

NEP Space Test Program Objective

The Objective Of The NEP Space Test Program Is To Launch A NEP Satellite Powered By A Russian Topaz II Reactor By December 1995

23

EISG Data Flow

IMPORTANCE OF COMBINING SKIRT WITH EISG (con't)

- SKIRT will allow EISG to measure other contributors to the infrared glow: OH, NO+, NO₂, ...
- SKIRT will obtain data during both day and night sides of orbits, thereby enhancing EISG night-only data.
- Comparing SKIRT data from STS-39 and STS-62 will show the dependence of the glow on phase in the solar activity cycle.
- EISG/SKIRT will expand and enhance the technology base pertaining to shuttle glow.

IMPORTANCE OF COMBINING SKIRT WITH EISG

- Only by including SKIRT as part of EISG will it be possible to investigate all aspects of the glow process. SKIRT gives IR spectroscopic coverage to EISG.
- The elliptical orbits planned for STS-62 will provide a unique opportunity to measure the IR, visible, and UV glow as a function of altitude. Altitude information was not obtained by SKIRT on STS-39.
- EISG nitrogen gas releases will provide the first combined IR, visible and UV test of the role nitrogen plays in the glow chemistry.

THE ROLE OF INFRARED SPECTRA IN INVESTIGATING THE GLOW PROCESS

- Spacecraft-atmospheric interaction involves three reactions:
 - 1) $N_2 + O -> NO + N$
 - 2) NO_{surface} + O -> NO₂*
 - 3) N_{surface} + N -> N₂*
- Reaction 1) is monitored by observing NO spectral emission in the <u>infrared</u>. (This was first demonstrated by SKIRT on STS-39.)
- Reactions 2) and 3) are monitored by observing NO₂* and N₂* spectral emissions in the visible and ultraviolet, respectively.
- Only by observing spectra in all three regimes IR, visible, and UV - can the entire glow process be studied.

Figure 36. 2.9 μ m, 4.5 μ m, and 5.5 μ m Glow Intensities vs Ram Angle.²⁵

· 8.

-1

OF POOR QUALITY

1

SKIRT CVF payload configuration. This assembly fits into a NASA Get Away Special (GAS) can modified for a Hitchhiker mechanical and electrical interface.

7	Lockheed	Experimental Investigation	Experimental Investigation of Spacecraft Glow		Critical Design Review	
				Gary Swenson	8-27-91	
		Instruments - O	ptical Proper	ties		
	VISIBLE IMAGING SPECT	ROMETER (VIS)				
ptics:	Field of view FAR			ULTRAVIOLET IMAGING SPECTROMETER (FUV)		
	Transmission Grating Throughput Spectral range Spectral Resolution	60° 600 1p/mm f/1.8 4500-8400Å	Optics	Field of View Transmission Grating Throughput Spectral range	20° 1800 1p/mm f/4.8	
nage plane:	X axis - spatial Y axis - spectral	60° FOV 4500-8400Å	•••	Spectral resolution	1100-2000 an 3000Å [2 step cam] 15Å	
elector:	ICCD camera with S20 R ph Integration time	otocathode intensifier 1/60-180 s	Image plane:	X axis - spatial Y axis - spectral	20° 15Å	
		• · ·	Detector:	ICCD camera with RbTe photocat Integration time	hode intensifier 1/60-180 s	
		· ·				
		INFRA RED DETE	CTORS (2 each Sample)			
	Ор	vics: Field of view {Cold shield sets fi Filters	Field of view 60° [Cold shield sets field stop, without lenses] Filters 1-3 micron (#1) 3-5.4 microns (#2)			
	. De	tectors: InSb, Joule-Thomso Supply bottle at 300 while active	n cooled to 84 K with Arg 0 PSI, flows at .5 liter per	on cryostat. minute, STP.		

i Ne

IR DETECTOR (2)

1 5 4

FUV IMAGING SPECTROMETER

· .

VISIBLE IMAGING SPECTROMETER

- 1

OF POOR QUALITY

Lockheed	Experimental Investigation of Spacecraft Glow	Preliminary Design Review	
		Sam Choudhary	3-5-91

1 3.

RECENT GLOW DEVELOPMENTS

(GRS, 4/23/92)

1. FLIGHT DATA-STS 39!

-NO RELEASES CONFIRM GLOW BRIGHTNESS RELATED TO NO SURFACE DOPING.

-NEW AND INTERESTING IR DATA (INCLUDING SKIRT EXPERIMENT).

2. LABORATORY EXPERIMENTS!

-CONFIRM N₂ + O ATOM EXCHANGE CROSS SECTION IS LARGE!

3. STUDIES!

-DAYTIME 1-3 MICRON INTENSITIES FROM SPACELAB 2, IRT EXPERIMENT SUGGEST DAYTIME ANAMOLIES.

Develop understanding of the physical processes leading to spacecraft glow phenomena, with emphasis on surface temperature and altitude effects. This development can be used to:

- Characterize optical instrument backgrounds
- Provide guidelines for thermal insulations

· .

- Characterize material selection for flight optics and associated spacecraft
- Affect flight-operation altitude selection for relevant missions

CURRENT (MAJOR) GLOW MYSTERIES

MYSTERY

SPECTRAL REGION

VISIBLE (4000-8000 Å)

-WHAT IS THE SOURCE OF NO? ATMOSPHERIC? ATOM EXCHANGE? I.E. O + N₂-> NO + N

-WHAT IS THE SOURCE OF N? ATMOSPHERIC? ATOM EXCHANGE? I.E. O + N₂-> NO + N

- H₂O IS A BIG PLAYER, IS ODD N ALSO? -WHY IS DAYTIME SO BRIGHT AT 3.0 MICRONS?

UV - FUV (1100-4000 Å)

IR (.8-20 MICRONS)

GLOW TECHNOLOGY ISSUES

IDENTIFICATION OF THE PHYSICAL PROCESS

HETEROGENEOUS GLOWS (I.E. THOSE STIMULATED BY SURFACES) -SURFACE MATERIAL -SURFACE TEMPERATURE -CONSTITUENTS INVOLVED (I.E. RAM ATMOSPHERE (ALTITUDE), THRUSTERS, PLOW CLOUD INTERACTIONS (VEHICLE SIZE), OUT/OFF GAS) -CONSTITUENT ENERGY (VELOCITY)

HOMOGENEOUS GLOWS (I.E. THOSE INVOLVING GAS-GAS PROCESSES) -CONSTITUENTS INVOLVED (I.E. RAM ATMOSPHERE (ALTITUDE), THRUSTERS, PLOW CLOUD INTERACTIONS (VEHICLE SIZE), OUT/OFF GAS) -CONSTITUENT ENERGY (VELOCITY)

Glow Contaminations (Major Known)

SPECTRAL REGION

VISIBLE (4000-8000 Å)

UV - FUV (1100-4000 Å)

IR (.8-20 MICRONS)

1 3 1

CONTAMINANT (MALOR)

21 5. . .

-NO₂ FROM SURFACE RECOMBINATION I.E. NO + O -> NO₂* (4000-8000 Å)

-N₂ FROM SURFACE RECOMBINATION I.E. $N + N \rightarrow N_2^*$ (1400-1800 Å)

-NO (1900-2200 Å) ??

-N2 (2600-3400 Å) ?? 2P OR GH BANDS?

-O₂ FROM SURFACE RECOMINATION I.E. O + O -> O₂* (2800-3800 Å)

-H₂O FROM COLLISIONAL EXCITATION I.E. $H_2O + O \rightarrow H_2O^* + O (2.8 - 15 \text{ MICRONS})$

-NO. NO± EMISSIONS?? (4-5.4 MICRONS)

<u>-H₂O[±] EMISSIONS FROM CHARGE EXCHANGE??</u> I.E. H₂O + O⁺ -> H₂O^{+*} + O (2.6-3.3 MICRONS)

-OH EMISSIONS?? (1.4-3 MICRONS)

~

ORIGINAL PAGE IS OF POOR QUALITY

OFFIGINAL PAGE IS OF FOOR QUALITY