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MESUR presents some major challenges for development of
instruments, instrument deployment systems, and onboard data
processing techniques. The instrument payload has not yet been
selected, but the strawman payload is (1) a three-axis seismometer,
(2) a meteorology package that senses pressure, temperature, wind
speed and direction, humidity, and sky brightness; (3) an alpha-
proton-X-ray spectrometer (APXS); (4) a thermal analysis/evolved
gas analysis (TA/EGA) instrument; (5) a descent imager, (6) a
panoramic surface imager, (7) an atmospheric structure instrument
(ASI) that senses pressure, temperature, and acceleration during
descent to the surface; and (8) radio science. Because of the large
number of landers to be sent (about 16), all these instruments must
be very lightweight. All but the descent imager and the ASI must
survive landing loads that may approach 100 g. The meteorology
package, seismometer, and surface imager must be able to survive
on the surface for at least one martian year. The seismometer
requires deployment off the lander body. The panoramic imager and
some components of the meteorology package require deployment
above the lander body. The APXS must be placed directly against
one or more rocks near the lander, prompting consideration of a
microrover for deployment of this instrument. The TA/EGA re-
quires a system to acquire, contain, and heat a soil sample. Both the
imagers and, especially, the seismometer will be capable of produc-
ing large volumes of data, and will require use of sophisticated data
compression techniques.

A LOW-COST, LIGHTWEIGHT, AND MINIATURIZED
TIME-OF-FLIGHT MASS SPECTROMETER (TOFMS).
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Time-of-flight mass spectrometers (TOFMS) are commonly
used for mass analysis and for the measurement of energy distribu-
tions of charged particles. For achieving high mass and energy
resolution these instruments generally comprise long flight tubes,
often as long as a few meters. This necessitates high voltages and a
very clean environment. These requirements make them bulky and
heavy. We have developed [1] an instrument and calibration tech-
niques [2] that are based on the design principles of TOFMS.

CAPILLAKI | ION SAnPLINO CHARMR

•a]—' '—I I—ton

. * TO VACUUn r UK — CHANNEL PLALC

However, instead of one long flight tube it consists of a series of
cylindrical electrostatic lenses that confine ions under study along
the axis of the flight tube. This results in a short flight tube (i.e., low
mass), high mass resolution, and high energy resolution. A labora-
tory version of this instrument is in routine operation. A schematic
diagram of this instrument is shown in Fig. 1 .
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Planning for the Pluto Fast Flyby (PFF) mission centers on the
launch of two small (110- 160 kg) spacecraft late in the 1990s on
fast, 6-8-year trajectories that do not require Jupiter flyby s. The cost
target of the two-spaceraft PFF mission is $400 million. Scientific
payload definition by NASA's Outer Planets Science Working
Group (OPSWG) and JPL design studies for the Pluto flyby space-
craft are now being completed, and the program is in Phase A
development. Selection of a set of lightweight, low-power instru-
ment demonstrations is planned for May 1993. According to plan,
the completion of Phase A and then detailed Phase B spacecraft and
payload design work will occur in FY94. The release of an instru-
ment payload AO, followed by the selection of the flight payload, is
also scheduled for FY94. 1 will describe the scientific rationale for
this mission, its scientific objectives, and give an overview of the
spacecraft and strawman payload.

Fig. 1. Schematic diagram of the ion mass sensor.
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Introduction: Magellan radar data show the surface of Venus
to contain a wide range of geologic features (large volcanos,
extensive rift valleys, etc.) [1,2]. Although networks of intercon-
necting zones of deformation are identified, a system of spreading
ridges and subduction zones like those that dominate the tectonic
style of the Earth do not appear to be present. In addition, the ab-
sence of a mantle low-viscosity zone suggests a strong link between
mantle dynamics and the surface [3,4]. As a natural follow-on to
the Magellan mission, establishing a network of seismometers on
Venus will provide detailed quantitative information on the large-
scale interior structure of the planet. When analyzed in conjunction
with image, gravity, and topography information, these data will aid
in constraining mechanisms that drive surface deformation.

Scientific Objectives: The main objective for establishing a
network of seismometers on Venus is to obtain information on both
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