IN-STEP INFLATABLE ANTENNA EXPERIMENT

G. Veal L'Garde, Inc. Tustin, California

R. E. Freeland Jet Propulsion Laboratory California Institute of Technology Pasadena, California

NASA/DOD Flight Experiments Technical Interchange Meeting October 5-9, 1992/Monterey, California

N93-28701

22

IN-STEP INFLATABLE ANTENNA EXPERIMENT PRESENTATION CONTENTS

- POTENTIAL SPACE ANTENNA APPLICATIONS
- EXPERIMENT OBJECTIVES
- EXPERIMENT TECHNICAL APPROACH
- EXPERIMENT SCENARIO
- SPARTAN SERVICES
- EXPERIMENT ORBITAL CONFIGURATION
- EXPERIMENT CANISTER STRUCTURE
- SURFACE MEASUREMENT SYSTEM CONFIGURATION
- ORBITAL FUNCTIONAL SEQUENCES
- SUMMARY

A .

JPL

A.

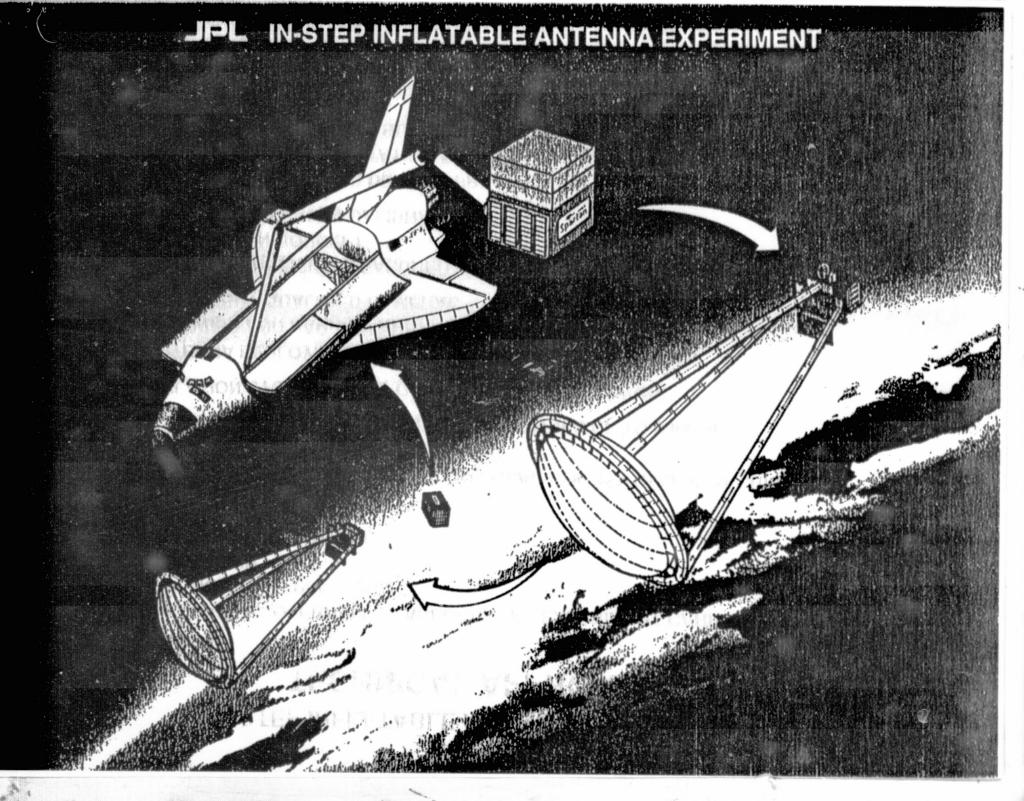
IN-STEP INFLATABLE ANTENNA EXPERIMENT POTENTIAL SPACE ANTENNA APPLICATIONS

APPLICATIO		PERTURE E RANGE (M)	RF RANGE (GHz)	INFLATABLE ANTENNA APPLICATION POTENTIAL*
MOBILE COMMUNICATI	ONS	10 — 20	1.5	VERY HIGH
MOBILE COMMUNICATIONS		4 — 8	20 — 30	MODERATE
EARTH OBSERVATION RADIOMETRY		20 — 40	6 — 60	MODERATE
ACTIVE MICROWAVI SENSING	E	0.4 × 2 & 4 × 16	1 — 94	MODERATE
OVLBI		20 — 2 5	0.3 — 90	MODERATE
DOD SPACE BASED RADAR		20 30	1.5 — 2.5	VERY HIGH
APPLICATION	PPLICATION . LOW COST		H PRECISION	DYNAMICS CHARACTERISTICS
CRITERIA • LOW WEIGH		• PAC	KAGING EFFICIENCY	CONCEPT GROWTH POTENTIAL
	• HIGH RELIAB	ILITY • DIM	ENSIONAL STABILITY	

IN-STEP INFLATABLE ANTENNA EXPERIMENT EXPERIMENT OBJECTIVES

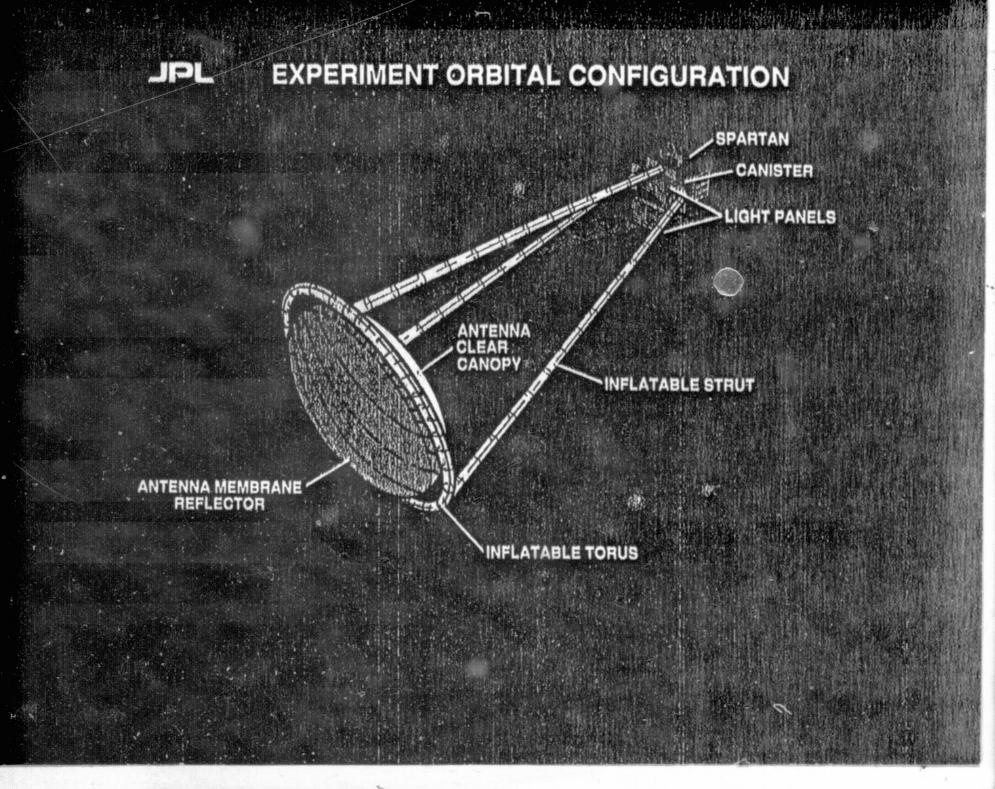
- VALIDATE THE DEPLOYMENT OF A 14 METER INFLATABLE PARABOLIC REFLECTOR STRUCTURE IN A ZERO GRAVITY ENVIRONMENT
 - INFLATABLE ELEMENT DEPLOYMENT SEQUENCE
 - DEPLOYMENT RATES
- MEASURE THE REFLECTOR SURFACE ACCURACY UNDER ORBITAL MECHANICAL AND THERMAL LOADING CONDITIONS
 - FIVE SUN ANGLES

51.0

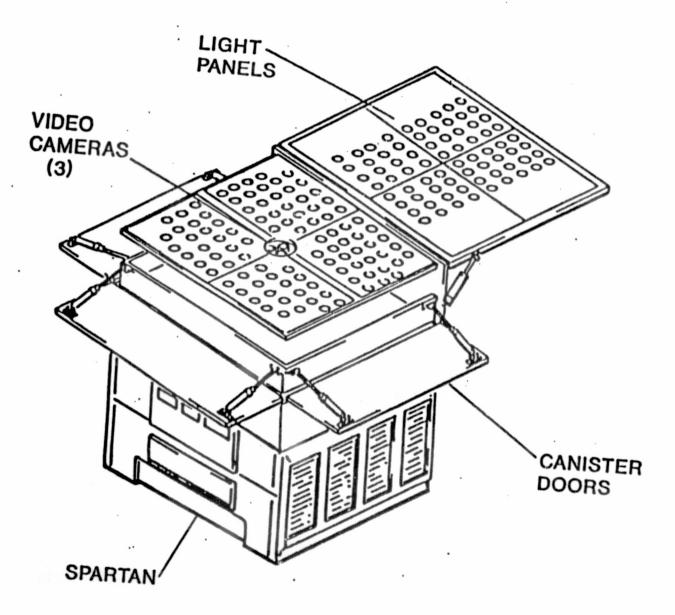

- THREE REFLECTOR/CANOPY PRESSURES
- INVESTIGATE REFLECTOR STRUCTURE DAMPING CHARACTERISTICS UNDER ORBITAL OPERATIONAL CONDITIONS
 - EXCITE FUNDAMENTAL NODES
 - MEASURE AMPLITUDE DECAY

IN-STEP INFLATABLE ANTENNA EXPERIMENT TECHNICAL APPROACH

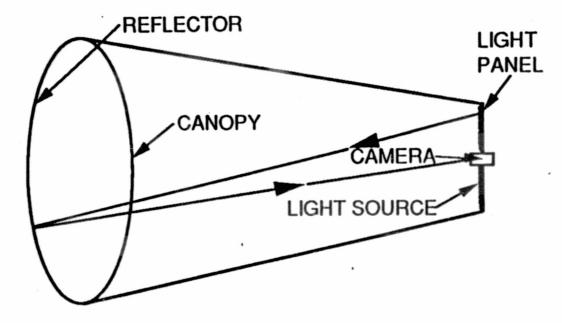
- SPARTAN RECOVERABLE SPACECRAFT AS EXPERIMENT CARRIER
 - MOUNTING PLATFORM
 - POWER
 - ATTITUDE CONTROL
 - DATA RECORDING
- REFLECTOR STRUCTURE BASED ON SOLAR CONCENTRATOR TECHNOLOGY
 - CONFIGURATION IDENTICAL
 - CONCEPT DEVELOPMENT OF STRUCTURES UP TO 9 meters
- INFLATION SYSTEM BASED ON FLIGHT PROVEN DESIGNS
- ANTENNA DEPLOYMENT MONITORED WITH VIDEO CAMERAS
 - WIDE AND NARROW ANGLE CAMERAS
 - FLIGHT QUALIFIED CAMERAS
- SURFACE PRECISION MEASURED WITH DIGITAL IMAGING RADIOMETER
 - PROVEN CONCEPT


A .

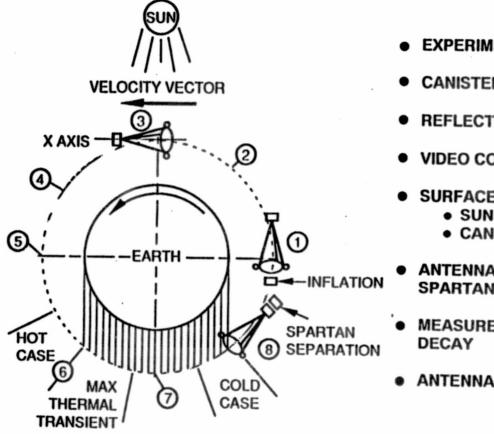
- GROUND BASED CALIBRATION
- STRUCTURAL DAMPING DERIVED FROM MOTION DECAY PLOTS
 - STRUCTURAL EXCITATION PROVIDED BY SPARTAN CONTROL SYSTEM
 - MOTION DECAY MEASURED WITH TRANSDUCERS



IN-STEP INFLATABLE ANTENNA EXPERIMENT SPARTAN SERVICES


- EXPERIMENT CARRIER
- EXPERIMENT INTERFACE WITH STS
- THERMAL CONTROL (PRIOR TO DEPLOYMENT)
- ATTITUDE CONTROL
- ELECTRICAL POWER
- DATA RECORDING
- ORBIT POSITION AND ATTITUDE VS. TIME DATA
- EXPERIMENT INITIATION SIGNAL (TWO FAULT TOLERANT)
- EXPERIMENT/SPARTAN SEPARATION SYSTEM

IN-STEP INFLATABLE ANTENNA EXPERIMENT CANISTER AND SPARTAN



IN-STEP INFLATABLE ANTENNA EXPERIMENT SURFACE MEASUREMENT SYSTEM CONFIGURATION

1 2 4

IN-STEP INFLATABLE ANTENNA EXPERIMENT ORBITAL FUNCTIONAL SEQUENCES

,

ORBITAL FUNCTIONS

- EXPERIMENT INITIATION COMMAND FROM SPARTAN
- CANISTER DOOR DEPLOYMENT
- REFLECTOR STRUCTURE DEPLOYMENT BY INFLATION
- VIDEO COVERAGE OF REFLECTOR DEPLOYMENT
- SURFACE MEASUREMENT AS FUNCTION OF
 - SUN ANGLE: ORBITAL POSITIONS 1-5
 - CANOPY PRESSURE: ORBITAL POSITION 6-8
- ANTENNA STRUCTURE EXCITATION PROVIDED BY SPARTAN
- MEASUREMENT OF STRUCTURE AMPLITUDE DECAY
- ANTENNA/SPARTAN SEPARATION

IN-STEP INFLATABLE ANTENNA EXPERIMENT SUMMARY

• PROGRAM STATUS

12

- PRELIMINARY DESIGN COMPLETE
- CONCEPTUAL DESIGN REVIEW ACCOMPLISHED
- CARRIER INTERFACE ESTABLISHED
- PHASE 0 SAFETY REVIEW IN PROCESS
- PHASE C/D PROGRAM PLANNING COMPLETE
- EXPERIMENT RESULTS
 - DEPLOYMENT RELIABILITY VALIDATED BY EXPERIMENT
 - LOW WEIGHT AND VOLUME DEMONSTRATED BY FABRICATION OF LARGE SIZE STRUCTURE
 - LOW STRUCTURE COST VERIFIED BY LOW COST EXPERIMENT
 - USER POTENTIAL DETERMINED BY RESULTS OF SURFACE MEASUREMENT
 - ESTABLISH CONCEPT TECHNOLOGY DATA BASE
 - PROJECTIONS OF PERFORMANCE FOR DIFFERENT APPLICATIONS