ARMSTRONG LABORATORY SPACE VISUAL FUNCTION TESTER PROGRAM

LT COL MELVIN R. O'NEAL, O.D., Ph.D. H. LEE TASK, Ph.D. MAJ GERALD A. GLEASON, O.D., Ph.D.

Visual Display Systems Branch Human Engineering Division Crew Systems Directorate Armstrong Laboratory AL/CFHV, Wright-Patterson AFB, Ohio 45433-6573

N93-28739

SPACE VISION LOGO

INTRODUCTION

Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth.

DUNTLEY SPACE VISION EXPERIMENT

VISUAL ACUITY

- Hand-held device
 - -- Square wave bar gratings
 - -- High and low contrast
 - -- Tested at optical infinity (distance vision)
- Also used ground targets

RESULTS

- Gemini V and VII
 - -- No significant change in acuity

USSR SPACE VISION EXPERIMENTS

VISUAL ACUITY

- Square wave gratings
- High (94%) and low (13%) modulation contrast
- Tested at 30 cm (near vision)

RESULTS

- Voskhod
 - -- Two subjects
 - -- 5 10% drop in high contrast acuity
- Soyuz 4 & 5
 - -- Four subjects
 - -- Three showed ~ 10% drop in both high and low contrast acuity
 - -- One showed ~ 20% improvement in high contrast acuity
- Soyuz 9
 - -- One subject
 - -- 18% drop in high contrast visual acuity
 - -- 4% drop in low contrast visual acuity

VISUAL FUNCTION TESTERS

- Model 1 (VFT-1) : Multi-Visual Functions
- Model 2 (VFT-2) : Visual Contrast Threshold
- Model 4 (VFT-4) : Visual Near Point/Facility