

NASA In-STEP

Permeable Membrane Experiment

Presented at
NASA/DoD
Flight Experiment Technical Interchange Meeting
Monterey, CA
October 8, 1992

Boeing Defense and Space Group Kent Washington 537-25 159242 N93-28736

Agenda

- Experiment Overview
- Membrane Phase Separation Experiment
- Membrane Diffusion Interference Experiment
- Membrane Wetting Experiment
- Summary and Conclusions

Experiment Background

BOEINE

History

Announcement of opportunity	11/89
Submittal of proposal	12/89
Notification of award	5/90
Contract negotiations begun	3/91
Contract start date (Phase B)	9/91
Phase B completion	5/92
Phase B extension start date	9/92
Phase B extension expected completion date	11/92

Experiment Project

BOEING

Problem Statement

- There is a need for compact, reliable, and efficient technologies.
 - Advanced life support
 - Life sciences facilities
- Membrane technology meets this need in the following areas:
 - Phase separation
 - Fluid degassing
 - Particulate removal (including micro-organisms)
 - Ion transfer
- Membrane performance may be compromised by multiple phases.
 - Gas/liquid/membrane interface
 - Effect on phase separation and ion transfer efficiency
 - Area of greatest influence by presence of gravity

Experiment Project

BOEING

Project Objectives

- Primary
 - Determine influence of different phases at membrane surface
 - Provide information on performance and possible problems
 - Study three areas of critical membrane design concern:
 - Phase separation.
 - Diffusion.
 - Wetting.
 - Use these data and provide data to other design engineers
- Secondary
 - Provide a reusable membrane experiment package

Experiment Project

BOEING

Experiment Description

- Three experiments packaged within a single shuttle CAP canister:
 - Dual-membrane gas/liquid phase separator
 - Membrane diffusion interference by gas bubbles
 - Membrane fluid wetting behavior
- Standalone Complex Autonomous Payload (CAP) carrier
 - Battery power
 - Passive thermal control
 - Embedded data acquisition and control
 - 8-mm video camcorder for visual record
 - Experiment package initialized from aft flight deck

Experiment Project

BOEING

Experiment Package - CAP Canister Section

Power, control, and data collection and camcorder Membrane experiments (3) and lighting -Pumps, valves, fluid storage, and plumbing and wiring -**NASA Interface Equipment** Plate -

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Problem Statement

- Free-gas contamination of liquid systems
- Gas interference with transport processes
- Difficulty of gas elimination in microgravity
- Drawbacks of existing approaches
 - EMU gas trap
 - Shuttle fan/separator

A STATE OF THE STA

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Objectives

- Evaluate ability to completely separate gas and liquid.
- Evaluate separation over a range of free-gas conditions.
- Eliminate the effects of gravity.

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Experiment Description

- Three-chamber test cell with two membranes
 - Hydrophilic for water passage
 - · Hydrophobic for gas passage
- Fixed liquid flow with varying gas flow mixed
- Video recording of tubing and test cell chambers
- Record of --
 - Flow rates (fluid and gas)
 - Separation effectiveness (visual)
 - Inter-chamber gas bubble behavior (visual)
 - Time, pressure and temperature
 - Shuttle acceleration environment

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Test Configuration

9-B34280pk35-140

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Parameters To Be Tested

- Complete separation of gas from gas/liquid stream
- Performance envelope for dual-membrane separator
 - Gas loading
 - Liquid flow rate
 - Pressure

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Microgravity Testing Requirement

- Performance depends on gas-to-membrane contact.
- Gravity strongly influences contact based on orientation.
- There is an unknown attraction of hydrophilic membrane for bubbles.
- Time periods greater than 50 sec are required.

No. 1 Dual-Membrane Gas/Liquid Phase Separator

BOEING

Benefits

- Definition of operating parameters
 - Pressure
 - Flow rate
 - Gas loading
- Improvements in microgravity phase separation
 - Reduced complexity, mass, volume, and power
 - Increased reliability
- Applications
 - Humidity condensate removal
 - Urine collection
 - Hand wash and shower water recovery
 - Fluid (liquid) system degassing

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Problem Statement

- Entrained gas bubbles potentially adhere to hydrophilic membranes in microgravity.
- Adhered gas bubbles reduce effective transfer surfaces for material diffusion.

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Objectives

- Determine to what degree entrained gas bubbles adhere to hydrophilic membranes.
- Determine the interference of adhered gas bubbles to diffusion.

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Experiment Description

- Two test cells used-control and induced-gas entrainment.
- Each cell is composed of two compartments separated by a hydrophilic membrane.
- Each cell contains test fluid, which is pumped through one compartment (feed), and deionized water, which is stagnant in the other compartment (permeate).
- A variable gas flow rate is added to the feed of the induced-gas test cell.
- The adhesion of entrained gas bubbles on the membrane surface is video-recorded for later analysis.
- The difference in diffusion between the two cells is demonstrated by the difference in the rate of change in measured conductivity of the permeates of both test cells.

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Test Configuration

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Parameters To Be Tested

- The adhesion of entrained gas bubbles to a hydrophilic membrane surface
- The interference of adhered gas bubbles to the material diffusion through membranes

9-R34280nk38-148

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Microgravity Testing Requirements

- Buoyancy of gas bubbles in 1g dominates bubble behavior in liquid.
- KC-135 cannot provide stable low gravity for the required 20 min.

No. 2 Membrane Diffusion Interference by Gas Bubbles

BOEING

Benefits

- Design effective plant nutrient delivery systems.
- Provide information to predict gas-bubble adhesion on hydrophilic surfaces such as metal pipes and tubes.
- Provide information to determine whether gas bubbles adhere to the hydrophilic membrane of the phase separator under low-flow conditions.

Experiment Design No. 3 Membrane Wetting Experiment

BOEING

Problem Statement

- Certain membranes are sensitive to wetting (conditioning) for proper operation.
- Preconditioning membranes
 - Add weight.
 - Create waste water for flushing.
 - Require special packaging.
- Wetting dried membranes in microgravity may not be feasible depending on fluid behavior.

No. 3 Membrane Wetting Experiment

BOEING

Objective

• Investigate fluid behavior on a dried membrane surface as the fluid permeates the membrane.

No. 3 Membrane Wetting Experiment

BOEING

Experiment Description

- Two-chamber test cell is separated by a hydrophilic membrane.
- Liquid flows through one chamber and permeates the membrane.
- Droplet or film formation on the permeate side of the membrane surface is recorded on video.

No. 3 Membrane Fluid Wetting Behavior

BOEING

Test Configuration

Possible patterns of fluid formation

(to be determined)-

Permeate-side surface of hydrophilic membrane under test

9-B34280pk35-141

No. 3 Membrane Wetting Experiment

Parameters To Be Tested

 Fluid behavior on permeate side of membrane surface is observed.

No. 3 Membrane Wetting Experiment

BOEING

Microgravity Testing Requirements

- Gravity dominates fluid behavior in 1g.
- Surface tension forces dominate in microgravity.
- Testing requires 20 min of stable microgravity.

No. 3 Membrane Wetting Experiment

BOEING

Benefits

- Visual data is obtained to determine whether membranes can be conditioned in microgravity.
- Droplet formation data on membrane surfaces can be applied to condensate recovery on cold surfaces.

Summary and Conclusions

- Phase separation is an important issue for microgravity life support systems
 - Improvements could be made over the existing rotary separation technology
 - Membranes over a compact, passive and highly efficient means for gas/liquid separation
 - Membrane separation in microgravity is highly dependent upon surface tension forces and therefore requires testing in microgravity where these forces predominate.

Summary and Conclusions

- Many life support processes depend upon transport (heat or material) across boundaries, such as for heat exchange, filtration, sensing, and water purification.
 - Membrane technology can be applied especially well for filtration, sensing and purification
 - Laboratory testing has shown that bubble adhesion on a membrane surface impedes the rate of transport across the membrane
 - The predominance of surface forces in microgravity requires testing for the susceptibility of membranes to bubble adhesion and the affects of that adhesion on transport

Summary and Conclusions

- Some membrane applications (especially for water purification) require the membrane to be "wetted"
 - Wetting replacement membranes on-orbit as opposed to shipping them pre-wetted can result in weight, and labor savings
 - Information on how a wetting fluid forms across a membrane surface is needed to give an indication if dry membranes can be "wetted" after replacement
 - The predominance of surface forces in microgravity requires testing for membrane wetting in a microgravity environment