EFFECT OF MICROGRAVITY ON SEVERAL VISUAL FUNCTIONS DURING STS SHUTTLE MISSIONS

VISUAL FUNCTION TESTER - MODEL 1 (VFT-1)

LT COL MELVIN R. O'NEAL, O.D., Ph.D.
H. LEE TASK, Ph.D.

COL LOUIS V. GENCO, O.D., M.S.

PURPOSE (VFT-1)

- Previous visual acuity studies at different test distances and may be affected by age and lighting
- Determine effect of microgravity on distance visual acuity over mission duration
- Use high contrast acuity targets in small size increments under set lighting conditions
- Expand assessment to several other visual functions

METHODS (VFT-1)

SUBJECTS

- 26 STS Astronauts
-- 5 subjects with only 1 pre- and 1 on-orbit eliminated
-- 1 Toric-SCL with on-orbit problem eliminated
-- $\mathrm{n}=20 ; 1$ HGP CL, 1 SCL, 1 Toric-SCL included
-- Repeat data on 2 subjects

APPARATUS

- Visual Function Tester - Model 1 (VFT-1)
-- Small, hand-held, battery powered
-- Seven vision tests:
- Acuity in small steps to 20/7.7
- Stereopsis to 10 sec-of-arc
- Lateral phoria, Vertical phoria, Cyclophoria
- Critical flicker fusion
- Retinal rivalry

METHODS

PROCEDURE

- Pre-mission briefing and tester familiarization
- Vision assessed
-- $2 x$ pre-flight at 14 days (L-14) and 7 days (L-7)
-- Daily after wake-up on-orbit
-- 3x post flight at landing, 3 days ($L+3$) and 7 days ($L+7$)

DATA ANALYSIS

- Calculated difference between mean of two pre-flight sessions (taken as baseline) and each subsequent measurement for each subject
- Non-parametric statistical analysis (Wilcoxon signed-rank)

RESULTS

GROUP DATA

- Corresponding data days are:
-- L-14 days = Pre-flight 1
-- L-7 days = Pre-flight 2
-- On-orbit = Hours of mission elapsed time (MET)
-- Landing = Post-Flight 1
-- L+3 days = Post-flight 2
-- L+7 days = Post-flight 3
- Size of dots represent number of subjects with same performance
- Variability between subjects in baseline pre-flight data is typical of psychophysical vision data

VFT-1 (GROUP DATA)

VFT-1 GROUP DATA

	MEAN PRE-FLIGHT	MEAN CHANGE
VISUAL ACUITY	0.61 min arc (20/12.2)	+0.06 min arc (to 20/13.4)
STEREOPSIS	19.8 arc sec	-4.9 arc sec
LATERAL PHORIA	$-2.08{ }^{\Delta}$ (ESO)	$+0.36{ }^{\text {D }}$
VERTICAL PHORIA	$0.04{ }^{\text {s }}$	$-0.07{ }^{\Delta}$
CYCLOPHORIA	-1.14 (ENCYCLO)	-0.02
FOVEAL FLICKER	52.43 Hz	-0.06 Hz

RESULTS

CHANGE DATA

- Difference between mean of two pre-flight sessions (baseline) and each subsequent measurement for each subject was calculated
- Size of dots represent number of subjects with same amount of change
- No apparent trend in change for lateral and vertical phorias, cyclophoria, and critical flicker fusion; nor retinal rivalry (no figure)

RESULTS

STEREOPSIS CHANGE

- Slight trend toward smaller sec-of-arc stereopsis on-orbit (i.e., improvement), not apparent at landing or after
- On-orbit change from pre-flight baseline
-- Mean change at subject's first and last data $=\mathbf{- 5} .0$ arc sec
- Mean group change in stereopsis on-orbit was -4.9 arc sec from baseline; nearly significant $(p=0.07)$
- Post-flight, change was only -0.8 arc sec at landing and was +1.1 arc sec by second post-flight (L+3 days) session

RESULTS

VISUAL ACUITY CHANGE

- Definite trend toward larger min-of-arc resolution on-orbit (i.e., decreased acuity), not apparent at landing or after
- On-orbit change from pre-flight baseline
-- Mean change at first on-orbit data $=+0.04 \mathrm{~min}$ arc $(p=0.13)$
-- Mean change at last on-orbit data $=+0.07 \mathrm{~min}$ arc $(p=0.001)$
-- No significant difference between first and last data ($p=0.15$)
- Significant mean group change of 0.06 min arc in visual acuity on-orbit from baseline ($p=0.005$)
- No change from pre-flight baseline at landing or after ($p=0.90$)

VFT-1 (PERCENT CHANGE FROM PRE MEAN)

DISCUSSION

- No group changes on-orbit in lateral and vertical phorias, cyclophoria, critical flicker fusion, and retinal rivalry
- Mean group visual acuity loss on-orbit of only $\mathbf{+ 0 . 0 6}$ min arc; corresponds to only slight change in Snellen acuity from 20/12.2 at baseline to 20/13.4 on-orbit
- Mean percent loss in acuity on-orbit =7.5\%; single data points ranged from 40% loss to 20% improvement

DISCUSSION (Con't)

- Mean group stereopsis improvement on-orbit of only 4.9 arc sec. Some subjects with marked improvement
- Two repeat subjects, in general, confirmed their initial results. Both subjects had large improvements in stereopsis on-orbit. Also found at the second mission (although one on-orbit data point varied for each)

