1000000 Into C131
Put 1.3 Into C132
\{(Favg)vac, lbf\}
\{Burn Time, Tb, seconds\}
(Dcase, in\}
\{Push Weight, lbm\}
\{Nose Cone Length / Diameter\}
\{Load Range Information\}
Put "200 To 2000" Into D126
Put "5 To 19" Into D127
Put " 320 K To 8.9 M " Into D 128
Put "60 To 178" Into D129
Put "80 To 255" Into D130
\{Load Range Limit Checks\}
Put " $=$ If $(\mathrm{C} 126<200,1,0)^{\text {" }}$ Into K1 26
Put " $=$ If (C126>2000, 1,0)" Into K127
Put " $=$ If (C127<5, 1,0)" Into K128
Put "=If (C127>19, 1,0)" Into K1 29
Put " $=$ If (C $128<320000,1,0$)" Into K130
Put " $=$ If (C128>8900000, 1,0)" Into K131
Put " $=$ If (C129<60, 1,0)" Into K132
Put " $=$ If (C129>178, 1,0)" Into K133
Put " $=$ If (C $130<80,1,0$)" Into K134
Put " $=$ If (C $130>255,1,0$)" Into K135
\{Load Results Formulas, RMSE and correlation limits, and percent error\}
\{Rbo\}
Put " $=\left(5.362^{*}\left((\mathrm{C} 130 / \mathrm{C} 129)^{\wedge} 0.9793\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.3713)\right)\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G126

Put " " Into I 126
\{(Isp)sl\}
Put "=G128*G131/(C128*L126)" Into G127
Put "N/A" Into H127
Put " Into 1127
\{(Isp)vac\}
Put " $=\left(\mathrm{C} 128^{*} \mathrm{C} 129 /(\mathrm{G} 138 / \mathrm{L} 123)\right)^{*} \mathrm{~L} 125^{\prime \prime}$ Into G128
Put "N/A" Into H1 28

Put " ${ }^{n}$ Into 1128
((A throat)avg\}
Put " $=\left(-11.5+187.8^{*}\left((\mathrm{G} 138 / \mathrm{L} 123)^{\wedge} 0.9949\right)^{*}\left(\mathrm{C} 126^{\wedge}(-0.9708)\right)^{*}\left(\mathrm{C} 129^{\wedge}(-0.9838)\right)\right.$
$\left.+(1.932 \mathrm{E}-5)^{*} \mathrm{C} 128+0.3461^{*} \mathrm{C} 129\right)^{*} \mathrm{~L} 122^{*} \mathrm{~L} 122^{\prime \prime}$ Into G129

Put " " Into 1129
\{(R throat)avg\}
Put " $=$ SqRt(G129/3.141593)" Into G130
Put "N/A" Into H130
Put "n Into I 130
\{(Favg)sl\}
Put ${ }^{\prime \prime}=\left(\mathrm{C} 128-11.54535^{*} \mathrm{G} 136^{\circ} \mathrm{G} 136 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{*} \mathrm{~L} 126^{n}\right.$ Into G131
Put "N/A" Into H131
Put "" Into 1131
\{(Favg)vac\}
Put " $=\mathrm{C} 128^{*} \mathrm{~L} 126^{\prime \prime}$ Into G132
Put "N/A" Into H132
Put " ${ }^{\prime \prime}$ Into I132
\{L case\}
Put " $=\left(-3.0+26.79^{*}\left((\mathrm{G} 138 / \mathrm{L} 123) /\left(\mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{\wedge} 0.9735+(8.531 \mathrm{E}-4)\right.$
$\left.{ }^{*}(\mathrm{G} 138 / \mathrm{L} 123) / \mathrm{C} 129+0.00865^{*} \mathrm{C} 126\right)^{*} \mathrm{~L} 122^{*}$ Into G133

Put " " Into I133
LL/D case\}
Put " $=$ G133/(C130*L122)" Into G134
Put " $=$ If(G134>5.6."nNote 1 "n,"nN/A")" Into H134
Put ${ }^{n n}$ Into I 134
\{L nozzle\}
Put " $=\left(-16.3+1.892^{*}\left(\mathrm{C} 127^{\wedge} 0.2937\right)^{\wedge}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 0.5206\right)\right.$
$\left.-0.002267^{*} \mathrm{C} 126+0.4660^{*} \mathrm{C} 127-0.02340^{\circ} \mathrm{C} 129\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G135
Put " $=$ If(Gl $135<50^{*} \mathrm{~L} 122$, "n $^{\prime}$ Note $3^{n n}$. If(G135>380*L122,"nNote $4^{n n}, 3^{*} \mathrm{~L} 122$))" Into H135
Put "n Into I135
\{Nozzle Exit Dia\}
Put "=(2*SqRt(((G130/L122-0.005*C129)^2)*C127))*L122" Into G136
Put "N/A" Into H 136
Put " ${ }^{\text {Into } 1136}$
\{Total Length
Put ${ }^{n}=\mathrm{G} 133+\mathrm{G} 135+\left(\mathrm{C} 132^{*} \mathrm{C} 130\right)^{*} \mathrm{~L} 122^{\prime \prime}$ Into G137
Put "N/A" Into H137
Put " ${ }^{\text {Into } 1137}$
\{W propellant\}

$\left.\left.\left(C 127^{\wedge}(-0.07409)\right)^{*}\left(C 126^{\wedge} 0.002841\right)\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G138
Put "=If(G138<200000*L123,"Note 3"n.If(G138>3000000*L123, "nNote $4^{n n}, 3048^{*} \mathrm{~L} 123$))" Into H138 Put "" Into I1 38
\{W nozzle\}
Put " $=\left(327.3+0.02671^{*} \operatorname{SqRt}\left(G 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{*}(1+\mathrm{C} 127) *(\mathrm{G} 135 / \mathrm{L} 122)\right.$
$+0.1664^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{\wedge} 0.6079\right)^{*}\left((\mathrm{G} 138 / \mathrm{L} 123)^{\wedge} 0.4469\right)^{*}\left(\mathrm{C} 127^{\wedge} 0.1111\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 139
 Put "" Into 1139
\{W case insulation\}
Put ${ }^{\wedge}=\left(-19.4+0.2425^{*}\left((G 138 / L 123)^{\wedge} 0.7148\right)^{*}\left(\mathrm{C} 129^{\wedge} 0.3103\right)^{*}\left((\mathrm{G} 133 / \mathrm{L} 122)^{\wedge}(-0.1566)\right)\right.$ $+\left(\left(\text { G } 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)^{\wedge} 0.06609\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G140
 Put "n Into I 140
\{W case\}
Put ${ }^{n}=\left(-122.9+(5.155 E-4)^{*} \mathrm{C} 128+\right.$
(6.142E-6) $\left.{ }^{\star}\left((\mathrm{Gl} 133 / \mathrm{L} 122)^{\wedge} 0.8250\right)^{*}\left(\mathrm{C} 126^{\wedge} 0.7722\right)^{\star}\left(\mathrm{C} 128^{\wedge} 0.1108\right)^{*}\left(\mathrm{C} 130^{\wedge} 1.869\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G141

Put " $=$ If(G141<2720*L123,"note 3"n, If (G141>110000*L123, " note 4"n,909*L123))" Into H141
Put " Into 1141
\{W igniter\}
Put " $=\left(16.6+0.2810^{*}\left(\mathrm{C} 126^{\wedge} 0.1167\right)^{*}\left(\left(\mathrm{G} 129 /\left(\mathrm{L} 122^{*} \mathrm{~L} 122\right)\right)^{\wedge} 1.287\right)^{*}\left(\mathrm{C} 130^{\wedge}(-0.6164)\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G142

Put " ${ }^{\prime \prime}$ Into I 142
\{W nose cone\}
Put " $=\left(3395-2098^{\circ} \mathrm{C} 132-0.4705^{*}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)\right.$
$\left.+(2.533 \mathrm{E}-5)^{*}\left(\left((\mathrm{Cl} 30 / 2)^{*} \operatorname{SqRt}\left(\left((\operatorname{Cl} 30 / 2)^{\wedge} 2\right)+\left(\left(\mathrm{Cl} 32^{*} \mathrm{C} 130\right)^{\wedge} 2\right)\right)\right)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G143
Put "N/A" Into H143
Put " ${ }^{\text {I }}$ Into 1143
\{W external Insulation\}
Put " $=\left(87+0.7243^{*} \mathrm{C} 130+0.1071^{*}\left((\mathrm{C} 130 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{n}$ Into G144
Put "N/A" Into H144
Put " ${ }^{\text {" }}$ Into 1144
\{W fwd skirt \& attach\}
Put " $=\left(\operatorname{Exp}\left(2.095+0.05276^{*} \mathrm{C} 130-0.0000846^{*} \mathrm{C} 130^{*} \mathrm{C} 1301\right)^{*} \mathrm{~L} 123^{\prime \prime}\right.$ Into G 145
Put "N/A" Into H145
Put "" Into 1145
\{W aft skirt \& attach\}
Put " $=\left(\operatorname{Exp}\left(2.89+0.06343^{*} \mathrm{C} 130-0.00012^{*} \mathrm{C} 130^{*} \mathrm{C} 130\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G 146
Put "N/A" Into H146
Put " " Into I 146
\{W separation system\}
Put " $=0.0011208^{*}$ G $149^{\prime \prime}$ Into G147
Put "N/A" Into H147
Put "n Into I 147
\{W misc $\}$
Put ${ }^{n}=\left(-1039-0.00204^{*}(\mathrm{G149} / \mathrm{L} 123)+2.854^{*}((\mathrm{G} 133+\mathrm{G} 135) / \mathrm{L} 122)+0.07885^{*}\left((\mathrm{Cl} 130 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 123^{\prime \prime}$ Into G14
Put "N/A" Into H148
Put " ${ }^{\text {Into }} 1148$
\{W SR\} ~
Put "=Sum(G138..G142)" Into G149

Put " " Into H149
Put "" Into 1149
\{W stage $\}$
Put "=Sum(G143..G148)" Into G150

Put " ${ }^{\text {" }}$ Into 1150
\{W SRB\}
Put " $=$ G149+G150" Into G151
Put " " Into H 151
Put " Into I 151
\{Videal\}
Put " $=\left(32.18^{*}(\text { G128/L125 })^{*} \mathrm{Ln}((\mathrm{C} 131+(G 151 / \mathrm{L} 123)) /(\mathrm{C} 131+(\mathrm{G} 151 / \mathrm{L} 123)-(\mathrm{G} 138 / \mathrm{L} 123)))^{*} \mathrm{~L} 124^{\prime \prime}\right.$ Into G15!
Put "N/A" Into H152
Put " ${ }^{\text {" Into } 1152}$
(Mass Fraction\}
Put " $=$ G138/G151" Into G153
Put "N/A" Into H 153
Put ${ }^{n "}$ Into 1153
\{(Impulse)sl\}

Put "" Into I 154
\{(Impulse)vac
Put " $=$ C 128^{*} C129*L126" Into G 155
Put "=If(G155<52000000*L126,"Note $3^{n n}$, If(G155>861000000*L126,"nNote 4"n."nn"))" Into H155
Put " ${ }^{\prime \prime}$ Into 1155

\{Load Notes\}

Put "Note 1:" Into A135
Put "Cases with L/D greater than 5.6" Into C135
Put "are difficult to wind w/o joints." Into C136
Put "Note 2:" Into A1 38
Put "MG propellant burn rates" Into C138
Put "(Rbo) are tallorable between" Into C139
Put "0.33 and 0.818 ips ." Into C140
Put "Note 3:" Into A142
Put "Data is being extrapolated" Into C142
Put "below range of regression." Into C143
Put "Note 4:" Into A145
Put "Data is being extrapolated" Into C145
Put "above range of regression." Into C146
Automatic Recalc
Invalidate Off

Ingredient	Weight Percent
Fuel Grain	
Escorez	60.0
HTPB	40.0
Oxidizer	
O_{2}	100.0

Figure 57. Nominal Composition of Hybrid Propellant

Exhaust Product	Mass Fraction $@ O / F=2.8$	Mass Fraction $@ O / F=1.8$
$\mathrm{CO}(\mathrm{g})$	0.2032	0.5632
$\mathrm{CO}_{2}(\mathrm{~g})$	0.5236	0.2591
$\mathrm{OH}(\mathrm{g})$	0.0155	0.0000
$\mathrm{H}(\mathrm{g})$	0.0003	0.0000
$\mathrm{H}_{2}(\mathrm{~g})$	0.0024	0.0224
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	0.2286	0.1536
$\mathrm{NO}(\mathrm{g})$	0.0004	0.0000
$\mathrm{~N}_{2}(\mathrm{~g})$	0.0011	0.0017
$\mathrm{O}_{1}(\mathrm{~g})$	0.0025	0.0000
$\mathrm{O}_{2}(\mathrm{~g})$	0.0224	0.0000

Figure 58. Theoretical Exhaust Products at 1,000 psi Chamber Pressure Expanded to 14.7 psi

Hybrid Propellant

Large Motors

23 March 1993

Note 1: Data is being extrapolated below range of regression.

Note 2: Data is being extrapolated above range of regression.

D nozzle exdt, in	132.8	N/A
(Isp)sl, sec-lbf/lbm	238.76	N/A
(Isp)vac, sec-lbf/lbm	284.48	1.9
(A throat)avg. $\mathrm{In}^{\wedge} \mathbf{2}$	1.765 .4	N/A
(R throat)avg, in	23.7	0.9
(Favg)al, lbf	- 1,063.817	N/A
(Favg)vac. lbf	1.267.506	N/A
L tank ac case, in	803.5	71
L/D case	4.91	N/A
L nozzle, in	125.7	53
D motor, in	163.5	3
Total Length, in	1.141 .9	N/A
W oxddizer, lbm	128.454	N/A
W fuel, lbm	71.363	N/A
W propellant, lbm	199.818	N/A
W nose cone, lbm	6.307 .4	N/A
W ext insul, lbm	921.5	N/A
W fwd skdrt. lbm	4.724	N/A
W aft skdrt. lbm	23.240	N/A
W separation, lbm	261	N/A
W misc, lbm	1.666	N/A
W HRM, lbm	232.514	
W stage, lbm	- 3.712E+04	
W HRB, lbm	- $2.696 \mathrm{E}+05$	
V ideal, ft/sec	- $1.568 \mathrm{E}+03$	N/A
Mass Fraction	- 8.594E-01	0.012
(Impulse)sl. lbf-sec	- $4.787 \mathrm{E}+07$	N/A
(Impulse)vac. lbf-sec	- 5.704E+07	N/A

Figure 59. Printed Output - "Report" English Units
Figure 60. Printed Output - "Briefing" - Metric Units

Figure 61. Equations for Hybrid Rocket Booster Model

Equations for Stage Components

Variable to be

Calculated Equation

Nose Cone Weight, lbm

$$
W_{\text {Nose Cone }}=3395-2098 N_{l / d}-0.4705\left(D_{c} / 2\right)^{2}+2.533 \times 10^{-5}\left\{\left(D_{c} / 2\right) \sqrt{\left(D_{c} / 2\right)^{2}+\left(N_{l / d} D_{c}\right)^{2}}\right\}^{2}
$$

External Insulation Weight, lbm

$$
W_{E x \text { ilnsulation }}=87+0.7243 D_{c}+0.1071\left(D_{c} / 2\right)^{2}
$$

Fwd Skirt and Attach Weight, lbm

$$
W_{F w d S k l \pi}=e^{\left(2.095+0.05276 D_{c}-0.0000846 D_{c}^{2}\right)}
$$

Aft Skirt and Attach Weight, lbm

$$
W_{A f i S k i r}=e^{\left(2.89+0.06343 D_{c}-0.00012 D_{c}^{2}\right)}
$$

Separation System Weight, lbm

$$
W_{\text {Separation }}=0.0011208 W_{s m}
$$

Misc Weight, lbm

$$
W_{m i s c}=-1039-0.00204 W_{s r m}+2.854 L_{\text {case \& nozzle }}+0.07885\left(D_{c} / 2\right)^{2}
$$

Large Hybrid Motor Design Equations

Figure 62. Script for Hybrid Rocket Booster Model

Invalidate On

Manual Recalc
Select Range A422
Window Scale 65\%
\{Titles and dates\}
Put " Large Motors" Into A408
Put "Hybrid Propellants" Into C408
Put "23 March 1993" Into A409
\{Initial Independent Variable Setup\}
Put 500 Into C411 \{Meop, psia\}
Put 8 Into C412 \{Intilial Area Ratio, E1\}
Put 1267506 Into C413
Put 45 Into C414
Put 1.3 Into C415
Put 0.2 Into C416
Put 1.8 Into C417
\{(Favg)vac, lbf\}

Put 1000000 Into C418
\{Burn Time, Tb, seconds\}
\{Nose Cone Length/Diameter\}
\{Max Oxidizer Flux\}
\{Average Oxdizer/Fuel Ratio, O/F\}
\{Push Weight, lbm\}
\{Load Range Information\}
Put "500 To 1500" Into D4 11
Put "8 To 20" Into D4 12
Put " 280 K To 21 M " Into D4 13
Put "45 To 200" Into D4 14
Put "0.2 To 1.0" Into D416
Put " 1.8 To 2.8" Into D417
\{Load Range Limit Checks\}
Put " $=$ If $(\mathrm{C} 411<500,1,0)^{\text {n }}$ Into K4 11
Put " $=$ If $(C 411>1500,1,0)$ " Into K4 12
Put " $=$ If (C4 $12<8,1,0$)" Into K4 13
Put " $=$ If $(C 412>20,1,0)$ " Into K4 14
Put " $=$ If (C4 $13<280000,1,0$)" Into K4 15
Put " $=$ If (C4 $13>21000000,1,0$)" Into K4 16
Put " $=$ If (C414<45, 1,0)" Into K4 17
Put " $=$ If (C4 $14>200,1,0$)" Into K4 18
Put " $=$ If (C4 $16<0.2,1.0$)" Into K4 19
Put " $=$ If (C416>1.0, 1,0)" Into K420
Put "=If (C417<1.8, 1,0)" Into K42 1
Put "=If (C4 $17>2.8,1,0$)" Into K422
\{Load Results Formulas, RMSE and correlation limits, and percent error\}
(D nozzle exit\}
Put " $\left.\left.=\left(2^{*} \mathrm{SqRt}\left(\left((\mathrm{G} 415 / \mathrm{L} 402)-0.005^{*} \mathrm{C} 414\right)^{\wedge}\right)^{*}\right)^{*} \mathrm{C} 412\right)\right)^{*} \mathrm{~L} 402^{\prime \prime}$ Into G411
Put "N/A" Into H411

Put " ${ }^{\prime \prime}$ Into 1411
\{(Isp)vac\}
Put " $=\mathrm{LN}\left(\left(\mathrm{C} 413^{\wedge} 0.1414\right)^{*}\left(\mathrm{C4} 12^{\wedge} 3.938\right)^{*}\left(\mathrm{C} 417^{\wedge} 3.685\right)^{*}\left(\mathrm{C4} 14^{\wedge}(-0.2526)\right)\right)^{\text {" }}$ Into M413
Put " $=\left(314.4-8.242^{*} \text { M412+0.4932*M413*M413 }\right)^{*}$ L405" Into G413
Put " $=$ Iff G413<280.3*L405," "Note $1^{n n}$.If(G4 13>317.8*L405,"Note 2"n, 1.9*L405))" Into H4 13
Put " Into 1413
\{(Isp)sl\}
Put ${ }^{n}=(($ G4 13*G416)/(C413*L406))" Into G412
Put "N/A" Into H4 12
Put " ${ }^{\prime \prime}$ Into 1412
\{(R throat)avg\}
Put " $=\left(1.266+\left(0.3718^{*} \mathrm{C} 411^{\wedge}(-0.5035)\right)^{*}\left(\mathrm{C} 413^{\wedge} 0.5123\right)^{*} \mathrm{C} 414^{\wedge} 0.007919\right)^{*}$ L402" Into G4 15
Put "=If(G415<7.5*L402,"nNote $1^{n n}$.If(G415>93.9*L402,"nNote $2^{n "}, 0.9^{*}$ L402))" Into H4 15
Put " " Into 1415
\{(A throat)avg\}
Put " $=3.141593^{*}$ G4 15*G415" Into G414
Put "N/A" Into H414
Put " " Into 1414
((Favg)sl\}
Put " $=\left(\mathrm{C} 413-11.54535^{*} \mathrm{G} 411^{*} \mathrm{G} 411 /\left(\mathrm{L} 402^{*} \mathrm{~L} 402\right)\right)^{*} \mathrm{~L} 406^{\prime \prime}$ Into G416
Put "N/A" Into H4 16
Put " ${ }^{\prime \prime}$ Into 1416
\{(Favg)vac $\}$
Put " $=$ C4 13* $\mathrm{L} 406^{n}$ Into G417
Put "N/A" Into H4 17
Put " ${ }^{\text {I }}$ Into 1417
\{L tank \& case\}
Put " $=\left(16.7+2.86^{*}\left(\mathrm{C} 416^{\wedge} 0.1767\right)^{\star}\left(\mathrm{C} 413^{\wedge} 0.4396\right)^{\star}\left(\mathrm{C} 414^{\wedge} 0.4159\right)^{*}\left((\mathrm{G} 421 / \mathrm{L} 402)^{\wedge}(-0.3175)\right)\right.$
(C4 $\left.\left.11^{\wedge}(-0.002468)\right)^{}\left(C 417^{\wedge}(-0.3836)\right)\right)^{*}$ L402" Into G4 18

Put "n Into 1418
\{L/D case)
Put "=G418/G421" Into G419
Put "N/A" Into H419
Put " ${ }^{\prime \prime}$ Into 1419
\{L nozzle\}
Put " $=\left(\mathrm{C} 412^{\wedge} 0.1327\right)^{*}\left((\mathrm{G} 415 / \mathrm{L} 402)^{\wedge} 1.568\right)^{*}\left(\mathrm{C} 413^{\wedge}(-0.6560)\right)^{*}\left(\mathrm{C} 411^{\wedge} 0.6478\right)^{\prime \prime}$ Into M420
Put " $=\left(190.1-294.4^{*}\right.$ M420-205.3*M420*M420+407.9*M420^3)* L402" Into G420

Put " ${ }^{\text {n }}$ Into 1420
\{D motor\}
Put " $=\left(\mathrm{C} 413^{\wedge} 0.5991\right)^{*}\left(\mathrm{C} 416^{\wedge}(-0.4856)\right)^{*}\left(\mathrm{C} 414^{\wedge} 0.1652\right)^{\prime \prime}$ Into M421
Put " $=\left(59.8+0.005607^{*}\right.$ M421-1.136E-9*(M421*M421) ${ }^{*}$ L402" Into 6421
Put "=If(G421<84*L402."nNote $1^{n n}$.If(G42 1>636*L402,"nNote $2^{n n}, 3^{*}$ L402))" Into H421
Put "" Into 1421
\{Total Length\}
Put " $=\mathbf{G 4 2 0}+\mathrm{G} 418+\mathrm{C} 45^{*} \mathrm{G} 421^{\text {" }}$ Into G 422
Put "N/A" Into H422
Put " ${ }^{\text {" }}$ Into 1422
\{W oxidizer\}
Put "=G424*C417" Into G423
Put "N/A" Into H423
Put " ${ }^{\text {n }}$ Into 1423
\{W fuel $\}$
Put " $=\left(0.9966^{*} \mathrm{C} 413^{*} \mathrm{C} 414 /\left((\mathrm{G413} / \mathrm{L} 405)^{*}(1+\mathrm{C} 417) \mathrm{)}\right)^{*} \mathrm{~L} 403^{n}\right.$ Into $\mathrm{G424}$
Put "N/A" Into H424
Put " ${ }^{\text {N }}$ Into 1424
\{W propellant $\}$
Put " $=\mathbf{G} 423+G 424$ " Into G425
Put "N/A" Into H425
Put " ${ }^{\prime \prime}$ Into 1425
\{W nose cone\}
Put "=(G421/L402)" Into M426
Put $"=\left(3395-2098^{\circ} \mathrm{C} 415-0.4705^{*}\left((\mathrm{M} 426 / 2)^{\wedge} 2\right)\right.$ $\left.+(2.533 \mathrm{E}-5)^{*}\left(\left((\mathrm{M} 426 / 2)^{*} \operatorname{SqRt}\left(\left((\mathrm{M} 426 / 2)^{\wedge} 2\right)+\left(\left(C 415^{*} \mathrm{M} 426\right)^{\wedge} 2\right)\right)\right)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 403^{\text {n }}$ Into G 426
Put "N/A" Into H426
Put "" Into 1426
\{W external Insulation\}
Put " $=\left(87+0.7243^{*} \mathrm{M} 426+0.1071^{*}\left((\mathrm{M} 426 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 403^{n}$ Into G427
Put "N/A" Into H427
Put "" Into 1427
(W fwd skirt \& attach\}
Put " $=\left(\operatorname{Exp}\left(2.095+0.05276^{*} \mathrm{M} 426-0.0000846^{*} \mathrm{M} 426^{*} \mathrm{M} 426\right)\right)^{*} \mathrm{L403}{ }^{\prime \prime}$ Into G 428
Put "N/A" Into H428
Put "" Into 1428
[W aft skirt \& attach\}
Put " $=\left(\operatorname{Exp}\left(2.89+0.06343^{*} \mathrm{M} 426-0.00012^{*} \mathrm{M} 426^{*} \mathrm{M} 426\right)\right)^{*} \mathrm{~L} 403^{n}$ Into G429
Put "N/A" Into H429
Put " ${ }^{n}$ Into 1429
(W separation system)
Put " $=0.0011208^{*}$ G432" Into G430
Put "N/A" Into H430
Put " Into I430
\{W misc \}
Put " $=\left(-1039-0.00204^{*}(G 432 / L 403)+2.854^{*}((G 418+G 420) / L 402)+0.07885^{*}\left((\mathrm{M} 426 / 2)^{\wedge} 2\right)\right)^{*} \mathrm{~L} 403^{\prime \prime}$ Into G 4 \&
Put "N/A" Into H431
Put "" Intol431
(W HRM)
Put "=G425/G436" Into G432
Put "" Into H432
Put " ${ }^{\text {I Into }} \mathbf{I} 432$
[W stage\}
Put " $=$ Sum(G426..G431)" Into G433

Put "n Into 1433
\{W HRB\}
Put " $=\mathbf{G 4 3 2 + G 4 3 3 "}$ Into G434
Put ${ }^{n n}$ Into H434
Put " ${ }^{\text {I Into }} 1434$
\{V ideal\}
Put "=(32.18*(G413/L405)*Ln((C418+(G434/L403))/(C418+(G434/L403)-(G425/L403))))*L404"Into G43!
Put "N/A" Into H435
Put " ${ }^{\text {" Into }} 1435$
(Mass Fraction\}
Put ${ }^{\prime}=\left(C 411^{\wedge}(-0.01183)\right)^{*}\left(C 412^{\wedge}(-0.001051)\right)^{*}\left(C 416^{\wedge} 0.002209\right)^{*}\left(C 417^{\wedge}(-0.003599)\right)$
(C414^0.004171)((G438/L406)^(-0.0007922))" Into M436
Put " $=-5.324+6.696^{*} \mathrm{M} 436-(0.7267 \mathrm{E}-6)^{*} \mathrm{M} 436^{*} \mathrm{M} 436^{\prime \prime}$ Into G436
Put " $=$ If(G436<0.73,"nNote 1 "n. If $G 436>0.91$,""Note $2^{n n}, 0.012$) $)^{n}$ Into H436
Put " ${ }^{\text {n }}$ Into 1436
((Impulse)sl\}
Put "=G416*C414" Into G437
Put "N/A" Into H437
Put "" Into 1437
\{(Impulse)vac\}
Put ${ }^{n}=\mathrm{C} 413^{*} \mathrm{C} 414^{*}$ L406" Into G438
Put "N/A" Into H438
Put "n Into 1438
\{Load Notes\}
Put "Note 1:" Into A423
Put "Data is being extrapolated" Into C423
Put "below range of regression." Into C424
Put "Note 2:" Into A426
Put "Data is being extrapolated" Into C426
Put "above range of regression." Into C427

Automatic Recalc
Invalidate Off

Figure 63. Printed Output - "Report" - English Units - LOX/H2
Liquid Engines

Liquid Engines	LOX/RP	26 January 1993	
Independent Terms	Value	Lil Valid Range	
Parameters Area Ratio of Nozzle Attachment Nozzle Percent Length. \% Gimbal Angle, degrees C* Effictency Fuel Inlet Enthalpy, kcal/mole	$\begin{array}{r} 2.020 .700 \\ 1,161.0 \\ 2.270 \\ 16.0 \\ \\ 10.0 \\ 80.3 \\ 8.4 \\ 0.93930 \\ -5.570 \end{array}$	$\begin{array}{r} 500 \text { to } 3.000 \\ 500 \text { to } 2.000 \\ 1.5 \text { to } 5 \\ 10 \text { to } 400 \\ 70 \text { to } 140 \\ 0 \text { to } 15 \\ 0.85 \text { to } 0.999 \\ -5.658 \text { to }-1.682 \end{array}$	
Performance	- Value	Dimensions .	Value
Vacuum Thrust, klbf Vacuum Isp, sec-lbf/lbm SL Thrust, klbf SL Isp, sec-lbf/lbm ODE C-Star, $\mathrm{ft} / \mathrm{sec}$ L-Star, in ODE Isp, sec-lbf/lbm Energy Release Effictency Kinetic Efficiency Divergence Effictency Boundary Layer Efficlency Engine Efficiency	$\begin{array}{r} 2.020 .700 \\ 303.10 \\ 1,799.811 \\ 269.70 \\ 5.949 .15 \\ 46.71 \\ 337.15 \\ 093930 \end{array}$	Throat Diameter, in Throat Area, in^2 Chamber Length, in Nozzle Exdt Diameter, in Engine Dlameter, in Nozzle Length, in Engine Length. in	34.6 939.4 39.4 138.3 143.5 155.5 220.4
	0.99796	Weights, 1 lbm	Value
			4.488 .5
	0.99210	Thrust Chamber	8,507.0
	0.92240	Engine Mount	467.0
		Oxidizer System	552.0
		Fuel System Purge System	642.4 38.4
		Controls (Hydraulic)	193.3
		Controls (Electrical)	84.6
		Gimbal System Supply	179.4
		Gas Generator System	341.2
		Exhaust System	1.261 .6
		Flight Instrumentation	145.1
		Interface System	542.3
		Pressurization System	1,030.0
		Insulation - Permanent	71.5
		Thermal Insulation Set	1.182 .5
		Total Dry Weight	19,875.8

Figure 65. Printed Output - "Report" - English Units - LOX/RP

Nuclear Engine Weight, Envelope and Performance Function
(NERVA Derived Priamatic Core)

Thrust/Weight Ratio 5.25

Figure 67. Sample Output of Nuclear Thermal Rocket Model

Propulsion System

Database Figures

Figure 68. Propulsion System Database Opening Screen

	Summary of Propulsion Systems			
	Engine Name	Acronym	Engine Class	
1	Space Transportation Main Engine	STME	Cryogenic Liquid	
2	F-1	F-1	Hydrocarbon Liquid	
3	F-1A	F-1A	Hydrocarbon Liquid	
4	J-2	J-2	Cryogenic Liquid	
5	Simplified, High Performance J-2	J-2S	Cryogenic Liquid	
6	Space Shuttle Main Engine	SSME	Cryogenic Liquid	
7	RD-170	RD-170 (Russian Designation 11D521)	Hydrocarbon Liquid	
8	Integrated Modular Engine	IME	Cryogenic Liquid	
9	Space Shuttle Redesigned Solid Rocket Motor	RSRM	Solid Fuel	
10	Nuclear Thermal Rocket, NERVA Derivative	NTRND	Nuclear Thermal	

Liquids	ports	
March 30, 1933	Engine Bricfing Charts	
Background Data	Propulston Element Data \bullet Chart *1 \bullet \bullet Chart *3 \bullet Chart *2 \bullet Chart *4	$\begin{aligned} & \bullet \text { Chart *5 } \\ & \bullet \text { - Chart * } 6 \\ & \hline \end{aligned}$
- Propulsion System Basic Information - Engine Performance Report \#1	- Backgroumd Data	
	- Startup Sequence	
Engine Pertormance Report	- Stuttown Sequenco	
tart UPShuntiown Sequen	- Interfice Chart	
- Start-Up/Shutdown Profile \#1	- Engine Technology Development	
- Start-UpShutdown Profile 12	- Advanced Development Plan	
- Intertace Report	- Throst StartapSShutdown Profile	
- Engine Technology Development	- Specific Impulse StartupSthutdown Profile	
- Advanced Development Plan	- Misture Ratio StartupShutdown Profile	
- Engine Plcture/Basic Data	- Mnes Flow StartupShutdown Profile	
- Engine Drawing	- Engine Pictureßasic Data	
- Engine Balance	- Engine Drawing	
	- Engine Balance	

Figure 71. Reports Available for Each Propulsion System

Figure 72. Typical Report Page Layout

Figure 73.

Output for Space Transportation Main Engine (STME) Propulsion System

Advanced Propulsion Subsystem Concepts Database

Engine Name: Space Transportation Main Engine

Class of Engine: Cryogenic Liquid
Chemical

Background

The STME was designed to support propulsion requirements of the National Launch System (NLS). The NLS concept provides a lift capacity for a family of launch vehicles with a wide range of payload sizes (approximately $20,000 \mathrm{lbs}$ and above) and missions. NLS family members may consist entirely of liquid propulsion units or combinations of liquid units and solid rocket motors.

The STME is capable of operating in either a NLS booster or core propulsion application. In either mode, the STME starts prior to vehicle liftoff. In the booster mode, the operation of some STME's will be terminated and detached from the vehicle with other elements while other STME's continue to operate.

In the core mode, the STME will continue to operate after booster (solid or liquid) separation until orbital (or near orbital) conditions are reached.

The STME is a pump fed liquid oxygen and liquid hydrogen engine that has been designed for high reliability and low cost. It employs a gas generator power cycle to drive separate LO2 and LH2 turbopump assemblies. Gas generator propellants are tapped-off the engine propellant system and burned to provide fuel rich gas to drive the turbines. Turbine exhaust gas is used to cool the engine nozzle extension. The engine is capable of operating at two discrete thrust levels, 100% and 70%. Engine start is accomplished by use of vehicle propellant tank head pressures. No helium spin start or solid start cartridge is required. The engine provides oxygen and hydrogen gases for propellant tank pressurization.

Comments

References STME Technical Information Document, 6 Jan 1993; ICD, Working Draft, Attachment J-3, 18 Sept 1992;
 Source: \quad STME Technical Information Document, 6 Ja /D, Revision 10, Attachment J-2, 26 May 1992
 Draft Contract End Item Specification, Phase C/D, Revision 10, Atachment J-2, 26 May 1992

Date:
Entered as of 31 March 1993
Entered by: Dan Levack

Propulsion System General Data

Thrust	Sea Level	Yacuum
NomInal	552,980	650,000
Maximum		
Minimum	357,980	455,000

March 31, 1993
Engine Performance 2

Engine Name: Space Transportation Main Engine
Class of Engine: Cryogenic Liquid Chemical

Envelope Dimensions in Inches

March 18, 1993 Start-Up/Shutdown Sequences

Engine Name: Space Transportation Main Engine

Class of Engine: Cryogenic Liquid Chemical

Shutdown Sequence

March 18, 1993
 Start-Up/Shutdown Profiles

Engine Name: Space Transportation Main Engine

Class of Engine: Cryogenic Liquid
Chemical

Flowrate Profile

March 18, $1993 \quad$ Start-Up/Shutdown Profiles

Engine Name: Space Transportation Main Engine
Class of Englne: Cryogenic Liquid
Chemical

Engine Name: Space Transportation Main Engine
Class of Engine: Cryogenic Liquid

March 18, 1993

Engine Name:
Space Transportation Main Engine
Class of Englne:
Cryogenic Liquid
Chemical

Technology Development

Advanced Development Plan

Engine Name: Space Transportation Main Engine
Class of Engine: Cryogenic Liquid
Chemical

Figure 74.

Output for F-1 Propulsion System

Propulsion System F-1
Advanced Propulsion Subsystem Concepts Database

Advanced Propulsion Subsystem Concepts Database

Engine Name: F-1

Class of Engine: Hydrocarbon Liquid

Chemical

Background

The F-1 rocket engine development was initiated at Rocketdyne in January 1959 under the direction of NASA, MSFC. The F-1 was developed to provide the power for the booster flight phase of the Saturn V vehicle. A cluster of five engines provided $7,610,000$ lbs. of thrust in the first stage. Sixty-five engines were flown on 13 Saturn V missions between 1967 and 1973 with 100 percent success. A total of 98 production engines were delivered.

The F-1 is a single-start, fixed-thrust, liquid-bipropellant engine, calibrated to operate at a sea level thrust of $1,522,000$ pounds and 2.27:1 mixture ratio, providing a specific impulse of 265.4 seconds. The engine is a relatively simple design using liquid oxygen and RP-1 (rocket grade of kerosene) for propellants. The engine design is suitable in a single or multi-engine installation. Although engine application was for only one flight, qualification requirements were established and demonstrated at 20 starts for a total of $\mathbf{2 , 2 5 0}$ seconds.

The engine features a two-piece thrust chamber that is tubular-walled and regeneratively cooled to the $10: 1$ expansion ratio plane, and double-walled and cooled with turbine exhaust gas to the $16: 1$ expansion ratio plane; a thrust chamber mounted turbopump that has two centrifugal pumps spline-connected on a single shaft driven by a two-stage, direct drive turbine; one-piece rigid propellant ducts that are used in pairs to direct the fuel and oxidizer to the thrust chamber; and a hypergolic fluid cartridge that is used for thrust chamber ignition. Power for the turbopump is supplied by a bipropellant gas generator system which burns high pressure fuel and oxidizer from the turbopump to drive the turbine. Turbine exhaust gas, prior to cooling the thrust chamber nozzle extension, is directed to a heat exchanger which conditions vehicle tank pressurants (oxygen for oxidizer tank and helium for the fuel tank). Thrust vector changes are achieved by gimbaling the entire engine. The gimbal block is located on the thrust chamber dome, and actuator attach points are provided by two outriggers on the thrust chamber body. The RP-1 fuel is used as the working fluid for the gimbal actuators, for the engine control system, and for the turbopump bearing lubricant.

The engine is started using a tank-head start with pressure-ladder sequence. Initially control pressure is supplied from the ground. Start is initiated by electrically firing the gas generator and nozzle extension pyrotechnic igniters and energizing the engine control valve start solenoid to open the main oxidizer valves and the gas generator valve. Propellants directed to the gas generator from the pump discharges (initially at tank head pressures) are combusted in the gas generator causing pump discharge pressures to increase. All subsequent start sequencing is accomplished by pressure actuated valves responding to build-up of fuel pump discharge pressure.
Engine cutoff is initiated electrically by energizing the engine control valve stop solenoid. This removes opening pressure and applies closing pressure to the propellant valves. When closing pressure is applied to the propellant valves, orifices in the control lines sequence the gas generator valve, oxidizer valves, and fuel valves closed, in that order.

Engine production was terminated in 1969.

[^1]
Propulsion System General Data

Engine Performance 1

Engine Name: F-1
Class of Engine: Hydrocarbon Liquid

Engine Performance 2

Engine Name: F-1

Class of Engine: Hydrocarbon Liquid
Chemical

Engine Mass (lbm)	
Total Mass w/TVC	\square
Total Mass wo/TVC	\square

$\left[\begin{array}{ll}\text { TVCm } & \\ \text { Method } & \text { Gimbal } \\ \text { Mass (Ibm) } & \square \\ \text { Max Glmbal Angle (deg) } & \square \\ \text { Max Gimbal Rate (deg/s) } & \square\end{array}\right.$

Engine Component Masses

	8.508.8
Thruet Chamber	467.0
Ondizer 3yutem	052.0
Fued Syptem	642.4
Purter Syuert	38.3
Controle (tydrault)	84.8
Controie (Elecrica)	179.5
Oes Oenerator Svetem	341.0
Erhamet Srutar	903.7
Fint kiatrumentasion	148.8
interten y y yotem	648.3
Preveurtanion symeen	1,050.0
Inculation - Perruanant	
Tharmal moutution set	
Total Dry Weidht	18.812 .2

February 20, 1993 Start-Up/Shutdown Sequences

Engine Name:
Class of Engine:
Hydrocarbon Liquid

Chemical

Shutdown Sequence

February 20, 1993 Start-Up/Shutdown Profiles

```
Engine Name: F-1
```

Class of Engine: Hydrocarbon Llquid

```
Chemical
```


Flowrate Profile

February 20, 1993
Start-Up/Shutdown Profiles

Engine Name: F-1

Class of Englne: Hydrocarbon Liquid
Chemical

Isp Profile

-ses level

Mixture Ratio Profile

Engine Name: F-1
Class of Englne: Hydrocarbon Liquid
Chemical

February 20, 1993
Technology Development

Engine Name:
F-1
Class of Engine:
Hydrocarbon Liquid
Chemical
\square
Class of Engine: Hydrocarbon Liquid
Chemical

Figure 75.

Output for F-1A Propulsion System

Propulsion System F-1A

Advanced Propulsion Subsystem Concepts Database

Engine Name: F-1A

Class of Engine: Hydrocarbon Liquid Chemical

Background

The F-1A engine is an uprated version of the F-1 engine originally used as the first-stage booster propulsion system for the Saturn V launch vehicle. The engine produces a sea level thrust of $1,800,000$ pounds vs. $1,522,00$ for the F-1. Functionally, the engine is identical to the F-1. Refer to the F-1 background information sheet for a general description of the engine configuration and operation.

During the late 1960's the F-1 engine development program was actively pursuing upgrades and improvements on the flight-certified production engine. The most significant improvement was to the Mark 10 turbopump. Pump design modifications included reducing the turbine diameter from 35 to 30 inches, material changes to improve producibility and structural improvements to permit operation at higher power levels. These changes gathered over 15,000 seconds of test maturity in both component and engine tests. A $1,800,000$ pound sea level thrust capability was demonstrated on two F-1A configuration development engines using the improved turbopump (Mark 10A).

Step throttling of the engine from $1,800 \mathrm{~K}$ to $1,350 \mathrm{~K}$ and a condition monitoring system (CMS) are options which can be provided with the engine. CMS would enable holddown/shutdown capability on the launch pad and, dependent on vehicle configuration and mission requirements, engine out capability.

A NASA-MSFC funded study in 1992 concluded F-1A production could readily be restarted (at substantially less cost than a new center line engine) using "state-of-the-practice" manufacturing processes. Five spare F-1 flight engines in bonded storage at the Michaud Assembly Facility could be converted to the F 1A configuration to be used as "pathfinders" for assembly and test stand activation. Engine test facilities capable of testing the F-1A engine exist at USAF Phillips Lab in California; NASA's Marshall Space Flight Center in Huntsville, Alabama; and at Stennis Space Center in Mississippi.

[^2]March 30, 1993

Propulsion System General Data

Thrust	Sea_Level	Vacuum
Nominal	1,800,001	2,020,700
Maximum		
Minimum	1,350,001	1,570,700

March 13, 1993
 Engine Performance 1

Envelope Dimensions In Inches

Engine Component Masses

Tursepillip Mid mount	. 8.5888 .6
Thrusi Chamber	. 407.0
Oxalime System	652.0
Fual symem	642.4
Purse Syatemm	193.2
Controle (Avirauke)	84.8
Oumbal Symeera Supply	179.5
Oees Oenperstor Sviten	341.0
Exhnuat Svater	1.281 .8
Finit inatrumentation	84.0
Intertece Syotem	54.3
Premeurisation Syatam,	1.030 .0
Insulation - Permanent	1.182 .4
Total Dry Wetoht	19.875.4

February 20, 1993 Start-Up/Shutdown Sequences

Engine Name:
F-1A
Class of Engine:
Hydrocarbon Liquid

Chemical

Shutdown Sequence

February 20, 1993 Start-Up/Shutdown Profiles

Englne Name: \quad F-1A
Class of Engine: Hydrocarbon Liquid
Chemical

Flowrate Profile

February 20, 1993 Start-Up/Shutdown Profiles

Engine Name: F-1A
Class of Engine: Hydrocarbon Liquid
Chemical

Engine Name: F-1A

Class of Engine: Hydrocarbon Liquid

\square

February 20, 1993

Engine Name:
F-1A
Class of Engine:
Hydrocarbon Liquid
Chemical

- Technology Development

Advanced Development Plan

Figure 76.

Output for J-2 Propulsion System

O
$\stackrel{0}{8}$
$\underset{8}{+}$

Propulsion System

Nominal Thrust (lbf)

- Sea Level

Specific Impulse (sec)
$\begin{aligned} & \text { Sea Level } \\ & \text { Vacuum }\end{aligned}$
(e!sd) oınssadd дəqueपכ (Nozzle Stagnation)

Engine Mixture Ratio
Expansion Ratio
Length (in)
Weight (lbm)
-
-
-
-
-

March 7, 1993

Englne Name: J-2

Class of Engine: Cryogenic Liquid

Chemical

Background

The J-2 engine was developed to provide the power for the SIVB stage of the Saturn IB vehicle and for the SII and SIVB stages of the Saturn V vehicle.

The $\mathrm{J}-2$ rocket engine is a high-performance, multiple-restart engine that uses liquid oxygen for oxidizer and liquid hydrogen for fuel. Each propellant is pumped into the thrust chamber by separate gas-turbine-driven, direct-drive turbopumps. The two turbopumps are powered in series by a single gas generator that uses the same propellants as the thrust chamber. The thrust chamber is tubular-walled and is regeneratively cooled by circulating fuel through the tubes before the fuel is injected into the combustion area. The engine has a refillable start tank from which pressurized gaseous hydrogen is routed to the turbopump turbines for starting the engine. This feature, combined with the augmented spark ignition system, makes the J 2 a multi-start engine.

The J-2 engine envelope is 80.75 inches in diameter and 133 inches long and the engine weighs approximately 3,492 pounds dry. Thrust vector control is achieved by gimbaling the entire engine. The gimbal is installed at the center of the thrust chamber injector dome, and gimbal actuator attach points are located on the thrust chamber body. The rocket engine comprises the propellant feed system, gas generating system, start system, ignition n system, control system, purge system, and the flight instrumentation system.

Comments

No Comments.

References Technical Data J-2 Rocket Engine, Change No. 12 (R-3825-1), Technical Data J-2 Rocket Engine
Source: (R-3825-1A)

Date: 18 October 1972, 4 December 1973
Entered by: Dan Levack

March 30, 1993

Propulsion System General Data

March 13, 1993
Engine Performance 1

Engine Name: $\quad \mathrm{J}-2$	
Class of Engine: \quad Cryogenic Liquid	Chemical

Envelope Dimensions in inches

Engine Name: J-2
Class of Engine: Cryogenic Liquid
Chemical
$\boldsymbol{\Gamma}^{\text {StartUp Sequence }}$

Shutdown Sequence

Start-Up/Shutdown Profiles

Engine Name: J-2

Class of Engine: Cryogenic Llquid
Chemical

Thrust Profile

Flowrate Profile

Engine Name: J-2

Class of Engine: Cryogenic Liquid
Chemical

Mixture Ratio Profile

Engine Name: J-2
Class of EngIne: Cryogenic Liquid
Chemical

EngIne Name: J-2
Class of Engine: Cryogenic Liquid Chemical

Advanced Development Plan

Engine Name: J-2
Class of Englne: Cryogenic Liquid
Chemical

Figure 77.

Output for Simplified, High Performance J-2 (J-2S) Propulsion System

Advanced Propulsion Subsystem Concepts Database

Engine Name: Simplified, High Performance J-2

Class of Engine:

Cryogenic Liquid
Chemical

Background

The J-2S rocket engine development program was initiated at Rocketdyne in 1965 under the direction of the National Aeronautics and Space Administration, Marshall Space Flight Center. The J-2S is a simplified, higher thrust and performance version of the highly reliable J-2 engine. It uses liquid oxygen and liquid hydrogen for propellants.

The $\mathrm{J}-2 \mathrm{~S}$ is designed for use in a single or multi-engine installation. The engine is nominally calibrated to operate at a vacuum thrust of 265,000 pounds and $5.5: 1$ mixture ratio, providing a specific impulse of 436 seconds.

Engine mixture ratio can be controlled (inflight) from 4.5:1 to $6.0: 1$. Control is accomplished by by-passing liquid oxygen from the discharge side of the oxidizer turbopump to the inlet side through an electroservo actuated variable position valve.(i.e., the propellant utilization valve).

The thrust chamber is a tubular wall, regeneratively cooled design having a bell shaped nozzle with an expansion area ratio of 40:1. A gimbal bearing, attached to the thrust chamber assembly, provides a thrust vector control capability of 7.5 degrees.

The starting power for the turbopumps is provided by a solid propellant turbine starter (SPTS). Up to three SPTS units may be mounted on the engine to provide a multiple space re-start capability.

The engine has a pneumatic control system for valve actuation. The pneumatic supply (gaseous helium) is provided from an engine mounted tank. An electrical control system, which employs solid state logic elements, sequences the engine start and shutdown operations. The electrical power is stage supplied.

A heat exchanger mounted in the turbine exhaust duct can provide either heated helium or heated oxygen for oxidizer tank pressurization. Heated hydrogen, tapped-off from the thrust chamber fuel injection manifold, is available for fuel tank pressurization.

A 6:1 throttling capability has been demonstrated by regulating the tap-off turbine drive gases. Additional engine versatility can be achieved by operating in a low thrust, tank pressure-fed mode. This mode of operation may be used for on-orbit propulsive maneuvers, or pre-mainstage propellant settling.

The J-2S design life is 30 starts and 3,750 seconds duration. Engine testing has demonstrated operation of the engine for a greater total duration and a greater number of engine starts.

Comments

No Comments.

References J-2S Brochure (322-497T). The J-2 Rocket Engine (BC71-56), Unpublished Rocketdyne data
Source:

Date:
Entered by: J. A. McClanahan, Dan Levack

[| Engine Thrust Data, Ibf | Sea Level | Yacuum |
| :--- | :---: | :---: |
| Nominal | \square | |
| Maximum | $\square 96,903$ | \square |
| Minimum | | \square |
| | | \square |

Engine Name: Simplified, High Performance J-2
Class of Engine: Cryogenic Liquid Chemical

- Engine Component Masses

March 7, 1993

Start-Up/Shutdown Sequences

Engine Name: Simplified, High Performance J-2
Class of Engine: Cryogenic Lqquid Chemical
$\boldsymbol{\Gamma}^{\text {StartUp Sequence }}$

Shutdown Sequence

March 7, 1993
Start-Up/Shutdown Profiles

Engine Name: Simplified, High Performance J-2
Class of Engine: Cryogenic Liquid
Chemical

Thrust Profile

Flowrate Proflle

March 7, 1993 Start-Up/Shutdown Profiles

Engine Name: Simplified, High Performance J-2
Class of Engine: Cryogenic Liquid Chemical

Mixture Ratlo Proflle

Class of Engine: Cryogenic Liquid Chemical

Class of Engine: Cryogenic Liquid Chemical

Technology Development

March 7, $1993 \quad$ Advanced Development Plan

Engine Name: Simplified, High Performance J-2
Class of Engine: Cryogenic Liquid Chemical

Advanced Development Plan

Figure 78.

Output for Space Shuttle Main Engine (SSME) Propulsion System

88
80
1008
080

$0 G^{\circ} \angle L$
1.10 .9
$6 \angle 6^{\prime} 9$
$00 \div 891$
SSME Propulsion System

Advanced Propulsion Subsystem Concepts Database

Ci-3

February 22, 1993

Background Information

Engine Name: Space Shuttle Main Engine
Class of Engine: Cryogenic Liquid
Chemical

Background

The Space Shuttle Main Engines (SSME's) are reusable, high performance, liquid-propellant rocket engines with variable thrust. They are ignited on the ground at launch and operate in parallel with the solid rocket boosters during the initial ascent phase of the Space Transportation System, and continue to operate for a nominal 500 seconds total firing time. Each of the engines has an expansion ratio of 77.5:1 and operates at a mixture ratio of $6: 1$. The engines are continuously throttleable over a thrust range of 65 to 109 percent of the design thrust level (rated power level, RPL $-469,000 \mathrm{lbf}$ vacuum thrust). This provides a higher thrust level during lift-off and the initial ascent phase and allows orbiter accelerations and dynamic pressures to be kept within design limits. The engines are gimbaled to provide pitch, yaw and roll control during the orbiter boost phases. Gaseous hydrogen and oxygen are tapped off the engine for pressurizing the external tank.

A staged combustion power cycle coupled with high combustion chamber pressures is employed. In the SSME staged combustion cycle, propellants are partially burned at high pressure and relatively low temperature in the preburners, then completely burned at high temperature and pressure in the main chamber before expanding through the high area ratio nozzle. Hydrogen fuel is used to cool all combustion devices components which are directly exposed to high temperature combustion products. An electronic engine controller automatically performs checkout, start, mainstage, and engine shutdown functions.

Input Notes:

The performance characteristics given here are for the Flight-Phase II Configuration.
Demonstrated life - The number of seconds shown represent all the components except the high pressure fuel turbopump (HPFTP) and the high pressure oxidizer turbopump (HPOTP). The number is for the least demonstrated time among those components. For the HPFTP, 95% of the components have been demonstrated for 15,000 seconds and the rest for 10,000 seconds. For the HPOTP, 83% of the components have been demonstrated for 15,000 seconds and the rest for 10,000 seconds.

LPFTP - low pressure fuel turbopump
HPFTP - high pressure fuel turbopump
LPOTP - low pressure oxidizer turbopump
HPOTP - high pressure oxidizer turbopump
MFV - main fuel valve
MOV - main oxidizer valve
FPOV - fuel preburner oxidizer supply valve
OPOV - oxidizer preburner oxidizer supply valve
CCV - coolant control valve
FBV - fuel bypass valve
OBV - oxidizer bypass valve
MCC - main combustion chamber

- Comments

No Comments.

References
Source:
RI / RD87-142, CPIAM5 (Oct 1985), Space Shuttle Orbiter Vehicie/Main Engine Interface Control Document (ICD-13M15000, Rev. "V"), Space Shuttle Main Engine Pocket Data (RSS-8559-10.

Date:
6-1-1991,10/85,13 July 1989, 22 August 1984
Entered by: J. A. McClanahan, Dan Levack

March 30, 1993

Propulsion System General Data

Engine Name: \quad Space Shuttle Main Engine	
Class of Engine: \quad Cryogenic Liquid	Chemical

Oxidizer Liquid Oxygen		
Fuel Liquid Hydrogen		
Mixture Ratio - Englne/Thrust Chamber	6.011	6.034

February 22, $1993 \quad$ Engine Performance 2

EngIne Name: Space Shuttle Main Engine

Class of Engine: Cryogenic Liquid Chemical

Envelope Dimensions in Inches

February 20, 1993 Start-Up/Shutdown Sequences

Engine Name: Space Shuttle Main Engine

Class of Englne: Cryogenic Liquid
Chemical

StartUp Sequencerale
Shutdown Sequence.

February 22, 1993 Start-Up/Shutdown Profiles

Engine Name: Space Shuttle Main Engine

Class of Engine: Cryogenic Liquid
Chemical

February 22, 1993
Start-Up/Shutdown Profiles

Engine Name: Space Shuttle Main Engine
Class of Engine: Cryogenic Liquid

- Mixture Ratio Profile

February 22, 1993

Interfaces

Engine Name: Space Shuttle Main Engine
Class of Engine: Cryogenic Liquid

\square

EngIne Name: Space Shuttle Main Engine
Class of Engine: Cryogenic Liquid
Chemical

Figure 79.

Output for RD-170 Propulsion System

$1,630,545$
$1,776,926$
No

Advanced Propulsion Subsystem Concepts Database

Advanced Propulsion Subsystem Concepts Database

Engine Name: RD-170

Class of Engine: Hydrocarbon Liquid

Chemical

- Background

The RD-170 is the most powerful rocket engine currently in production anywhere in the world, and it is used as the strap-on booster on the Energyia heavy-lift launcher and (in the RD-171 variant) on the first stage of the Zenit launcher. It is a 4 -combustion chamber engine driven by a single turbopump assembly.

Engine development was started in 1976 and the first flight of the RD-171 occurred during the first launch of a Zenit booster in 1985. The first flight of the RD-170 occurred in May 1985 as the booster engine on Energiya.

The West is aware of two successful unmanned Energiya launches, and one flight failure of a Zenit launcher is known to have occurred in the fall of 1990 , which is believed to be related to a failure of the RD-171 engine.

Reference Sources:

1. "RD-170--Super Powered Liquid Propellant Rocket Engine of New Generation", by F. Chelkis, obtained September 1990.
2. "The RD-170 Liquid Rocket Engine", NPO Energomash publication, undated.
3. Letter, F. Chelkis to W. Ezell, August 28, 1991.
4. Technology Detail Special Report 2, "USSR Rocket Engines, second edition", January 1992, by Technology Detail, 99 Kingsway North, Clifton, York YO3 6JH, United Kingdom.

Comments

References
Source:
See "Engine Background"

Date:
Entered by:

March 30, 1993

Propulsion System General Data

Creatlon Date	Modification Date
$12 / 11 / 92$	

	Sea_Level	Vacuum
Nominal	1,630,545	1,776,926
Maximum	1,719,391	1,865,772
Minlmum	742,082	888,463

February 20, 1993

Engine Performance 2

$\left[\right.$| Envelope | | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Length | $\begin{array}{l}\text { Diameter } \\ \text { Nominal } \\ \text { Stowed } \\ \text { Extended } \\ \text { Maximum Gimbal }\end{array}$ | | | | \square | \square | \square |

February 20, 1993 Start-Up/Shutdown Sequences

Englne Name: RD-170

Class of Engine: Hydrocarbon Liquid Chemical
[StartUp Sequence~~

- Shutdown Sequence

February 20, 1993

```
Engine Name: RD-170
```

Class of Engine: Hydrocarbon Liquid
Chemical

Thrust Profilen

Flowrate Profile

February 20, 1993
Start-Up/Shutdown Profiles

Engine Name: RD-170
Class of Engine: Hydrocarbon Liquid

Mixture Ratio Profile

```
Engine Name: RD-170
```

Class of Engine: Hydrocarbon Liquid
Chemical

Class of Engine:

Engine Name: RD-170

Class of Engine: Hydrocarbon Liquid

Figure 80.

Output for Advanced LOX/H2 Engine (IME) Propulsion System

Propulsion System IME

Advanced Propulsion Subsystem Concepts Database

Engine Name: Integrated Modular Engine

Class of Engine: Cryogenic Liquid
Chemical

Background

An Integrated Modular Engine system design was developed which meets Air Force National Launch System Upper Stage design requirements. The resulting Integrated Modular Engine (IME) is a $30,000 \mathrm{lb}$ thrust LO2/LH2 propulsion system powered by a hybrid expander cycle using three bell thrust chambers and two turbopump sets. The modular design is adaptable to a wide range of applications via adding additional thrust chamber and turbopump modules. The propulsion system attributes include enhanced performance, operability, and reliability. Specific impulse performance is 480 seconds vacuum. Propulsion system launch operability is enhanced as the system requires loading only two fluids on the pad: LO2 and LH2. Reliability improvements include a simple design with no pneumatics, hydraulics or helium purges and a backup turbopump module. In addition, gaseous hydrogen and oxygen for tank pressurization could also be used to supply small GH2 and GO2 RCS thrusters, eliminating the need for a storable propellant (hydrazine) RCS system on the stage.

Quality Function Deployment methodology was used to refine propulsion requirements, evolve design strategies and develop an exceptionally capable propulsion system. The IME study identified technology programs, described risks and minimization via backup positions and presented a cost effective development program. Engine average unit cost is estimated to be about $\$ 2.6 \mathrm{M}$ and a development program cost is estimated to be about $\$ 45 \mathrm{M}$.

Comments

No Comments.

References Rl/RD92-134 (Operational Integrated Modular Engine Study)
Source:

Date:

March 30, 1993

Propulsion System General Data

Engine Performance 1

Engine Name: Integrated Modular Engine
 Class of Engine: Cryogenic Liquid Chemical

Envelope Dimensions in inches

Engine Component Masses			
Component Mass, Ibm			29
Thrust Chambers (3)	502	Preburner (2)	5
Turbomachinery - High Pressure (4)	102	GOX Heat Exchanger (2)	24
Turbomachinery - Low Pressure (4)	28	Controller	13
Propellant Valves, Ducts, Flanges	211	Harness and Sensors	14
External LH2 Feed Line	20	Ignition System	97
Thrust Mount Cap	3	Misc Components and Contingency	9

Engine Name: Integrated Modular Engine
Class of Engine: Cryogenic Liquid Chemical

Shutdown Sequence

March 7, 1993
 Start-Up/Shutdown Profiles

Engine Name: Integrated Modular Engine
Class of Engine: Cryogenic Liquid
Chemical

Thrust Profile
\square

March 7, 1993
Start-Up/Shutdown Profiles

Engine Name: Integrated Modular Engine
Class of Engine: Cryogenic Liquid
Chemical

Engine Name: Integrated Modular Engine
Class of Engine: Cryogenic Liquid

Interfaces
\square
\square
\square

LEGEND:	
\$ ${ }^{\text {c }}$	Phese NB
400	Pheme C/D
ATP	Authortity to Procesd

Class of Engine: Cryogenic Liquid Chemical

Advanced Development Plan

Figure 81.

Output for Space Shuttle Redesigned Solid Rocket Motor (RSRM) Propulsion System

下oid	No	$\stackrel{\overline{\mathbf{N}}}{\mathbf{L}}$	$\begin{aligned} & \text { + } \\ & \text { N్ } \end{aligned}$	$\underset{N}{N}$	$\stackrel{ \pm}{\square}$
${ }_{4}^{+1}$	N N				$\stackrel{\sim}{\sim}$
\cdots					

RSRM Propulsion System

-	Nominal Thrust (Ibf)
Sea Level	
Vacuum	
-	Specific Impulse (sec)
Sea Level	
Vacuum	
-	Chamber Pressure (psia)
-	Action Time
-	Expansion Ratio
-	Length (in)
-	Weight (lbm)

Engine Name: Space Shuttle Redesigned Solid Rocket Motor

Class of Engine: Solid Fuel
Chemical

Background

The original design and development of the SRM occurred during the mid-1970s and the first shuttle flight was in April 1981. Modifications were made to increase the performance in the early 1980s with the design referred to as the high performance motor (HPM). The final configuration of the HPM was first launched on the shuttle in August of 1983 (STS-8). The design presented here commenced in mid-1986 and is referred to as the RSRM. It first flew in 1988.

Marshall Space Flight Center (MSFC) has the overall management responsibility for the design and procurement of the solid rocket boosters (SRB). Thiokol Space Operations is the contractor responsible for the development and production of the SRMs, the major component of the SRB. United Space Boosters, Inc. (USBI), Sunnyvale, California, has responsibility for the SRB aft and forward skirt refurbishment and assembly, USBl also supplies systems tunnel floor plates, tunnel covers, and external tank (ET) attach ring, while the joint venture of Lockheed Space Operations Company (composed of Lockheed, Thiokol, and Grumman) has the contract for the SRM and SRB assembly, checkout, launch, recovery, and disassembly.

The two SRMs on the Space Shutte provide the main thrust to lift the vehicle off the pad and up to an altitude of about $150,000 \mathrm{ft}, 24 \mathrm{nmi}$ (28 mi). On the pad, the two SRBs support the entire weight of the ET and orbiter and transmit the weight load through their structure to the mobile launch platform. Each RSRM booster has a thrust (sea level) of 2.9 Mlb at launch. They are ignited after the three shuttle main engines total thrust level is verified. The two SRMs provide 71.4 percent of the thrust at liftoff and sccelerate the shuttle to approximately $3,100 \mathrm{mph}$ before separating from the remainder of the shuttle launch vehicle. SRB apogee occurs 75 sec after SRB separation, at an altitude of $220,000 \mathrm{ft}, \mathbf{3 5 \mathrm { nmi }}(\mathbf{4 1} \mathrm{mi})$ down range. SRB impact occurs in the ocean approximately $122 \mathrm{nmi}(141 \mathrm{mi})$ down range.

The SRMs are the largest solid propellant motors ever flown and the first designed for reuse. Each is 126.11 ft ($1,513.38 \mathrm{in}$.) long and 12.16 ft (146.08 in .) in diameter. At launch, each weighs $1,255,978 \mathrm{lb}$ of which 88 percent, $1,107.168 \mathrm{lb}$, is propellant. The boosters are designed to be used 20 times.

Primary elements of each booster are the motor (including case, propellant, igniter, and nozzle), structure, separation systems, operational flight instrumentation, recovery avionics, pyrotechnics, deceleration system, thrust vector control system, and range safety destruct system.

Each booster is attached to the ET at the SRB's aft frame by two lateral struts and a diagonal strut. The forward end of each SRB is attached to the ET at the forward end of the SRB forward skirt. On the launch pad, each booster also is attached to the mobile launch platform at the aft skint by four bolts which are severed by small explosives at liftoff.

The propellant mixture in each SRB motor consists of ammonium perchlorate (oxidizer, approximately 69.7 percent by weight), aluminum (fuel, 16 percent), iron oxide (a burn rate catalyst, approximately 0.3 percent), a polymer (a binder that holds the mixture together, 12.04 percent), and an epoxy curing agent (1.96 percent). The propellant is molded into an 11 -point star-shaped perforation in the forward portion of the forward segment that transitions into a cylindrical perforation (CP) grain in the aft portion of the forward segment. Each of the three aft segments have aft tapered CP grains. This configuration provides high thrust at ignition, then reduces the thrust by approximately one-third, 20 sec after liftoff to prevent overstressing of the vehicle during maximum dynamic pressure (Max Q).

Each RSRM is made up of four solid rocket motor casting segments. The segmented design provides maximum flexibility in RSRM fabrication, transportation, and handling. Each segment is shipped to the launch site on a heavy duty railcar with a specially built cover.

The nozzle expansion ratio of each booster is 7.72 :1. The moveable nozzle is gimbaled for thrust vector control (TVC) direction. Each SRB has its own redundant auxiliary power units and hydraulic pumps. The omnidirectional gimbaling capability is 8 deg. Each nozzle has a carbon cloth phenolic liner which erodes and chars during firing. The nozzle is a convergent-divergent, movable design in which an aft pivot-point flexible bearing is the gimbal mechanism.

The cone-shaped aft skirt reacts the aft loads between the SRB and the mobile launch platform. Eight separation motors, four mounted on the aft skirt and four mounted on the forward skirt provide the thrust and directional control to clear the SRBs from the orbiter and external tank after booster separation. The aft skirt contained avionics and TVC system which consists of two auxiliary power units, hydraulic pumps, and hydraulic system.

Comments

References

Source:
Design Data Book (DDB) for Space Shuttle Redesigned Solid Rocket Motor (RSRM) - (TWR-16881)

Date: 11/01/89

Entered by:
Daniel Levack

March 30, 1993

Propulsion System General Data

February 22, 1993 Motor Performance 2

Envelope Dimenslons In inches

February 22, 1993 Start-Up/Shutdown Sequences

EngIne Name: Space Shuttle Redesigned Solid Rocket Motor Class of Engine: Solid Fuel Chemical	
StartUp Sequence	
Tlme(sec) -6.0 0.0 0.23 21.5 78.5 111.6 122.2 125.9 127.1 396.2 405.5	Expected Nominal Operational RSRM Sequence Activity SSME Ignition Fire signal to ignition system initiators RSRM liftoff at 563.5 psla chamber pressure Burnout of star section web in forward segment Burnout of aft tapered section in aft segment commences Burnout of aft tapered section in aft segment complete and tailoff commences Separation sequence initiated; chamber pressure is 50 psia RSRM physically separated (approximately) Propellant burnout Nozzle extension is severed and jettisoned Splashdown

Shutdown Sequence

February 20, 1993 Start-Up/Shutdown Profiles

Engine Name: Space Shuttle Redesigned Solid Rocket Motor
Class of Engine: Solid Fuel Chemical

February 20, 1993 Start-Up/Shutdown Profiles

Engine Name: Space Shuttie Redesigned Solid Rocket Motor
Class of Engine: Solid Fuel
Chemical

Flowrate Profile

Engine Name: Space Shuttle Redesigned Solid Rocket Motor
Class of Engine: Solid Fuel Chemical

Interfaces

February 14, 1993

February 14, 1993 Advanced Development Plan

EngIne Name: Space Shuttle Redesigned Solid Rocket Motor
Class of Engine: Solid Fuel
Chemical

Advanced Development Plan

Figure 82.

Output for NERVA Derived Nuclear Thermal Rocket Propulsion System

Propulsion System
NTRND

Advanced Propulsion Subsystem Concepts Database

Engine Name: Nuclear Thermal Rocket, NERVA Derivative

 Nuclear Thermal 50K NTR, Expander Cycle, Pc = 784 Psia,80\% Centrifugal Pump Efficlency

PUMPR OWFWTE	5889	LBSEC
PUMPDISCHARE PFESSURE	2841	PSA
PUMPEFFICIENCY	2. 71	*
PUMPSTAGEA	2	-
TUAEOPUMPAPM	5000	RPM
TUREOPLMAPPOWER	10,665	${ }^{+}$
turgne inet temp	2150	R
TURENE EFPCEENCY	8182	*
TURENE STAGES		-
TURENE PPESSUPE PUJIO	2311	-
TURENE FLOW RATE	${ }_{0} 85$	BSEC
Reactorvencine thermal Power	1004.9	MW
FUEL ELIMENT TPUNSFERRED POWER	\$7.9	MW
CORE THEFMAL POWER (FUELELEM TE TUBE)	924	MW
ENGINETHRUST	\$0,000	LbF
NOZZ ECHMBER TEMPERATURE	4410	PSIA
CORZEEXPNSIONAREA RATIO	300.1	-
NOZZEPERGENTIENGTH	117	*
VAOUM SPECARC IMPULSE (DEL NERED)	m20	SEC

Herationce aro as fotiowe:	Mocede (converging coctod: Noezse (diverging: Ametector: tho-Tube e:	1a.0 MW 1800 MW 12.00 MW

$P=$ PSAA
$T=$ DEGR
$W=$ LES
$H=B T U R B$
$S=$
02190π

Engine Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal Fission Reactor

Background

Representative background data for the NTPNE will be incorporated at a future date.

Comments

No comments.

References Rover/NERVA-Derived Near-Term Nuclear Propulsion, FY92 Final Report, October 22, 1992 (Final report of $\begin{array}{ll}\text { Source: } & \text { Rover/NERVA-Derived Near-Term Nuclear } \\ & \text { Rocketdyne contract with NASA-LeRC); Unpublished Rocketdyne data. }\end{array}$

Date: Unpublished data as of March 1993.
Entered by: Dan Levack

Engine Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal
Fission Reactor

March 7, 1993

Engine Performance 2

Engine Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal
Fission Reactor

$\left[\begin{array}{llr|}\text { TVC } & \\ \text { Method } & \text { Gimbal } \\ & \\ \text { Mass (Ibm) } & \\ \text { Max Gimbal Angle (deg) } & 40.0 \\ \text { Max Gimbal Rate (deg/s) } & \boxed{4.0} \\ & \\ \end{array}\right.$

Envelope Dimensions in Inches

Component Mass, Ibm
Reactor Assembly $\quad 7,310$
(Includes Pressure Vessel and Internal Shield)
Chamber/Nozzle 1,470
Turbopump 230 Lines and Controls 560

March 13, 1993 Start-Up/Shutdown Profiles

Engine Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal
Fission Reactor

Thrust Profile

Flowrate Profle

March 7, 1993 Start-Up/Shutdown Profiles

EngIne Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal
Fission Reactor

Thrust Profile

Flowrate Profile

March 7, 1993 Start-Up/Shutdown Profiles

EngIne Name: Nuclear Thermal Rocket, NERVA Derivative

Class of Engine: Nuclear Thermal
Fission Reactor

Isp Profile

EngIne Name: Nuclear Thermal Rocket, NERVA Derivative

Class of Engine: Nuclear Thermal
Fission Reactor

Interfaces

Engine Name: Nuclear Thermal Rocket, NERVA Derivative

Class of Engine: Nuclear Thermal
Fission Reactor

Technology Development

Engine Name: Nuclear Thermal Rocket, NERVA Derivative
Class of Engine: Nuclear Thermal
Fission Reactor

- Advanced Development Plan

Figure 83.
Field Definitions of the File "Prop System DB"

Field Name	Fleld Type	Formula / Entry Option
Record Number	Number	Serial Number with Current Value: "11' Increment:
Creation Date	Date	Auto-enter the: "Creation Date" Prevent data that is automatically entered from being changed.
Modification Date	Date	Auto-enter the: "Modification Date" Prevent data that is automatically entered from being changed.
Propulsion Type	Text	
Class of Engine	Text	Value List: Cryogenic Liquid Hydrocarbon Liquid Storable Liquid Solid Fuel Hybrid SRB Metalized Fuels Nuclear Thermal Nuclear Electric Combined Nuclear Exotic
Engine Name	Texd	
Acronym	Text	
Application	Text	
Manufacturer	Text	
Program Status	Text	
Manrated	Text	
Mixture Ratio (O:F) Engine	Number	
Mixture Ratio (O:F) Chamber	Number	
10C/Date Studied	Text	
Engine Cycle	Text	
Nominal Chamber Pressure	Number	
Min Inlet Pressure (Oxid)	Number	
Expansion Ratio	Number	
TVC Method	Text	
Maximum Length	Number	
Maximum Width	Number	
Engine Mass (lbm)	Number	
Oxidizer	Text	
Fuel	Text	
Nom Sea Level Thrust	Calculation (Number)	$\begin{aligned} & =\text { If (Nom Vac Thrust > 0, Nom Vac Thrust - } 11.545353 \\ & \text { NozzleDiameter }{ }^{\wedge} 2,{ }^{\circ} \text { ") } \end{aligned}$
Nom Vac Thrust	Number	
Max Sea Level Thrust	Calculation (Number)	= If (Max Vac Thrust >0, Max Vac Thrust - 11.545353* NozzleDiameter ^ 2, " ")
Max Vac Thrust	Number	
Min Sea Level Thrust	Calculation (Number)	= If (Min Vac Thrust > 0, Min Vac Thrust - 11.545353 * NozzleDlameter ${ }^{\text {², }}{ }^{*}$ ")
Min Vac Thrust	Number	
Isp Sea Level	Calculation (Number)	= Isp SL. Nom Thrust
Isp Vacuum	Calculation (Number)	= Isp Vac Nom Thrust
Engine Background	Text	
Background Comments	Text	
Reference Source	Text	
Date of Reference	Text	
Entered by	Text	

Fleld Name	Fleld Type	Formula / Entry Option
Engine Design Life Starts	Number	
Engine Design Life Sec	Number	
Engine Design Life (Flights)	Number	
Restart Capability	Text	
Engine Design Restarts	Number	
Engine Demo Restarts	Number	
Design Rel (Starts)	Calculation (Number)	= Engine Design Life Starts
Design Rel (Sec)	Calculation (Number)	= Engine Design Life Sec
Demo Rel (Starts)	Number	
Demo Rel (Sec)	Number	
Isp SL Nom Thrust	Calculation (Number)	= If (Nom Vac Thrust >0, Isp Vac Nom Thrust * Nom Sea Level Thrust / Nom Vac Thrust, " ")
Isp Vac Nom Thrust	Number	
Isp SL Max Thrust	Calculation (Number)	$=$ If (Max Vac Thrust >0, If (IspVacMaxThrust > 0, IspVacMaxThrust * Max Sea Level Thrust / Max Vac Thrust, " ")," ")
IspVacMaxThrust	Number	
Isp SL Min Thrust	Calculation (Number)	$=$ If (Min Vac Thrust >0, If (lsp Vac Min Thrust >0, Isp Vac Min Thrust * Min Sea Level Thrust / Min Vac Thrust, " "), " ")
Isp Vac Min Thrust	Number	
NozzleType	Text	
Nozzle Length	Number	
NozzleDiameter	Number	
Nozzle Throat Area	Number	
Nozzle Exit Area	Calculation (Number)	= Nozzle Expansion Ratio Nozzle Throat Area
Nozzle Expansion Ratio	Number	
Throttle Ratio SL Max	Number	
Throttle Ratio Vac Max	Number	
Throttle Ratio SL Min	Number	
Throttle Ratio Vac Min	Number	
Max OX Pump Pres	Number	
Max Fuel Pump Pres	Number	
Nom OX Turbine Pres	Number	
TVC Mass	Number	
Max Gimbal Angle (deg)	Number	
Max Gimbal Rate	Number	
Nominal Length	Calculation (Number)	$=$ Maximum Length
Stowed Length	Number	
Extended Length	Number	
Extended Length Max Gimbal	Number	
Nozzle Exit Diameter	Number	
Maximum Diameter	Number	
Max Diameter Max Gimbal	Number	
Total Mass TVC	Number	
Total Mass w/o TVC	Number	
Start Up Sequence	Picture/Sound	
Shutdown Sequence	Picture/Sound	
Thrust Startup Profile	Picture/Sound	
Thrust Shutdown Profile	Picture/Sound	
Isp Startup Profile	Picture/Sound	

Fleld Name	Fleld Type	Formula / Entry Option
Isp Shutdown Profile	Picture/Sound	
Flow Startup Profile	Picture/Sound	
Flow Shutdown Profile	Picture/Sound	
O/F Startup Profile	Picture/Sound	
O/F Shutdown Profile	Picture/Sound	
Technology Development	Picture/Sound	
Adv Development Plan	Picture/Sound	
Interface 1	Picture/Sound	
Interface 2	Picture/Sound	
Interface 3	Picture/Sound	
Engine Type	Text	
Nom Fuel Turbine Pres	Number	
Min Inlet Pressure (Fuel)	Number	
Return Where?	Calculation (Number)	= H(Class of Engine $=$ "Cryogenic Liquid" OR "Storable Liquid", 17 , iff(Class of Engine = "Solid Fuel", 46, if(Class of Engine = "Hybrid SRB", 75, H(Class of Engine = "Nuclear Thermal" OR Class of Engine $=$ "Nuclear Electric" OR Class of Engine $=$ "Nuclear Electric", 104, if(Class of Engine = "Exotic",133,5))/))
Which Data Entry?	Calculation (Number)	$=$ if(Class of Engine $=$ "Cryogenic Liquid" OR Class of Engine $=$ "Hydrocarbon Liquid" OR Class of Engine = "Storable Liquid", 8 , Hf(Class of Engine $=$ "Solid Fuel", 12, it (Class of Engine $=$ "Hybrid SRB", 13, if(Class of Engine = "Nuclear Thermal" OR Class of Engine = "Nuclear Electric" OR Class of Engine = "Nuclear Electric", 14, $\mathrm{H}($ Class of Engine $=$ "Exotic",15,5) $)$) $)$
Class Type Calc	Calculation (Text)	= Class of Engine
Engine Component Masses	Picture/Sound	
Grain Design	Text	
Noz Submergence Ratio	Number	
Prop Material 1	Calculation (Text)	= Oxidizer
Prop Material 2	Calculation (Text)	= Fuel
Prop Material 3	Text	
Prop Material 4	Text	
Prop Material 5	Text	
Prop Material 6	Text	
Prop Material 7	Text	
Prop Weight Percent 1	Text	
Prop Weight Percent 2	Text	
Prop Weight Percent 3	Text	
Prop Weight Percent 4	Text	
Prop Weight Percent 5	Text	
Prop Weight Percent 6	Text	
Prop Weight Percent 7	Text	
Prop Function 1	Text	
Prop Function 2	Text	
Prop Function 3	Text	
Prop Function 4	Text	
Prop Function 5	Text	
Prop Function 6	Text	.
Prop Function 7	Text	
Burn Rate	Number	

Fleld Name	Field Type	Formula / Entry Option
Burn Rate Temp	Number	
Burn Rate Pressure	Number	
Burn Rate Exp	Number	
Burn Time	Number	
Action Time	Number	
Max Exp Op Press	Number	
Max Op Press	Number	
Burn Time Avg Press	Number	
Action Time Avg Press	Calculation (Number)	= Nominal Chamber Pressure
Max Exp Op Thrust Vac	Number	
Max Op Thrust Vac	Number	
Burn Time Avg Thrust Vac	Number	
Action Time Avg F Vac	Calculation (Number)	= Nom Vac Thrust
Burn Time Impulse Vac	Calculation (Number)	= Burn Time Avg Thrust Vac* Burn Time
Action Time Impulse Vac	Calculation (Number)	= Action Time Avg F Vac * Action Time
Action Time Avg F SL	Calculation (Number)	$=$ If (Action Time Avg F Vac >0, Action Time Avg F Vac-11.545353 *NozzleDiameter ^ 2," ")
Max Exp Op Thrust SL	Calculation (Number)	= If (Max Exp Op Thrust Vac > 0, Max Exp Op Thrust Vac 11.545353 * NozzleDiameter ^ 2," ")
Max Op Thrust SL	Calculation (Number)	= If (Max Op Thrust Vac >0, Max Op Thrust Vac - 11.545353 * NozzleDiameter ^ 2, " ')
Burn Time Avg Thrust SL	Calculation (Number)	$=$ If (Burn Time Avg Thrust Vac >0, Burn Time Avg Thrust Vac 11.545353 * NozzleDiameter ^ 2, " ")
Burn Time Impulse SL	Calculation (Number)	$=$ If (Burn Time Avg Thrust SL >0, Burn Time Avg Thrust SL * Burn Time, " ")
Action Time Impulse SL	Calculation (Number)	$=$ If (Action Time Avg F SL >0, Action Time Avg F SL * Action Time, " ${ }^{\circ}$)
Press Startup Profile	Picture/Sound	
Press Shutdown Profile	Picture/Sound	
Burn Time Avg isp SL	Calculation (Number)	$=$ If (Burn Time Avg Thrust Vac >0, If (Burn Time Avg Isp Vac >0, Burn Time Avg Isp Vac * Burn Time Avg Thrust SL / Burn Time Avg Thrust Vac, " "), "')
Burn Time Avg Isp Vac	Number	
Action Time Avg Isp SL	Calculation (Number)	$=$ If (Action Time Avg F Vac >0, If (Action Time Avg isp Vac > 0, Action Time Avg Isp Vac * Action Time Avg F SL / Action Time Avg F Vac." ")," ")
Action Time Avg Isp Vac	Calculation (Number)	$=\mathrm{Isp}$ Vac Nom Thrust
Reactor Type	Text	
Fuel Type	Text	
Max Fuel Temp R	Number	
Propellant Temp R	Number	
Impulse Startup Profile	Picture/Sound	
Impulse Shutdown Profile	Picture/Sound	

Figure 84.
Field Definitions of the File
"Prop System DB-Pictures"

Field Name	Field Type	Formula / Entry Option
Record Number	Number	Lookup: "Record Number" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: '
Class of Engine	Text	Value List: Cryogenic Liquid Hydrocarbon Liquid Storable Liquid Solid Fuel Hybrid SRB Metalized Fuels Nuclear Thermal Nuclear Electric Combined Nuclear Exotic Lookup: "Class of Engine" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Engine Name Acronym	Text	Lookup: "Acronym" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Engine Type	Text	Lookup: "Engine Type" in "Prop System DB" when "Engine Name" matches "Engine Name" If no maich, copy: ""
Mixture Ratio (O:F)	Number	Lookup: "Mixture Ratio (O:F) Engine" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "
Nominal Chamber Pressure (psia)	Number	Lookup: "Nominal Chamber Pressure" In "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "
Expansion Ratio	Number	Lookup: "Expansion Ratio" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Nom Sea Level Thrust (lbf)	Number	Lookup: "Nom Sea Level Thrust" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" "
Nom Vac Thrust	Number	Lookup: "Nom Vac Thrust" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Isp Sea Level (sec)	Number	Lookup: "Isp Sea Level" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Isp Vacuum	Number	Lookup: "Isp Vacuum" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""
Maximum Length	Number	Lookup: "Maximum Length" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" ""
Maximum Width	Number	Lookup: "Maximum Width" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" ""
Engine Mass	Number	Lookup: "Engine Mass (lbm)" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: " ${ }^{\text {- }}$
Engine Drawing	Picture/Sound	
Engine Balance	Picture/Sound	
Engine Type Calc	Calculation (Text)	= Engine Type
Engine Class Clac	Calculation (Text)	= Class of Engine

Field Name	Fleld Type	Formula / Entry Option
Action Time Avg F SL	Number	Lookup: "Action Time Avg F SL." in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" "a
Action Time Avg F Vac	Number	Lookup: "Action Time Avg F Vac" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy:
Action Time Avg Isp SL	Number	Lookup: "Action Time Avg Isp SL" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" ""
Action Time Avg Isp Vac	Number	Lookup: "Action Time Avg Isp Vac" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "e"
Action Time Avg Press	Number	Lookup: "Action Time Avg Press" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" "
Action Time	Number	Lookup: "Action Time" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: "" ""
Fuel	Text	Lookup: "Fuel" in "Prop System DB" when "Engine Name" matches "Engine Name" If no match, copy: ""

Appendix

Use of Fortran Externals with Resolve ${ }^{\mathrm{TM}}$ and Excel ${ }^{\mathrm{TM}}$

USER GUIDE

Subject: External Functions for Claris Resolve for the Macintosh written in FORTRAN complied with Language Systems FORTRAN version 3.0.1 and MPW version 3.2.3

Written By: David W. Harris
Rocketdyne Division
Rockwell International
PO Box 7922
6633 Canoga Ave.
Canoga Park, CA 91309-7922
(818) 718-4677

Date: March 10, 1993
INFORMATION PROVIDED IN THIS DOCUMENT AND ANY SOFTWARE THAT MAY ACCOMPANY THIS DOCUMENT (collectively referred to as an User guide) IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The user assumes the entire risk as to the accuracy and the use of this User guide. This User guide may be copied and distributed subject to the following conditions: 1) All text must be copied without modification and all pages must be included; 2) If software is included, all files on the distributed for profit.

Claris, Claris Resolve and Resolve are registered trademarks of Claris Corporation
Macintosh is a registered trademark of Apple Computer, Incorporated.
This document was created using Microsoft Word for the Macintosh.

Purpose: This User guide is to lead a person with limited knowledge of Macintosh programing through the steps necessary to turn a FORTRAN subroutine into an Resolve external function. This guide assumes that the user has a little familiarity with the Language Systems FORTRAN compiler and Claris Resolve. For more detailed information refer to the Language Systems FORTRAN Reference Manual and to the Resolve User Guide and Claris Technical Note.

INTRODUCTION

Claris Resolve versions 1.1 v 1 and above have the ability to call external code that can be used as spreadsheet functions. This code is an assembly language code with the proper data handling that allows it to be called or linked to other code. To create a Resolve external function with this guide you must have the following:

1. The chookc.c. o object file
2. A FORTRAN subroutine SetUp.f
3. A FORTRAN subroutine FHook.f
4. Your FORTRAN subroutine
5. Funcname application

Because of the required interface between Resolve and an external function an interface program or "hook" had to be written in "C" code. This program handles the setting of variables that Resolve uses to call the external function and the passing of program variables. A hook called CHookc.c.o was created as a generic
interface. This hook calls two FORTRAN subroutines, SetUp. f and FHook.f. The SetUp.f subroutine supplies the CHook with two necessary pieces of information, the name of the function to be used by Resolve and the number of input arguments. The name of the function is not the file name but the function name used in the Resolve script to call the external function. The function name cannot be over 8 characters long. Because the passing of string variables from FORTRAN to C is tricky, an application, Funcname, has been provided to create the SetUp. f file. Executing this program will create a complete SetUp.f file ready for compiling and linking. FHook.f is the front-end for your subroutine. Your subroutine will be called by FHook.f. FHook. f must be written with two arguments, an input array and an output array. Both arrays must be double precision REAL and dimensioned input $\left({ }^{*}\right)$ and output (100). The generic " C " hook was written to handle infinite input and 100 output variables. FHook. f can be used to manipulate the input and output data to your subroutine. That is do things such as reassign the values to other variable, change from double to single precision, convert the value and so on.

The following is a set of steps that will allow you to create a Resolve external using the CHookc.c.o interface. It is suggested that all of the steps are followed the first time. After that any changes to the FORTRAN code that do not change file names will require only a simple Build command and maybe minor changes to the Resolve script.

STEP 1 Create a SetUp subroutine. To do this run the program Funcname. This program will create a file SetUp.f that is necessary for the Resolve interface. When Funcname asks for 'Resolve Function Name', enter the name that you what to call the function in Resolve and for 'Number of Input variables', enter the number of input variables to your subroutine.

STEP 2 Launch MPW

STEP 3 Open (File, Open...) and change your FORTRAN subroutine so that it meets the programing rules.

Programing Rules

- No global or static storage: FORTRAN programs can have no COMMON, BLOCK DATA, or SAVE statements and the -saveall compiler option cannot be used to force static storage.
- No FORTRAN I/O statements: see the following list. A lack of I/O is a serious limitation, but I/O is often for user interaction which is the function of Resolve.

ACCEPT	OPEN
BACKSPACE	PAUSE
CLOSE	PRINT
DECODE	READ
ENCODE	REWIND
ENDFILE	STOP
FORMAT	TYPE
INQUIRE	WRITE
NANELIST	

- No character constants: a statement such as

CHARACTER*26 myString myString = 'I paid my taxes on April 7.'
will cause a linker error. Using CHARACTER*1 arrays initialized with DATA statements or char () functions can be used to create a character constant.

STEP 4
Create (File, New) a Resolve to FORTRAN interface function. This subroutine must have the name FHook.f. The following function can be used as a boiler plate code.

```
SUBROUTINE FHOOk(args,revals)
```

REAL*8 args(*), revals(100)
REAL*8 arg1, arg2, arg3, arg4, arg5
REAL*8 arg6, arg7, arg8,arg9, arg10,arg11, arg12
c If your subroutine needs other type of variables (real*4, integer, c etc.) use the appropriate conversion function to avoid garbage from being passed. Here are some examples

```
a=SNGL(args(1))
c
c
args(4) = DBLE(d)
```

arg1 = args(1)

```
arg1 = args(1)
arg2 = args(2)
arg2 = args(2)
arg3 = args(3)
arg3 = args(3)
arg4 = args(4)
arg4 = args(4)
arg5 = args(5)
```

```
arg5 = args(5)
```

```
c Calling your subroutine. Change this call as necessary to match c your subroutine.
```

call yoursub(arg1,arg2,arg3,arg4,arg5,
\&
arg6, arg7, arg8, arg9, arg10, arg11, arg12)

```
```

revals(1) = arg6 !This sets the output array

```
revals(1) = arg6 !This sets the output array
revals(2) = arg7
revals(2) = arg7
revals(3) = arg8
revals(3) = arg8
revals(4) = arg9
revals(4) = arg9
revals(5) = arg10
revals(5) = arg10
revals(6) = arg11
revals(6) = arg11
revals(7) = arg12
revals(7) = arg12
return
return
end
```

end

```
!from real*8 to real*4
    !from real*8 to integer*4
c

STEP 5 Create a Build script. Either use the following example Build script file (saved as ResExtern.make) as boiler plate or use the Create BuildCommands menu. It is important to include CHookc.c.o in the OBJECTS sections. CHookc.c.o is the Resolve to FORTRAN hook.
\begin{tabular}{lll} 
\# & File: & ResExtern.make \\
\# & Target: & ResExtern \\
\# & Sources: & FHook.f SetUp.f yoursub.f \\
\# & Created: & Friday, March \(5,1993 \quad 2: 21: 05\) PM \\
& & Page 3 of 10
\end{tabular}
```

OBJECTS $=$ CHookc.c.o FHook.f.o SetUp.f.o yoursub.f.o
ResExtern ff ResExtern.make \{OBJECTS\}
Link -t RsTl -c Rslv ∂
\{OBJECTS \} ∂
"\{Libraries\}"Runtime.o d
" \{Libraries\}" Interface.o ∂
" \{FLibraries $\}$ "FORTRANlib.o d
" \{FLibraries\}" IntrinsicLib.o д
-o ResExtern
FHook.f.o f ResExtern.make FHook.f
FORTRAN FHook.f -opt=1
SetUp.f.o f ResExtern.make SetUp.f
FORTRAN SetUp. f-opt=1
yoursub.f.o f ResExtern.make yoursub.f
FORTRAN yoursub.f -opt=1

```

\section*{Running Create Build Commands}
1. Select Create Build Commands... under the Build menu.
2. In Program Name type the name of the file used in the file_text argument of the get external function. In the above example the Program Name is ResExtern.
3. Click on the Source Files... button and select the function and subroutines that will be linked together. These include FHook.f and SetUp.f as well as your subroutine.

\section*{4. Click on CreateMake}
5. Open the file "Program Name".make (in the above example it would be ResExtern.make) and change the following:

Add CHookc.c.o in the front of the OBJECTS list.
Remove:-w -f -srt -ad 4
Change the APPL to RsTl
Change the '????' to Rslv
Remove the lines:
Echo "Include d" \(^{\prime}\) \{Libraries\}Fresources.rd";" >
"\{FLibraries\}Resource.inc"
Rez "\{FLibraries\}Resource.inc" -a -m -o "filename." FSIEE "filename."
Remove the following libraries:
" \(\{\) FLibraries \(\}\) "FSANELib.o \(\partial\)
Remove unnecessary libraries noted by the Linker. They will not cause a linker abort, but there will be a warning.

STEP 6 Run Build... under the Build menu. In the window type the program file name.
STEP 7 Correct the code to remove any compile and linker errors and repeat STEP 6.
STEP 8 Quit MPW

STEP 9 Move the compiled function file into the same folder as the Resolve application.
STEP 10 Launch Resolve
STEP 11 Create a Button using button tool from tool palette. Name it Load (Edit, Button Info...)

STEP 12 Open the button script (Script, Button Script) and write:
GET EXTERNAL ":ResExtern" Replace the word ResExtern with the name of your compiled function file.

STEP 13 Close button script and save.
STEP 14 Create a Button using button tool from tool palette. Name it Calculate (Edit, Button Info...)

STEP 15 Open the button script (Script, Button Script) and write a Resolve script that defines your input variables, one output variable and a counter. Because Resolve External Functions can only return one value at a time you will have to create a loop and call your function once for each subroutine return variable you want. Your function call will include each of your input variables and the counter. The counter must be the last item in the list. Assign the return variable to the function (ie. \(\mathrm{x}=\) function). For the first call to the function the counter must be equal to zero. The return value will be the first return variable. Therefore, the loop counter should go from zero to "the number of return variables" -1 . The follow example is for the function FHook in the ResExtern file. FHook has 5 input variables and 7 output variables. The input values are located in cells B1, B2, B3 B4 and B5 on the spreadsheet. The return values will be placed in cells \(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6\) and C 7 as directed by the PUT x statement.
```

DEFINE a,b,c,d,e, n,x
a = B1
b}=\textrm{B}
c=B3
d = B4
e = B5
FOR n = 0 TO 6
x = ResExtern:FHook (a,b,c,d,e,n)
PUT X INTO MAKECELL (}3,\textrm{n}+1
END FOR

```

Replace the word ResExtern with the name of your compiled function file and FHook for the name you specified when running Funcname.

\section*{STEP 16 Close button script}

STEP 17 Press the"Load" button This loads the external function.
STEP 18 Press the "Calculate" button to run the function
STEP 19 Save worksheet.
After following this procedure you will have two files to keep track of:
- FORTRAN Function
- Resolve worksheet

To avoid operational problems keep these files in the same folder. Similarly there are FORTRAN files that should be kept together:
- Function source code file
- Any Subroutine source code files
- Function .make file

\section*{PROBLEMS}

The following are some special errors that may occur during the development process and some hints that may help to eliminate these problems.

\section*{Compiling}

No special errors.

\section*{Linking}
1. Cannot modify 32 bit instructions. The object files were complied with the wrong compiler settings. Delete all of the .f.o object files and re-run the Build.

\section*{Resolve}
1. Invalid argument. CHookc.c.o was written to check for non-numeric input variables. This error means that a non-numeric value has been entered an input cell of the spreadsheet.
2. Can not open function.

Check the function name in the script to be sure it is the same name as specified in SetUp.f.
Check that the function file is in the same folder as the Resolve application.
Use Open•Tool:mySFGetFile external function. See next section for more information.

Open-TOOL:mySFGetFile
A useful tool for finding a file while running a Resolve script is the external function mySFgetFile. This function will open a standard "Open File" window and allow the user to find the desired file. This function returns the full path name of the file which can be used with file functions to load or open the file. The function mysFGetFile is located in the file Open'Tool. This file comes with Resolve and is located in the folder External Examples within the Resolve Samples folder.
There are many ways to setup your Resolve folder, but for simplicity and this example create a folder named Externals and place it in the same folder as the Resolve application. Move or copy the Open-Tool file into the Externals folder. Now the script line:
will load the Open•Tool:mySFGetFile function. The form of the function is:
Open•Tool:mySFGetFile(<prompt string>,"<file typel>","<file type2>", "<file type3>","<file type4>")
were file type1, file type2, file type3 and file type 4 are file type filters (e.g. PICT, APPL, TEXT, etc). These filters will cause files of the type specified to appear in the Open dialog. If no filters are passed, files of all types will appear. In the case of Resolve external functions the file type is RsTl. The following example shows how the script in STEP 15 would be written when the mySFGetFile function is added within an error handling routine (ON ERROR).
```

DEFINE $a, b, c, d, e, n, x, f u l l p a t h$
$\mathrm{a}=\mathrm{B} 1$
$\mathrm{b}=\mathrm{B} 2$
$c=B 3$
$\mathrm{d}=\mathrm{B} 4$
$\mathrm{e}=\mathrm{B} 5$
GET EXTERNAL ":Externals:Open•Tool"
GET EXTERNAL "ResExtern"
FOR $\mathrm{n}=0 \mathrm{TO} 4$
$x=\operatorname{ResExtern}:$ FHook (a, b, c, d, e, n)
PUT x INTO MAKECELL $(3, n+1)$
END FOR
ON ERROR
$y=$ LError ($)$
$\operatorname{IF}(\mathrm{y}=61)$
fullpath $=$ 'Open•Tool:mySFGetFile'("Please find
'ResExtern': ", "RsTl", " ", "","")
GET EXTERNAL fullpath
END IF
$\operatorname{IF}(\mathrm{Y}=12)$
SOUND EFFECT "Monkey"
SOUND EFFECT "Monkey"
SOUND EFFECT "Monkey"
MESSAGE SError()
ABORT
END IF
END ERROR

```

The mySFGetFile function can also be added to the resource fork of the spreadsheet. To do this requires ResEdit and a knowledge of how to use it. WARNING: Misuse of ResEdit can cause irreparable damage to files and applications.

\section*{FPU OPTIONAL CODE}

Language System FORTRAN has the option of compiling your code to take advantage of the type of machine and the presence of an FPU. Because this is compiler option Language System FORTRAN will allow for FPU optional code generation. Meaning that the same external function can run on a Plus as well as a

Quadra 950 and take advantage of the FPU. To do this requires minimal additional programing.

STEP 20 Duplicate your subroutine and give the file a different name than the original.
STEP 21 Modify this file by renaming the main subroutine and all lower subroutines and subroutine calls. Failure to do this will cause a linker warning about duplicate names and could cause run time problems.

STEP 22 Modify the FHook.f file by adding the following lines between the last declaration and the first operational line:
```

I/MP Inlines.f
INCLUDE '{MPW}Interfaces:FIncludes:OSUtils.f'
INCLUDE '{MPW} Interfaces:FIncludes:Traps.f'
POINTER /SysEnvRec/ SysEnvRecPtr
SysEnvRecPtr = NewPtr(sizeof(SysEnvRec))
OSErr = SysEnvirons(CurSysEnvVers,SysEnvRecPtr)

```

STEP 23 Modify the FHook.f file prior to the subroutine call by adding an if-then statement checking the variable SysEnvRecPtr^. hasFPU. In the TRUE section of the if put the call to the new subroutine. In the FALSE section put the original call. Save FHook.f.

The FHook.f program in STEP 4 would now look like this:
```

SUBROUTINE FHook(args,revals)

```
REAL*8 args(*), revals(100)
REAL*8 arg1,arg2,arg3,arg4,arg5
REAL*8 arg6,arg7,arg8,arg9,arg10,arg11,arg12

1!MP Inlines.f
```

INCLUDE '{MPW}Interfaces:FIncludes:OSUtils.f'
INCLUDE '{MPW}Interfaces:FIncludes:Traps.f'
POINTER /SysEnvRec/ SysEnvRecPtr
SysEnvRecPtr = NewPtr(sizeof(SysEnvRec))
OSErr = SysEnvirons(CurSysEnvVers,SysEnvRecPtr)

```
    If your subroutine needs other type of variables (real*4, integer,
etc.) use the appropriate conversion function to avoid garbage from
being passed. Here are some examples
```

a = SNGL(args(1)) !from real*8 to real*4
b = IDINT(args(2)) Ifrom real*8 to integer*4
c = IIDINT(args(3)) lfrom real*8 to Integer*2
args(4) = DBLE(d) lany to real*8

```
arg1 \(=\operatorname{args}(1) \quad\) IThis is the setting of the subroutine
arg2 \(=\operatorname{args}(2) \quad\) larguments. Add more statements as
\(\arg 3=\operatorname{args}(3) \quad\) las needed .
        \(\arg 4=\operatorname{args}(4)\)
        \(\arg 5=\operatorname{args}(5)\)
            c Calling your subroutine. Change this call as necessary to match
            c
            your subroutine.
            if(SysEnvRecPtr^.hasFPU) then
            c Use FPU
            call yoursub81 (arg1, arg2, arg3, arg4, arg5,
    \(\&\)
                    arg6, arg7, arg8, arg9, arg10, arg11, arg12)
        else
c NO FPU
```

 &
 end if
 revals(1) = arg6 IThis sets the output array
 revals(2) = arg7 lwith the appropriate
 revals(3) = arg8 isubroutine arguments.
 revals(4) = arg9
 revals(5) = arg10
 revals(6) = arg11
 revals(7) = arg12
 return
 end
    ```
call yoursub(arg1,arg2,arg3,arg4,arg5,

STEP 24 Modify the . make file by adding the new subroutine file in the compile list. Do this by copying the old subroutine compile directive and pasting it to the end of the compile list. Change the old subroutine name to the new name. Add to the compiler options of the new subroutine -MC68020-MC-68881. These new options will take advantage of 68020 and above CPUs with 68881 and above FPUs. This covers most of the Mac IIs and the new high end Macs. The new mid range Macs may or may not have an FPU. Add the new subroutine object file name in the OBJECTS list and save the file.

The Make file in the first STEP 5 would now look like this:
```


File: ResExtern.make

Target: ResExtern
Sources: FHook.f SetUp.f yoursub.f
Created: Friday, March 5, 1993 2:21:05 PM
OBJECTS = CHookc.c.O FHook.f.O SetUp.f.o yoursub.f.o yoursub81.f.o
ResExtern ff ResExtern.make {OBJECTS}
Link -t RsTl -c Rslv d
{OBJECTS} d
"{Libraries}"Runtime.O \partial
"{Libraries}"Interface.○ \partial
"{FLibraries}"FORTRANlib.O \partial
"{FLibraries}"IntrinsicLib.o \partial
-o ResExtern
FHook.f.O f ResExtern.make FHook.f

```

FORTRAN FHOOK.f -opt=1
SetUp.f. 0 f ResExtern.make SetUp.f
FORTRAN SetUp.f -opt \(=1\)
yoursub.f.o \(f\) ResExtern.make yoursub.f
FORTRAN yoursub.f -opt \(=1\)
yoursub81.f.O f ResExtern.make yoursub81.f FORTRAN yoursub81.f -opt=1 -MC68020 -MC68881

STEP 25 Re-run the make file by using the Build... under the Build menu.
This new external function will work on all Macs. If the Mac has an FPU the performance of the function will be increased over the original function created in STEP 1 through STEP 19.

\section*{USER GUIDE}

Subject: External Functions for Claris Resolve for the Macintosh written in FORTRAN complied with Absoft MacFortran II version 3.1 and MPW version 3.2

\author{
Written By: David W. Harris \\ Rocketdyne Division \\ Rockwell International \\ PO Box 7922 \\ 6633 Canoga Ave. \\ Canoga Park, CA 91309-7922 \\ (818) 718-4677 \\ Date: February 10, 1993
}

INFORMATION PROVIDED IN THIS DOCUMENT AND ANY SOFTWARE THAT MAY ACCOMPANY THIS DOCUMENT (collectively referred to as an User guide) IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The user assumes the entire risk as to the accuracy and the use of this User guide. This User guide may be copied and distributed subject to the following conditions: 1) All text must be copied without modification and all pages must be included; 2) If software is included, all files on the disk(s) must be copied without modification; 3) All components of this User guide must be distributed together; and 4) This User guide may not be distributed for profit.

Claris, Claris Resolve and Resolve are registered trademarks of Claris Corporation
Macintosh is a registered trademark of Apple Computer, Incorporated.
MacFortran II is a trademark of Absoft Corporation.
This document was created using Microsofi Word for the Macintosh.

Purpose: This User guide is to lead a person with limited knowledge of Macintosh programing through the steps necessary to turn a FORTRAN subroutine into an Resolve external function. This guide assumes that the user has a little familiarity with the Absoft FORTRAN compiler and Claris Resolve. For more detailed information refer to the MacFortran II Reference Manual and to the Resolve User Guide and Claris Technical Note.

\section*{INTRODUCTION}

Claris Resolve versions 1.1 v 1 and above have the ability to call external code that can be used as spreadsheet functions. This code is an assembly language code with the proper data handling that allows it to be called or linked to other code. To create a Resolve external function with this guide you must have the following:
1. The chookc.c. o object file
2. A FORTRAN subroutine SetUp. \(f\)
3. A FORTRAN subroutine FHook.f
4. Your FORTRAN subroutine
5. Funcname application

Note: The Absoft MacFortran II compiler creates code that requires an FPU. Therefore, the code development described here will not work on some of the older Mac's (Plus,SE) and some of the newer ones without FPUs (Classic, LC, SI, Centris).

Because of the required interface between Resolve and an external function an interface program or "hook" had to be written in "C" code. This program handles the setting of variables that Resolve uses to call the external function and the passing of program variables. A hook called CHookc.c.o was created as a generic interface. This hook calls two FORTRAN subroutines, SetUp. f and FHook. f. The SetUp. f subroutine supplies the CHook with two necessary pieces of information, the name of the function to be used by Resolve and the number of input arguments. The name of the function is not the file name but the function name used in the Resolve script to call the external function. The function name cannot be over 8 characters long. Because the passing of string variables from FORTRAN to C is tricky, an application, Funcname, has been provided to create the SetUp. f file. Executing this program will create a complete SetUp.f file ready for compiling and linking. FHook.f is the front-end for your subroutine. Your subroutine will be called by FHook.f. FHook.f must be written with two arguments, an input array and an output array. Both arrays must be double precision REAL and dimensioned input(*) and output(100). The generic "C" hook was written to handle infinite input and 100 output variables. FHook. \(f\) can be used to manipulate the input and output data to your subroutine. That is do things such as reassign the values to other variable, change from double to single precision, convert the value and so on.

The following is a set of steps that will allow you to create a Resolve external using the cHookc.c.o interface. It is suggested that all of the steps are followed the first time. After that any changes to the FORTRAN code that do not change file names will require only a simple Build command and maybe minor changes to the Resolve script.

STEP 1 Create a SetUp subroutine. To do this run the program Funcname. This program will create a file SetUp.f that is necessary for the Resolve interface. When Funcname asks for 'Resolve Function Name', enter the name that you what to call the function in Resolve and for 'Number of Input variables', enter the number of input variables to your subroutine.

STEP 2 Launch MPW
STEP 3 Open (File, Open...) and change your FORTRAN subroutine so that it meets the programing rules.

\section*{Programing Rules}
- No global or static storage: FORTRAN programs can have no COMMON, BLOCK DATA, or SAVE statements and the - \(s\) compiler option cannot be used to force static storage.
- No FORTRAN I/O statements: see the following list. A lack of I/O is a serious limitation, but I/O is often for user interaction which is the function of Resolve.
\begin{tabular}{ll} 
ACCEPT & OPEN \\
BACKSPACE & PAUSE \\
CLOSE & PRINT \\
DECODE & READ \\
ENCODE & REWIND \\
ENDFILE & STOP \\
FORMAT & TYPE \\
INQUIRE & WRITE \\
NAMELIST &
\end{tabular}
- No run time error messages: some compiler options such as the "Check array boundaries" option, -C, and the subprogram folding options, \(-z\) and \(-Z\), can generate a run time error message. A CASE statement with a missing CASE DEFAULT can also cause a run time error unless the - N 4 option is used.
- No character constants: a statement such as
```

CHARACTER*26 myString myString = 'I paid my taxes on April 7.

```
will cause a linker error. Using CHARACTER*1 arrays initialized with DATA statements or char () functions can be used to create a character constant.

STEP 4 Create (File, New) a Resolve to FORTRAN interface function. This subroutine must have the name FHook.f. The following function can be used as a boiler plate code.
```

SUBROUTINE FHOOk(args,revals)

```
REAL*8 args(*), revals(100)
REAL*8 arg1, arg2, arg3,arg4, arg5
REAL*8 arg6,arg7,arg8,arg9,arg10,arg11,arg12
c If your subroutine needs other type of variables (real*4, integer, \(c\) etc.) use the appropriate conversion function to avoid garbage from c being passed. Here are some examples
\(\mathrm{a}=\operatorname{SNGL}(\operatorname{args}(1))\)
\(\mathrm{b}=\operatorname{IDINT}(\operatorname{args}(2))\)
\(\mathrm{c}=\operatorname{IIDINT}(\operatorname{args}(3))\)
!from real*8 to integer*4
c \(\quad \operatorname{args}(4)=\operatorname{DBLE}(\mathrm{d})\)
!from real*8 to Integer*2
\(\arg 1=\operatorname{args}(1)\)
\(\arg 2=\operatorname{args}(2)\)
!This is the setting of the subroutine
larguments. Add more statements as
arg3 \(=\operatorname{args}(3)\)
                                las needed.
\(\arg 4=\operatorname{args}(4)\)
\(\arg 5=\operatorname{args}(5)\)
c Calling your subroutine. Change this call as necessary to match
c your subroutine.
call yoursub \((\arg 1, \arg 2, \arg 3, \arg 4, \arg 5\),
\(\&\)
                                    arg6, arg7, arg8, arg9, arg10, arg11, arg12)
revals(1) = arg6 \(\quad 1\) This sets the output array
\(\begin{array}{ll}\text { revals }(1) & =\text { arg6 } \\ \text { revals }(2) & =\text { arg } 7\end{array} \quad\) Iwith the appropriate
revals (3) = arg8 Isubroutine arguments.
revals(4) = arg9
revals(5) \(=\arg 10\)
revals \((6)=\arg 11\)
revals(7) \(=\) arg12
return
end

STEP 5 Create a Build script. Either use the following example Build script file (saved as ResExtern. make) as boiler plate or use the Create BuildCommands menu. It is important to include CHookc.c.o in the OBJECTS sections. CHookc.c.o is the Resolve to FORTRAN hook.
```


File: ResExtern.make

Target: ResExtern

Created: Monday, January 18, 1993 9:16:12 AM

OBJECTS = CHookc.c.o FHook.f.o SetUp.f.O yoursub.f.o
FFLAGS = -q -k -N14
ResExtern ff ResExtern.make {OBJECTS}
Link -t 'RsTl' -c Rslv d
{OBJECTS} д
"{Libraries}"Runtime.o \partial
"{Libraries}"Interface.0 \partial
"{FLibraries}"f77math.o \partial
-o ResExtern
FHook.f.O f ResExtern.make FHook.f
f77compiler {FFLAGS} FHook.f
SetUp.f.o f ResExtern.make SetUp.f
f77compiler {FFLAGS} SetUp.f
yoursub.f.o f ResExtern.make yoursub.f
f77compiler {FFLAGS} your.sub.f

```

\section*{Running Create BuildCommands}
1. Select Create BuildCommands... under the MacFortran menu.
2. In Program Name type the name of the file used in the file_text argument of the get external function. In the above example the Program Name is ResExtern.
3. Click on the Source Files... button and select the function and subroutines that will be linked together. These include FHook.f and SetUp.f as well as your subroutine.

\section*{4. Click on CreateMake}
5. Open the file "Program Name".make (in the above example it would be ResExtern.make) and change the following:

Add -N14 -k next to FFLAGS \(-q\), separated with only a space.
Add CHookc.c.o in the front of the OBJECTS list.
Remove the line: filename ff filename.make Duplicate -r-y
"\{FLibraries\}F77mrwe.o" filename
Change the APPL to 'RsTl'
Change the '????' to 'Rslv'

\section*{Remove -f -model far}

Remove the following libraries:
"\{FLibraries \(\}\) "F77mrwe.o д
"\{FLibraries\}"frt0.o д
"\{FLibraries \(\}\) "f77io.o \(\partial\)
Remove unnecessary libraries noted by the Linker. They will not cause a linker abort, but there will be a warning.
If Linker reports 32 K jump errors add -N 8 and -N 11 to the fFLAGS list.
STEP 6 Run Build... under the MacFortran menu. In the window type the program file name.
STEP 7 Correct the code to remove any compile and linker errors and repeat STEP 6.

\section*{STEP 8 Quit MPW}

STEP 9 Move the compiled function file into the same folder as the Resolve application.
STEP 10 Launch Resolve
STEP 11 Create a Button using button tool from tool palette. Name it Load (Edit, Button Info...)

STEP 12 Open the button script (Script, Button Script) and write:
GET EXTERNAL ": ResExtern"
Replace the word ResExtern with the name of your compiled function file.
STEP 13 Close button script and save.
STEP 14 Create a Button using button tool from tool palette. Name it Calculate (Edit, Button Info...)

STEP 15 Open the button script (Script, Button Script) and write a Resolve script that defines your input variables, one output variable and a counter. Because Resolve External Functions can only return one value at a time you will have to create a loop and call your function once for each subroutine return variable you want. Your function call will include each of your input variables and the counter. The counter must be the last item in the list. Assign the return variable to the function (ie. \(\mathrm{x}=\) function). For the first call to the function the counter must be equal to zero. The return value will be the first return variable. Therefore, the loop counter should go from zero to "the number of return variables" -1 . The follow example is for the function FHook in the ResExtern file. FHook has 5 input variables and 7 output variables. The input values are located in cells B1, B2, B3 B4 and B5 on the spreadsheet. The return values will be placed in cells \(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6\) and C 7 as directed by the PUT x statement.
```

DEFINE a,b,c,d,e,n,x
a = B1
b}=\textrm{B}
c=B3
d = B4
e = B5

```
```

FOR n = 0 TO 6
x = ResExtern:FHook(a,b,c,d,e,n)
PUT x INTO MAKECELL(3,n+1)
END FOR

```

Replace the word ResExtern with the name of your compiled function file and FHook for the name you specified when running Funcname.

STEP 16 Close button script
STEP 17 Press the"Load" button This loads the external function.
STEP 18 Press the "Calculate" button to run the function
STEP 19 Save worksheet.
After following this procedure you will have two files to keep track of:
- FORTRAN Function
- Resolve worksheet

To avoid operational problems keep these files in the same folder. Similarly there are FORTRAN files that should be kept together:
- Function source code file
- Any Subroutine source code files
- Function .make file

\section*{PROBLEMS}

The following are some special errors that may occur during the development process and some hints that may help to eliminate these problems.

Compiling
No special errors.
Linking
1. Cannot modify 32 bit instructions. The object files were complied with the wrong compiler settings. Delete all of the .f.o object files and re-run the Build.
2. Cannot make 32 K jump. Add -N 8 and -N 11 to the FFLAGS list. Delete all of the .f. o object files and re-run the Build.

\section*{Resolve}
1. Invalid argument. CHookc.c.o was written to check for non-numeric input variables. This error means that a non-numeric value has been entered an input cell of the spreadsheet.
2. Can not open function.

Check the function name in the script to be sure it is the same name as specified in SetUp.f.

Check that the function file is in the same folder as the Resolve application. Use open•Tool:mysFGetFile external function. See next section for more information.

\section*{Open•Tool:mySFGetFile}

A useful tool for finding a file while running a Resolve script is the external function mysFGetFile. This function will open a standard "Open File" window and allow the user to find the desired file. This function returns the full path name of the file which can be used with file functions to load or open the file. The function mySFGetFile is located in the file Open •Tool. This file comes with Resolve and is located in the folder External Examples within the Resolve Samples folder.
There are many ways to setup your Resolve folder, but for simplicity and this example create a folder named Externals and place it in the same folder as the Resolve application. Move or copy the Open-Tool file into the Externals folder. Now the script line:
```

GET EXTERNAL ":Externals:Open·Tool"

```
will load the Open•Tool:mySFGetFile function. The form of the function is:
```

Open·Tool:mySFGetFile(<prompt string>,"<file type1>","<file
 type2>","<file type3>","<file type4>")

```
were file type1, file type2, file type3 and file type4 are file type filters (e.g. PICT, APPL, TEXT, etc). These filters will cause files of the type specified to appear in the Open dialog. If no filters are passed, files of all types will appear. In the case of Resolve external functions the file type is RsTl. The following example shows how the script in STEP 15 would be written when the mySFGetFile function is added within an error handling routine (ON ERROR).
```

DEFINE a,b,c,d,e,n,x,fullpath
a=B1
b=B2
c=B3
d= B4
e = B5
GET EXTERNAL ":Externals:Open·Tool"
GET EXTERNAL "ResExtern"
FOR n = 0 TO 4
x = ResExtern:FHook(a,b,c,d,e,n)
PUT x INTO MAKECELL(3,n+1)
END FOR

```
ON ERROR
        \(\mathrm{Y}=\mathrm{LError}()\)
        \(\operatorname{IF}(Y=61)\)
                            fullpath \(=\) 'Open•Tool:mySFGetFile'("Please find
'ResExtern':","RsTl","","","")
                            GET EXTERNAL fullpath
        END IF
        \(\operatorname{IF}(\mathrm{y}=12)\)
```

SOUND EFFECT "Monkey"
SOUND EFFECT "Monkey"
SOUND EFFECT "Monkey"
MESSAGE SErrOr()
ABORT

```
END IF
END ERROR

The mySFGetFile function can also be added to the resource fork of the spreadsheet. To do this requires ResEdit and a knowledge of how to use it. WARNING: Misuse of ResEdit can cause irreparable damage to files and applications.

\section*{USER GUIDE}

Subject: External Functions for Microsoft Excel for the Macintosh written in FORTRAN complied with Absoft MacFortran II version 3.1 and MPW version 3.2

\author{
Written By: David W. Harris \\ Rocketdyne Division \\ Rockwell International \\ PO Box 7922 \\ 6633 Canoga Ave. \\ Canoga Park, CA 91309-7922 \\ (818) 718-4677 \\ Date: August 121992
}

INFORMATION PROVIDED IN THIS DOCUMENT AND ANY SOFTWARE THAT MAY ACCOMPANY THIS DOCUMENT (collectively referred to as an User guide) IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The user assumes the entire risk as to the accuracy and the use of this User guide. This User guide may be copied and distributed subject to the following conditions: 1) All text must be copied without modification and all pages must be included; 2) If software is included, all files on the disk(s) must be copied without modification; 3) All components of this User guide must be distributed together; and 4) This User guide may not be distributed for profit.

Microsoft, Microsoft Excel and Excel are registered trademarks of Microsoft Corporation
Macintosh is a registered trademark of Apple Computer, Incorporated.
MacFortran II is a trademark of Absoft Corporation.
This document was created using Microsoft Word for the Macintosh.

Purpose: This User guide is to lead a person with limited knowledge of Mac programing through the steps necessary to turn a FORTRAN subroutine into an Excel external function. This guide assumes that the user has a little familiarity with the Absoft FORTRAN compiler and Microsoft Excel. For more information refer to the MacFortran II Reference Manual and to the Excel User Guide, Function Reference and Microsoft Application Note: ME0333.

\section*{INTRODUCTION}

Microsoft Excel versions 2.2 and above have the ability to call external code resources that can be used as spreadsheet functions. A "Code Resource" is an assembly language code with the proper data handling that allows it to be called or linked to other code. There are many different types of code resources but for this application the resource needs to be type CODE. Apple Technical Note \#256 has additional information on code resources but it is not necessary to read if the examples of this note are followed.
Note: The Absoft MacFortran II compiler creates code that requires an FPU. Therefore, the code development described here will not work on some of the older Mac's (Plus,SE) and some of the newer ones without FPUs (Classic, LC, SI, Centris).

\section*{STEP 1 Launch MPW}

STEP 2 Open (File, Open...) and change your FORTRAN subroutine so that it meets the programing rules.

\section*{Programing Rules}
- No global or static storage: FORTRAN programs can have no COMMON, BLOCK DATA, or SAVE statements and the -s compiler option cannot be used to force static storage.
- No FORTRAN I/O statements: see the following list. A lack of I/O is a serious limitation, but I/O is often for user interaction which is the function of Excel.
\begin{tabular}{ll} 
ACCEPT & OPEN \\
BACKSPACE & PAUSE \\
CLOSE & PRINT \\
DECODE & READ \\
ENCODE & REWIND \\
ENDFILE & STOP \\
FORMAT & TYPE \\
INQUIRE & WRITE \\
NAMELIST &
\end{tabular}
- No run time error messages: some compiler options such as the "Check array boundaries" option, -C , and the subprogram folding options, -z and -Z , can generate a run time error message. A CASE statement with a missing CASE DEFAULT can also cause a run time error unless the - N 4 option is used.
- No character constants: a statement such as

CHARACTER*26 myString myString = 'I paid my taxes on April 7.'
will cause a linker error. Using CHARACTER*1 arrays initialized with DATA statements or char() functions can be used to create a character constant.

STEP 3 Create (File, New) an Excel to FORTRAN interface function. The following function can be used as a boiler plate code. This example program is saved as xfunc.f.

\section*{PASCAL INTEGER*4 FUNCTION MAIN(in)}
c This function works as a Integer function in EXCEL with "KK" type_text.
```

STRUCTURE /inlist/ IThis is the input list from Excel.

```
    INTEGER*2 row
    INTEGER*2 col
    REAL*8 ary(100)
END STRUCTURE
STRUCTURE /outlist/ IThis is the output list from the
    INTEGER*2 row
    !FORTRAN program.
    INTEGER*2 col
    REAL*8 \(\operatorname{ary}(100)\)
END STRUCTURE
```

RECORD /inlist/ in
RECORD /outlist/ out

```
c This is the declaration of arguments for the FORTRAN subroutine.
```

real*8 arg1,arg2,arg3,arg4,arg5,arg6

```

C If your subroutine needs other type of variables (real*4, integer,
etc.) use the appropriate conversion function to avoid passing garbage
Here are some examples
```

a = SNGL(ary(1)) \from real*8 to real*4
b = IDINT(ary(2)) |from real*8 to integer*4
c=IIDINT(ary(3)) lfrom real*8 to Integer*2
ary(4) = DBLE(d)

```
\(\arg 1=i n . \operatorname{ary}(1)\)
\(\arg 2=\) in.ary (2)
\(\arg 3=\) in.ary(3)
1 This is the setting of the subroutine
larguments. Add more statements as
tas needed.
c Calling your subroutine. Change this call as necessary to match
c your subroutine.
```

call yoursub(arg1,arg2,arg3,arg4,arg5,arg6)

```
out.row \(=3\)
IThis sets the worksheet area.
\(\begin{array}{ll}\text { out. row }=1 \\ \text { out.col }=1 & \text { lAdjust as needed. }\end{array}\)
    out.ary (1) = arg4 \(\quad\) IThis sets the output array
    out.ary (2) \(=\arg 5 \quad\) lwith the appropriate
    out.ary \((3)=\operatorname{arg6} \quad\) Isubroutine arguments.
c The last thing to do is set the function values to the structure
pointer. No need to change this statement.
MAIN \(=\) LOC( Out)
    return
    end

The STRUCTURE in this function would be good for any combination of arguments where row* columns \(<=100\). The RECORD declaration is necessary to assign the name "in" to the structure "inlist". The variables are now referred to with the prefix "in." (in. row, in.col, in. ary (1), ...). The values in ary are arranged as such:
\[
\begin{aligned}
\operatorname{ary}(1) & =\operatorname{row}_{1}, \operatorname{col}_{1} \\
\operatorname{ary}(2) & =\operatorname{row}_{1}, \operatorname{col}_{2} \\
& \\
\operatorname{ary}(m) & =\operatorname{row}_{1}, \operatorname{col}_{m} \\
\operatorname{ary}(m+1) & =\operatorname{row}_{2}, \operatorname{col}_{1} \\
& \text {. } \\
\operatorname{ary}(n * m) & =\operatorname{row}_{n}, \operatorname{col}_{m}
\end{aligned}
\]

STEP 4 Create a Build script. Either use the following example Build script file (save as xfunc.make) as boiler plate or use the Create BuildCommands menu.
```


File: xfunc.make

Target: xfunc

Sources:

Created:

Add to this OBJECTS list all necessary subroutines

OBJECTS = xfunc.f.O yoursub.f.o

```
FFLAGS \(=-\mathrm{q}-\mathrm{N} 14-\mathrm{k}\)
xfunc ff xfunc.make \{OBJECTS\}
        Link -t XLLB -c XCEL -rt CODE=128-m MAIN -sg main \(\partial\)
                            \{OBJECTS\} \(\partial\)
        This library list can be modified to remove unnecessary
        libraries
            " \{Libraries\}"Runtime.o д
            "\{Libraries\}"Interface.0 \(\partial\)
            "\{FLibraries\}"F77stubs.○ д
            "\{FLibraries\}"frt0.0 \(\partial\)
            "\{FLibraries\}"f77io.0 \(\partial\)
            "\{FLibraries \(\}\) "f77math. ○ д
            -o xfunc
xfunc.f.o \(f\) xfunc.make xfunc.f
    f77compiler \{FFLAGS\} xfunc.f
\# Repeat the next two lines for each subroutine and change
\# yoursub to each of the subroutine names
yoursub.f.o \(f\) xfunc.make yoursub.f
            f77compiler \{FFLAGS\} yoursub.f

\section*{Running Create BuildCommands}
1. Select Create BuildCommands... under the MacFortran menu.
2. In Program Name type the name of the file used in the file_text argument of the REGISTER or CALL function. In the above example the Program Name is xfunc.
3. In the Program Type box select Code Resource
4. In the box next to Creat or put HCEL. (Note characters must be all upper case.)
5. In the box next to Type put HLLB. (Note characters must be all upper case.)
6. In the box next to Main Entry Point type the name of the FORTRAN function. Must be all upper case. This is the name used in the resource_text argument of the REGISTER or CALL function. In the above example the Main Entry Point is MAIN.
7. In the box next to Resource Type put CODE \(=128\)
8. Click on the Source Files... button and select the function and subroutines that will be linked together. The main function (the one called by Excel) must be first. In the above example xfunc. \(f\) is the main program and yoursub. \(f\) is a subroutine.
9. Click on CreateMake
10. Open the file "Program Name". make (in the above example it would be xfunc.make) and change the following:

Add -N14 -k next to FFLAGS \(-q\), separated with only a space.
Change the word next to -sg to the same name as the -m option only all lower case.
When this link is run any unnecessary libraries will cause a warning message. They will not cause a linker abort, but there will be a warning. The unnecessary libraries can be removed for the library list. (See above example)

STEP 5 Run Build... under the MacFortran menu. In the window type the program file name.

STEP 6 Correct the code to remove any compile and linkers errors and repeat STEP 5.
STEP \(7 \quad\) Quit MPW
STEP 8 Move the compiled function file into the Excel folder.
STEP 9 Launch Excel
STEP 10 Open a new Macro sheet. (File, New...)
STEP 11 Create the following macro:
\begin{tabular}{|c|l|}
\hline & \multicolumn{1}{|c|}{ A } \\
\hline 1 & load \\
\hline 2 & =REGISTER("Hfunc", "MAIN","KK") \\
\hline 3 & \(=\) RETURN() \\
\hline
\end{tabular}

Replace the word \(\boldsymbol{H}\) func with the name of your compiled function file.
STEP 12 Select cell A1 and then select Define Name under the Formula Menu. Select the Command button and type p in the box next to Key:. Click OK. Now pressing "option \(+\boldsymbol{+}\) " will load the external function.

STEP 13 Save this Macro sheet as Ioad.hfunc using Save Rs...
STEP 14 Press "option \(+\boldsymbol{+}\) ". This loads the external function.
STEP 15 Press " + " ". In A2 a number should be there, if not there is something wrong with the REGISTER arguments, the Build script or the interface code. Check for
consistency between names and arguments. Press " + " again to return to normal display.

STEP 16 Create your worksheet and select the appropriate output range for your function and type in a CALL function with load.hfunc!\$月\$2 as the register text and the appropriate input range. Enter the function by pressing " + enter" (This entry method is necessary for any Excel array function). The following is an example for a function that has a 3 cell input range and a 1-by- 3 (rows by columns) output range:
\begin{tabular}{|c|c|}
\hline & \multicolumn{1}{|c|}{\(A\)} \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & \\
\hline 5 & =CALL(IOAd.hfunc!\$A\$2,A1:A3) \\
\hline 6 & \\
\hline 7 & \\
\hline
\end{tabular}

The double box is the selected area. Cells A5, A6 and A7 are now the return array.
STEP 17 Save the worksheet.
STEP 18 Select Define Name under Formula menu
In the Name: box type auto_load
In the Refers to: box type load.hfunc!load
Click Add
Click 0k
STEP 19 Save worksheet.
Now when the worksheet is opened the Macro sheet will automatically be opened and executed, loading the external function.

After following this procedure you will have three files to keep track of:
- FORTRAN Function
- Excel worksheet
- Excel Macro sheet

To avoid operational problems keep these files in the same folder. Similarly there are FORTRAN files that should be kept together:
- Function source code file
- Any Subroutine source code files
- Function .make file
\begin{tabular}{|c|c|c|c|}
\hline REPORT D & UMENTATION & PAGE & Form Approved OMB No. 0704-0188 \\
\hline \multicolumn{4}{|l|}{} \\
\hline 1. RCENCY USE OKYY RCavo Blank) & \[
\begin{aligned}
& \text { 2. REPORT DATE } \\
& \text { April } 1993
\end{aligned}
\] & & \begin{tabular}{l}
3. REPORT TYPE ANO DATES COVERED \\
Task Interim Report, 6 April 1992-5 April 1993
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. TILE ANO SUBTTLE \\
Alternate Propulsion Subsystem Concepts Propulsion Database Task Interim Report
\end{tabular}}} & \multirow[t]{3}{*}{\begin{tabular}{l}
5. FUNDING NUMBERS \\
NAS8-39210
\end{tabular}} \\
\hline & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
 \\
Daniel Levack
\end{tabular}} & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
7. PEAFORMING ORGAMIZATON NAMES(S) AND ADDRESS(ES) \\
Rockwell International \\
Rocketdyne Division \\
6633 Canoga Ave \\
Canoga Park, CA 91303
\end{tabular}}} & 2. PERFORMING ORGANIZATION REPORT NUMBER \\
\hline & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
0. SPONSORING / MONTTORING AGENCY MAMES(S) ANO ADORESS(ES) \\
NASA \\
Marshall Space Flight Center \\
Program Development \\
Huntsville, Alabama 35812
\end{tabular}}} & 10. sponsoring / monitorina naENCY REPORT NUMBER \\
\hline & & & \\
\hline
\end{tabular}
11. SUPPLEMENTARY NOTES

Thiokol Space Operations and Workingsolutionz Software were team members on this effort.

12a. DISTRIEUTION / AVALABIUTY STATEMENT
12b. DISTRIBUTION CODE
13. ABSTRACT MExJmum 200 words)

The objective of this task was to produce a propulsion system database which is easy to use and modify while also being comprehensive in the level of detail available. Two separate databases were generated: one to provide parametric data using the Macintosh spreadsheet Resolve 1.1, and one to produce detailed data for fixed point design propulsion systems using the Macintosh database FileMaker Pro 2.0.

The parametric database has models for \(\mathrm{LOX} / \mathrm{H}_{2}\) and \(\mathrm{LOX} / \mathrm{RP}\) liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine. The fixed point database has extensive formatting and reporting options and contains data on the STME, F-1, F-1A, J-2, J-2S, SSME, RD-170, IME, RSRM, and a nuclear engine.

Further parametric models and specific engine data will be incorporated in the next year.
\begin{tabular}{|l|l|l|l|}
\hline 14. SUBECT TERMS \\
Propulsion, Database, Rocket Engine & & \begin{tabular}{c} 
18. MUMBER OF PAGES \\
290
\end{tabular} \\
\hline
\end{tabular}
\(\checkmark\)
```


[^0]: Figure 31. Printed Version of Performance Chart - Hybrid Rocket Motors

[^1]: - Comments

 ## References

 F-1/F-1A Engine Data Package (BC91-74), Unpublished Rocketdyne Data; Technical Manual F-1 Rocket Engine, R-3896-1, 31 March 1967 (Change 12-12 May 1972); The Saturn V F-1 Engine Revisited, AIAA 92-1547, 24 March 1992.

 Date:
 1991
 Entered by: Dan Levack

[^2]: - Comments

 References F-1/F-1A Engine Data Package (BC91-74), Unpublished Rocketdyne Data
 Source:

 Date:
 1991
 Entered by: Dan Levack

