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Overall Ob,jective 
IJevelo,J a small-scale shuttle night experiment 
which allows re.~earchers to: I) characterize the 
influence of gravity and Joint gal)S on structural 
damping and dynamic behavior of a small-scc'de 
truss model, and 2) evaluate the alJplicability of 10ll'­

g aircl'art test results for predicting on-orbit 
behavior. 

JDX Descrilltion 
The eXIJeriment consists of a three-bay truss and 
associated hardware for truss excitation and 
measurement of oscillations. 

-The experiment dimensions fit inside ,of a 5 cubic 
foot GAS canister. 

-Cantilever truss with a tip mass to reduce the 
resonant frequency. 

-Canister can be evacuated to eliminate air 
damt)ing. 

-Truss excitation in two bending modes and a 
torsional mode. 

-Truss ti,) SIII),)orted during haunch and rccntry. 

TIP MASS 
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Project Objectives 

1. Student oriented IJroject. 

• Graduate and undergraduate studenl~ will I)erform most of the design, analysis, and testing 
effort under the direction of the princilJle investigators. 

• JDX is to be relatively Siml)le and inexpensive. 

• Fly as a Complex Autonomolls Payload (CAP) in a scaled GAS canister to siml)lify integration 
l)roblel11s and safety concerns and maximize night opoortunities. 

• JDX will provide a meaningful experience for students and an opportunity to extend the 
understanding of damlJing mechanisms inioints. 

2. Construct a small truss with joints which provide gravity dependent damping. 
• Past tests show that a truss with pinned-joints can produce gravity dependent damping. 
• n aml)ing from tight joints is generally not gravity dependent. 
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Proiect Objectives (continued) 

3. Develoll a database of damping behavior for various gravity environments and various joint Ilin gaps. 

• Ground-based testing to measure damping with l-g loads. 
• A good ch~'racterization of the truss dynamics can be achieved. 
• Verification of gravity dellendent damping achieved by testin 

orientations. 

• Fly in aircraft test~ for short duration low-g tests. 

Ie truss in different 

• .JDX must be cantilevered during testing - aircraft vibrations will be significant. • Sliort time period. 
• Space night needed to verify low-g aircraft tests. 

• Fly as CAP I'ayload to measure damlling in micro-gravity. 
• CAP Payload should IJrovide relatively low cost and simple integration. • Test during orbiter free drift mode for a micro-gravity environment. 

4. Correlating ground-based and low-g aircraft test results with on-orbit test results. 

• Can ground tests simulate zero-g test~. 

• Can low-g aircraft tests simulate zero-g tests. 
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Proiect Obiectives (continued) 

5. Refining analytical models of gravity-dependent daml)ing mechanisms based on test results. 

• Relate measured damping with damping predicted from strut hysteresis tests, expected material 
damping, and simple friction and imlJact dallliling models. 

• ComlJare measured time histories with results of transient, non-linear finite element modeling 
techniques. 

• The recorded data should be a time history which can be readily be simulated using a 
transient computer model. 

• The transient decay of a single mode is desired. 
• A simille "twang" excitation method will IJroduce the desired excitation. 
• The only motion recorded in night would be the tip mass to reduce data storage. 

'-, 

'. 



• I 

• 

., 

" 

Technology Need 

l'rOI)Osed space structures could often benefit from accurate I)rediction of structural damping and a better 
understanding of joint dynamics. 

• Damping from the support structure is generally small. 
• Passive damlling sources generally are preferred. 
• Joints will be a source of dam,)ing. 
• Joints with gaps make dynamic behavior harder to predict. 

Predicting damping in large space structures can be difficult. 

• Difficult or impossible to test full scale structures on the ground. 
• Ground test results of components may be affected b 

gravity 
air 
temperature 
scale 

• Analytical methods of Ilredicting daml)ing need imlJrOVement. 
• Ground tests have shown that l!ravitv effectsioint danmin 

A database of in-orbit and on-ground tests would be hell)ful: 

• Providing qualitative information an important design variables. 
• Assistinl! in improving analytical models of joint daml)ing . 
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CUITellt Understanding of Joint 01- Connection D~lnlpil1g 

Pinned or bolted structures typically have more damping than welded structures. 

Daml)ing is typically amillitude and fre<luency dependent. 

Common Mechanisms of Passive Damping in Joints or Connections: 
Air Damping (not present in Sl)ace) 
Material Damping (~<O.OOI for most metals at room temllerature) 
Coulomb Friction: 

Macroslil): 
Can be a large source of dal11l)ing. 
Dependent on friction coefficients and joint loads. 
DalUI)ing contributions can be inferred from Joint l)u lI tests. 
Analytical modcls arc· avaiblblc. 

Microslil): 
Dallliling is less than Macroslip damping. 
Difficult to predict. 

Imllact Damping: 
Imillies a gal) is l)rcscnt. 
Generally believed to be more imlJortant at higher fre<lucncies (>1 Hz.). 
Difficult to prcdict but characterized by the coefficient of restitution. 
Difficult to separate from Coulomb Friction damping. 
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Previous Work Done at USU - Prior to Phase A 

An experiment has been constructed to measure daml)illg 
of a tetrahedral truss with pinned joints. 

• Develol)ed on a very small budget. 

• Demonstrated gravity dCI)Cndcnt damping 
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Illustration of the Expe'''i,nellt Layout 
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.Joint Design 

TAR-BAY 1 HUB 
USTMENT SHIMS 

.4225 I 
1.808--1 . 

- 32 CAP SCREW (3/4" Length) 
" ALUMINUM HEX STOCK 

16" CLEVIS PIN 
7/16-20 THREADED CONNECTION 

WITH ADHESIVE BOND 

STAINLESS STEEL SLEEVES 
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Truss, Battery Box, and Bottom Plate 

TRUSS 

INTERNAL 
SUPPORT 
STRUCTURE 

VENT LINE 
AND TURRET 

........ 
, .-

TIP MASS 

BOTTOM 
PLATE 

'. 



T,vang Method of Excitation 

The twang excitation method is accomplished by a linear actuator/lever arm/electromagnet assembly. 

• A magnet is moved into contact with a magnet plate on the truss tip mass. 
• The electromagnet is then energized and pulls the truss from its neutral position. 
• The power is removed from the electromagnet, the truss is released, and the decay of oscillations is 

recorded. 
• Two bending 1l1odes and a torsional mode excitation provided. 

Top View of the Truss Tip Mass 
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Ground testing of the Experiment PrototYI)e 

Twang tests of the truss were conducted. 
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Ground testing of the Experiment Prototype 

Twang, Random Vibration, and Sine SWeel) Tests of the truss. 

• Experiment mounted inside a can: 
• Allows testing in vacuum. 
• Provides stilT mounting for base excitation. 

• Tests conducted at different orientations to examine 
gravity dependence of daml)ing. 

90 DEGREE TRUSS ORIENTATION o DEGREE TRUSS ORIENTATION 

II OIRECTION OF 

EXCITATION 

GRAVITY 

I 

VACUlM CANISTER 

TRUSS 

DIRECTION OF --- EXCITATION 

'. 

..,' 



1\ • 
~ 

Til) Mass Locking Mechanisllt 

• Lock mechanism provides SUl1llort during launch and reentry to minimize joint wear. 
• The truss design can withstand launch and reentry desi2n loads in case the lockin2 mechanism fails 

to operate. 
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Experintent Controller/Data Acquisition System 

Campbell Scientific CR-I0 controller/datalogger 
• Will be used to control actuators and magnets and monitor temperature and pressure. 
• Low power consumption (0.5 rnA quiescent, 35 lOA during measurements @ 12 V) 
• 64K EEPROM for program and data. 
• Loads program from EEPROM on Power-up. 
• Easily programmed. 
• Uses a Campbell Scientific Control Port Module (SDM-CD16) for control of 32, 0.5 A circuits. 
• Powers-up a High Speed Data Logger for twang testing. 

Campbell Scientific High Speed Data Logger 
• 16 bit AID and 100,000 sample/sec capacity. 
• Power consumption: 0.13 Amp @ 12 V 
• 512 K EEPROM for program and memory and 512 K RAM 
• Stora2e of 358K values using a Campbell Scientific Memory Module (SM716) 
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Mounting of Electrical COlllponents 

ELECTRO-MAGNET 
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Stt·uctural Analyses of the Truss and Base Plate 

Linear Static Analysis 

• Design Accelerations: ±11.0 g's in X and Y and Z. 

• Safety Factor against yield > 2 

'. 
Predicted Resonant Frequencies (ignoring joint gaps) 

Natural 
Mode Freq. Mode 
Number LHz.) Descriution 

1 46.8 IJending mode 
2 51.3 Bending mode 
3 110.1 Torsional mode 



, 'r' 

.JDX Mission Operational I~lan 

Ex 
• Powered up at 50,000 feet by the baroswitch aUached to APC relays. • Unlock the truss during the first hour before significant cooling of th • The controller will monitor its built-in clock, the GAS relay switch 

teltl Deratu re. 

EXIJeriment Execution: 

, 

• JDX will begin the twang test sequence when the first of the three following events (1) Relay B is manually activated by the crew indicating a period 0 
(2) the temperature of the experiment drops below a lower limit valu 
(3) 18 hours bas passed since closure of the APC baroswitch. 

• Begin testing by: 
(1) Move all electromagnets to their preset stOI) IJositions, 
(2) Perform approximately ' 10 twang tests for each III 
(3) Record experiment temperature and air pressure durin2 the tests. and (4) Lock the truss by activating a linear actuator. 

Experiment Deactivation: 
• One hour after crew activation of Relay D, the crew will set Relav D to latent. • Lock the truss (if it is not already locked). 

ccur: 
, 

• Shut down all experiment activities except the monitoring of experiment temperatures. • Prior to the end of the mission, the crew will set Relay A to latent, thus powering down JDX. 

box 

• In the event of unsuccessful deactivation of Relay A, baroswitch opening at 50,000 feet durin2 orbiter entry will power down the controller • 

....... , 

'. 



'1' ", 

• i I .M..-....-. 

,IDX "resting Flow Cha,·t for Phase C/D 

JDX PROTOTYPE DESIGN 

PROTOTYPE 
TESTS 

HYSTERESIS 
TESTS 

...... , 

ACCEPTANCE 
TESTS 

COHPONENTS 
BATTERY BOX 

i 

FLIGHT MODEL DESIGN 

WORKMANSHIP 
vIa 

POST- FLI GHT TESTS 

SOFTWARE 
TESTS 

PROTOTYPE 
SOFTW. 
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.IDX Phase C/D Organization 

FUI'VING AGENCY 
OAST IN-STEP 

NASA Headquarter. 
J. LeVIne 

OAST IN-STEP 
NASA Heodquarter . 

L.lla Vann 
JOX IN-STEP Pragra. Manager 

PROJECT MANAGEMENT 
NASA Longley 

Mark Lake 
JOX Pro,eat Manager 

PRINCIPAL INVESTIGATORS 
Utah State Unt ver e t t , 

Steven FolkMan 
Frank Redd 

I 
SHUTTLE I NTEGRAT ION PAYlOAO INTEGRATION LOW- G AIRCRAFT TESTING 

NASA JSCIf(SC .A .... NASA GSFC NASA Ln ' e or JSC (TBD) 
Gary Gl ll e.pte - Crew Integ. .... .... Ted Goldeillth 

Bob Jon • • - Shuttle Inteo . Man. Sueon Ol den - Mle.'on Manager 
Tall Jone. - Sea. Payload Rep . 
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PHASES 

1.0 PROTOTYPE 
MooEL 

2.0 FLIGHT 
MOOEL 

3.0 SCFTWARE 
,-

4.0 GSE 

e.o OPERATIONS 

6.0 SAFETY .. 
ASSlRANCE 

1.0 PROORAM 
MANAGEMENT 
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